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Abstract

We study a class of structured Markov Decision Processes (MDPs) known as
Exo-MDPs, characterized by a partition of the state space into two components.
The exogenous states evolve stochastically in a manner not affected by the agent’s
actions, whereas the endogenous states are affected by the actions, and evolve in
a deterministic and known way conditional on the exogenous states. Exo-MDPs
are a natural model for various applications including inventory control, finance,
power systems, ride sharing, among others. Despite seeming restrictive, this work
establishes that any discrete MDP can be represented as an Exo-MDP. Further,
Exo-MDPs induce a natural representation of the transition and reward dynamics as
linear functions of the exogenous state distribution. This linear representation leads
to near-optimal algorithms with regret guarantees scaling only with the (effective)
size of the exogenous state space d, independent of the sizes of the endogenous
state and action spaces. Specifically, when the exogenous state is fully observed, a
simple plug-in approach achieves a regret upper bound of Õ(H3/2

√
dK), where

H denotes the horizon and K denotes the total number of episodes. When the
exogenous state is unobserved, the linear representation leads to a regret upper
bound of Õ(H3/2d

√
K). We also establish a nearly matching regret lower bound

of Ω(Hd
√
K) for the no observation regime. An experimental study for inventory

control complements these theoretical findings.

1 Introduction

Reinforcement learning (RL) provides a natural framework for sequential decision-making under
uncertainty. The past few decades have witnessed tremendous empirical success from RL, notably in
“data-rich” areas such as competitive game-playing [20], computational advertising [22], robotics [13],
and human-guided training of large language models [16]. This success relies on the availability
of massive datasets, either due to large amounts of pre-collected data or via access to simulators
for generating data. In contrast, there are various other application domains that are notoriously
“data-poor”, including finance [18], resource allocation [10], inventory control [14], supply chain
management [19], as well as ridesharing systems [5]. The limited data arises from various causes,
including the small quantity of pre-collected data, difficulty in collecting new data, and/or the lack of
good simulators. In such data-limited settings—and in the absence of structure on the underlying
Markov decision processes (MDPs)—information-theoretic lower bounds dictate that a good RL
policy cannot be learned without large sample sizes. Therefore, it is essential to identify and exploit
domain-specific structures so as to enable data efficient RL policy learning.

With this motivation in mind, we focus on a structured family of Markov decision processes known as
Exo-MDPs (e.g., [6, 7, 17, 21, 8]). They are defined by a partition of state variables into exogenous
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versus endogenous states. More specifically, we say that a state variable is exogenous if it evolves in a
way that is not influenced by the agent’s actions; otherwise the state is endogenous. All stochasticity
in the system dynamics is captured via the exogenous states, while the endogenous state variables
evolve according to a known deterministic function of the endogenous states, the agent’s action, as
well as the exogenous state variables. For example, in the classic inventory control (i.e., newsvendor)
problem in supply chain, the external demand represents the exogenous state, the inventory in the
system represents the endogenous state, the action corresponds to placing a new purchase order, and
the inventory in the system evolves as a function of existing inventory, the exogenous demand, and
the purchase orders placed; see Section 2.1 for details on this example. Similarly, the efficiency of a
ridesharing system is tied to fluctuating demand levels exogenous to the system itself [8].

Exo-MDPs hold promise for designing data-efficient simulators and hence the identification of
optimal RL policies, due to the fact that all randomness is captured through exogenous states that are
not impacted by the actions or the endogenous states as well as known dynamics of the endogenous
states. This insight has been in recent prior works such as Sinclair et al. [21], Mao et al. [15].
However, they crucially assume the exogenous variables are completely observed. This assumption
is simplistic and does not hold in many real-world systems. For example, inventory models often
encounter lost sales, where the true exogenous demand is unobserved due to stockouts. Similarly,
ridesharing systems exhibit demand shortfalls when drivers are unavailable, resulting in users leaving
the platform. Accordingly, this paper tackles the following question:

Challenge: How to exploit Exo-MDP structure to learn policies in a sample-efficient manner
with no (or partial) observation of exogenous states?

Contributions. Let us briefly summarize the main contributions of this paper. Our first result
is structural in nature: we show that for tabular MDPs, the Exo-MDP assumption is actually not
limiting; any tabular MDP can be represented as an Exo-MDP. Moreover, any Exo-MDP can be
be viewed as an instance of a discrete linear mixture MDP. The arguments used to establish these
relations reveal interesting structural properties of these classes, and also inform our subsequent study
into the effective dimension of an Exo-MDP.

