
Reviewer 1： 
1. Can you provide a detailed explanation of the differences between SimCC and traditional 

heatmaps? 

Re 1: Dear professor, firstly, thank you very much for your valuable advices. In the traditional 
2D heatmap method, the position of each keypoint is represented as a two-dimensional 
Gaussian distribution heatmap, where a high-probability peak is generated at a certain 
location on the heatmap, indicating that this position is most likely to be the keypoint. The 
SimCC method treats keypoint prediction as two independent classification tasks, one for the 
horizontal coordinate and the other for the vertical coordinate. SimCC divides each pixel into 
multiple smaller bins, achieving sub-pixel level localization accuracy. The traditional 2D 
heatmap method suffers from significant quantization errors when the input resolution is low, 
requiring additional upsampling layers and post-processing steps to reduce these errors. In 
contrast, the SimCC method achieves sub-pixel accuracy even at lower resolutions by 
dividing each pixel into multiple bins, thereby reducing quantization errors. To improve 
localization accuracy, the traditional 2D heatmap method typically requires multiple complex 
upsampling layers, such as deconvolution layers, as well as additional post-processing steps. 
The SimCC method accomplishes coordinate classification tasks with only two lightweight 
classification heads (each containing only a linear layer), eliminating the need for complex 
upsampling layers and post-processing steps, thereby simplifying the model architecture and 
improving efficiency. 

 

2. How is formula (9) obtained through cosine similarity? Please provide a detailed process. 

Re 2：Cosine similarity is used to measure the directional similarity between two vectors. Its 

formula is: 

cos𝜃𝜃 =
𝐀𝐀 ⋅ 𝐁𝐁

|𝐀𝐀| ⋅ |𝐁𝐁| 

𝐀𝐀 and 𝐁𝐁 are two vectors. 𝐀𝐀 ⋅ 𝐁𝐁 represents the dot product (or inner product) of vectors 𝐀𝐀 
and 𝐁𝐁. |𝐀𝐀| and |𝐁𝐁| are the magnitudes of vectors 𝐀𝐀 and 𝐁𝐁, respectively. The cosine 
similarity value ranges from 0 to 1, indicating the degree of similarity between the two 
vectors, with values closer to 1 implying greater directional similarity. 

In Equation 8, 𝐴𝐴𝑡𝑡 and 𝐵𝐵𝑡𝑡 represent two feature vectors at time 𝑡𝑡. The dot product of the 
feature vectors is calculated element-wise, and the total dot product of the two vectors is 



obtained by summing up the products of corresponding elements. Simultaneously, the 
magnitude of each vector is calculated by taking the square root of the sum of the squares of 
its components. The detailed calculation process is as follows:  

Dot Product Calculation: Multiply each corresponding component of the two feature vectors 
and sum them up to get the numerator, ∑ 𝐴𝐴𝑡𝑡𝑛𝑛

𝑡𝑡=1 × 𝐵𝐵𝑡𝑡. 

Magnitude Calculation: Calculate the magnitude of vectors 𝐀𝐀 and 𝐁𝐁 by taking the square 

root of the sum of the squares of their components, �∑ (𝐴𝐴𝑡𝑡)2𝑛𝑛
𝑡𝑡=1  and �∑ (𝐵𝐵𝑡𝑡)2𝑛𝑛

𝑡𝑡=1 , 

respectively. 

Normalization: Finally, the dot product (numerator) is normalized by dividing it by the 
product of the two vector magnitudes using Equation 9 to obtain the final cosine similarity 
value. 

 

3. How to introduce a Transformer-based high-resolution structure in HRFormer? 

Re 3：HRFormer draws on the multi-resolution parallel design concept of High-Resolution 

Network (HRNet). Throughout the entire model, HRFormer maintains a high-resolution 
feature stream and gradually adds medium- and low-resolution feature streams, which are 
connected in parallel. The feature representations of each stream are updated at their 
respective resolutions using multiple Transformer blocks. Meanwhile, a convolutional multi-
scale fusion module enables information exchange between different resolutions, thereby 
achieving multi-scale feature modeling. 

HRFormer introduces a local window self-attention mechanism at each resolution. 
Specifically, the representation map is divided into a set of non-overlapping small image 
windows, and self-attention operations are performed independently within each window. 

Reviewer 2： 
1. How does the LGAG self-attention mechanism improve the accuracy of key point 

detection?  

Re 1: LGAG employs 3×3 group convolutions instead of conventional 1×1 convolutions for 
processing the gating signal and input feature maps. This choice allows the model to capture a 
larger local context around each key point, making the attention mechanism more sensitive to 
spatial details. As a result, the model can focus on more relevant spatial regions, reducing the 
likelihood of missing key features. 



By combining features from skip connections and upsampled features using learned attention 
coefficients, LGAG progressively refines the feature maps. This process enhances the 
representation of critical spatial features while suppressing irrelevant information, leading to 
more precise localization of key points. 

