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Abstract

Understanding protein structure and function is crucial in biology. However, current
computational methods are often task-specific and resource-intensive. To address
this, we propose zero-shot Protein Question Answering (PQA), a task designed to
answer a wide range of protein-related queries without task-specific training. The
success of PQA hinges on high-quality datasets and robust evaluation strategies,
both of which are lacking in current research. Existing datasets suffer from biases,
noise, and lack of evolutionary context, while current evaluation methods fail
to accurately assess model performance. We introduce the Pika framework to
overcome these limitations. Pika comprises a curated, debiased dataset tailored
for PQA and a biochemically relevant benchmarking strategy. We also propose
multimodal large language models as a strong baseline for PQA, leveraging their
natural language processing and knowledge. This approach promises a more
flexible and efficient way to explore protein properties, advancing protein research.
Our comprehensive PQA framework, Pika, including dataset, code, and model
checkpoints, is openly accessible on Github, promoting wider research in the field.

1 Introduction

Proteins, essential to biological functions, are complex macromolecules that perform a myriad of
cellular roles determined by their complex structures and interactions. As a polymer of amino acids,
drawn from a pool of 20 natural ones, the sequence in which these building blocks are arranged
dictates the protein’s three-dimensional structure, which is critical for its function. Given the critical
role of proteins in both fundamental biology and applied biomedical research, a deep understanding
of their structures and functions is crucial. Despite significant advances in deciphering proteins’ 3D
structures, there remains a pressing need for innovative methodologies to facilitate the computational
study of their biochemical and functional properties.

Currently, training individual models tailored to specific tasks are the primary approach to compu-
tationally studying the biochemical and functional properties of proteins, requiring extensive data
collection and training for each unique task. For instance, submissions to the Critical Assessment of
Protein Function Annotation algorithms (CAFA) aim to predict the functional annotations such as
GO terms for new protein sequences, as required by the multi-year challenge (Function-SIG, 2024).
Similarly, several other task-specific models have been developed to predict specific biochemical
properties of proteins, such as ligand binding (Wei et al., 2022) or thermal stability (Blaabjerg et al.,
2023). To address the limitations of current approaches, we propose to unify protein sequence-related
enquiries under a more generic task of zero-shot Protein Question Answering (PQA), where there
can be free-form inquiries about known or novel protein sequences.

∗Corresponding Author: eli.carrami@gmail.com

AI for New Drug Modalities at NeurIPS 2024.



The development and assessment of effective zero-shot PQA models critically depend on the avail-
ability of high-quality datasets and robust evaluation strategies, both of which present significant
challenges in the current research landscape; unfortunately, existing datasets available for related
tasks often exhibit significant limitations. They frequently demonstrate biases towards specific protein
families, overlook the critical evolutionary relationships between proteins, and may contain noisy or
unreliable annotations. These shortcomings hinder the development of effective PQA models that
can generalize across diverse proteins and accurately answer complex queries.

Similarly, the robust evaluation of PQA models necessitates biochemically-relevant benchmarking
strategies that focus on the scientific accuracy of model predictions within the context of the specific
questions posed. Previous research efforts have not adequately addressed these challenges. They
often neglect the impact of evolutionary relationships on information leakage, which can lead to
overestimation of model performance. Moreover, they predominantly rely on metrics like BLEU
(Papineni et al., 2002) and ROUGE (Lin, 2004), which have been consistently shown to be inadequate
for assessing the accuracy of scientific statements (Mathur et al., 2020). This lack of suitable
evaluation tools further impedes progress in the field.

To address these limitations, we have developed the Pika framework, comprised of a curated and
debiased dataset specifically designed for the PQA domain, equipped with scientific question and
answer (QA) pairs for instructional training as well as a robust and biochemically relevant benchmark-
ing strategy to enable effective evaluation of PQA models. Alongside, we also propose multimodal
large language models (LLMs) as a potential solution to PQA and create evolution-aware splits for
assessment of their performance. Besides their capability in processing natural questions, LLMs
encapsulate a large body of knowledge which could provide further context for the model, enabling it
to perform a more flexible and efficient exploration of protein functionalities, bypassing the need for
extensive model training and data collection for individual queries.

Finally, comparing the performance of multimodal LLMs with various relevant baselines on our
evolution-aware data splits, we show that these models are a promising direction for PQA. In
particular, we train and evaluate two multimodal protein-text architectures combining the ESM2 (Lin
et al., 2022) protein language model (PLM) with the Phi-2 LLM (Microsoft, 2023), showcasing the
seamless integration of protein sequence analysis with natural language processing while highlight
the shortcomings of these models in particular when dealing with evolutionary distant proteins. Our
results suggest that the strategic adoption of this methodology, especially with more advanced LLMs,
has the potential to challenge the current state-of-the-art in task-specific models. It is essential to
highlight that, our research, leveraging the robust yet modestly scaled Phi-2 LLM, serves as a robust
proof-of-concept to demonstrate the potential of this approach. We hope our work fuels further
research and opens new avenues towards performant PQA models.

2 Related Work

Since PQA is distinct from other question-answering tasks, existing scientific QA datasets such as
ScienceQA (Lu et al., 2022), PubMedQA (Jin et al., 2019) or SQuAD (Rajpurkar et al., 2016, 2018)
are not suitable for PQA training or evaluation. This is because unlike standard QA tasks where the
answer to the question can be inferred using logic or existing knowledge, in PQA the answer to the
question must be extracted from cross-modality embeddings via the LLM, therefore necessitating
specialized protein-text datasets that annotate protein sequences with relevant labels.

Previous studies on integrating text and protein sequences have primarily leveraged large-scale
unstructured biomedical text or knowledge graphs to refine protein representations, facilitating
downstream tasks like functional classification and sequence generation (e.g. ProtST (Xu et al., 2023),
OntoProtein (Zhang et al., 2022)). Alongside, ProteinChat (Guo et al., 2023) has utilized LLMs for
knowledge retrieval to facilitate discussions about 3D structure databases, and concurrent to our work,
Mol-Instructions (Fang et al., 2024) focuses on improving LLM’s understanding of biomolecules (e.g.,
proteins) by fine-tuning existing LLMs. These recent efforts while introducing valuable protein-text
datasets have limitations that make them unsuitable for scientific PQA, as detailed below:

1. ProtDescribe (Xu et al., 2023): This dataset contains textual annotations from three fields of
uncurated SwissProt entries, risking bias and data leakage due to high sequence similarity and
over-representation of certain protein families (Fig. B.1). Also, its use of fields that are not
directly inferable from protein sequence alone (e.g., cellular interaction) limits its utility for PQA.
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Figure 1: Schematic of Pika framework. Pika-DS is created from filtered SwissProt entries followed by
processing using GPT3.5.