Second, we provide sample-efficient learning algorithms that exploit the Exo-MDP structure. We
do so both in the full observation regime in which the exogenous states are observed, and the more
challenging no observation regime, in which the exogenous states are entirely unobserved. When
the exogenous states are fully observed, we analyze a plug-in approach and prove that it achieves a
regret upper bound of Õ(H3/2

√
dK) in terms of the horizon H , total number of episodes K, and

dimension d of the exogenous state. On the other hand, for problems in which exogenous states
are not unobserved, we first make use of the linear mixture representation of an Exo-MDP, thereby
obtaining an algorithm with nearly-optimal regret upper bound of Õ(H3/2d

√
K). We then introduce

a notion of effective dimension r, and establish a sharper guarantee Õ(H3/2r
√
K). The term r

captures the effective dimension of the feature space, and can be computed a priori without any
samples. We complement our upper bounds by proving a lower bound for the no observation regime
which scales as Ω(Hd

√
K), thereby matching our upper bound up to a factor of

√
H . We show that

for a more general version of Exo-MDPs—in which the exogenous dynamics can differ from stage to
stage—it is possible to achieve the stronger lower bound with the additional

√
H factor. Combined

with our upper bound which also solves the more general case, this characterizes the minimax optimal
rate for non-stationary Exo-MDPs up to polylogarithmic factors.

Finally, we complement our theoretical results with an experimental study applying our Exo-MDP
algorithms to an inventory control problem with lost sales and positive lead time. Our results highlight
the robustness of our algorithms, where despite being more general solvers, they achieve performances
competitive with state-of-the-art algorithms tailored for inventory control.

Related work. The past years have witnessed an evolving line of work on Exo-MDPs (e.g., [6, 7, 17,
14, 2, 21, 8]). Some researchers [6, 7] have studied the case when the rewards or transitions factorize
so that the exogenous process can be filtered out. While doing so simplifies development, it can
lead to sub-optimality, since policies agnostic to the exogenous states need not be optimal. Other
work studies the use of hindsight optimization, showing that the regret for hindsight optimization
policies can be bounded by the hindsight bias, a problem-dependent term [21, 8]. This work assumes
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full observation of the exogeous states, whereas (in addition to this case), we also study the more
challenging problem of solving Exo-MDPs with unobserved exogenous states.

As shown in this paper, any Exo-MDP can be cast as a linear mixture MDP (and vice versa), so our
analysis establishes connections to the literature on linear mixture MDPs [11, 4, 23]. Ayoub et al.
[3] proved an Ω(H

√
dK) lower bound on the regret for stationary linear mixture MDPs. Despite

Exo-MDPs being a subclass of this problem class, we are able to prove a regret lower bound that is
tighter by a factor of

√
d.

Lastly, we provide experimental results on inventory control with lost sales, censored demand, and
positive lead times. Agrawal and Jia [1] design an online learning algorithm to learn the optimal base-
stock policy, a well-known heuristic policy that is optimal under restrictive settings. Our empirical
results show that our algorithms can surpass the sub-optimality of this heuristic class and instead
converge to the true optimal policy. Other authors [14, 2] studied specializations of Exo-MDPs
to these inventory settings, along with associated regret analysis. Their analysis is predicated on
observing an unbiased signal from which the true demand can be recovered; in sharp contrast, our
algorithms apply even when the demand is fully unobserved.

Notation. For a positive integer n, we denote [n] := {1, 2, . . . , n}. For a finite set S, let |S| denote
its cardinality. We use calligraphic letters to denote sets, e.g., S,A; capital letters denote random
variables, e.g., S,A,R; lower case letters denote specific realization of random variables, e.g., s, a, r;
and for a distribution over a discrete set of elements, we use bolded lower case letters to denote
the probability vector corresponding to the multinomial distribution, e.g., px. We use lower case
letters with superscripts, e.g., xj ∈ X to denote elements of a set X indexed by j. For vector x,
we use [x]j to denote its j-th entry. We use Õ(·) to denote rates omitting absolute constants and
polylogarithmic factors. Fixing an episode k, h ∈ [H] denotes the h-th stage of the MDP. Lastly, we
let (x)+ = max{x, 0}.

