

FACTNLI: DYNAMIC AND AUTOMATED FACT-BASED AUGMENTATION OF NLI BENCHMARKS

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 Natural Language Inference (NLI) is a core task for language understanding, yet
012 existing NLI datasets are static and no longer challenging, allowing current Large
013 Language Models (LLMs) to perform well without truly revealing their capabili-
014 ties and shortcomings. To address this problem, we propose a new data augmen-
015 tation framework to automatically build more challenging NLI datasets based on
016 existing datasets, by iteratively fusing rich facts into the premise and hypothesis
017 of an NLI instance. We use a strict fact filter to ensure that fused facts are non-
018 contradictory and non-redundant. Applied to SNLI and MNLI, our augmentation
019 substantially increases data length and complexity, and the performance of a range
020 of LLMs on the augmented datasets drops significantly (up to 30%). Ablation ex-
021 periments and human quality checks confirm the high quality of the generated
022 data.
023

1 INTRODUCTION

024 Natural Language Inference (NLI) is a foundational task in language understanding: given a
025 premise, decide whether a hypothesis is entailed, contradicted, or neutral (Dagan et al., 2006). De-
026 spite its centrality, we argue that current benchmarks face two core weaknesses: **simplicity** and
027 **staticity**, resulting in modern systems to often report very high scores on standard NLI benchmarks,
028 failing to reveal genuine performance on NLI tasks and understanding capacity.
029

030 Regarding **simplicity**, widely used datasets such as the Stanford Natural Language Inference cor-
031 pus (SNLI; Bowman et al., 2015) and the Multi-Genre Natural Language Inference corpus (MNLI;
032 Williams et al., 2018) concentrate on short, lexically cued items that hinge on single, local relations.
033 Such items underrepresent longer contexts, multi-fact dependencies, and diverse semantic phenom-
034 ena, making it easy for models to succeed without robust content coverage or careful semantic
035 comparison (Gururangan et al., 2018; Poliak et al., 2018; McCoy et al., 2019).
036

037 Regarding **staticity**, these datasets are typically collected once (via crowdsourcing/annotation) and
038 then frozen. As a result, they do not keep pace with evolving knowledge, domains, or usage, and
039 they offer no mechanism to systematically adjust difficulty or enrich instances over time—an issue
040 evident across widely used static resources such as SICK (Marelli et al., 2014), and XNLI (Conneau
041 et al., 2018).
042

043 To address the issue of *simplicity*, earlier studies turned to human-in-the-loop adversarial collec-
044 tion: by iteratively eliciting model failures, they constructed more challenging and diverse exam-
045 ples. ANLI (Nie et al., 2020a) proceeds in rounds of human–model interaction to expose systematic
046 weaknesses; Dynabench (Kiela et al., 2021) extends this paradigm into a platform for continuously
047 updating datasets against deployed models; and WANLI (Liu et al., 2022) leverages worker–model
048 collaboration to generate candidates that are subsequently filtered by humans. While such ap-
049 proaches improve hard-example coverage, they remain static once collected, incur substantial an-
050 notation costs, and do not provide a mechanism for continuously injecting verifiable evidence or
systematically scaling difficulty.
051

052 In parallel, model-based synthetic augmentation has rapidly developed: large language models are
053 prompted to generate new premise–hypothesis pairs, sometimes with templates or instructions, fol-
lowed by lightweight filtering. Hosseini et al. (2024) showed that large-scale synthetic NLI can
enhance domain generalization; more broadly, recent surveys confirm the potential of LLM-driven
054