 

2. What are the advantages of soft label coding over hard label coding? 

Re 2: Soft labels can express the similarity and ordinal relationships between classes, helping 
the model understand the connections between adjacent classes. This is particularly useful for 
tasks with natural order, such as age estimation. Soft labels lead to a smoother variation in the 
loss function, aiding faster convergence during training, enhancing generalization ability, and 
reducing the risk of overfitting. By distributing probability across multiple classes, soft labels 
reduce the impact of single mislabeled instances, making the model more resilient when 
dealing with noisy or uncertain labels. The probability distributions generated by soft labels 
better reflect data uncertainty, thereby improving the reliability of the model's prediction 
confidence. 

 

Reviewer 3： 
1. The disadvantages of the proposed method and the direction of the next work should be 

explained in the conclusion.  

Re 1: Our revised conclusions are as follows: 

Although the proposed improved RTMPose model demonstrates significant performance 
improvements in dance pose evaluation, it still has certain limitations. The model's accuracy 
declines when handling complex dance movements and dense occlusion scenarios, indicating 
that further optimization is needed for high-difficulty pose estimation tasks. Second, while the 
model's real-time performance has improved, the demand for computational resources 
remains high when processing multi-person, multi-action scenarios. Optimizing the model 
structure to further reduce computational complexity and improve the efficiency of multi-
person pose estimation. 

 

2. This study may have different designs in comparison to some previous studies, but how 
are these differences significant? The author needs to highlight and clarify them in 
innovation point. 



Re 2: The main innovations of this study compared to previous works are highlighted in the 
following aspects: 

Improved Keypoint Representation: Our study introduces the Large-kernel Grouped Attention 
Gate (LGAG) to enhance the representation of keypoints. Unlike traditional attention 
mechanisms, LGAG captures more complex spatial dependencies and nonlinear features, 
particularly useful for complex dance movements. 

Transformation of Pose Estimation Task: We reframe the 2D pose estimation problem as a 
coordinate classification task using the SimCC method, instead of relying on heatmap-based 
methods. This approach reduces quantization errors and improves localization accuracy. 

Model Efficiency and Scalability: By replacing the standard 7x7 convolutional layers with 
three 3x3 convolutional layers, we significantly reduce the model’s parameters and 
computational cost while maintaining high accuracy. This structural optimization enhances 
the model’s scalability and efficiency. 

These innovations collectively contribute to a more efficient and accurate system for 
evaluating dance standardization scores, addressing limitations found in previous methods 
such as high computational complexity and lower accuracy in dynamic pose scenarios.” 

 

3. There is no need to repeatedly define abbreviated forms of terms, such as ‘Large-kernel 
Grouped Attention Gate (LGAG)’, which appears several times in the text, which is 
unnecessary. 

Re 3: Thank you for pointing that out. I have reviewed and revised the document to remove 
the redundant definitions of abbreviated terms such as ‘Large-kernel Grouped Attention Gate 
(LGAG)’. Now, the terms are defined only once and used consistently throughout the text. I 
appreciate your feedback and attention to detail. 
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Abstract—Human pose estimation is a critical technology in 
computer vision that enables machines to understand and 
interpret human movement. One important application of this 
technology is the standardized analysis of dance movements. In 
this paper, we improve the RTMPose model by optimizing 
keypoint representation through convolutional layers and Large 
Kernel Gated Attention Units (LGAG), transforming 2D pose 
estimation into a coordinate classification task. The LGAG self-
attention mechanism enhances keypoint detection accuracy. 
Additionally, the loss function based on SimCC, combined with 
soft label encoding, further optimizes the model's performance. 
Comparative experiments conducted on the COCO, MPII, and 
our collected standard dance datasets demonstrate that our model 
significantly improves human pose estimation performance and 
effectively achieves standardized dance movement scoring. This 
highlights its potential for various applications in sports, health, 
education, and human-computer interaction.  

Keywords—Dance Standardization Evaluation, Pose Estimation, 
LGAG, RTMPose, SimCC  

I. INTRODUCTION  
In recent years, human pose estimation has become a popular 

topic in computer vision, offering significant benefits and 
potential applications for improving human life. One important 
application of human pose estimation is the standardized 
analysis of dance movements. However, this field faces unique 
challenges due to the complexity of dance movements and the 
uncertainty of human biological characteristics. Accurate 
keypoint recognition of human dance movements can enable 
standardized detection, which could have a substantial impact in 
various fields, including sports, health, dance education, and 
human-computer interaction. 

Human pose estimation can be categorized into four main 
approaches: methods based on pose graphs (further divided into 
regression-based and heatmap-based methods); detection-based 
methods (which include top-down and bottom-up approaches); 
graph convolution-based methods; and Transformer-based 
algorithms. Toshev [1] introduced Deep Pose, a method for 
human pose estimation based on deep neural networks (DNNs), 
achieving high-precision pose estimation through cascaded 
DNN regressors. Wang [2] developed the Hourglass network 
specifically for human pose estimation, incorporating a stacked 
concept that effectively captures multi-level features by 
integrating multi-scale information. Chen [3] proposed the 

