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Abstract

We present a framework for robots to learn novel visual concepts and visual tasks
via in-situ linguistic interactions with human users. Previous approaches in com-
puter vision have either used large pre-trained visual models to infer novel objects
zero-shot, or added novel concepts along with their attributes and representations
to a concept hierarchy. We extend the approaches that focus on learning visual
concept hierarchies and take this ability one step further to demonstrate novel task
solving on robots along with the learned visual concepts. To enable a visual con-
cept learner to solve robotics tasks one-shot, we developed two distinct techniques.
Firstly, we propose a novel approach, Hi-Viscont(HIerarchical VISual CONcept
learner for Task), which augments information of a novel concept, that is being
taught, to its parent nodes within a concept hierarchy. This information propagation
allows all concepts in a hierarchy to update as novel concepts are taught in a
continual learning setting. Secondly, we represent a visual task as a scene graph
with language annotations, allowing us to create novel permutations of a demon-
strated task zero-shot in-situ. We compared Hi-Viscont with the baseline model
(FALCON [19])) on visual question answering(VQA) in three domains. While
being comparable to the baseline model on leaf level concepts, Hi-Viscont achieves
an improvement of over 9% on non-leaf concepts on average. Additionally, we
provide a demonstration where a human user teaches the robot visual tasks and
concepts interactively. With these results we demonstrate the ability of our model
to learn tasks and concepts in a continual learning setting on the robot.

1 Introduction

Robots in a household will encounter novel objects and tasks all the time. For example, a robot
might need to use a novel vegetable peeler to peel potatoes even though it has never seen, let alone
used such a peeler before. Our work focuses on teaching robots novel concepts and tasks one-shot
via human-robot interactions, which include demonstrations and linguistic explanations. We then
want the robot to generalize to a similar but unseen visual task. A robotic system that can learn
generalizable tasks and concepts from few natural interactions from a human-teacher would represent
a large leap for robotics applications in everyday settings. In this work we aim to take a step in the
direction of generalizable interactive learning as demonstrated Fig. [T}

Previously, large image and language models have been extended to robotics to manipulate novel
objects, and create visual scenes [20} 2]. These methods recognize novel objects by using their
underlying large language and visual models to extract task-relevant knowledge. However, they are
not capable of learning to create a novel visual scene from an in-situ interaction with a human user.
There is also significant work in few-shot learning of visual concepts in computer vision [19, 21
277,123,129, 25]], albeit without extensions to robotics domains. These approaches focus on learning
novel concepts for image classification, but ignore the fact that the novel concepts also bring new
information to update our understanding of concepts already known to the robot. The reverse path of
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Figure 1: This figure demonstrates how Hi-Viscont learns from users interactively. (a) First the user
demonstrates a structure, say a “house,” with its sub-components such as its “roof” and the concepts
used to make the “roof” such as a “yellow curve block™. (b) The user then teaches a novel concept
such as a “green curve block” and describes its properties. (c) The user can now ask the robot to create
a new structure (“house with green roof”) zero-shot with the taught component without explicitly
asking for the object of interest.
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knowledge propagation, that is, from novel concepts to previously known concepts is equivalently
important in performing tasks in the real-life scenarios, especially when the agent has little knowledge
of the world and needs to continually add information to known concepts.

In this work, we propose a novel framework, Hi-Viscont, that enables robots to learn visual tasks and
visual concepts from natural interactions with a human user. We learn the task type and concepts from
users one shot, and then generalize to tasks within the task type zero-shot. We do this by connecting
our insights on one-shot visual concept learning and the use of scene graphs. The robot learns the
structure of a visual task by converting linguistic interactions with a human user into a contextualized
scene graph with language annotations. Moreover, Hi-Viscont updates parental concepts of the novel
concept being taught. Such updates allow us to generalize the use of the novel concepts in to solve
novel tasks.

The contribution of this work is listed as below:

1. We present visual concept results on VQA tasks that are comparable to the state-of-the-art
FALCON model. More specifically, Hi-Viscont improves on FALCON on all non-leaf
concepts across all domains with significance.