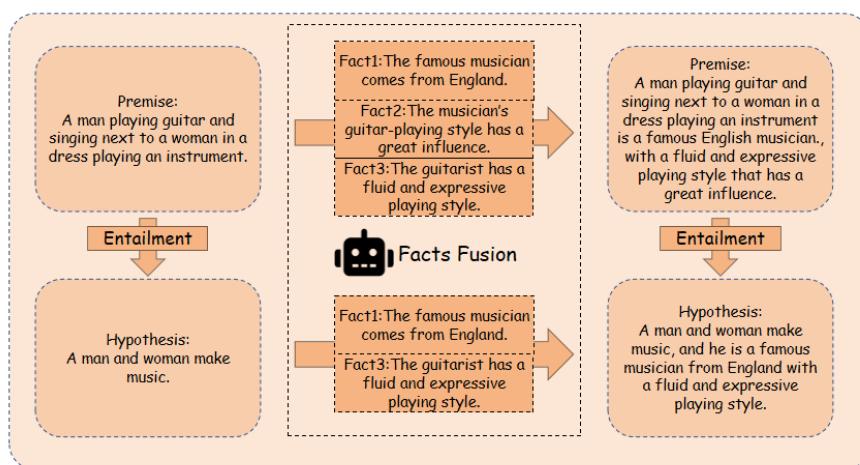


Figure 1: A one-level augmentation case with selected Facts

synthetic data to reduce annotation cost and expand coverage across domains and longer contexts (Nadas et al., 2025). However, such methods rely heavily on the generative model itself, often introducing unverifiable content, label drift, and stylistic artifacts. Even with partial human review, they lack explicit alignment with external evidence, making controllable difficulty and traceability difficult to guarantee.

To fully solve the problem, we propose a **dynamic, automated, fact-enhanced augmentation framework** that operates on existing NLI samples. For each (premise, hypothesis, label), we (i) retrieve premise-conditioned evidence from Wikipedia to ground the instance in verifiable content; (ii) filter candidate facts to ensure non-contradiction and non-redundancy so that labels are preserved; and (iii) fuse accepted facts into the premise and a conservative subset into the hypothesis. A multi-level framework enables tunable difficulty by progressively composing more evidence while maintaining label fidelity. Consequently, evidence-backed fusion directly addresses simplicity by increasing length and semantic richness with real, citable content, and mitigates staticity by enabling ongoing, retrieval-driven updates and depth control—without re-annotating from scratch. Figure 1 shows an example with one-level augmentation.

Applied to SNLI (Bowman et al., 2015) and MNLI (Williams et al., 2018), our augmentation (i) reveals consistent, depth-controlled performance drops across diverse model families (up to 30% at higher depths); (ii) expands example length by multiple folds (up to 10 \times) and increases semantic density via multi-fact composition; and (iii) preserves labels and instance coherence, as verified by ablations and human evaluation—thereby exposing substantial headroom that static benchmarks conceal. To summarize, we list our main contributions as follows:

- We introduce a dynamic and automated fact-enhanced augmentation framework that enriches existing NLI items via a retrieval–filtering–fusion process, which preserves original labels, and enables depth-controlled difficulty.
- We apply our augmentation framework on SNLI and MNLI datasets and release new challenging benchmarks to benefit the research community.
- We conduct a comprehensive evaluation across a range of LLM-based NLI models, showing consistent, depth-controlled performance degradation that highlights a substantive challenge understated by current static benchmarks.

108
109

2 RELATED WORK

110
111

2.1 CLASSIC NLI BENCHMARKS AND HUMAN-IN-THE-LOOP CURATION

112
113
114
115
116
117
118
119
120
121
The Stanford Natural Language Inference corpus (SNLI; Bowman et al. (2015)) first established a
large-scale, three-way classification benchmark, but its short, lexically cued pairs made it easy for
models to exploit shallow cues rather than deep inference. The Multi-Genre NLI corpus (MNLI;
Williams et al. (2018)) broadened coverage across genres, yet still preserved relatively short con-
texts, leaving similar vulnerabilities. The SICK dataset (Marelli et al., 2014) focused on compo-
sitional semantics, but its small size limited robustness. XNLI (Conneau et al., 2018) extended
MNLI to 15 languages, enabling cross-lingual evaluation but again freezing into a static test set.
HANS (McCoy et al., 2019) directly targeted heuristic shortcuts, showing that high accuracy on
SNLI/MNLI does not imply robust inference. DocNLI (Yin et al., 2021) scaled inference to full
documents, though without mechanisms for dynamic difficulty control.122
123
124
125
126
127
128
129
To increase difficulty, ANLI (Nie et al., 2020a) introduced iterative adversarial collection where
annotators probe system weaknesses, raising difficulty but at significant annotation cost. Dynabench
(Kiela et al., 2021) generalized this into a platform for continuous interactive collection, though
instances ultimately re-freeze into fixed test sets. ChaosNLI (Nie et al., 2020b) proposed retaining
distributions over human judgments, highlighting interpretive variability, and Jiang & Pavlick (2022)
further analyzed sources of label disagreement, but such work still lacks attached, verifiable evidence
for each instance. In sum, while human-in-the-loop methods raise challenge and capture subjectivity,
they remain expensive, hard to scale, and insufficient for long-context inference.130
131