Cascade Pyramid Network (CPN), a novel architecture 
consisting of two stages: Global Net, which handles simple 
keypoints, and Refine Net, which focuses on occluded or 
invisible keypoints. This method significantly improved 
performance on the COCO dataset. Li [4] introduced the 
Residual Log-Likelihood Estimator (RLE), which learns 
distribution shifts to simplify the training process. The RLE-
based approach increased mean Average Precision (mAP) by 
12.4 on the MSCOCO dataset. Wei [5] proposed the 
Convolutional Pose Machines (CPM), which directly operates 
on confidence maps from the previous stage, improving 
keypoint localization accuracy by progressively refining 
predicted heatmaps. Cao [6] presented Open Pose, which 
utilizes Part Affinity Fields (PAFs) to associate body parts with 
individuals in images through a non-parametric representation. 
The method demonstrated significant improvements in 
performance and accuracy by refining PAF processing. Ke [7] 
et al. proposed the High-Resolution Network (HRNet) for 
human pose estimation, which maintains high-resolution 
representations throughout the process, avoiding the common 
issue of recovering high resolution from low-resolution inputs. 
Sun [8] introduced a method that combines regression with 
heatmap generation by integrating heatmap operations to 
directly compute keypoint coordinates, balancing the strengths 
of both approaches. Li [9] introduced PG-GCN, which uses 
human keypoint information to guide the learning of graph 
convolutional networks, enhancing the model's recognition 
capability by capturing structured information among keypoints. 
Wu [10] improved ST-GCN by integrating an enhanced 
Detection Transformer (DETR) structure, effectively addressing 
issues related to Non-Maximum Suppression and anchor 
generation, thereby improving node spatial relationship 
utilization and detection accuracy in human pose estimation. 
Moon [11] introduced MSA R-CNN, a model that combines 
human detection and keypoint localization, utilizing multi-scale 
information to achieve better performance in 2D multi-person 
pose estimation. Wang [12] proposed a human pose detection 
technique that combines top-down and bottom-up approaches, 
extracting keypoint and object location features through Mask 
R-CNN and integrating Part Affinity Fields (PAFs) and 
confidence maps from CNNs for precise pose recognition. Ulya 
[13] introduced the HiroPoseEstimation model, which evaluates 
datasets using a bottom-up and top-down approach with 
Keypoint Mask R-CNN and a single-stage encoder-decoder 



model, showing good performance on the proposed dataset. 
Kreiss [14] proposed PifPaf, a novel bottom-up multi-person 2D 
human pose estimation method that uses Part Intensity Fields 
(PIF) to locate body parts and Part Affinity Fields (PAF) to 
connect them into a complete human pose. Zhang [15] 
introduced an improved 2D human pose estimation method that 
incorporates attention mechanisms and hard sample mining 
techniques to address low accuracy and long inference times in 
multi-person scenarios. Chen [16] proposed a method that learns 
human keypoints through convolutional networks, obtaining 
keypoint attention regions for classification. Li [17] introduced 
a Pose-Oriented Transformer (POT) combined with an 
Uncertainty-Guided Refinement Network (UGRN), where POT 
uses pose-oriented self-attention mechanisms and distance-
based position embeddings, and UGRN further refines hard-to-
predict joints. Li [18] proposed VTTransPose, which 
incorporates dual attention modules in the TransPose model and 
replaces basic blocks in the third subnet with V modules to 
enhance joint feature representation and network recognition 
performance. Ma [19] developed the Token-Pruned Pose 
Transformer (PPT) model, which significantly reduces 
computational costs by focusing self-attention calculations on 
selected tokens after identifying the rough body area. Ren [20] 
introduced the Distilling Pruned-Token Transformer (DPPT), 
leveraging the output of the pre-trained TokenPose model to 
supervise PPT’s learning process, addressing performance 
degradation caused by background token pruning. Jiang 
introduced RTMPose, a model that achieves accurate detection 
and localization of human keypoints through an efficient 
network architecture that significantly reduces computational 
load and model size while maintaining accuracy, thanks to 
improved heatmap regression and keypoint offset regression 
techniques. Jiang [21] proposed RTMPose, by leveraging 
improved heatmap regression and keypoint offset regression 
techniques, RTMPose achieves precise detection and 
localization of human keypoints. 

In human pose estimation methods, the pose graph 
regression approach directly regresses the positions of keypoints 
and can utilize simple network structures. However, it has 
weaker capabilities in handling complex poses and occlusions, 
and it struggles to capture global context, leading to lower 
accuracy. Heatmap-based methods can capture fine keypoint 
positions and improve accuracy and robustness through multi-
scale feature fusion. These methods have high computational 
complexity, typically requiring substantial computational 
resources, which results in slower inference speeds. 
Additionally, there are memory consumption issues in 
generating and processing high-resolution heatmaps. Top-down 
detection methods achieve high accuracy by performing pose 
estimation within each detected bounding box individually. 
However, in multi-person scenarios, each person must be 
detected and estimated separately, leading to high computational 
costs and slower processing speeds. Bottom-up detection 
methods, on the other hand, detect all keypoints across the entire 
image and then assemble them, making them suitable for real-
time applications. However, they struggle to correctly identify 
and assemble keypoints in densely populated or heavily 
occluded scenes. Graph Convolutional Network (GCN)-based 
algorithms can capture the complex dependencies between 

human keypoints and perform well in processing high-
dimensional data. However, the construction and operation of 
graphs involve high computational complexity, making GCN 
models potentially slow in both training and inference. 
Transformer-based algorithms excel in capturing global context 
information and improve pose estimation accuracy through self-
attention mechanisms. They perform exceptionally well in 
handling long-range dependencies and complex poses. However, 
the computational complexity is high, and Transformer 
architectures require significant computational resources and 
data for training, which can lead to overfitting or slower 
inference speeds.  