Conversely, it misses out on features like catalytic reactions which are often subject of scientific
queries. Crucially, lacking QAs, it fails to directly support PQA assessments. Therefore, while
valuable for enhancing protein representations and text-to-protein generation, as intended by the
authors, this dataset is not suitable for the scientific PQA.

2. PDB-QA (Guo et al., 2023) : With a limited set of 30 predefined QAs on 3D structures from the
PDB database, while suitable for knowledge retrieval tasks, its focus on entry-specific details (e.g.,
submission date, analysis software) renders it ineffective in the context of scientific PQA.

3. Mol-Instructions (Fang et al., 2024): This dataset was released concurrent to our work. The
protein section of Mol-Instructions represents a relevant set of template-based textual annotations
for proteins tailored towards five downstream tasks, including question-answering. The dataset is
curated from SwissProt and is debiased using a 90% similarity threshold. This lenient threshold
results in an abundance of highly related proteins, which leads to bias and in the absence of an
evolution-aware splitting strategy could cause leakage across data splits.

Furthermore, in all previous and concurrent research authors have relied on BLEU or ROUGE metrics
for evaluating the scientific accuracy of generate captions or responses. However, these metrics are
not suitable for assessing accuracy (Mathur et al., 2020), therefore limiting the scientific scope of past
research in PQA domain. As a result, due to the lack of relevant benchmarking strategies as well as
biases and noise in existing datasets, the task of free-form zero-shot scientific enquiry of new protein
sequences remains unexplored.

3 Pika Framework

Here we detail our dataset, benchmarking and baseline designs for the Pika framework (Fig. 1). All
baselines, model architectures and benchmarking were implemented in PyTorch Lightning , and the
complete codebase is accessible on github.com/EMCarrami/Pika.

3.1 Pika Dataset

The scientific PQA task is aimed at delivering accurate responses to free-form questions based
on an unseen protein sequence. This task emerges from the need for scientific exploration of
protein functions via natural language question answering. Therefore, the training and evaluation
of multimodal models for the PQA task necessitates comprehensive datasets with scientific textual
annotations linked to corresponding protein sequences. We deemed the following three criteria as
essential for a specialized PQA dataset:

1. Offers an unbiased representation of known protein sequences, mitigating frequency biases
prevalent in existing databases.

2. The dataset ensures that the information associated with each protein sequence is expertly curated,
allowing for inference solely based on the protein sequence.

3. Supports relevant benchmarking to assess model performance especially in zero-shot settings.

3



Figure 2: Characteristics of PQA dataset. (a) Distribution of token counts for all examples in Pika-DS. (b)
Frequency of words in each position in each section of the dataset. Long words are abbreviated (do.=does,
mol.=molecule, fun.=function, we.=weight, bel.=belong).

Since, as discussed in section 2, none of the existing datasets meet all these criteria we created
Pika-DS (See sections A.1, A.2, A.3 for details), the first specialized and debiased PQA dataset,
accompanied with respective biologically relevant benchmarks for model training and evaluation
(summary statistics in Table B.1 and example in Table B.2).

Briefly, we gathered all SwissProt entries from UniProt database (Consortium, 2022) and extracted
an expert-curated list of scientific information fields covering a wide range of relevant properties. We
then debiased the sequences using a strict 50% similarity threshold. Finally, we employed GPT3.5
API to process the information fields for each protein entry using systematically optimized prompts
(Sections A.4 and A.5) to create the Pika-DS’s three main components:

• Summary: A summary of each protein’s functional and biochemical properties, based solely on the
provided information excluding the protein’s name.

• QAs: Several diverse QA pairs for each information field, formatted for LLM training.
• Metrics: Single-word answers to a set of predefined scientific questions serving as the ground-truth

for our Biochem-Lite benchmarks (Section 3.2.2).

3.1.1 Pika-DS Quality Control

The final Pika-DS comprises 257,167 protein sequences, selected from 185,128 UniRef50 clusters.
This dataset is enriched with detailed descriptors for each sequence: a summary statement divided into
sentences, multiple scientific QA pairs, and the ground-truth answers for our predefined benchmarking
questions. This dataset encapsulates over 105 million protein sequence tokens, approximately 36.4
million tokens in textual summaries, and nearly 47 million tokens in QA pairs (Table B.1). To ensure
the high quality of Pika-DS and suitability of generated textual annotations for training multimodal
LLMs we assessed various aspects of our dataset.

Human evaluation of GPT3.5 generated annotations: Given the potential limitations of GPT3.5
generated annotations (e.g., hallucination), we conducted a thorough human evaluation of the Pika-
DS. For this, 100 randomly selected examples from Pika-DS were manually evaluated by an expert
biochemist. Our analysis revealed that out of a total of 1204 summary sentences and QA pairs, 5 were
incorrect (0.4%), 21 were of poor quality (1.7%), and 43 were irrelevant (3.6%), resulting in over
94% of the annotations being correct, relevant, and of high quality. Furthermore, only 5 out of 660
metric ground truths were found to be incorrect, yielding a 99.2% accuracy in ground truth metric
values. Furthermore, consultations with two expert biologists confirmed that the QA pairs generated
by GPT-3.5 in Pika-DS are relevant and scientifically sound, closely matching what they would
derive from the provided input fields. They also unanimously agreed that GPT-3.5 questions offer
greater diversity compared to their potential queries. These results underscore the effectiveness of our
prompt optimization approach for generating high-quality labels using GPT3.5 based on SwissProt
information fields and is consistent with a recent study that has found LLM-generated captions can
exhibit higher diversity than those created by humans, leading to enhanced training of multimodal
LLMs (Sharifzadeh et al., 2024).

Token Count Analysis: In creating the QA pairs using GPT3.5, we instructed the model to
cover a broad spectrum of queries and to produce detailed answers suitable for training other LLMs,
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anticipating elaborate rather than single-word answers. This was confirmed by our analysis of token
counts in the summary sentences, questions, and answers of the final dataset. This revealed that while
questions are typically shorter (8.5 tokens on average), the summary sentences and answers are longer
and more extensive (on average 27 and 16.5 tokens). This presents an adequate number of tokens per
example, providing sufficient context for the training of multimodal PQA models (Figure 2a).

Word Frequency Analysis: To ensure the diversity of content in summary statements as well as
QA pairs, we examined the frequency of words in the initial five positions of each of these categories.
As anticipated, common words such as "the" and "it", in summaries, and interrogatives like "What"
and "How" in questions, dominated the first three positions. Similarly, answers often began with "the"
or "this" as well as "yes/no" structures, followed by "protein". However, the remaining positions
demonstrated a significant lexical diversity. This observation confirmed that our dataset does not
exhibit a substantial bias, offering the necessary diversity for effective model training (Figure 2b).