2.2 SYNTHETIC AUGMENTATION FOR NLI

132
133
134
135
136
137
138
139
140
141
142
Synthetic generation has emerged as a practical response to data scarcity. STraTA (Vu et al., 2021)
integrates self-training with LM-generated premise–hypothesis pairs, increasing volume but offering
no guarantees of evidence alignment. The GAL framework (He et al., 2022) likewise generates
unlabeled text and relies on teacher models for annotation, lowering labeling cost while risking label
drift. Li et al. (2023) provide a systematic analysis showing that synthetic data can improve classifi-
cation in some settings, yet task subjectivity moderates gains and raises concerns about unverifiable
artifacts. WANLI (Liu et al., 2022) combines automatic filtering with selective human review after
GPT-3 expansion of “challenging pockets” in MNLI, achieving strong out-of-domain improvements
but at renewed human cost. More recent work emphasizes domain-diverse augmentation (Hosseini
et al., 2024), underscoring the promise of scaling with LLMs while exposing persistent issues of
model priors and style biases.143
144
145

3 METHOD

146
147
148
149
150
Natural Language Inference (NLI) determines the relationship between a premise and a hypothe-
sis(Dagan et al., 2006). The outcome is one of three labels. *Entailment* means the premise provides
sufficient information to conclude the hypothesis is true. *Contradiction* means the premise pro-
vides sufficient information to conclude the hypothesis is false. *Neutral* means the premise neither
supports nor rules out the hypothesis.151
152
153

3.1 OVERVIEW

154
155
156
157
158
159
Our goal is to automatically transform standard NLI samples into more challenging ones via adding
verified facts to the premise and to the hypothesis in a multi-level manner. Given an input (p, h, l)
with premise p , hypothesis h , and label $l \in \{\text{entailment}, \text{neutral}, \text{contradiction}\}$, we iteratively ex-
pand p and h with external evidence while preserving logical consistency and the original label.
After L levels, we obtain an enriched sample $(p^{(L)}, h^{(L)}, l)$ in which $p^{(L)}$ and $h^{(L)}$ incorporate
verified new facts.160
161
As shown in Fig. 4, our method consists of three steps at every level: (i) Facts acquisition — Retrieve
clean, verifiable facts for augmentation. (ii) Truth-set and graph filtering — Ensure no redundancy
and contradiction by removing conflicts and duplicates facts pairs. (iii) Premise and hypothesis