To address these issues, we propose an improved attention 
mechanism based on RTMPose. By enhancing the 
convolutional layers following the Backbone and utilizing a 
Large-kernel Grouped Attention Gate (LGAG), we improve the 
model's ability to capture nonlinear features in human pose 
recognition tasks with higher efficiency. This method alleviates 
the high computational complexity and overfitting problems 
common to transformer architectures. In addition, we combine 
this approach with a feature vector-based action matching 
algorithm, resulting in a system capable of standardized dance 
scoring. 

II. RELATED WORKS 

A. Multi Pose Estimation Method 
Bottom-up algorithms detect instance-agnostic keypoints 

within an image and then segment these keypoints to obtain 
human poses. The bottom-up paradigm is considered well-suited 
for crowded scenes because the computational cost remains 
stable regardless of the number of individuals. However, these 
algorithms typically require high input resolution to handle the 
varying scales of people, making it challenging to balance 
accuracy and inference speed. 

On the other hand, top-down algorithms use off-the-shelf 
detectors to provide bounding boxes, then crop the human body 
to a uniform scale for pose estimation. The top-down paradigm 
has consistently dominated public benchmarks. The two-stage 
inference paradigm allows human detectors and pose estimators 
to use relatively low input resolution, which enables them to 
outperform bottom-up algorithms in terms of speed and 
accuracy in non-extreme scenarios (i.e., when the number of 
people in an image does not exceed six). 

This study adopts a top-down approach primarily because it 
is better suited for handling the complex poses involved in dance 
movements. Dance actions are often precise and varied, 
requiring accurate localization, and tracking of different body 
parts. The top-down algorithm enhances keypoint detection 
accuracy by first using an off-the-shelf detector to accurately 
locate the human body, followed by pose estimation at a uniform 
scale. Additionally, since the number of participants in dance 
scenarios is typically small, the top-down approach can achieve 
high inference speed and accuracy with relatively low 
computational resource consumption. This is crucial for real-
time dance pose analysis and standardized recognition. In this  
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Fig. 1. The Proposed RTMPose Network Structure

study, we use RTMDet, a high-performance, low-latency single-
stage object detector, as the human detector. 

B. Coordinate Classification 
Traditional heatmap-based algorithms work by reducing the 

image resolution and then predicting heatmaps for human 
keypoints in a smaller resolution space. Each keypoint's 
heatmap represents a probability distribution across the image, 
with high-value regions indicating the likely locations of 
keypoints. However, this method struggles in scenes where 
keypoints are densely packed, especially in cases of complex 
human poses or severe occlusion, where the heatmap can 
become increasingly ambiguous. 

In the traditional 2D heatmap method, the position of each 
keypoint is represented as a two-dimensional Gaussian 
distribution heatmap, where a high-probability peak is generated 
at a certain location on the heatmap, indicating that this position 
is most likely to be the keypoint. This method suffers from 
significant quantization errors when the input resolution is low, 
requiring additional upsampling layers and post-processing 
steps to reduce these errors. To improve localization accuracy, 
the traditional 2D heatmap method typically requires multiple 
complex upsampling layers, such as deconvolution layers, as 
well as additional post-processing steps. 

Unlike traditional heatmaps, SimCC treats Human Pose 
Estimation (HPE) as two separate classification tasks: one for 
the x-coordinate and one for the y-coordinate. SimCC first 
deploys a CNN or Transformer-based backbone to extract 
potential keypoints. It then divides each pixel into multiple 
smaller bins, achieving sub-pixel level localization accuracy. By 
treating keypoint prediction as two independent classification 
tasks, SimCC can individually locate the x and y coordinates of 
each keypoint, thereby eliminating the need to maintain a two-
dimensional feature map. This approach not only reduces 
quantization errors but also eliminates the need for complex 
upsampling layers and post-processing steps. Instead, SimCC 
accomplishes coordinate classification tasks with only two 
lightweight classification heads, each containing only a linear 
layer, thereby simplifying the model architecture and improving 
efficiency. As a result, SimCC achieves sub-pixel accuracy even 
at lower resolutions, making it more robust in handling complex 
scenarios with dense keypoints and occlusions. 

C. Transformer in Vision 
The Transformer model was initially widely used in natural 

language processing (NLP) due to its exceptional self-attention 

mechanism and global feature capturing ability. It was later 
introduced into the computer vision field and gradually applied 
to pose estimation tasks. The self-attention mechanism of 
Transformers enables the establishment of long-range 
dependencies between different parts of an image, which is 
highly beneficial for modeling the relationships between human 
keypoints in pose estimation. Unlike CNNs, which rely solely 
on local receptive fields, Transformers can effectively capture 
spatial relationships between different parts of the human body. 