2. We enable the robot agent to learn a visual task from in-situ interactions with a scene graph,
allowing zero shot generalization to an unseen task of the same type, as demonstrated in

Fig[T}
2 Related Work

Language conditioned manipulation. Significant work exists in learning concepts and tasks for
robots in interactive settings even with the use of dialog [4} [18]]. Our work differs from previous
works as it is attempting to learn visual concepts for manipulation one-shot, while updating other
known concepts to improve generalization. Moreover, our approach is completely differentiable and
can start with zero known concepts, which is important for a continual learning setup. Previous work
has focused on language conditioned manipulation [20} [15} 3] 2]. Shridhar et al. [20] computes a pick
and place location conditioned on linguistic and visual inputs. Liu et al. [[15] focuses on semantic
arrangement on unseen objects. Ahn et al. [[1], Brohan et al. [3] train on large scale of linguistic and
visual data and can perform real-life robotic task based on language instructions, however our work
is focused on interactive teaching of tasks and concepts and not on emergent behaviors from large
models. Daruna et al. [6] learn a representation of a knowledge graph by predicting directed relations
between objects allowing a robot to predict object locations. To the best of the author’s knowledge
ours is the first paper that learns concepts and tasks one shot to generalize to novel task scenarios on
a robot making our contributions significant compared to other related works.

Visual reasoning and visual concept learning. Our work is related to visual concept learning [[19,
16,130, [7, [14] and visual reasoning [[17, 18,110} 19]. To perform the visual reasoning task, traditional
methods [17} 18, [10, 9] decompose the visual reasoning task into visual feature extraction and
reasoning by parsing the queries into executable neuro-symbolic programs. On top of that, many
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Figure 2: We demonstrate the updates to the box embedding space and the parent concepts when a
novel concept is taught to our robot using Hi-Viscont. Existing approaches only edit the leaf nodes as
those represent novel concepts.

concept learning frameworks [19, (16, 30, [7, [14] learn the representation of concepts by aligning
concepts onto objects in the visual scene. As far as we know, FALCONJ[19] is the most similar
work to our work in this line of research. However, when introducing a new concept, our work
continually updates the representation of all related concepts, whereas Mei et al. [[19]] does not, which
makes it ill-suited for continual learning settings. Our work is also related to the area of few-shot
learning [21} 25 1277]], which learns to recognize new objects or classes from only a few examples but
does not represent a concept hierarchy which is useful in robotics settings.

Scene graph. Scene graphs are structural representations of all objects and their relationships within
an image. The scene graph representation [5] of images is widely used in the visual domains for
various tasks, such as image retrieval [[10]], image generation [L1], or question answering [24]. This
form of representation has also used in the robotics domains for long-horizon manipulation [32].

3 Methods

We first present the baseline FALCON model and then introduce our Hi-Viscont model. We based
our model on concept learners as they can be taught concepts few shot, and they can reason over the
attributes of chosen (and their parent) concept classes. FALCON is the SOTA concept learner which
learns novel concepts one-shot.

3.1 FALCON

Mei et al. [19] developed FALCON, a meta-learning framework for one-shot concept learning in
visual domains. FALCON learns a new visual concept with one or a few examples, and uses the
learned concept to answer visual reasoning questions on unseen images. There are three components
for the FALCON model: a visual feature extractor that extracts the object-centric features for the
input image, a graph neural network (GNN) based concept learner, and a neuro-symbolic program
executor that executes the input neuro-symbolic program.

Natural language sentences describing objects and their queries are represented as structured neuro-
symbolic programs. FALCON learns novel concepts by interpreting the images presented and
the relationships between known concepts and the unknown concept being learned using a neuro-
symbolic program. After learning, the model performs reasoning over questions, by converting these
questions into neuro-symbolic programs that are executable by the model.

FALCON uses a pre-trained ResNet-34 as visual feature extractor. The visual feature extractor
computes a feature for each object in a scene seperately, which can then be used for downstream
visual reasoning. FALCON uses a box embedding[26] to represent concepts and their object visual
features.