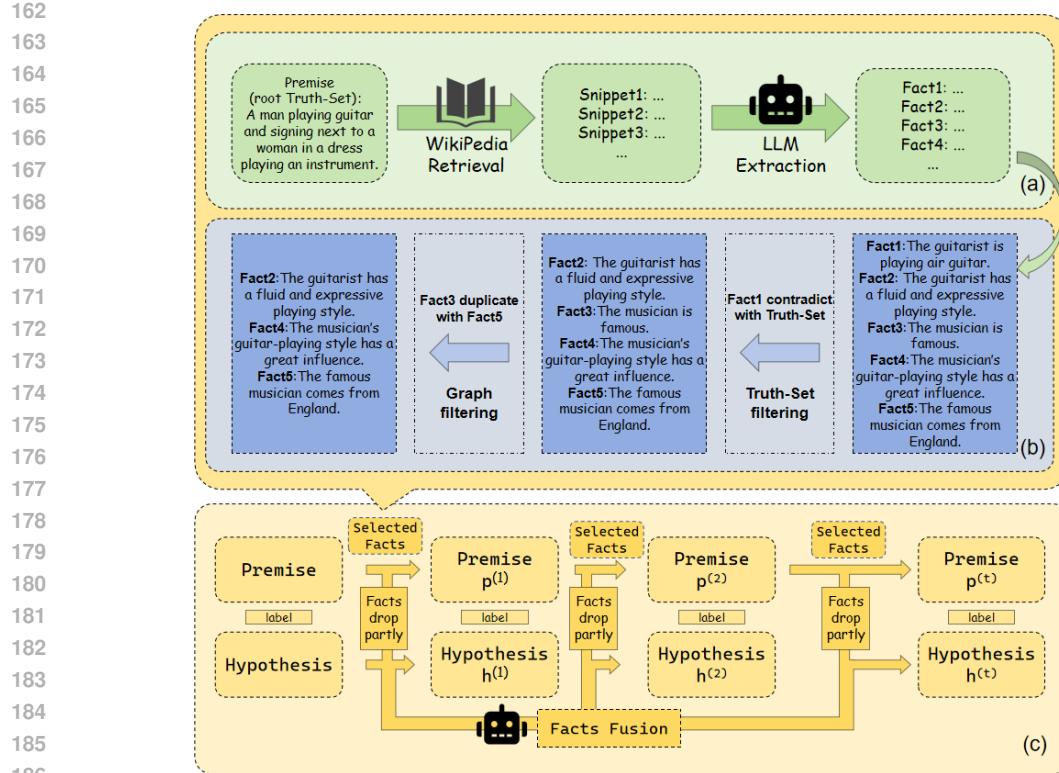


Figure 2: Overview of the full framework. (a) Premise-conditioned retrieval and fact extraction. (b) Truth-set and graph-based filtering of facts, where the initial truth set is derived from the original premise. (c) The complete multi-level augmentation framework; facts drop partly denotes the subset of facts retained into the hypothesis relative to the premise.

fusion — Merge selected facts into the premise and hypothesis while preserving the original label. We present details of each step as follows.

3.2 FACTS ACQUISITION

To select corpora closely related to premise for constructing the snippet pool used in later fusion, at level t , we use the former premise $p^{(t-1)}$ as the query to retrieve candidate Wikipedia pages. From each page, we take the introductory summary and split it into sentences. We compare sentence embeddings to the query embedding via cosine similarity. We keep sentences with score $\geq \tau$, where τ is a fixed, moderate threshold. The retained sentences form the snippet pool $\mathbb{P}^{(t)}$. This pool is the only evidence used in subsequent steps (Fig. 4a).

Given only $\mathbb{P}^{(t)}$, we apply a strong LLM (GPT-4o) to extract atomic facts. Specifically, we introduce a carefully designed prompt to ensure that the extracted facts contain no external knowledge or inference and are grounded in exactly one snippet from $\mathbb{P}^{(t)}$. The output is the candidate fact set $\mathbb{C}^{(t)}$. Full prompt templates with more rules appear in Appendix B.1. Further implementation details are provided in Section §4.1.

3.3 TRUTH-SET AND GRAPH FILTERING

To ensure the facts to be fused do not conflict with or duplicate the current premise, we maintain a truth set $\mathbb{T}^{(t)}$ including facts fused at earlier levels and extracted from the original premise. We then construct an entailment graph \mathcal{G} to check pairwise relations among candidate facts and remove conflicting or redundant items.

At level t , the candidates set $\mathbb{C}^{(t)}$ is first checked against truth-set: for each $f \in \mathbb{C}^{(t)}$, a lightweight NLI model compares f with every element of $\mathbb{T}^{(t-1)}$ and assigns a relation in $\{\text{entailment, contradiction, neutral}\}$. Any f that contradicts an element of $\mathbb{T}^{(t-1)}$ is discarded. Any f that is entailed by $\mathbb{T}^{(t-1)}$ is marked as redundant and discarded. Facts that are neutral with respect to all elements of $\mathbb{T}^{(t-1)}$ are retained. Denote the retained facts by $\mathbb{V}^{(t)}$.

We discard conflicts and redundancies among the retained facts by constructing an undirected graph $\mathcal{G}^{(t)}$ on $\mathbb{V}^{(t)}$. An edge connects $u, v \in \mathbb{V}^{(t)}$ if and only if their relation is *neutral*; pairs in *entailment* or *contradiction* are excluded to prevent conflict and redundancy. We take the **maximum clique** of the neutral-edge graph $\mathcal{G}^{(t)}$ (constructed on $\mathbb{V}^{(t)}$) as the level- t fact set, denoted $\mathbb{F}^{(t)}$. A clique guarantees pairwise neutrality among all selected facts; choosing the largest such clique yields the broadest subset that is simultaneously non-conflicting and non-redundant under our criterion.