Protein over-representation Analysis: We used pre-computed protein embeddings from UniProt
database and visualized them using UMAP (McInnes et al., 2018), highlighting the entries that belong
to the top 100 largest clusters. Visual comparison of distribution of protein embeddings before and
after our Uniref50-based filtering confirms a strong reduction of over-represented protein families in
Pika-DS while maintaining the rich diversity of the dataset (Figure B.2).

3.2 Pika Benchmarks

In this section, we elaborate on our biochemically-focused benchmarking methodologies tailored for
evaluating the scientific accuracy of multimodal PQA models.

3.2.1 Motivation & Design Criteria

Conventional linguistic metrics like BLEU and ROUGE, while useful in general linguistic contexts,
often fall short in assessing scientific correctness and show poor correlation with human judgment
(Mathur et al., 2020). As a result these metrics are inadequate for assessing the performance of
multimododal PQA models. Therefore, going beyond standard linguistic evaluations, we designed a
purpose-built benchmarking approach incorporating a set of predefined, biochemically-significant
questions, that are specifically selected to:

1. Reflect the biochemical properties of proteins, ensuring that a model’s accuracy in these responses
is indicative of its effectiveness in broader scientific enquiries.

2. Span a spectrum of complexity, from straightforward information extraction with minimal linguis-
tic intricacy to advanced linguistic reasoning for identifying pertinent information.

In consultation with domain experts, we identified five core protein properties at distinct difficulty
levels that form the basis for our scientific benchmarking questions: molecular weight (mw), co-factor
binding, sub-cellular localization, protein domains, and enzymatic reaction.

Alongside these benchmarking questions, we also require a robust strategy to assess the correctness
of open-ended answers to them. Four possible assessment strategies could be imagined: (1) Exact
matching of statements, (2) Keyword comparison, (3) Comparison using stronger LLMs (xLLMs),
and (4) Human evaluation. While exact statement matching is useful in some research domains, it
lacks the rigour required for assessing scientific accuracy. On the other hand, human evaluation for
specialized domains is extremely costly at large scales. However, we can use human supervision to
ensure the quality of comparisons conducted by xLLMs. As a result we selected keyword comparison
and use of xLLMs guided by human experts for Pika framework.

3.2.2 Two-Tiered Benchmarking System

The use of xLLMs for response evaluation is more accurate but computationally prohibitive as
compared to keyword comparison, which pragmatically balances scientific accuracy with compu-
tational efficiency. This balance of performance vs efficiency motivated us to design a two-tiered
benchmarking system comprised of a light-weight benchmark employing keyword comparison for
efficiency, and a rigorous xLLM-based benchmark for scientific fidelity.
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Metric ID Question Example Label Example Response

mw MALE ↓ What is the molecular weight of
this protein?

55808
The molecular weight of this protein is
54988 KDa.

exact cofactor ↑ What is a cofactor of this protein? Zn(2+) The cofactor of this protein is Zn(2+).

is_enzyme F1 ↑ Can this sequence be considered
an enzyme?

True Yes

location F1 ↑ Where is this protein located? Membrane
The sub-cellular location of this protein
is the cell membrane.

binary Q
mean F1 ↑

Is this a membrane protein?
Is this a nuclear protein?
Is this a mitochondrial protein?

True
False
False

Yes, it is a single-pass membrane protein.
No, it is localized to the cytoplasm.
No

Table 1: Questions and example responses for Biochem-Lite (See A.6 for our motivation for each metric).
Underlined indicates extracted entities for score calculation. ↑: Higher values better. ↓: Lower values better.

Metric ID Question Ground Truth Example Response

Reaction
What chemical reaction is
catalyzed by this protein?

EC = 5.1.1.1,
L-alanine → D-alanine

This protein catalyzes the conversion of
L-alanine to D-alanine.

Domains
What are the functional
domains of this protein?

PLP-binding barrel, Alanine racemase,
Alanine racemase C-terminal domain-like,
pyridoxal phosphate binding

The functional domains of this protein
include the alanine racemase domain,
Alanine racemase C-terminal domain-like,
Alanine racemase, and PLP-binding barrel.

Cofactors
What are the cofactors
of this protein?

pyridoxal 5’-phosphate
The cofactors of this protein are
pyridoxal 5’-phosphate and magnesium ions.

Table 2: Questions and example responses for Biochem-ReAct. Presented in order of difficulty, with Reaction
being the most difficult question for a multimodal LLM to answer based on a protein sequence.

1. Biochem-Lite: Pika’s light-weight benchmarking involves a set of pre-defined, scientifically
relevant questions with simple answers extracted for each protein using GPT3.5 during Pika-DS
creation (Table 1). These questions are designed to cover a range of biochemical and functional
properties (e.g. binding to cofactros or cellular localization) while evaluating multimodal PQA
performance at various levels (i.e., information extraction from protein embeddings, cross-modal
information processing by the LLM, or the LLM’s ability to generate relevant responses). Although
the ground truth answers to these questions are single-worded, for evaluation, the questions are
presented in free-form, and the model provides open-ended responses, which is processed via
rule-based entity extraction and is scored using adequate metrics as detailed in Section A.7.

2. Biochem-ReAct: While light-weight benchmarking questions offer a general overview of model’s
performance in various scientific aspects, they do not represent real-world scenarios where the
scientific fidelity of open-ended responses is vital. Therefore, we also selected three biochemical
questions at three distinct difficulty levels surrounding Reaction & Activity of the proteins that can
be subjects of scientific enquiry into novel protein sequences (Table 2). The complexity of the
responses to these questions necessitates assessment using advanced LLMs such as GPT4. To
ensure the high reliability of these assessments we performed an iterative prompt optimization
with human feedback following the approach described in Section A.4.

Overall, our two-tiered benchmarking system establishes a balanced and robust framework for
evaluating multimodal PQA models, ensuring both scientific rigor and computational feasibility.

3.3 Pika Baselines

As discussed in Section 2, previous PQA studies have either been limited to knowledge retrieval or
have ignored the evolutionary context of protein sequences. Combined with the use of unsuitable
metrics such as BLEU, these studies do not provide relevant benchmarking opportunities for scientific
PQA. Furthermore, unlike natural multimodal LLMs (e.g., Vision Question Answering) where
human-baselines are possible, in PQA it is not possible to determine the upper-bound of performance
by comparison to expert evaluations, because humans are unable to extract any information from
protein sequences. Therefore, in the absence of relevant baselines or human evaluation for PQA, we
introduce two multimodal PQA-LLMs and define various lower- and upper-bound baselines.
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Figure 3: Schematic representation of Cross- and Self-Pika architectures for the scientific PQA task. PLM =
Protein Language Model (protein sequence encoder), LLM = Large Language Model. Only the adapter and
cross-attention modules (both in green) are trained.