Finally, the concept learning module of FALCON is composed of two separate Graph Neural
Networks(GNNs), the relational GNN and the Example GNN. To predict a embedding for a novel
concept ¢, FALCON first samples random prior embedding as the representation for ¢ from a Dirichlet



distribution. Then, FALCON updates the embedding of ¢ by computing messages from parent nodes
based on their factor weights or relationship and also computing a message from the visual feature
(represented as a node within the Example GNN) for the concept being learned. This computed
representation for a novel concept ¢ can then be used for VQA tasks.

FALCON has two major issues for interactive task learning on the robot. Firstly, the model lacks
scene information to solve tasks. We address this in our work. Secondly, FALCON assumes concepts
are learned perfectly and do not need to be updated as the model learns more concepts. For example,
when we teach the model the concept of “container” with an image of a “cup,” FALCON cannot
update the features of the “container” concept when the concept of “bowl” is taught as a child to the
“container” concepts. This might mean that FALCON assumes that “containers” have handles which
is untrue.

3.2 Hi-Viscont

We present our concept net model, Hi-Viscont (Hlerarchical VISual CONcept learner for Task),
which actively updates the related known concepts when we introduce the novel concept to improve
upon FALCON’s generalization capabilities. We adopted several modules from the framework of
FALCON, including the visual feature extractor, the neuro-symbolic program executor, the box
embedding space, and the novel concept learner. Moreover, we introduce an additional GNN module,
Ancestor Relational GNN (ARGNN), that updates the related known concepts as a novel concept is
introduced. ARGNN predicts a new embedding for the related known ancestor concepts to the novel
concept. To do this update we compute a message from the visual feature of novel concept’s instance
to the embedding of the related nodes using the relations between the parent concepts and the novel
concept.

When a novel concept c is inserted to Hi-Viscont, the extracted visual feature o, of concept ¢ and
its relations with known concepts R, are fed to Hi-Viscont as input. Each relation rel = (¢, ¢, r),
where ¢’ denotes the related concept, and 7 describes its relationship with ¢. We compute embedding
e. for novel concept c using the same method as FALCON. Then, using the additional ARGNN, we
predict a new embedding for each related concept ¢’ by computing a message from the visual feature
o, to the current embedding of the related concept e, using the same relationship rel. The formula
for this update is denoted as follows:

el, = ARGNN(o,, rel, e2)
The resulted embedding e, will be used as the representation for concept ¢’ for future task or updates.

To provide gradient flow to train ARGNN, we extended the concept learning task proposed by
FALCON by adding validation questions for each related concept, that is when a new concept is
added all concepts in the concept net are tested for accuracy over the novel concept. For example,
from our previous discussion the newly inserted “bowl” concept’s object instance is checked with
the “container” parent to see if the presented “bowl” also tests as a “container.” A more detailed
description of our training pipeline and methodology can be found in the appendix.

While FALCON was evaluated solely on the newly inserted concept, we evaluate all concepts (leaf and
parent nodes) of our model on unseen images. Such an evaluation ensures consistency between parent
and child concepts which is a necessity in continual learning settings. This evaluation mechanism
allows us to evaluate the quality for the embedding of all concepts in the resulted knowledge graph,
which is closer to how these knowledge are used in the real world setting.

3.3 Learning Visual Task via Scene Graph

To learn a visual task from a single in-situ interaction with human user, we first convert the user’s
demonstration (Fig.[T]a) into an initial scene graph. Each node of the initial scene graph corresponds
to an object that the user placed, and it contains the bounding box information of the object and the
user’s linguistic description of the object. For each node of the initial scene graph, we also store the
positional relations w.r.t. other nodes, to allow for object placements when reconstructing the scene.
We mark a fixed location with black tape on the table, which serves as the origin and is treated as the
zeroth object. All other objects placed by the user will be to the top right of the origin.

Based on the initial scene graph and the user’s linguistic request for the desired variant of the visual
scene, we infer a goal scene graph modelled as a node-wise classification task. Since the variant of
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Figure 3: Sample images from the three domains we are targetting in this work.

the visual task from the user request share the same structure as the demonstration, the goal scene
graph is to have the same number of nodes as the initial scene graph.We take the user’s description of
the corresponding node of the initial scene graph ¢; and the user’s linguistic request of the variant of
the structure ¢ as inputs, and perform a two-step inference: First we decide if the node in the goal
graph is different from the one in demonstration; Subsequently if the node is different we decide
which object satisfies the node location with another classification step.