2 Background and Problem Set-up

Throughout this paper, we consider stationary episodic tabular Markov decision processes (MDPs)
with finite state and action spaces. We define any MDP with a tuple M = (S,A, H, s1,P, R), where
S is the set of states, A is the set of actions, horizon H is the number of stages in each episode,
s1 is a fixed initial state, P(· | sh, ah) gives the probability distribution over the next state sh+1

based on the state action pair sh, ah at stage h in an episode, and assume bounded stochastic reward
R : S ×A → [0, 1] at each stage h. Without loss of generality, throughout this paper we assume a
fixed starting state s1.

2.1 Exo-MDP: Markov Decision Processes with Exogenous States

We now consider a specialized class of MDPs with exogenous states (Exo-MDPs), where the state
space can be partitioned into two parts: the endogenous states S , and the exogenous states X [7, 21].
Both the endogenous and exogenous states affect the dynamics of the system, but the agent’s actions
only influence the dynamics of the endogenous states, not the exogenous states. See Figure 1 for an
illustration of the distinctions between a standard MDP and an Exo-MDP.

More precisely, any Exo-MDP is represented by a tuple M[Px, f ,g] = (S × X ,A, H, s1,P, R). In
an Exo-MDP, the state vector at stage h takes the form (Sh, Xh), where Sh and Xh are endogenous
and exogenous, respectively. The exogenous state evolves in a stationary way independent of
(Sh, Ah), where each Xh is an i.i.d. sample from an unknown distribution Px. We fix indexings
X = {xj}dj=1 and let px denote the probability vector corresponding to Px, where px = (Px(X =

x1), . . . ,Px(X = x|X |)) ∈ [0, 1]|X |. We denote d = |X | as the cardinality of the exogenous state
space. As we will show later, one can view d as the effective dimension to summarize the Exo-MDP,
leading to sample complexity results that only depend on d regardless of the sizes of the endogenous
state and action spaces |S|, |A|.
Additionally, we assume that, conditional on the realization of X1, . . . , XH in an episode, the
transition and reward are completely specified by known deterministic functions f and g. Specifically,
the next state Sh+1 given triple (Sh, Ah, Xh) follows

Sh+1 = f(Sh, Ah, Xh) where f : S ×A× X → S. (1a)
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Figure 1. Directed graphical models showing an ordinary MDP (left), and an Exo-MDP (middle). In an
ordinary MDP, the state space is fully endogenous, and the current state Sh and action Ah generate the
next state Sh+1 and reward Rh. In an Exo-MDP, the state vector is partitioned into two components: an
endogenous component Sh and an exogenous component Xh. The exogenous state Xh at each stage
is drawn i.i.d from Px independent of (Sh, Ah). There are also known deterministic functions f and
g such that Sh+1 = f(Sh, Ah, Xh) and Rh = g(Sh, Ah, Xh). The right panel gives the structural
equivalence relations between the class of Exo-MDPs, discrete MDPs and discrete linear mixture MDPs.

Similarly, the reward Rh at stage h is given by

Rh = g(Sh, Ah, Xh) where g : S ×A× X → [0, 1]. (1b)

To put the Exo-MDP formulation in action, consider the following simple setting of inventory control.

Example: inventory control. Suppose a retailer needs to order products to meet exogenous
independent demand at each stage h over a finite horizon H . Given current on-hand inventory
Invh, the retailer picks an amount Oh of products to order. The inventory level then transitions to
Invh+1 = f(Invh, Oh, Xh) = (Invh +Oh −Xh)

+, where Xh denotes the exogenous demand drawn
i.i.d. from Px. The cost g(Invh, Oh, Xh) (negative reward) consists of the holding cost for remaining
products c(Invh + Oh −Xh)

+, plus the penalty for lost sales p(Xh − Invh − Oh)
+. This can be

formulated as an Exo-MDP where d denotes the size of the support for the demand Xh and the state
and action correspond to inventory Invh and orders Oh respectively. The true exogenous state Xh is
unobserved, only the realized sales min{Invh +Oh, Xh}.

2.2 Data Setting and Learning Objective in an Exo-MDP

Observation regimes on x. In this paper, we mainly study two observation regimes on the ex-
ogenous state x: (i) the full observation regime (Section 4.1), where the learning agent observes
(Sh, Ah, Rh, Xh) at each stage; and (ii) the no observation regime (Section 4.2), where the learning
agent observes (Sh, Ah, Rh) with no observation on Xh. We focus on these two extremes regarding
observations on the exogenous state x, leaving as an open direction other (e.g., partial or censored)
observation regimes which may lead to sample complexities interpolating between the two.