3.3.1 Pika Models

We propose two robust multimodal architectures for PQA tasks, drawing inspiration from successful
Vision Language Model (VLM) strategies, replacing the vision-encoder with a protein language
model (PLM) (Fig. 3).

1. Cross-Pika is inspired from Flamingo (Tsimpoukelli et al., 2021) and Prismer (Liu et al., 2023).
It uses multiple independent learnable adapters, each creating distinct protein latent embeddings
for each transformer layer of the LLM. These embeddings are injected into the LLM using a
gated cross-attention mechanism before each native self-attention layer. At the cost of increased
complexity, this design allows for a nuanced and layer-specific modulation of the LLM, potentially
enabling it to process complex protein-related information more effectively, which could aid the
model in answering biochemically intricate PQA queries.

2. Self-Pika is based on the architecture proposed in Frozen (Tsimpoukelli et al., 2021) and uses
a single learnable adapter to transform protein sequence embeddings into latent embeddings
compatible with language token embeddings. The transformed embeddings, concatenated at the
beginning of the LLM’s initial token embeddings, allow the protein latent embeddings to influence
the LLM’s response through its internal self-attention mechanisms. This approach effectively
creates soft-prompts conditioned on the input protein sequence. This architecture simplifies the
integration process, reducing computational overhead while allowing for the incorporation of
essential protein characteristics into the LLM’s response.

Considering the diversity in protein lengths, we opted for the Perceiver architecture (Jaegle et al.,
2021) as the learnable adapter for both models. This choice standardizes the transformation of
protein embeddings into a consistent number of latent embeddings for seamless cross-modality
information transfer. In both architectures we keep the pre-trained LLM and PLM frozen, only
incorporating trainable "adapter" modules that extract relevant latent representations from PLM’s
output (protein sequence embeddings) and integrate them into the LLM’s transformer architecture,
facilitating seamless transfer of information across modalities. In this work we use ESM2 (Lin
et al., 2022) as the pre-trained PLM and Phi-2 (Microsoft, 2023) as the pre-trained LLM (In some
experiments GPT2 (Radford et al., 2019) was used, where indicated).

3.3.2 Lower-bound Baselines

• Random Baseline: Selects a random answer for each question from the pool of relevant answers.

• LLM Only: Pre-trained Phi-2 model to determine LLM’s base response to Biochem-Lite questions.

• Pika w/o PLM: Mirrors Self-Pika’s architecture and training, substituting the PLM with simple
token embeddings of the protein sequences. This effectively reduces the information to amino acid
content only, ignoring the context and order of the sequence.

3.3.3 Upper-bound Baselines

• MLP: An MLP on protein sequence embeddings of ESM2 (Details in Section A.8). It defines the
upper limit for the information content of ESM2 embeddings, with any performance beyond this
by a model potentially indicating generalization due to the knowledge encapsulated in the LLM.
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Figure 4: Evaluating the effectiveness of Biochem-Lite vs traditional linguistic metrics for scientific accuracy of
PQA. Statistical significance is determined through a one-tailed paired t-test across three randomly seeded data
subsets and model training (significance guide: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001).

• BLAST: Considering the evolutionary context of protein sequences, for any queried sequence, we
identify the closest related protein sequence in the training data using BLAST (Camacho et al.,
2009) and return the respective information as the prediction. This is a known strong upper-bound
baseline, as homology is a strong predictor of protein’s properties.

4 Experiments & Results

In this section we share our key experimental results. Training details can be found in Sections A.9
and A.10.

4.1 Validation of Biochem-Lite

First, we assessed the reliability of Biochem-Lite metrics in assessing PQA models performance. To
We compared a simple Pika model (Self-Pika with ESM2 + GPT2) against its truncated version, Pika
w/o PLM (Section 3.3.2), where ESM2 model was replaced with simple protein token embeddings.
Considering that the removal of ESM2 should eliminate all functional information, leaving behind
only the amino acid content, we expect that the truncated model must perform significantly worse
than the original model. Therefore, metrics that fail to show a significant difference between these
two would be unsuitable for assessing PQA models. Our results indicate that Biochem-Lite metrics
are significantly better in Self-Pika vs Pika w/o PLM, while all ROUGE metrics fail to highlight any
differences (Fig. 4). The behaviour of the mw MALE metric is expected as the size of a protein only
depends on its amino acid content. This finding confirms the inadequacy of traditional linguistic
metrics for scientific PQA task, demonstrating the utility and importance of our Biochem-Lite metrics.

4.2 Zero-shot PQA:

We define zero-shot PQA as answering questions about unseen protein sequences. Considering the
debiased nature of Pika-DS, this can easily be achieved by splitting the data based on UniRef50 ID of
each sequence, thereby ensuring that the validation/test sequences have no more than 50% sequence
similarity with any of the training sequences. While this ensures the unseen sequence criteria, when
considering the evolutionary context of proteins, the 50% similarity threshold is a lenient cutoff. This
is because homologous proteins may exhibit as low as 15% sequence similarity (Leander et al., 2022).
As a result, on UniRef50-based splits, model performance will be a combination of generalization
based on the sequence and model’s ability to identify distant evolutionary relations to training data.
While such behaviour may be desired for some PQA applications, to extend the scope, we created a
more stringent splitting strategy that focuses the evaluation of model’s generalization primarily on
the basis of proteins sequences without the impact of evolutionary relationships. To achieve this we
minimized the the evolutionary connection of validation/test sequences to the training data. This was
achieved by first grouping sequences into evolutionary groups (EvoGroups) (See Section A.11 for
details) followed by splitting the data based on their EvoGrop assignments, ensuring that sequences in
validation and test do not have closely related evolutionary counterparts in the training data. Naturally,
we expect that the BLAST baseline should show a strong performance on UniRef50-based splits,
while its performance should diminish on EvoGroup-based splits.
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Baseline or Model

Biochem-Lite Biochem-ReAct
mw

MALE
exact

cofactor
is_enzyme

F1
location

F1
binary
mF1

Reaction Domains Cofactor

Random 0.35 (0.01) 0.13 (0.02) 0.49 (0.00) 0.34 (0.02) - - - -
Lower-bound Phi-2 only 4.53 (0.01) 0.03 (0.01) 0.34 (0.00) 0.00 (0.00) 0.31 (0.00) - - -