We then update the truth set by

$$\mathbb{T}^{(t)} = \mathbb{T}^{(t-1)} \cup \mathbb{F}^{(t)}.$$

This two-stage procedure removes conflicts with prior facts, suppresses items already implied by history, and at each level admits a maximal cluster of pairwise neutral (non-entailed, non-contradictory) facts, thereby preserving global consistency as \mathbb{T} grows (Fig. 4b). Detailed algorithms are provided in Appendix C.

3.4 PREMISE AND HYPOTHESIS FUSION

At each level $t = 1, \dots, d$, we have selected a set of novel facts $\mathbb{F}^{(t)}$ from the candidates after filtering. We then update the premise by fusing $\mathbb{F}^{(t)}$ with the previous anchor $p^{(t-1)}$ via a constrained LLM prompt to produce a short paragraph $p^{(t)}$. By construction, $p^{(t)}$ entails $p^{(t-1)}$, fully covers the content in $\mathbb{F}^{(t)}$, and introduces no information beyond $p^{(t-1)} \cup \mathbb{F}^{(t)}$.

In contrast, for the hypothesis, we always enhance from the original hypothesis h . At level t , for each $i \in \{1, \dots, t\}$ we select a subset $\widehat{\mathbb{F}}^{(i)} \subseteq \mathbb{F}^{(i)}$ from level i , and then form the aggregate $\mathbb{F}^* = \bigcup_{i=1}^t \widehat{\mathbb{F}}^{(i)}$. We fuse \mathbb{F}^* with h to obtain $h^{(t)}$, which entails h , fully reflects \mathbb{F}^* , and adds nothing beyond $h \cup \mathbb{F}^*$. The detailed prompt templates are provided in Appendix B.2. The final enhanced sample at level t is $(p^{(t)}, h^{(t)}, l)$.

Note that $h^{(t)}$ is always generated directly from the original hypothesis h (rather than from $h^{(t-1)}$) to avoid semantic drift and label reinterpretation across levels. This also enables controlled difficulty scaling: by aggregating \mathbb{F}^* at higher t , we inject more verified, decision-bearing content into the hypothesis without compounding generation artifacts.

Finally, across the L levels we obtain L enhanced premise–hypothesis pairs $\{(p^{(t)}, h^{(t)}, l)\}_{t=1}^L$ (Fig. 4(c)). We provide a complete case in Appendix G.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Augmentation Data Source. We apply our framework to *all* instances from the following official splits (no sub-sampling): **SNLI** (Bowman et al., 2015) test; **MNLI** (Williams et al., 2018) validation_matched and validation_mismatched. Dataset sizes are shown in Table 1.

Table 1: Dataset sizes used in augmentation.

Dataset	Split	Size
SNLI	test	9,824
MNLI	validation_matched	9,815
MNLI	validation_mismatched	9,832

We choose these splits for two practical reasons: (i) many widely used pretrained or instruction-tuned models have been (directly or indirectly) fine-tuned on the training portions of SNLI/MNLI, so evaluating on the official held-out splits mitigates train–test contamination; and (ii) the public test split of MNLI does not release gold labels, hence evaluation customarily uses the labeled validation_matched and validation_mismatched splits instead.

270 Both corpora adopt a unified instance schema (p, h, l) comprising a *premise*, a *hypothesis*, and a
 271 *label*. In their original construction protocols, human annotators wrote hypotheses conditioned on
 272 sampled premises and assigned labels to the resulting pairs.
 273

274 **Implementation Details.** We deliberately separate *generation* from *filtering*. The only strong
 275 LLM in our framework is GPT-4O (OpenAI, 2023), used for two operations: (i) snippet-faithful
 276 fact extraction and (ii) constrained *fusion* to produce both the level-wise enriched premise and the
 277 final hypothesis.
 278

279 All screening steps rely on lightweight models for scalability: sentence-level *relevance* is computed
 280 with ALL-MINILM-L6-V2 embeddings (Reimers & Gurevych, 2019; Wang et al., 2020) (with sim-
 281 ple lexical hygiene), and *entailment/contradiction/neutral* edges in the truth-set graph are assigned
 282 by a compact cross-encoder based on DEBERTA-V3-BASE (He et al., 2021b;a), following stan-
 283 dard cross-encoder reranking practice (Nogueira & Cho, 2019). This design emphasizes GPT-4o for
 284 content generation while delegating relevance and entailment filtering to efficient small models.
 285