Policies. We consider (stochastic) policies πh : S → ∆(A), where ∆(A) denotes a dis-
tribution over the action space. Importantly, in the case of Exo-MDPs, the policy is not al-
lowed to depend on the exogenous state Xh. An algorithm that decides the policy depends on
the historical trajectory {Sh,k, Ah,k, Rh,k, Xh,k}h∈[H],k∈[K] for the full observation regime; and
{Sh,k, Ah,k, Rh,k}h∈[H],k∈[K] for the no observation regime.

Online learning. We focus on the online learning setting for solving Exo-MDPs. At the start of the
Exo-MDP, the learning agent is given S,A,X , H and functions f ,g, but does not know the vector
px. The agent interacts with the environment for K episodes. At the beginning of each episode
k ∈ [K], the agent fixes a policy πk. At each stage h ∈ [H], the agent observes state Sh,k and
picks action Ah,k ∼ πk

h(· | Sh,k). The exogenous state Xh,k is then sampled from Px, and the
agent receives reward Rh,k = R(Sh,k, Ah,k) = g(Sh,k, Ah,k, Xh,k), and transitions to the state
Sh+1,k = f(Sh,k, Ah,k, Xh,k). Under the full observation regime, the agent additionally observes
Xh,k at the end of the stage. This continues until the final transition to state SH,k, at which point the
agent chooses policy πk+1 for the next episode. We denote the value function V π : S × [H] → R of
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a policy π under MDP M1 as V π
h (s,M) := EX≥h,π[

∑
τ≥h R(Sτ , Aτ , Xτ ) | Sh = s], where X≥h

denotes vector (Xh, . . . , XH). Let V ∗
h (s,M) denote the optimal value function, i.e., V ∗

h (s,M) =

V π∗

h (s,M) where π∗ = argmaxπ V
π
h (s,M) is the optimal policy.

Performance metrics. The goal is to design an algorithm that minimizes regret, which is the
cumulative difference in total reward of the sequence of policies employed by the algorithm (πk)k∈[K]

to that of the optimal policy. Specifically, REGRET(K) =
∑K

k=1 V
∗
1 (s1)− V πk

1 (s1). As in Jin et al.
[12], any algorithm with a regret upper bound readily converts to a final policy with value function
estimation error that is 1

K times the regret upper bound.

3 Structural Relations among MDPs

Exo-MDPs by definition are a subclass of MDPs where the transition and reward dynamics are
characterized by the restricted forms of Eq. (1a) and Eq. (1b). However, it turns out that Exo-MDPs
can represent any discrete MDP with the addition of an exogenous state space. Intuitively, we can lift
the randomness from transition and reward dynamics as a 2|S||A|-dimensional exogenous state.

Lemma 1. Let R denote the range of the reward function R. For any discrete MDP M =
(S,A, H, s1,P, R), there exists an exogenous state space X ⊆ S |S||A| × R|S||A| following dis-
tribution Px, and transition and reward functions f and g such that M is equivalent to an Exo-MDP
M′[Px, f ,g] = (S × X ,A, H, s1,P, R).

We next show that Exo-MDPs have a natural linear representation defined by f and g. This allows us
to cast Exo-MDPs as a linear mixture MDP, a common subclass of MDPs from the literature in which
both the transition probability and reward function are linear functions of a given feature mapping
over state-action-state triples [23]. Formally,

Definition 1. MDP M = (S,A, H, s1,P, R) is called a linear mixture MDP if there exists vectors
θp, θr ∈ Rd and known feature vectors ϕr(s, a), ϕp(s

′ | s, a) ∈ Rd such that the transition probabil-
ity satisfies P(s′ | s, a) = ϕp(s

′ | s, a)⊺θp and the expected reward satisfies R(s, a) = ϕr(s, a)
⊺θr.

Exo-MDPs are a special case of linear mixture MDPs, where the features are characterized by the
given forms of f and g, and the probability vector px serves as the coefficient on the d-dimensional
simplex. Specifically, P(s′ | s, a) =

∑
x∈X 1s′=f(s,a,x)Px(x) =

∑d
i=1 1s′=f(s,a,xi)[px]i =

ϕp(s
′|s, a)⊺px and R(s, a) =

∑
x∈X g(s, a, x)Px(x) =

∑d
i=1 g(s, a, x

i)[px]i = ϕr(s, a)
⊺px.

This leads to the following lemma representing any Exo-MDP as a linear mixture MDP.