Pika w/o PLM 0.02 (0.01) 0.21 (0.01) 0.7 (0.01) 0.47 (0.01) 0.21 (0.08) 0.01 0.32 0.82

Upper-bound
MLP 0.07 (0.01) - 0.86 (0.01) 0.89 (0.03) - - - -
BLAST - 0.71 (NA) 0.88 (NA) 0.93 (NA) - 0.94 0.89 0.99

Pika Models
Cross-Pika 0.02 (0.00) 0.47 (0.15) 0.89 (0.02) 0.77 (0.01) 0.13 (0.02) 0.36 0.60 0.94
Self-Pika 0.04 (0.02) 0.54 (0.04) 0.89 (0.01) 0.76 (0.02) 0.44 (0.04) 0.58 0.79 0.97

Table 3: Performance of Pika models on Uniref50 splits. Bold values indicate the best score, underline indicates
second best score. Values in ( ) indicate standard deviation. Biochem-Lite results on val set and from three
different seeded training. Biochem-ReAct results on test set and a single seed.

4.2.1 Performance on UniRef50 Splits

Table 3 summarizes the benchmarking results of Pika models on a random UniRef50-based split in
comparison with various baselines. It is evident that both Pika architectures outperform all lower-
bound baselines, indicating successful cross-modality information transfer to the LLM. Notably, our
top model surpasses the upper-bound MLP baseline on key Biochem-Lite benchmarking questions,
underscoring the potential for generalization via the LLM’s knowledge. However, as expected, the
strong BLAST baseline outperforms all models in most Biochem-Lite and all Biochem-ReAct metrics.
Nevertheless, these results indicate that our Pika models based on the modestly sized Phi-2 LLM, are
able to comprehend distant evolutionary relations form the context of sequence embeddings.

Baseline or Model
Biochem-Lite Biochem-ReAct

exact
cofactor

is_enzyme
F1

location
F1

Reaction Domains Cofactor

BLAST Baseline 0.21 0.72 0.51 0.52 0.49 0.94
Self-Pika Model 0.57 0.85 0.69 0.09 0.54 0.87

Table 4: Performance of Pika model on EvoGroup splits. Bold values indicate the best score. Biochem-Lite
results on val set and Biochem-ReAct results on test set both with a single seed.

4.2.2 Performance on EvoGroup Splits

To assess generalization by Pika models, in isolation from the effects of evolutionary relationship of
proteins, we performed Self-Pika training on EvoGroup splits and compared the results with BLAST
baseline on these splits (Table 4). As expected, our results show a significant reduction in performance
of BLAST baseline, specially in more complex metrics such as Domains and Reaction, and to a
lower extent in simpler metrics such as Cofactor. This is because, cofactor binding, for instance,
relies on small protein motifs that are more conserved across distant evolutionary relations. Crucially,
Self-Pika, except on the most complex Reaction metric, retained the majority of its performance on
EvoGroup splits, allowing it to surpass the performance of BLAST baseline in most metrics. These
observations indicate that multimodal PQA models are capable of inferring functional properties both
based on the sequence of proteins as well as using distant evolutionary relations.

4.2.3 Correlation of Biochem Metrics

The Self-Pika model demonstrated strong performance across all three Biochem-ReAct questions on
the UniRef split, exceeding the without PLM baseline by 57%, 47%, and 15% for correctly identifying
Reactions, Domains, and Cofactors, respectively, for previously unseen protein sequences. This
prompted us to study the correlation of Biochem-Lite metrics to Biochem-ReAct metrics. Comparing
Biochem-Lite results against Biochem-ReAct scores for 12 high-performing checkpoints with varied
configurations revealed that while traditional linguistic metrics, including perplexity, fall short in
predicting the real-world efficacy of PQA models, two Biochem-Lite questions, "exact cofactor
recall" and "binary Q mean F1", emerged as strong indicators of multimodal PQA models’ real-world
performance based on Biochem-ReAct metrics (Fig. B.3).
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4.2.4 PQA Learning without Questions

To understand the significance of QA pairs in the training set, we conducted training under two
stringent conditions. The first involved using only summary sentences as labels for proteins without
any QAs. The second condition included summary sentences and a single Control Question, "Is
this a real protein?". During training, we randomly shuffled the tokens within the sequence of half
the proteins, setting the expected answer to this question as No (for summary labels all protein
sequences remained unchanged). This aims to train the model to understand the task of question
answering, with summaries providing the scientific context for learning. Remarkably, introducing the
Control Question, even when no other questions were present during training, significantly enhanced
performance (Table 5). Additionally, we observed that the performance of the model on the Control
Question follows a similar pattern as other metrics (Table B.3). These observation suggest that the
current bottleneck in PQA performance is likely the LLM and extending this work to larger LLMs
could further improve performance and generalization capabilities.

Training Mode Biochem-Lite Biochem-ReAct

Model S Ctrl Q QA
mw

MALE
exact

cofactor
binary Q
mean F1

Reaction Domains Cofactor

self-Pika (S) ✓ ✗ ✗ 4.54 0.01 0.00 - - -
self-Pika (S+C) ✓ ✓ ✗ 2.30 0.32 0.42 0.22 0.70 0.95
self-Pika (Q) ✗ ✓ ✓ 0.04 0.54 0.44 0.58 0.79 0.97
self-Pika (Q+S) ✓ ✓ ✓ 0.04 0.57 0.57 0.53 0.75 0.96

Table 5: Perfomance of Self-Pika in the absence of QAs during training. Bold values indicate best score.
Standard deviation for all scores < 0.05 except for those indicated by underline. S = Summary, Ctrl Q = Control
Question, QA = QA pairs.

4.2.5 PQA Learning with Novel Proteins

In training multimodal Pika models, we ensured that proteins similar to those in the training dataset
were excluded from the test and validation sets, effectively creating a zero-shot scenario for our
benchmarking. Given that the ESM2 model was pre-trained on a vast dataset of proteins, there was
a potential concern that its embeddings might be influenced by previously encountered sequences.
To mitigate this, we utilized the evaluation split reported for ESM2’s pre-training, categorizing our
benchmarking results into proteins seen and unseen by ESM2. The analysis revealed no significant
performance difference between these conditions, affirming that Pika’s zero-shot capabilities are not
compromised by the prior knowledge embedded in ESM2. This finding underscores the robustness of
Pika models in genuine zero-shot PQA tasks, independent of ESM2’s pretraining exposure.