To decide whether the concept of a node within the scene has changed given the user’s description
of the node and the user’s current request ¢ we perform a binary classification at each node. The
result of this classification decides if we are changing a node’s concept or not. We use a pretrained
BERT},,. model to encode the context request pair which is then fed into a multi-layer perceptron
(MLP) with a Cross-Entropy loss. The second step of the inference extracts the related concepts from
the context if the node’s concept needs to be changed as per the request. We convert the concept
extraction problem into a classification problem by providing concept candidates as a part of the
input again with BERT model and an MLP with a Cross-Entropy loss. The related concepts of each
node is fed as input for the concept net model to decide the object to pick, and the positional relations
with other nodes are used to compute the placement location. The robot will reconstruct the scene
following the order of the nodes. For each node, the robot picks the object according to the concept
net model. The placement location of each object is at a fixed distance to the direction indicated by
the relation with its closest neighbor that is placed. Pairing the concept net model with scene graph,
the robot is able to learn the placement of a scene in one single demonstration and perform variants
of the scene without demonstration.

3.4 Robotics Setup

We integrate our visual task learning and concept learning model with a Franka Emika Resarch
3 arm(FR3). This pipeline allows us to show the generalizability with which Hi-Viscont learns
visual concepts when compared to FALCON [19] in learning and solving novel tasks. To set this
demonstration up we use a Franka Emika Research 3 arm (FR3), two calibrated realsene D435 depth
cameras, and a mono-colored table to allow for background subtraction. We use the SAM(Segment
Anything Model) [[13] to separate the foreground and the background and get individual bounding
boxes for each of the blocks on the table. For pick and place initially, we experimented with
Transporter networks [31]] but used a simpler Visuo-Motor Servoing mechanism for reliability. We
expected users to maintain about an inch of space between each object in the scene to allow the robot
to pick objects without collisions and for SAM to segment objects from the background accurately.
In the process of picking and placing if an error is made the robot recovers autonomously. Once the
object is grasped we then place the object into the Task scene, with the position calculated relatively
with respect to the previously placed object nodes or zeroth origin object. This process is done
iteratively until we have completed the whole scene graph.

4 Results

In this section, we present results on concept learning on the visual question answering task on three
different domains. The experiment results demonstrates that our concept net model learns better
representation for concepts than our baseline model, and is more robust for continual learning across



all domains. Additionally, we present a demonstration of a human user teaching our system visual
concepts and visual task through interactions.

4.1 Domains

We first present experimental results on VQA tasks for three domains: the CUB-200-2011 dataset, a
custom house-construction domain with building blocks, and a custom zoo domain with terrestrial
and aquatic animals.

CUB-200-2011 dataset [28] is a standard dataset to demonstrate visual concept learning. It contains
11, 788 images for 200 bird classes. Using the following bird taxonomy [22], we added the hypernyms
of the bird classes and expanded the number of concepts to 365. Following the design of the dense
graph propagation [12]], the relation of each concept includes all of its ancestors.

The house construction domain includes 31 types of building block objects. Each object has 10
different images. To introduce relations between concepts, we additionally introduced 6 different
concepts and 3 different affordances of objects. The dataset on the house construction domain
includes 310 images and 40 concepts in total.

The zoo domain includes 28 different types of objects. Similar to the house domain, we took 10
images for each object, and introduce 6 general concepts to introduce a hierarchy for the concepts.
The dataset on the zoo domain includes 280 images and 34 concepts in total.

We created the House-Construction and Zoo domains because they allow us to construct arbitrarily
hard tasks with different types of objects that a robot can grasp. Following FALCON’s data creation
protocol, we procedurely generate training and testing examples for each domain. We generate
descriptive sentences and questions based on the ground truth annotations of images and external
knowledge, which is the relationship between concepts. For all the descriptive sentences and the
questions, we also generate the corresponding neural-symbolic programs. We directly compared our
concept net model with FALCON on all three domains.