Lemma 2. Any Exo-MDP M[Px, f ,g] = (S × X ,A, H, s1,P, R) with a fixed indexing X =

{xj}dj=1 is a linear mixture MDP M̃ = (S,A, H, s1,P, R) with coefficients θp = θr = px =

(Px(X = x1), . . . ,Px(X = xd)). For any s ∈ S, a ∈ A, the feature vectors are given by

ϕp(s
′ | s, a) = [1s′=f(s,a,x1), . . . ,1s′=f(s,a,xd)]

⊺ ϕr(s, a) = [g(s, a, x1), . . . ,g(s, a, xd)]⊺

Lemma 1 and Lemma 2 leads to the following interesting observation that Exo-MDPs, despite their
structural assumptions, capture a rich class of MDPs as large as both the class of discrete MDPs and
the class of discrete linear mixture MDPs. See the right panel of Fig. 1 for an illustration.

Theorem 1. The classes of Exo-MDPs, discrete MDPs, and discrete linear mixture MDPs are
equivalent.

4 Sample-efficient Algorithms and Guarantees

We now turn to describing some sample-efficient algorithms for learning optimal policies in Exo-
MDPs, along with theoretical bounds on their regret. Section 4.1 is devoted to the full observation
regime, whereas Section 4.2 provides guarantees when no exogenous states are observed.

1We omit dependence on M when it is clear from the context.

5



4.1 Plug-In Method for the Full Observation Regime

In the full observation regime, the agent observes the quadruple (Sh, Ah, Rh, Xh) at each stage
h ∈ [H]. Recall that all randomness in an Exo-MDP lies in the exogenous component x, and the
functions (f ,g) are known. As a key consequence, estimating the probability vector px ∈ Rd is
sufficient for estimating the Exo-MDP itself, from which we can compute an optimal policy estimate.
These observations motivate a natural plug-in approach for the fully observed case, in which we
perform the following two steps: (i) first compute an empirical estimate p̂x using the observations of
the exogenous variables; and (ii) use this estimated probability vector to form an estimate M̂ of the
Exo-MDP; and (iii) compute an optimal policy via standard dynamic programming.

More precisely, at the start of each episode k = 2, 3, . . . ,K, the agent has access to (k−1)-trajectories
of exogenous states, each of length H; denote this data set by Dk = {Xh,k′}h∈[H],k′<k, and observe
that it contains a total of H(k−1) samples. We use this data set to compute the empirical distribution

p̂k
x :=

1

H(k − 1)

∑
h∈[H],k′<k

1x=Xh,k′ for x ∈ X ,

and let p̂1
x for k = 1 be the uniform distribution. At each episode k ∈ [K], we construct the

estimated MDP M̂k with transition dynamics Sh+1 = f(Sh, Ah, Xh), and stochastic rewards
Rh = g(Sh, Ah, Xh), where Xh ∼ p̂k

x. Finally, we compute the optimal policy

π̂k = argmax
π∈Π

V π
1 (s,M̂k),

via standard dynamic programming , with computational complexity polynomial in |S| and |A|. This
procedure yields regret that grows with the exogenous dimension d, as opposed to the cardinalities
|S| and |A| of the endogenous state and action spaces. We summarize as follows:
Theorem 2. For any error tolerance δ ∈ (0, 1) and H-horizon Exo-MDP with exogenous dimension
d, the plug-in method, when applied over K episodes, achieves regret at most

REGRET(K) ≤ 9H3/2
√

{d+ 2 log(2K/δ)}K, (2)

with probability at least 1− δ.

Ignoring the error probability δ and logarithmic factors, we can summarize that the regret is at most
REGRET(K) ≤ Õ(H3/2

√
dK).

4.2 Guarantees for the No Observation Regime

In practice, assuming full observations of the exogenous states may not be realistic. As one concrete
example, in inventory control the true demand Xh is not directly observable. Instead, one can
only infer a censored signal from the sales min(Xh, Invh + Oh). Accordingly, in this section, we
address the challenge of designing algorithms when the exogenous states are unobserved. For ease of
exposition, we assume the expected reward is known and focus on unknown transition dynamics.

In the full observation setting, the plug-in method hinges on the idea that estimating the probability
vector px is sufficient to estimate the full Exo-MDP. When x is not observed, it is no longer possible
to estimate px, but at the same time, it is not always necessary. For instance, in a trivial Exo-MDP
with a single state and constant reward, any policy is optimal, and estimating px confers no advantage.