HRFormer introduced a Transformer-based high-resolution 
structure specifically designed for dense prediction tasks, 
including pose estimation. HRFormer adopts the multi-
resolution parallel design from HRNet, maintaining a high-
resolution feature stream while progressively adding medium- 
and low-resolution streams. Each stream updates its features at 
its respective resolution using multiple Transformer blocks. A 
convolutional multi-scale fusion module facilitates information 
exchange between resolutions for multi-scale feature modeling. 
Additionally, HRFormer introduces local window self-attention, 
where the representation map is divided into non-overlapping 
windows, and self-attention is applied independently within 
each window. DETR (Detection Transformer) was initially 
proposed for object detection, but its global self-attention 
mechanism and direct regression of positions have also been 
applied to pose estimation. By directly regressing keypoint 
positions instead of relying on heatmaps, DETR has improved 
the accuracy of pose estimation to some extent. RTMPose 
combines the self-attention mechanism with a compact SimCC-
based representation to capture keypoint dependencies. This 
significantly reduces computational load and allows for real-
time inference with higher accuracy and efficiency. RTMPose 
employs a variant of the Transformer, the Gated Attention Unit 
(GAU), which offers faster speed, lower memory cost, and 
better performance compared to standard Transformers. 

In this study, we optimized the 7x7 convolutional layers and 
GAU used in RTMPose. By improving the LGAG, we enhance 
the accuracy of RTMPose, particularly in cases where there is 
high similarity between different keypoints. 

III. METHOD 
The improved RTMPose network structure includes two 

convolutional layers, a fully connected layer, and a Large-kernel 
Gated Attention Unit (LGAG) to optimize the representation of 
𝐾𝐾  keypoints. The 2D pose estimation is then framed as two 
separate classification tasks for the x-axis and y-axis coordinates, 



predicting the horizontal and vertical positions of the keypoints. 
The network architecture is illustrated in Fig. 1. 

A. SimCC 
We adopt the coordinate classification approach referenced 

from SimCC, framing keypoint localization as a classification 
problem. The core idea is to divide the horizontal and vertical 
axes into equally spaced, numbered bins and discretize 
continuous coordinates into corresponding bin labels. The 
model is then trained to predict the bin in which the keypoint 
resides. By using a large number of bins, quantization error is 
reduced to a sub-pixel level. 

For the backbone, we use CSPNeXt from RTMDet. In 
RTMPose, we replace the final layer of CSPNeXt with a 7x7 
convolutional layer to obtain keypoint representations. However, 
instead of the 7x7 convolutional layer, we use three 3x3 
convolutional layers, which reduces the number of parameters 
and computational cost by approximately 44.9%. Additionally, 
we incorporate the Exponential Linear Unit (ELU) activation 
function in the convolutional layers to enhance non-linearity, 
allowing the model to learn more complex feature 
representations. This stacked approach captures local features 
while gradually accumulating higher-level feature 
representations layer by layer. The three 3x3 convolutional 
layers are also easier to integrate with other network modules 
and optimize, offering strong adaptability and flexible 
application across different model architectures. 

 ELU(𝑥𝑥) = � 𝑥𝑥                𝑥𝑥 > 0
α(exp(𝑥𝑥) − 1)   𝑥𝑥 ≤ 0 (1) 

The feature map is processed through three 3x3 
convolutional layers, resulting in a feature map of shape 
(𝐾𝐾,𝐻𝐻,𝑊𝑊), where 𝐾𝐾 is equal to the number of keypoints. The 
last two dimensions of the feature map are then merged, 
flattening the two-dimensional features into a one-dimensional 
representation, yielding a matrix of shape (𝐾𝐾,𝐻𝐻 × 𝑊𝑊). A fully 
connected layer is then used to expand this one-dimensional 
keypoint representation to the desired dimensionality, which is 
controlled by a hyperparameter. 

B. Transformer 
The performance of heatmap-based models improves as the 

feature resolution increases. To further enhance model 
performance, we employ a self-attention mechanism. 
Specifically, we utilize a variant of the Transformer, the LGAG. 
Compared to the standard Transformer and other variants like 
the Gated Attention Unit (GAU), LGAG offers faster speed, 
lower memory cost, and better performance. 

LGAG incrementally integrates the feature maps with 
attention coefficients learned by the network, thereby enhancing 
the activation of relevant features and suppressing irrelevant 
ones. This method leverages gating signals derived from higher-
level features to control the information flow at various stages 
of the network, which improves the accuracy of keypoint 
detection. The network structure of LGAG is shown in Fig. 2. 
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Fig. 2. Network structure of LGAG 

In LGAG, the features g and x are processed separately by 
applying individual 3x3 Group Convolutions. These 
convolutional features are then normalized using Batch 
Normalization (BN) and combined through element-wise 
addition. The resulting feature map is activated by a ReLU layer. 
Following this, a 1x1 convolutional layer and another BN layer 
are applied to obtain a single-channel feature map. The single-
channel feature map is then passed through a Sigmoid activation 
function to generate the attention coefficients. The output of this 
transformation is used to scale the input feature x through 
element-wise multiplication, producing the attention-gated 
feature 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑔𝑔,𝑥𝑥). 