To demonstrate that Hi-Viscont is better for continual learning, we compare these models with no
pre-trained concepts. Results across the three datasets are obtained from different splits of concepts
and image. Images used for testing are never seen by the model in any phase of training for both train
concepts and test concepts. We present the standard deviation and the pairwise t-test result in the
appendix.

4.2 VQA Tasks

We evaluate the question-answer pairs for all

concepts for all the three domains on iMages  ~\iepod | CUB2002011  House Construction  Zoo
that are not shown in the pre-train or the train i viscont | 72.3907.04 2641058 $3.5018.44
phase. In Table [T} we present the results on ~ FALCON | 73.40+5.77 87.17+4.17 85.12:+6.64
the VQA task for test concepts. Our model,

Hi-Viscont achieves comparable results to the Table 1: The average FI score and standard de-
baseline state-of-the-art FALCON model on test viation of Hi-Viscont and FALCON on the test

concepts across all the three domains, each on five
different splits of concepts.

concepts in all three domains. Given that in a
concept network there are fewer parent concepts
than leaf concepts the performance of both mod-
els is comparable in such a general test case. However, when we split the concepts by their depth in
the hierarchy, Hi-Viscont shines and achieves a significantly better performance with the parental
nodes, which will be discussed by each domain separately.

CUB dataset: We present our results for concepts by their level in the taxonomy in Table [2| Hi-
Viscont is better with significance for concepts in the level of Genera(p < 0.001), Family(p = 0.001),
and Order(p = 0.001) according to paired t-tests. Species are the leaf level concepts where the
models again perform comparably as expected. This is because the leaf level updates of Hi-Viscont
and FALCON do not differ significantly. As there is only one highest level ancestor for the Class
with CUB there is no negative example for it in the dataset leading to similar performance by both
models as the answer is always True.



Mtd. | Species Genera Family Order Class Method ‘ Object Color Affordance

HV | 87.14£2.0 90.440.6 90.7£1.7 92.0+0.8 959+8.2 Hi-Viscont | 88.46+1.58 99.24+0.70 89.86+9.12
FCN | 86.5+1.4 88.2+1.0 84.3+1.4 843432 99.3£1.0 FALCON | 89.284+093 87.27+5.83 57.35+9.23
Table 2: The average F1 score and standard Table 3: The average F1 score and standard
deviation of Hi-Viscont (HV) and FALCON deviation of Hi-Viscont and FALCON on the
(FCN) on the test set of the CUB dataset by test set of the our custom dataset of house
the depth of concepts in the hierarchy on five construction domain by type of concepts on

different splits. five different splits of concepts.

House construction domain: In this domain, the Color and Affordance concepts are non-leaf
nodes in the hierarchy, whereas the object concepts are the leaf nodes. Following expectations, as
demonstrated in Table [3] Hi-Viscont has a comparable performance to FALCON in the leaf node
object concepts, while achieving significant improvements in both Color (p = 0.005) and Affordance
(non-leaf) concepts (p = 0.002) according to the pairwise t-tests.

Z0o Domain In the zoo domain leaf concepts are not at equivalent depths from the root node forcing
us to analyze the performance crudely w.r.t. leaf and non-leaf nodes in Table |4} Again Hi-Viscont
achieves a comparable performance at leaf level concepts, but becomes significantly better than
FALCON in the non-leaf concepts (p = 0.001).

4.3 Demo

In addition to the VQA experiment results, we also present a demonstration of a human user teaching
visual tasks and visual concepts to the robot through in-situ interactions. The demonstration can be
found in the associated webpage [ﬂ

5 Limitations

There are three major limitations in our work.
Firstly, although that we test Hi-Vicont on a
large 3{IQA dat%iset, we conducted our robotics Method | Leaf Non-leaf
demo of visual task learning only on the House Hi-Viscont | 87.93+3.40  85.84+5.79
domain, which contains a small number of ob- FALCON | 88.9943.75  66.154+5.34
jects. We would like to increase the task com-
plexity and the number of objects available in
the domain in the future. Secondly, the interac-
tion between users and the robots is controlled
and not completely open and dynamic. Even
though a fixed template for their language is not required we ask the users to interact with the robot in
specific ways. Finally, a thorough human subject study is needed to measure the system’s capability
of performing visual tasks.