How to capture the difficulty of learning optimal policies in an Exo-MDP? Enumerating the exogenous
state space as X = {x1, . . . , xd}, recall from Lemma 2 the feature vectors

ϕp(s
′ | s, a) = [1s′=f(s,a,x1), . . . ,1s′=f(s,a,xd)] ∈ Rd. (3)

Using these feature vectors, we define the full information matrix F ∈ R|S|2|A|×d with row
F(s′,s,a),· := ϕp(s

′ | s, a) for each triple (s′, s, a) ∈ |S|2|A|. The key complexity parameter
in our analysis is the rank r := Rank(F ) of this full information matrix. Note that this rank can
be computed a priori—that is, without collecting any data— based on the known sets X ,S,A and
functions f ,g. Note that r is upper bounded by

r := Rank(F ) ≤ min{d := |X |, |S|2 |A|}. (4)
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Both inequalities can be conservative, and of interest to us in this section is the fact that there exist
many Exo-MDPs for which r ≪ d.

Recall that the feature vectors (3) arose as part of establishing the connection between Exo-MDP
and linear MDPs in Lemma 2. This connection is a key enabler: it allows us to leverage algorithms
developed for linear mixture MDPs [4, 23]. While other connections are possible, here we adapt the
UCRL-VTR+algorithm [23] to our setting.2Our main result is to show that an algorithm that exploits
the SVD of the full information matrix can achieve regret that scales with the rank r, as opposed to
the ambient dimension d.
Theorem 3. For any H-horizon Exo-MDP with effective dimension Rank(F ) = r, applying a
rank-reduced UCRL-VTR+algorithm over K episodes yields a sequence of policies {πk}Kk=1 with
regret at most

REGRET(K) ≤ Õ
(√

r2H2 + rH3
√
KH + r2H3 + r3H2

)
. (5)

Note that when r ≥ H and K ≥ r4H + r3H2, we can restate the regret bound (5) more succinctly
as REGRET(K) ≤ Õ(rH3/2

√
K). Thus, up to poly-logarithmic factors, it grows linearly in the rank

r of the full information matrix F . When no rank reduction occurs (i.e., r = d), then we recover a
regret bound that scales linearly with the cardinality d of the exogenous state space at Õ(H3/2d

√
K).

Proof sketch. The rowspace of the information matrix F entirely captures all possible transition
features ϕp(s

′ | s, a)}s,s′∈S,a∈A across all state-action-state triples in the Exo-MDP. So the feature
space has a low-rank structure if and only if the row-space of F is low-rank. Let F = UΣV ⊺

be the r-dimensional singular value decomposition of F , so that U ∈ RS2A×r,Σ ∈ Rr×r, and
V ∈ Rd×r. Note that by construction, P(s′ | s, a) = ϕp(s

′ | s, a)px = es′|s,aFpx, where es′|s,a is
the unit vector with a one in the corresponding entry to (s′, s, a). By projecting the feature vector
to the r-ranked row space of F , we can rewrite the transition probability as the inner product of
the transformed r-dimensional feature and coefficients ϕ̃p, θ̃p where P(s′ | s, a) = es′|s,aFpx =(
es′|s,aUΣ

)
(V ⊺px) = ϕ̃p(s

′ | s, a)⊺θ̃p. Running the UCRL-VTR+algorithm on the linear mixture
MDP with feature ϕ̃p(s

′ | s, a) =
(
es′|s,aUΣ

)⊺ ∈ Rr and θ̃p = V ⊺px gives the stated performance.

Note that the full information matrix F only depends on S,A,X , f ,g, all of which are known a
priori to the agent, therefore requires no samples to compute. The singular decomposition of F can
be computed in time polynomial in |S|, |A|, d.

5 Regret Lower Bound under the No Observation Regime

In this section, we present a regret lower bound of Ω(Hd
√
K) for Exo-MDPs under the no observation

regime. This almost matches our upper bound of Õ(H3/2d
√
K) in Section 4.2, showing that the

dependence on dimension d and number of episodes K is optimal, while the dependence on horizon
H differs by a factor of

√
H . Following prior work, our lower bound is on expected regret, calculated

over both the distribution Px and the chosen policy. We formally state our regret lower bound for
Exo-MDPs below in Theorem 4.

Prior work such as Ayoub et al. [3] provides a lower bound of Ω(H
√
dK) for stationary linear

mixture MDPs, that is, the transition and reward dynamics are the same across each stage of an
episode. Despite Exo-MDPs being a subclass of stationary linear mixture MDPs, our regret lower
bound is tighter by a factor of

√
d. In the appendix, we provide a lower bound for Exo-MDPs when

the dynamics of the exogenous state Ph
x can differ across each stage of Ω(H3/2d

√
K). Since the

upper bound in Section 4.2 of Õ(H3/2d
√
K) applies to this more general setting, we achieve the

minimax optimal rate for nonstationary Exo-MDPs up to polylogarithmic factors.
Theorem 4. Assume K ≥ 1

10d
2, then for any Exo-MDP algorithm B, there exists an Exo-MDP

M such that the expected regret of B over K episodes on the Exo-MDP M is lower bounded by
γHd

√
K for some universal constant γ.