 𝑞𝑞(𝑔𝑔, 𝑥𝑥) = 𝑅𝑅 �𝐵𝐵𝐵𝐵 ��𝐿𝐿𝐶𝐶𝑔𝑔(𝑔𝑔)� + 𝐵𝐵𝐵𝐵�𝐿𝐿𝐶𝐶𝑥𝑥(𝑥𝑥)��� (2) 

 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑔𝑔, 𝑥𝑥) = 𝑥𝑥 ⊙ σ�𝐵𝐵𝐵𝐵��𝑞𝑞(𝑔𝑔, 𝑥𝑥)��� (3) 

where 𝐵𝐵𝐵𝐵  stands for batch normalization, GC𝑔𝑔  and GC𝑥𝑥 
represent 3x3 group convolutions, 𝑅𝑅  is the ReLU activation 
function, σ is the Sigmoid activation function, and ⊙ denotes 
element-wise multiplication. 

C. Loss Function 
This study predicts pose keypoints based on the SimCC 

algorithm, which frames keypoint localization as a classification 
task for horizontal and vertical coordinates. To address the intra-
class and inter-class relationships in keypoint localization during 
Pose Estimation, we adopt the soft label encoding method 
proposed in SORD [22]. This approach does not require any 
explicit modifications to the network architecture and can 
seamlessly incorporate metric penalties into the ground truth 
label representation to constrain these relationships between 
classes. Soft labels capture the similarity and ordinal 
relationships between classes, aiding the model in understanding 
connections between adjacent classes, which is especially 
beneficial for tasks like age estimation. They result in smoother 
loss variation, promoting faster convergence, better 
generalization, and reducing overfitting. By distributing 
probability across multiple classes, soft labels mitigate the 
impact of mislabeled instances, making the model more robust 



to noisy or uncertain labels. Additionally, the probability 
distributions from soft labels better represent data uncertainty, 
improving the reliability of prediction confidence. 

 In this work, we use an unnormalized Gaussian distribution 
as the metric for inter-class distance. 

 ϕ(𝑟𝑟𝑡𝑡 , 𝑟𝑟𝑖𝑖) = 𝑒𝑒𝑥𝑥𝑒𝑒 �−(𝑟𝑟𝑡𝑡−𝑟𝑟𝑖𝑖)2

2σ2
� (4) 

 𝑦𝑦𝑖𝑖 = 𝑒𝑒𝑥𝑥𝑒𝑒�ϕ(𝑟𝑟𝑡𝑡,𝑟𝑟𝑖𝑖)�
∑ 𝑒𝑒𝑥𝑥𝑒𝑒�ϕ(𝑟𝑟𝑡𝑡,𝑟𝑟𝑘𝑘)�𝐾𝐾
𝑘𝑘=1

 (5) 

where ϕ(𝑟𝑟𝑡𝑡 , 𝑟𝑟𝑖𝑖)  is a metric loss function of our choice that 
penalizes how far the true metric value of  𝑟𝑟𝑡𝑡 from the 𝑟𝑟𝑖𝑖 ∈ 𝑌𝑌. 

In SimCC, the same encoding method is applied to the bins 
along both the horizontal and vertical directions. Therefore, for 
the standard deviation σ  of the unnormalized Gaussian 
distribution. 

 𝜎𝜎 = �𝑊𝑊𝑆𝑆
16

 (6) 

where 𝑊𝑊𝑠𝑠  is the bin number in the horizontal and vertical 
directions, respectively. Therefore, the complete loss function 
for the model is defined as follows 

 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = −∑ ∑ 𝑊𝑊𝑛𝑛,𝑘𝑘
𝐾𝐾
𝑘𝑘=1

𝑁𝑁
𝑛𝑛=1 ⋅ ∑ 1

𝑊𝑊𝑠𝑠

𝐿𝐿
𝑖𝑖=1 ⋅ 𝑉𝑉𝑖𝑖𝑙𝑙𝐿𝐿𝑔𝑔(𝑦𝑦𝑖𝑖) (7) 

where 𝐵𝐵 is the number of the person samples in a batch, 𝐾𝐾 is the 
number of keypoints. 𝑊𝑊𝑛𝑛,𝑘𝑘 is a target weight mask to distinguish 
invisible keypoints. 𝑉𝑉𝑖𝑖 is the label value. 

D. Standardized detection of movements 
To achieve this, we adopt a dance pose analysis method 

based on feature vector matching [23]. By comparing the action 
feature vectors with predefined standard feature vectors, this 
method evaluates the similarity between the current action and 
the standard action, thereby enabling standardized detection of 
movements. 

Based on the human keypoint data obtained in Section II, 
every three feature points can define a feature plane, allowing 
the similarity between the dancer and the standard action to be 
attributed to the geometric similarity between objects. 
According to ergonomic principles, the human skeleton can be 
divided into seven feature planes, as illustrated in the Fig. 3. The 
analysis of movement standardization can thus be simplified 
into a comparison of the similarity between edge vectors within 
the same plane and the similarity of normal vectors between 
planes. 