Table 4: The average F1 score and standard devia-
tion of Hi-Viscont and FALCON on the test set of
the zoo domain by type of concepts.

6 Conclusion

In conclusion, we present Hi-Viscont, a novel concept learning framework that actively updates the
representations of known concepts which is useful in continual learning settings such as robotics.
Hi-Viscont achieves comparable performance to SOTA FALCON model on VQA task across three
domains in leaf level concepts, and is significantly better on non-leaf concepts. Our model also
enables robots to learn a visual task from in-situ interactions by representing visual tasks with a scene
graph, which allows zero-shot generalization to an unseen task of the same type.

"https://sites.google.com/view/ivtl
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Figure 4: We demonstrate how our pipeline decide the object to pick for one node in the scene graph.
We feed the node context and the request into a node classifier, which is composed of a BERT encoder
and a MLP layer, to decide which concept to pick up. In this example, the object for node 5 is "blue
rectangular tile" because it is not mentioned in the request.

A Implementation Details

A.1 Node Classifier

Figure [4] describes the process of how our pipeline choose an object to pick. The inference is a
two-step process, both using a BERTy,,. model and a MLP layer, and taking the node context ¢; and
he linguistic request q as inputs. In the first step we use the BERT},,sc model and a MLP layer to decide
whether the node in the goal graph is different from the corresponding node in the demonstration.
Then we use another BERT},s. model and MLP layer to extract the object from ¢; and ¢ for this node
location.

In the example of Figure 4] we are trying to decide the object that should be placed in position 5.
Based on the node context ¢5 and the request ¢, the node classifier decides that node 5 in the goal
graph should remain the same as the demonstration. Then, we use the concept extractor to extract the
object from ¢5, and we found that the object that should be placed at node 5 is "’blue rectangular tile”.

A.2 Training Pipeline

We explain our training pipeline in this section. The concepts from the dataset is divided into three
groups: Cpretrain, Ctrain and Chest, Where the pre-train concepts Cpretrqin Tepresent the pre-existing
nodes in the knowledge graph. The training of the concept net model is consists of three stages, the
pre-training for the visual feature extractor, the pre-training for the embedding of pre-train concepts
Cpretrain, and the training to update the knowledge graph with train concepts Cyyqin.

Pre-training the Visual Feature Extractor. In the first pre-training stag, we generate a VQA
dataset on both the pre-train concepts Cpyetrqin and the train concepts Cly.qin. The purpose of this
stage is to expose the visual feature extractor with a larger variation of visual features. We jointly
pre-train the visual feature extractor and the embedding for the pre-train concepts Cpyctrqin and the
train concepts Cy,.q;n With the visual question answering task in this stage. After this pre-training
stage, the embeddings of all pre-train concepts and train concepts will be discarded.

Pre-training Pre-train Concepts. The embedding of pre-train concepts Cpretrain 1S Obtained
through gradient descent in this pre-train phase. For this phase, we generate a VQA dataset on
the pre-train concepts Cpyetrqin Only. After we warmup the visual feature extractor in the first
pre-training phase, we jointly train the visual feature extractor and the embedding for the pre-train
concepts in this phase using the same VQA task. This pre-training step is skipped under the setting
where the concept net has zero prior knowledge of the concepts, which is the setting of all of our
experiments.