4.2.6 Ablation Studies

To identify key contributing factors, we compared model performance across various dimensions.
Most notably, reducing the size of the LLM from Phi-2, which has 2.8 billion parameters, to GPT-2
Medium, with 355 million parameters, resulted in a 20% decrease in the key "exact cofactor" metric
(Table 6). However, the size of the ESM2 model did not seem to have a significant impact, with
performance remaining largely similar between ESM2-S, ESM2-M, and ESM2-L (8M, 65M and
350M parameters, respectively). This observation could be attributed to the richness of representations
in the Pre-trained PLMs, potentially highlighting a bottleneck in the LLM or the quality and quantity
of the data (Table 6). Concordantly, the comparison of results from the zero-shot experiment also
confirms that with a lower volume of data, a tailor-made dataset could yield better results. However,
as the dataset size increases—a scenario analogous to the image domain—this factor becomes
less crucial. These findings suggest that while LLM capacity significantly influences PQA model
performance, the sophistication of sequence embeddings provided by ESMs reaches a point of
diminishing returns, underscoring the importance of focusing on LLM enhancements and data quality
for future improvements.
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LLM PLM
mw

MALE
exact

cofactor
is_enzyme

F1
location

F1
binary Q
mean F1 perplexity

ESM2-S 0.14 0.22 0.84 0.65 0.26 3.26
GPT2-M ESM2-M 0.06 0.26 0.86 0.64 0.33 3.12

ESM2-L 0.07 0.32 0.86 0.70 0.23 3.05
ESM2-S 0.02 0.51 0.86 0.71 0.33 1.99

Phi-2 ESM2-M 0.02 0.56 0.88 0.75 0.46 1.95
ESM2-L 0.04 0.54 0.89 0.76 0.44 1.98

Table 6: Effect of LLM and PLM size on Self-Pika models’ performance. Standard deviation for all scores
< 0.05 except for those indicated by underline.

5 Conclusion & Impact

We’ve established a pioneering framework for zero-shot PQA, presenting a significant step forward
in the application of LLMs for scientific enquiry. The introduction of our specialized datasets and
biologically relevant benchmarks underpins future explorations at the intersection of computational
biology and artificial intelligence. Key insights from our zero-shot evaluations and ablation studies
highlight the crucial role of LLMs in multimodal PQA performance, while underscoring the impor-
tance of considering evolutionary relation in assessing performance. Since, for Pika-DS we employed
GPT3.5 to create synthetic annotations, given the limitations of LLMs in generating large-scale
synthetic datasets, we endeavored to minimize the inclusion of harmful content in Pika-DS through
prompt optimization and manual evaluation. Nonetheless, due to the dataset’s extensive size, there’s
a slight possibility that unintended harmful content might still be present. Our Pika-based pre-trained
models are derived from the publicly accessible and unmoderated Phi-2 LLM. Thus, all cautions,
restrictions, and notes associated with Phi-2 (Microsoft, 2023) are applicable to our models. Looking
ahead, leveraging larger, more diverse LLMs may offer substantial gains in model generalization,
driving us towards the goal of automating accurate scientific enquiry into proteins.

6 Reproducibility & Accessibility

All code and data used for creation of data, model training and baselines are publicly accessible on
www.github.com/EMCarrami/Pika.

The Pika framework is specifically designed for question answering related to protein sequences.
With scientists having identified nearly 0.25 billion protein sequences, and functional annotations
available for fewer than a million, our framework offers significant potential for research into these
largely unexplored proteins. While our efforts are directed towards scientific research, we recognize
the potential risk of misuse by individuals aiming to create or identify harmful substances. We
strictly prohibit using our dataset and framework for any illegal activities or actions that could harm
individuals or society.
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A Supplementary Methods

A.1 Creation of Pika-DS

Pika-DS was prepared in three phases:

1. We utilized the SwissProt database as a foundational resource. SwissProt, the reviewed section
of UniProt, features approximately 570,000 detailed annotations of protein sequences spanning
all domains of life and viruses. For each entry, we extracted an expert-curated list of scientific
information covering a wide range of subjects including evolutionary, biochemical and functional
properties (Section A.2). Removing proteins shorter than 30 amino acids, we obtained 3.7 million
information fields for over 548,000 protein sequences.

2. UniProt also offers similarity-based clustering of its entries at various sequence similarity thresh-
olds of 100%, 90%, and 50%, known as UniRef clusters. For instance, protein sequences that
share a minimum of 50% pairwise sequence similarity will be assigned the same UniRef50 cluster.
Recognizing a strong bias towards more commonly studied protein families in SwissProt (Figure
B.1), we limited Pika-DS to a maximum of two most informative sequences per UniRef50 cluster
using a custom algorithm (Section A.3). This resulted in a debiased set of over 257,000 protein
sequences and 1.17 million information fields.

3. Lastly, we used GPT3.5 API to process the information fields for each protein entry using
systematically optimized prompts (Sections A.4 and A.5) to create the Pika-DS’s three main
components (example in Table B.2):

• Summary: A summary of each protein’s functional and biochemical properties, based solely on
the provided information excluding the protein’s name.

• QAs: Several diverse QA pairs for each information field, formatted for LLM training.
• Metrics: Single-word answers to a set of predefined scientific questions serving as the ground-

truth for our Biochem-Lite benchmarks (Section 3.2.2).

A.2 Data collection from UniProt

We retrieved XML files of all SwissProt entries longer than 30 amino acids, with the cut-off date of
14-08-2023, using UniProt’s API. Since these entries contained extensive extraneous information,
like author names, submission dates, etc., we employed a rule-based pre-processing approach to
extract fields relevant to each protein’s functional and biochemical characteristics. This selection,
guided by an expert biochemist, included sequence (molecular mass and length), organism (top three
taxonomic levels), catalytic activity (including EC number), biophysicochemical properties (pH and
temperature dependence), cofactor, subunit (excluding fields containing “interact”, “associate”, or
“complex”), subcellular location (excluding isoforms), and functional domains: GO (only molecular
function, omitting biological process and cellular component), Gene3D, and SUPFAM.