The calculation method is as follows: Using the human spine 
as the main axis, the spine serves as the z-axis of the spatial 
Cartesian coordinate system, with the x-axis and y-axis of the 
horizontal plane as the ground plane. Cosine similarity is used 
as the similarity function. By measuring the cosine of the angle 
between the inner products of two vectors in space, we can 
assess their similarity. 

 
Fig. 3. Feature Plane based on Keypoints in the Human Skeleton 

 The cosine similarity value ranges from 0 to 1, indicating 
the degree of similarity between the two vectors, with values 
closer to 1 implying greater directional similarity. Compared to 
Euclidean distance, cosine similarity focuses primarily on the 
angle between the two vectors, measuring the similarity in their 
direction in space without considering differences in body size, 
such as variations in arm length among different dancers. 

 Sim(θ𝑖𝑖) = ∑ 𝐴𝐴𝑡𝑡𝑛𝑛
𝑡𝑡=1 ×𝐵𝐵𝑡𝑡

�∑ (𝐴𝐴𝑡𝑡)2𝑛𝑛
𝑡𝑡=1 ×�∑ (𝐵𝐵𝑡𝑡)2𝑛𝑛

𝑡𝑡=1

 (8) 

where Sim(θ𝑖𝑖)  represents the cosine similarity of the joint 
angles, with θ𝑖𝑖  being the joint angle; 𝐿𝐿𝑡𝑡  and 𝐵𝐵𝑡𝑡  represent two 
feature vectors at time 𝑡𝑡. If the value is close to 1, it indicates 
that the dancer's actions are highly consistent with the standard 
actions, implying standardized movements. If the value is close 
to 0, it indicates a significant difference between the dancer's 
actions and the standard actions. 

To address the differences in height, weight, arm length, and 
other physical attributes among different dancers, cosine 
similarity can be used to measure whether the range of motion 
of the limbs meets the standard. By measuring the similarity and 
difference between angles, the results can be obtained. The 
calculation formula is as follows: 

 Corr(𝑈𝑈,𝑉𝑉) = 1 − �arccos�Sim(θ𝑖𝑖)�
π

� (9) 

where 𝑈𝑈  and 𝑉𝑉  are the two vectors being compared, and 
Sim(θ𝑖𝑖) is the cosine similarity of the angle θ𝑖𝑖 between vectors 
𝑈𝑈 and 𝑉𝑉 . To calculate the difference in feature poses, for each 
synchronized time frame of the two video frames, the correlation 
coefficient of each action part is calculated. Then, the error of 
the correlation coefficient is calculated in the form of relative 
error. The calculation formula is as follows: 

     Δcorr𝑡𝑡 =
corr𝑖𝑖−corr𝑗𝑗

corr𝑖𝑖
× 100% (10) 

where 𝑡𝑡  is the time point of the dance action; corr𝑖𝑖  is the 
correlation coefficient of the standard dance action; corr𝑖𝑖is the 
correlation coefficient of the dance action being evaluated. The 



condition for error convergence is Δcorr𝑡𝑡 ≤ 𝐶𝐶, where 𝐶𝐶 is the 
selected error threshold, which can be adjusted according to the 
actual dance standard requirements. 

IV. EXPERIMENT 
We conducted experiments on a computer equipped with an 

Intel Core i7-12700 CPU, 32GB RAM, and an NVIDIA 
GeForce RTX 4090 GPU. The software environment is set up 
using the Ubuntu 20.04 LTS operating system and PyTorch 1.13. 
We also utilized MMPose (an open-source toolbox for pose 
estimation) and MMDet (a toolbox for object detection) to build 
the environment. For the specific experimental parameters, the 
learning rate was set to 0.000017, and the batch size set to 128. 
The model was trained for a total of 300 epochs. 

A. Dataset description 
We used the collected standard dance movement video 

dataset as the training and testing dataset to evaluate our 
proposed method. Below is a description of the datasets used. 

The COCO dataset contains extensive 2D human keypoint 
annotations and is well-suited for pose estimation tasks. It 
provides annotations for 17 keypoints, including the head, 
shoulders, elbows, knees, and other body parts, covering 
approximately 150,000 human instances across 250,000 images. 
COCO's human keypoint annotations are widely used for 
training and evaluating pose estimation models, supporting 
multi-pose and multi-view analysis. 

The MPII dataset focuses on human pose estimation and 
provides over 40,000 human keypoint annotations across 
various everyday activities. MPII annotates 16 keypoints on the 
human body, covering a diverse range of activities and is one of 
the standard datasets for human pose estimation. Each image 
also includes activity labels and 2D skeleton models, supporting 
detailed pose analysis. 

The collected standard dance movement video dataset was 
recorded using a 1080P 30FPS webcam, capturing a series of 
videos with each video lasting 2 minutes. A total of 300 videos 
were recorded, involving 30 students. The videos were extracted 
into images using OpenCV and annotated following the COCO 
format, including keypoints and bounding boxes for 17 body 
parts such as the head, shoulders, elbows, knees, and more. 

B. Ablation experiments 
This section evaluates the effectiveness of our proposed 

model by clearly analyzing the contribution of each component 
to the overall performance, particularly the improved attention 
mechanism and the Backbone structure. 