Training. After we have pre-trained the visual feature extractor and the embedding for the pre-train
concepts, we train the concept learner module during the training stage. We freeze the weights of
the visual feature extractor at this stage because otherwise the embeddings for the pre-train concept
will not be usable. Because we hope to train ARGNN to update the embedding for known concepts
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with information from unseen instances, we have to reset the embedding for all the pre-train concepts
and train concepts,Cpretrain aNd Cirqin, after all the train concepts are inserted to the network. After
inserting all the concepts within the train set in the final round, we do not reset the embedding for the
train concepts and insert the concepts in the test set Cyt-

A.3 Training Configurations

In this section we describe the training configuration of the experiments for all the three domains.
During the training phase, the model completes one round of training if it finishes to insert all the
concepts in the training set once. For simplicity, we unify the steps of training with rounds of insertion.
For all the experiment results we report in this work, we adopted the configuration where there is no
pre-train concepts. As a results, the second phase of pre-training is skipped for all the three datasets.
For all the three domains, we train our model for completing the concept graphs 100 rounds, and
the number of concept insertions varies depending on the split of the concepts. We start the training
with a learning rate of 0.001 and decrease the learning rate by a factor of 0.1 in every 25 rounds
of completing the knowledge graph in the training stage. For CUB-200-2011 dataset, we train our
model for 50000 iterations with a batch size of 10. We use an Adam optimizer with learning rate of
0.0001 in the pre-training phase of the visual feature extractor. For the house construction domain
and the zoo domain, we train our model for 5000 iterations with a batch size of 10. We use an Adam
optimizer with learning rate of 0.0001 in the pre-training stage of the visual feature extractor.

A.4 Robot Setup

In this section, we describe the details for camera calibration. We need to calibrate cameras with
respect to the FR3 base frame. We take multiple pictures in different configurations of the FR3
end-effector to which an acuro market is attached. This allows us to find a Transformation Matrix
which converts the coordinates from the camera frame to the Robot base frame. The place scene
camera is used to find the length of the object occupying the current node of the scene graph.

In this section, we describe how we compute the plcaement location for each object in detailed. SAM
is used to segment the objects placed in the place scene and find the bounding boxes of each placed
object which are also the nodes of our scene graph. This allows us to calculate the position of the
next object by finding the relative position of the next node with respect to the current object being
placed. , referencing the position of the node of the scene, and calculating the length of the bounding
box of the referenced node. we use a formula of shift = 1/2*max(bounding box of the referenced
node length)+50 pixel space Next node position= Relation to the reference node(Reference node
position,shift). The function relation to the reference node adds a shift to the reference node position
based on its relation to the next node. For example, it adds the shift only to the x coordinate if there is
"to the top of" relation, or in the case of "to the right of" relation, it adds only the y coordinate of the
current position. In our scene graph, we are able to identify "to the top of ", "to the bottom of"," to
the right of"," to the left of", "to the top right of"," to the top left of"," to the bottom right of", and "to
the bottom left of" relations.

The Segment Anything Model is capable of separating the foreground from the background. This
allows us to find the table mask and the segment of each object placed in the camera frame on the
table.

The flow of our pipeline requires us to first demonstrate the visual scene with all the objects placed
in the Task scene to make a structure with linguistic inputs. We have to make sure that the objects
are placed at a distance that allows SAM to create separate segment boxes for the objects. Then we
pass each segmented object to either FALCON or Hi-Viscont classifiers to classify conditioned on
the given language query. The robot then picks the object with simple visuo-motor servoing. by
the node information of the scene graph. Once we find the object to be picked we then calculate
the center of the bounding box of that object and convert it to the Robot frame with the help of the
transformation matrix. If in the process there is an incomplete or erroneous grasp, we reattempt the
whole classification again autonomously. Once the object is grasped we then place the object into the
Task scene, with the position calculated relatively with respect to the previously placed object nodes
or the ground. This process is iteratively done until we have completed the whole scene graph.
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B Detailed Results

In this section, we presents the statistic tests between Hi-Viscont and FALCON for all the three
domains.

CUB-200-2011. Results of paired t-test suggest that Hi-Viscont achieves higher F1 scores with
significance for concepts in Genera(p < 0.001), Family(p < 0.001), and Order(p = 0.005).

House Construction Domain. Results of paired t-test suggests that Hi-Viscont achieves higher F1
scores with significance for color concepts(p = 0.005) and affordance concepts(p = 0.002).

Zoo Domain. Results of paired t-test suggests that Hi-Viscont achieves higher F1 scores with
significance for non-leaf concepts(p = 0.001).
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