A.3 Debiasing SwissProt Entries Using UniRef50 Clusters

To mitigate bias in SwissProt entries, we employed UniRef50 clusters, sourced from the UniProt
FTP’s idmapping file. First, we merged clusters representing isoforms with their corresponding main
protein clusters to consolidate isoform-driven redundancy. Specifically, if the isoform of a protein was
a member of another Uniref50 cluster, we merged the isoform cluster into the main protein’s cluster.
This step aimed to tighten clustering criteria, avoiding oversampling due to isoforms. Next, within
each merged cluster, sequences shorter than 25% of their cluster’s median length were excluded
to ensure a focus on sufficiently representative sequences. This filtering is due the fact that some
Uniprot sequences have incomplete sequences. Finally, following the methodology outlined by Jiang
et al. (Jiang et al., 2022), we calculated gzip information for each entry. Initially, the entry with the
highest gzip information was identified. Subsequently, we assessed the additional gzip information
provided by each remaining entry relative to this top candidate. The entry offering the highest
additional gzip information was selected for inclusion. Throughout this selection process, cluster
representatives were given priority in the event of a tie, ensuring the most informative representatives
were chosen. This debiasing process was designed to refine the Pika-DS by leveraging UniRef50
clusters, enhancing the dataset’s quality and representativeness for downstream applications.
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A.4 GPT3.5 Prompt Optimization Strategy

To ensure the high quality of GPT3.5 generated information and QA pairs, we performed a systematic
prompt optimization focusing on GPT3.5’s adherence to using only the given data, summarizing
complex biological reactions accurately, and avoiding speculative or ambiguous language. This was
performed in an iterative process where at each iteration, GPT3.5 was provided with the prompt and
all the extracted information for 50 randomly selected protein sequences. Next, 100 outputs from
each of the summary statements, QA pairs and evaluation metrics were evaluated against the input
information of the respective proteins by an expert biochemist and the number of incorrect, poor
quality and irrelevant (correct but unrelated to the protein’s function) statements or QA pairs were
noted. At each step, the prompt was modified to address the most problematic issues, with a target of
no more than one incorrect, two poor quality and two irrelevant values in each category (optimised
prompt in Section A.5).

A.5 GPT3.5 Prompts Used for Creation of Pika-DS

Summarising and QAs: The following instructions were used to create summary statements and
QA annotations based on information fields collected from SwissProt:

You will receive details about a specific protein. Perform the following tasks and print each result in
a new line:

1) Provide a factual summary, without using the protein’s name with a maximum of 500 words.
Your summary must accurately and scientifically describe the functional, biochemical and structural
properties of this protein based only on the provided information. Ensure that the summary follows
a natural and scientific flow, starting with general information such as structure, localization and
taxonomy before detailing functional and biochemical properties. Ensure that all key points are
covered and DON’T provide any extra information than what is stated in the input.

2) For each type of information provided, create a question-and-answer pair to elucidate an aspect
of the protein’s functionality or biochemical properties without using the protein’s name. Phrase
your questions and answers such that they will be suitable for training a language model. DON’T
enumerate or label the questions and print each question and its answer pair in the same line.

- For all tasks if the input contains large group of properties only provide the canonical and crucial
information rather than enumerating every single entry. - Where applicable, summarise enzymatic
reactions into one or two of the generic classes of the activities. - DON’T use any of your knowledge
to add additional context or information. DON’T add any speculative or unwarranted information
that is not specifically provided. - AVOID using generic phrases or embellished terms such as
’highly’, ’several’, ’diverse’ and ’various’. - Exactly follow the output format provided below to
ensure consistency. Final output format: summary: [YOUR SUMMARY] QA pairs: 1) [YOUR
QUESTION] [YOUR ANSWER] 2) [YOUR QUESTION] [YOUR ANSWER] [...] n) [YOUR
QUESTION] [YOUR ANSWER]

Biochem-Lite Ground truth: The following instructions were used to collect ground-truth values
for Biochem-Lite questions based on summary statements and information fields:

You will receive details about a specific protein. Provide a single word answer to the following
questions. Print each question and your answer in the same new line. If the question does not apply
to the protein, ignore the question. 1) Is this protein localized to the cell membrane? 2) Is this a
membrane protein? 3) Is this protein localized to nucleus? 4) Is this protein localized to mitochondria?
5) Does this protein bind to DNA? 6) Does this protein bind to RNA? 7) Is this protein an enzyme?
8) What are co-factors of this protein as a comma separated list?

- Exactly follow the output format provided below to ensure consistency. Final output format: 1)
[MY QUESTION] [SINGLE WORD ANSWER e.g. YES/NO/UNKNOWN] 2) [MY QUESTION]
[SINGLE WORD ANSWER e.g. YES/NO/UNKNOWN] [...] 7) [MY QUESTION] [SINGLE
WORD ANSWER e.g. YES/NO/UNKNOWN] 8) [MY QUESTION] [Comma separated list of
co-factors e.g. FAD,FMN/UNKNOWN]
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A.6 Biochem-Lite Metric Questions and Motivation

mw MALE

• Question: What is the molecular weight of this protein?
• Score: Mean Absolute Error of log values
• Presence in training: in exact form
• Motivation: Proteins are large polymers of amino acids. The molecular weight of a protein

depends not only on the number of amino acids but also on the types of amino acids in the
sequence.

Cofactor recall

• Question: What is a cofactor of this protein?
• Score: If exact match, score=1; else 0 (average across examples)
• Presence in training: in exact form
• Motivation: Many proteins require other small molecular entities to function. These could

be ions, or small molecules, or a combination of these, such as a Heme-Fe. Proteins often
bind to their cofactors via motifs, which are short 3D structures formed due to the presence
of specific sequences. Identifying the cofactor of a protein requires the extraction and
analysis of these sequence motifs from the sequence embeddings.

is_enzyme F1

• Question: Can this sequence be considered an enzyme?
• Score: F1 score
• Presence in training: in similar form
• Motivation: The motivation for this question is similar to that of cofactor recall, focusing on

the functional characterization of proteins. Enzymatic activity is a crucial aspect of protein
function, requiring specific structural or sequence features for identification.

Location F1

• Question: Where is this protein located?
• Score: F1 score
• Presence in training: in exact form
• Motivation: Proteins must be localized to specific compartments within cells to perform

their functions correctly. This localization is directed by specific targeting sequences or
3D structures. Extracting this information can be challenging, and the identification of the
destination for a protein can vary depending on the organism and context.

Binary localization average F1

• Question: Is this a membrane protein? Is this a nuclear protein? Is this a mitochondrial
protein?

• Score: Mean of F1 scores of all 3 questions
• Presence in training: never in this form
• Motivation: This question is related to the previous one but focuses on specific locations

in a binary format. While the information extraction process is similar, the LLM needs to
perform reasoning to find the answer.

A.7 Metric equations used in Biochem-Lite

• mw MALE: The mean-absolute log error (MALE) of the predicted molecular weight (MW) is:

MALE =
1

N

N∑
i=1

| log10( ˆMW i/MWi)| (1)
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where ˆMW i is the predicted MW, MWi is the ground truth MW, and N is number of examples.

• exact cofactor: The score is computed as:

Scoreexact =
1

N

N∑
i=1

⊮(∃w ∈ Ri : w ∈ GTi) (2)

where Ri is the set of words in response i, GTi is the set of ground truth cofactor words for protein
i, and ⊮ is the indicator function that is 1 for exactly one match and 0 otherwise.