We compared the performance using the following four 
models: 

Baseline Model: The original RTMPose model without 
modifications. 

 Improved Model 1: Introduces the LGAG without altering 
the Backbone structure. 

Improved Model 2: Modifies only the final convolutional 
layer of the Backbone (changing from 7x7 to three 3x3 layers) 
without introducing LGAG. 

Fusion Model: Incorporates both LGAG and the Backbone 
improvements. 

These four models were compared using the fusion strategy 
on the COCO, MPII, and the collected standard dance 
movement video datasets. The results are presented in TABLE 
I. .  

TABLE I.  ABLATION COMPARISON OF IMPROVED MODELS AND 
BASELINE MODEL 

Dataset 
Method 

BaseLine LGAG Backbone Fusion 

COCO 71.4 73.45 73.67 74.68 

MPII 92.7 93.82 92.93 94.33 

Dance Dataset 81.2 82.45 80.72 83.37 

The experimental results demonstrate that both the LGAG 
and the Backbone improvements independently contribute to the 
model's performance. Specifically, introducing LGAG led to a 
1.47 AP (Average Precision) improvement, while the Backbone 
modification alone resulted in a 0.67 AP increase. When both 
enhancements were combined, the overall AP improvement 
reached 2.36. This indicates that LGAG has a significant 
advantage in capturing nonlinear features, particularly when 
handling complex movements, and the improved model exhibits 
stronger expressiveness and robustness. 

C. Comparative experiments 
We conducted extensive comparative experiments to 

validate the effectiveness of our model on the COCO, MPII, and 
the collected standard dance movement video datasets. The 
results are shown in TABLE II. .  

Our method achieved the highest accuracy on the MPII and 
dance datasets, particularly excelling in the dance dataset, which 
involves complex movements. These results indicate that the 
proposed improvements significantly enhance the model's 
performance, especially in scenarios requiring precise and 
robust pose estimation. The superior performance on the dance 
dataset underscores the model's effectiveness in handling 
complex and dynamic poses, which are critical for applications 
in dance movement analysis. 

 

TABLE II.  COMPARATIVE EXPERIMENT RESULTS 

Method 
Dataset 

COCO MPII Dance Dataset 

RTMPose 71.4 92.7 81.2 

OpenPose 56.3 88.8 74.36 

HRNet-W32 75.8 92.3 79.81 

Our method 74.68 94.33 83.37 

D. Standardized scores of dance 
In the field of dance, due to the fixed duration of standard 

dance movements, we can standardize the length of the dance 
video to be evaluated with the length of the standard video. In 
the experiment, we extract human keypoints from both the test 
video and the standard video to construct sequences and 



calculate the feature vectors for each frame using the Method III 
approach. The accuracy score S for different methods in the 
context of dance standardization is calculated using the 
following formula: 

 𝑆𝑆 = 1 − 1
𝑁𝑁
∑ |𝑆𝑆𝑖𝑖 − 𝑇𝑇𝑖𝑖|𝑁𝑁
𝑖𝑖=1  (11) 

where N is the number of frames in the video. 𝑆𝑆_𝑖𝑖 and 𝑇𝑇_𝑖𝑖 are 
the feature vectors of the standard video frame and the test video 
frame, respectively. 

This formula calculates the accuracy score S by measuring 
the difference between the feature vectors of the standard and 
test video frames, then averaging these differences across all 
frames. The score S reflects the degree of similarity between the 
evaluated dance movements and the standard movements, with 
higher scores indicating better alignment with the standard. The 
experimental results are shown in Fig. 4. 

 
Fig. 4. Standardized score evaluation of dance (a) is the real-time score of the 
standard action, and (b), (c) and (d) are the real-time scores of the test video 

V. CONCLUSION 
This study proposes an enhanced RTMPose model that 

improves keypoint representation by integrating convolutional 
layers with a Large-kernel Gated Attention Unit (LGAG). The 
approach transforms the 2D pose estimation problem into a 
classification task for the x and y coordinates. By utilizing the 
SimCC method, we treat keypoint localization as a classification 
problem, dividing the coordinate axes into evenly spaced, 
numbered bins to effectively minimize quantization error. 
Structurally, we replaced the 7x7 convolutional layer with three 
3x3 convolutional layers, reducing the number of parameters 
and computational costs, and introduced the ELU activation 
function to enhance nonlinear feature learning. Additionally, by 
incorporating the LGAG self-attention mechanism, the model 
more effectively activates relevant features, improving keypoint 

detection accuracy. Finally, we designed a SimCC-based loss 
function, integrating a soft label encoding method to further 
optimize keypoint localization, thereby enhancing the model's 
accuracy and robustness. This model advances potential 
applications in several areas, including dance training and 
education, artistic creation and choreography, competitive 
sports, and human-computer interaction. The model's accuracy 
declines when handling complex dance movements and dense 
occlusion scenarios, indicating that further optimization is 
needed for high-difficulty pose estimation tasks. Second, while 
the model's real-time performance has improved, the demand for 
computational resources remains high when processing multi-
person, multi-action scenarios. Optimizing the model structure 
to further reduce computational complexity and improve the 
efficiency of multi-person pose estimation. 
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