Proof sketch. Our lower bound construction builds upon the hardness of learning a single-horizon
Exo-MDP, which we call an Exo-Bandit. Specifically, we construct an Exo-Bandit instance which

2To the best of our knowledge, it has the best known guarantees.
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reduces to learning a linear bandit on a hypercube action set that achieves a lower bound of Ω(d
√
K).

We then use this Exo-Bandit to construct a hard instance of Exo-MDP, denoted as M.
At stage h = 1, M follows the same reward dynamics as the Exo-Bandit. For stages h = 2, 3, . . . ,H ,
the specific forms of f and g force the reward from the first stage to repeat H times regardless of
the actions or exogenous states, without revealing any additional information on Px. This directly
leads to a lower bound of Ω(Hd

√
K). We outline the hard instance of Exo-MDP M[Px(Z̃), f ,g] =

(S × X ,A, H, s1,P, R) below.

The state space of M is given by S = s1 ∪ {(h, r) | h ∈ {2, 3, . . . ,H}, r ∈ {−1, 1}}. That
is, S consists of s1, a single starting state, and each of the next H − 1 states are indexed by the
stage h ∈ [H] as well as a single number r ∈ {−1, 1}. The exogenous state space is given by
X = [d] = {1, 2, . . . , d}. The action set A sits on a subset of the d-dimensional hypercube, where

A = {([Z]1,−[Z]1, [Z]2,−[Z]2, . . . , [Z] d
2
,−[Z] d

2
) | Z ∈ {−1, 1}d/2} ⊂ {−1, 1}d.

Each action a ∈ A is completely characterized by a vector Z ∈ {−1, 1}d/2 where a(Z) =
([Z]1,−[Z]1, [Z]2,−[Z]2, . . . , [Z] d

2
,−[Z] d

2
). The (unknown) distribution Px for the exogenous

state X , parameterized by Z̃ ∈ {−1, 1}d/2 and constant c = 1
10

√
2

5K , is given by

px(Z̃) = (Px(1), . . . ,Px(d)) = (
1

d
+ c[Z̃]1,

1

d
− c[Z̃]1, . . . ,

1

d
+ c[Z̃] d

2
,
1

d
− c[Z̃] d

2
).

In other words, px is almost a uniform distribution except each coordinate is perturbed from 1
d by a

small constant c or −c depending on the value of Z̃. Intuitively, the hardness comes from correctly
guessing the coordinates of these small perturbations by choosing action a(Z) that matches Z̃ closely.

The known state transition function is given by

sh+1 = f(sh, ah, xh) =

{
(h+ 1, r) if sh = (h, r), h = 2, 3, . . . ,H − 1

(2, r = [a1]x1
) if h = 1, sh = s1

The action ah has no effect on the state transition, except, in the first stage, action a1 assigns value
r = [a1]x1

to the second coordinate of the state, which is then retained and shared across all stages
afterwards. The known reward function is given by

Rh = g(sh, ah, xh) =

{
[a1]x1

if h = 1, sh = s1
r if sh = (h, r).

At stage h = 1, taking action a1 incurs reward [a1]x1
, where x1 ∼ Px. For all H − 1 stages

afterwards, the same reward at the first stage is repeated, leading to a total reward of H · [a1]x1
.

6 Simulations on Inventory Control

We compare the empirical performance of the PLUG-IN (Section 4.1) and UCRL-VTR+ (Section 4.2)
algorithms on an extension to the inventory control example in Section 2. We show that under certain
parameter settings, UCRL-VTR+ achieves comparable performance with state-of-the-art algorithms
tailored for inventory control despite being a more general solver.

Inventory control with lead time. In our experiments, we consider the online inventory control
problem from Section 2 with the addition of a lead time L [9]. Suppose that instead of each order
arriving immediately, orders take L timesteps to arrive. At the beginning of each stage h, the retailer
observes the current inventory level Invh as well as the L previous orders that have not yet arrived,
denoted Oh−L, . . . , Oh−1. At each stage h, the order Oh−L arrives and the final on-hand inventory
becomes (Invh +Oh−L −Xh)

+, where Xh denotes the independent exogenous demand drawn from
Px. The cost consists of the holding cost for remaining products c(Invh +Oh−L −Xh)

+, plus the
penalty for lost sales p(Xh − Invh −Oh−L)

+. This can also be formulated as an Exo-MDP, where
the state space scales exponentially with the lead time L.