• location F1: The F1 score is the harmonic mean of Precision and Recall. The predicted class
assignments for the calculation of Precision and Recall are based on the exclusive presence of
correct labels (membrane, nucleus, or mitochondrion) in the generated response. Responses lacking
or containing multiple labels receive the none class label.

• is_enzyme F1: The F1 score is computed similar to location F1. Responses are classified as True or
False based on the exclusive presence of yes or no, respectively. Any deviation is labeled as none.

• binary Q mean F1: We have:

F1binary Q mean =
1

3

3∑
q=1

F1q (3)

where F1q is the F1 score for each binary question (class assignments similar to is_enzyme F1).

A.8 MLP Baseline

We use a 3-layer MLP with GELU activation on protein sequence embeddings from the Pre-trained
ESM2. Where possible, we convert each light-weight benchmarking question into a classification
or value prediction task. More specifically we performed regression for log values of mw for mw
MALE and performed classification for is_enzyme and location questions. The MLP is then trained
to predict the value or correct class labels using mean squared error or cross entropy loss, respectively.
This baseline sets an upper limit for the information content inherent in ESM2 embeddings.

A.9 Training

We devised a simple training strategy for PQA models, keeping both the PLM and LLM frozen
and optimizing for the causal language model loss with AdamW. Hyperparameters were optimised
following a greedy search as detailed in section A.10. All training were performed on a single
A100-80GB or H100-80GB Nvidia GPU. Unless otherwise stated, both the QA and summary
statement section of the Pika-DS was used for the training of all Pika models. Examples were split to
train, validation and test set based on the UniRef50 cluster or EvoGroup of their respective protein
sequences in 94.5%, 0.05% and 5% ratios, respectively.

A.10 Hyperparameter Optimization

Greedy hyper parameter search was performed for both architectures, monitoring the is_enzyme
metric. For all experiments, training was performed on 25000 protein sequences and metrics were
computed on 250 unseen proteins with gpt2-medium model as the LLM and esm2_t12_35M model
as the protein sequence encoder. The sweep was performed, in order, on optimizer’s weight decay
[0, 1e-4, 1e-2] and learning rate [1e-5, 1e-4, 1e-3], batch size [2, 4, 8], Perceiver latent size [32, 64,
100] and the number of Perceiver layers [1, 2, 4]. The final set of hyper parameters were as follows:
learning rate: 1e-4, weight decay: 1e-4, batch size: 8, Perceiver latent size: 100, and number of
Perceiver layers: 1 (Cross-Pika architecture), 4 (Self-Pika architecture).

A.11 Creation of EvoGroups

EvoGroups were decided by starting from a random sequence in the data, identifying all its related
sequences using JackHammer (Potter et al., 2018) with a very lenient cut-off threshold for e-E-score
of 1.0 to ensure a broad grouping of related proteins. For each randmoly selected sequence, all related
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sequences were marked as belonging to the same EvoGroup and were removed from the remainder
of the dataset for further iterations with newly selected sequences. The process was repeated until all
sequences were assigned an EvoGroup.
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B Supplementary Figures & Tables

Figure B.1: Over-representation bias in SwissProt database.

Figure B.2: Comparison of sequence bias in SwissProt database, before and after filtering. Members of the
top100 largest UniRef50 clusters are colored. The strong overrepresentation of highly studied protein groups is
apparent in the unfiltered plot, while the Pika-DS shows a significant reduction in this bias

Figure B.3: Cross-correlation of Biochem-ReAct Benchmarks with Biochem-Lite/Linguistic Benchmarks.
Absolute values.
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# total # unique # words # tokens
Proteins 257 K 252 K - 105.3 M
Info fields 1.17 M 319 K 10.8 M 29.5 M
Summaries 1.33 M 861 K 22.5 M 36.4 M
Questions 1.71 M 98 K 15.7 M 14.9 M
Answers 1.71 M 783 K 18.4 M 31.8 M

Table B.1: Pika-DS size and token counts. Values for Summaries represent the number of sentences.

uniref UniRef50_Q9HUN4
sequence MRPLVATVDLTALRHNYLLAKQCAPQRKAFAVVKANAYGHGAPEAVTALREIADGFAVACLEEAE[...]

fields

catalytic activity: EC = 5.1.1.1, L-alanine = D-alanine
cofactor: pyridoxal 5’-phosphate
functional domains: alanine racemase activity, Alanine racemase, Alanine racemase C-terminal domain-like,
PLP-binding barrel, pyridoxal phosphate binding
taxonomy: Bacteria, Pseudomonadota, Gammaproteobacteria
protein size: 358 aa, 38485 KDa

summary

This protein is an alanine racemase enzyme found in various bacteria, specifically in the
Pseudomonadota phylum of the Gammaproteobacteria class
It is composed of 358 amino acids with a molecular weight of 38,485 KDa
The protein exhibits a catalytic activity with an Enzyme Commission (EC) number of 5.1.1.1,
where it converts L-alanine to D-alanine
Its enzymatic function is facilitated by a cofactor known as pyridoxal 5’-phosphate
The protein contains several functional domains, including the Alanine racemase activity domain,
the Alanine racemase C-terminal domain-like, the PLP-binding barrel domain, and
the pyridoxal phosphate binding domain.

qa

What is the catalytic activity of this protein?
The catalytic activity of this protein is the conversion of L-alanine to D-alanine.
What is the cofactor associated with this protein?
The cofactor associated with this protein is pyridoxal 5’-phosphate.
Which phylum does this protein belong to?
This protein belongs to the Pseudomonadota phylum.
What is the molecular weight of this protein?
The molecular weight of this protein is 38,485 KDa.
How many amino acids are present in this protein?
This protein is composed of 358 amino acids.
What are the functional domains of this protein?
The functional domains of this protein include the Alanine racemase activity domain,
the Alanine racemase C-terminal domain-like, the PLP-binding barrel domain, and
the pyridoxal phosphate binding domain.’,
What class of bacteria is this protein found in?
This protein is found in the Gammaproteobacteria class.
Can this protein act as an enzyme?
Yes

metrics

in_membrane False
in_nucleus False
in_mitochondria False
is_enzyme True
cofactor pyridoxal 5’-phosphate

Table B.2: An example entry in Pika-DS representing Uniprto ID A4VQM5

Random
LLM
only

self-Pika
w/o PLM

self-Pika

F1 Score 0.49 0.00 0.43 0.99
Accuracy 0.50 0.00 0.51 0.99

Table B.3: Performance on Control Question.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading "NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification:
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: For larger models, due to excessive computational expenses, experiments are
performed once.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification:
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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