We focus on the performances of UCRL-VTR+ and the PLUG-IN approach. A direct application of
Theorem 2 and Theorem 3 yields regret guarantees of Õ(H3/2

√
dK) and Õ(H3/2d

√
K) respectively,

where d is the support of the demand distribution. We grant the PLUG-IN method additional access
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Table 1. Performance of baselines at the final episode K = 1000, (V πK

1 ). ⋆ indicates significant
improvement and ◦ significant decrease over ONLINE BASE-STOCK by Welch’s t-test with a p value
of 0.05. In parenthesis we show the relative performance to the cost of the optimal policy, (V πK

1 −
V ∗
1 )/V ∗

1 .

Algorithm Scenario I Scenario II

Optimal Policy (V ∗
1 ) 41.8 (0%) 33.0 (0%)

Optimal Base-Stock Policy (V b∗

1 ) 79.0 (89%) 33.0 (0%)

PLUG-IN 41.8⋆ (1%) 33.6⋆ (2%)

RANDOM 87.8◦ (110%) 76.6◦ (132%)
ONLINE BASE-STOCK 81.5 (95%) 40.6 (23%)
UCRL-VTR+ 42.3⋆ (1%) 38.4 (16%)

to past demand trajectories for comparison, even though Xh is unobserved since the algorithms only
observe the sales of min{Xh, Invh +Oh−L}.

Baseline algorithms. We compare the performance of our algorithms against a widely-used heuristic,
base-stock policies [9]. These policies are defined relative to b, the so-called base-stock level. At each
stage h, the policy orders an amount to ensure the total inventory position (including both on-hand
inventory and outstanding orders) is at least b units. In Table 1 we use V b∗

1 to denote the performance
of the best base-stock policy. To learn the optimal base-stock policy online, inspired by Agrawal and
Jia [1] we include an online convex optimization algorithm over the base-stock level, which we denote
as ONLINE BASE-STOCK. This approach yields a regret guarantee of O(H

√
K), where regret is

defined relative to the optimal base-stock V b∗

1 . At first glance this guarantee seems stronger (scaling
independent of d). However, since base-stock policies are not optimal in general, even the optimal
base-stock policy can lead to regret of Ω(K) relative to the performance of the optimal policy.

Simulation results. In Table 1 we compare the performance of our algorithms. Under Scenario
I we note a large optimality gap between the optimal (V ∗

1 ) and best performing base-stock policy
(V b∗

1 ). While UCRL-VTR+ achieves a slower sample complexity rate, it outperforms ONLINE
BASE-STOCK since it surpasses the sub-optimality of the heuristic class of base-stock and instead
converges to the true optimal policy. Moreover, UCRL-VTR+ and the PLUG-IN algorithm with
idealized observations both converge quickly to the true optimal policy V ∗

1 . Under Scenario II, the
best performing base-stock policy (V b∗

1 ) is the true optimal (V ∗
1 ). We again observe that UCRL-

VTR+ achieves similar performance to ONLINE BASE-STOCK. This highlights the robustness
of UCRL-VTR+ to different regimes, achieving convergence to the true optimal policy even in
settings where optimal base-stock is sub-optimal, and additionally achieves similar statistical power
as ONLINE BASE-STOCK.

7 Conclusion and Future Work

In this paper we study a special class of Markov decision processes called Markov decision processes
with exogenous states (Exo-MDPs), which arise from real-world MDPs where some state variables
are exogenous and outside of the control of the decision maker. We highlight that Exo-MDPs,
despite their structural assumptions, represent a rich class of MDPs equivalent to both the class
of discrete MDPs and discrete linear mixture MDPs. We provide algorithms under both the full
observation and no observation regimes on the exogenous states, as well as nearly-matching lower
bounds. Importantly, all our algorithms achieve regret bounds scaling only with the dimension of the
exogenous state d regardless of the endogenous state and action spaces. One interesting open direction
would be to investigate intermediate observation regimes with sample complexities interpolating
between the full and no observation regimes. Another future direction is to study the upper bounds
outside the high dimension (d ≥ H) and large sample (K ≥ d4H + d3H2) regime required for the
upper bounds.
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