286 We intentionally isolate generation from inference to avoid leakage and bias. Premise updates are
 287 generated only from the previous anchor and selected facts, and hypotheses are generated only from
 288 the root hypothesis and the aggregated facts—never from any premise text. Gold labels remain fixed,
 289 and E/C/N decisions (and relevance scoring) are handled by lightweight discriminative models rather
 290 than GPT-4o. This separation reduces label and cross-side leakage, keeps generation orthogonal to
 291 the core reasoning task, and yields more impartial examples.
 292

293 **Tested Models.** We evaluate seven models—ROBERTA-LARGE (Liu et al., 2019), DEBERTA-
 294 V3-LARGE (He et al., 2021a), GPT-4O (OpenAI, 2023), LLAMA-3-8B-INSTRUCT (Grattafiori
 295 et al., 2024), QWEN2.5-14B-INSTRUCT (Yang et al., 2024), DEEPSEEK-V3 (Liu et al., 2024),
 296 and DEEPSEEK-R1 (Guo et al., 2025)—on the original datasets ($L=0$, *orig*) on our dynamically
 297 enhanced versions at three *levels* ($L=1, 2, 3$).
 298

4.2 MAIN RESULTS

300 Across all datasets and models, augmentation produces a *consistent accuracy drop* that grows with
 301 the *level*, as shown in Table 2, indicating that the enhanced sets increase task hardness while pre-
 302 serving labels.
 303

304 Performance decays approximately monotonically from $L=0 \rightarrow 1 \rightarrow 2 \rightarrow 3$, with the largest stepwise
 305 decline typically at the first enhancement ($0 \rightarrow 1$) and smaller but still nontrivial declines from $1 \rightarrow 2$
 306 and $2 \rightarrow 3$.
 307

308 Across both SNLI and MNLI, accuracies drop sharply at the first enhancement step ($L=1$) and
 309 then decline more gradually at higher levels (Table 2); GPT-4O follows this pattern, as do other
 310 models. This indicates that a single shallow enhancement ($L:0 \rightarrow 1$) already induces most of the
 311 added difficulty, while deeper levels mainly accumulate incremental complexity. Taken together,
 312 the results show that our framework strengthens understanding and inference from the outset, with
 313 deeper levels providing refinement and further improvements.
 314

315 To summarize, dynamic fact-enhanced augmentation consistently reduces accuracy across models
 316 and datasets in a level-controlled manner, turning standard NLI benchmarks into stronger stress tests
 317 for text inference abilities.
 318

4.3 ANALYSIS OF DIFFERENT LEVELS

319 We treat the original data as level $L=0$ (*baseline*) and track length as enhancement level rises to
 320 $L=1, 2, 3$. We report *word* counts for both premise and hypothesis.
 321

322 Across datasets, baselines are short: premises average 14–20 words and hypotheses 7–10. By $L=3$,
 323 premises reach 101–118 and hypotheses 70–76. In relative terms, premise length grows by 5–8×
 324 and hypothesis length by 7–10×, with steady gains at each level (Fig. 3a), indicating increased
 325 semantic load on both sides while preserving gold labels.
 326

Table 2: Accuracy on Enhanced Datasets at Varying Levels (L)

Model	SNLI				MNLI			
	Acc _{L=0}	Acc _{L=1}	Acc _{L=2}	Acc _{L=3}	Acc _{L=0}	Acc _{L=1}	Acc _{L=2}	Acc _{L=3}
RoBERTa-large	89.3	70.8	64.7	60.8	90.4	73.7	70.4	68.1
DeBERTa-v3-large	92.4	77.1	69.0	67.2	90.1	74.2	71.9	69.7
Llama-3-8B-Instruct	55.6	43.2	41.6	41.1	64.3	55.3	53.4	52.3
Qwen2.5-14B-Instruct	82.4	64.7	59.4	56.7	82.3	62.3	59.5	58.8
GPT-4o	84.8	62.1	58.7	55.3	83.5	67.5	67.0	66.7
DeepSeek-V3	81.3	64.8	62.7	61.5	82.3	69.7	68.5	67.0
DeepSeek-R1	78.9	60.2	56.6	53.1	82.2	71.7	70.9	63.3
<i>Average</i>	80.7	63.3	59.0	56.7	82.2	67.8	65.9	63.7

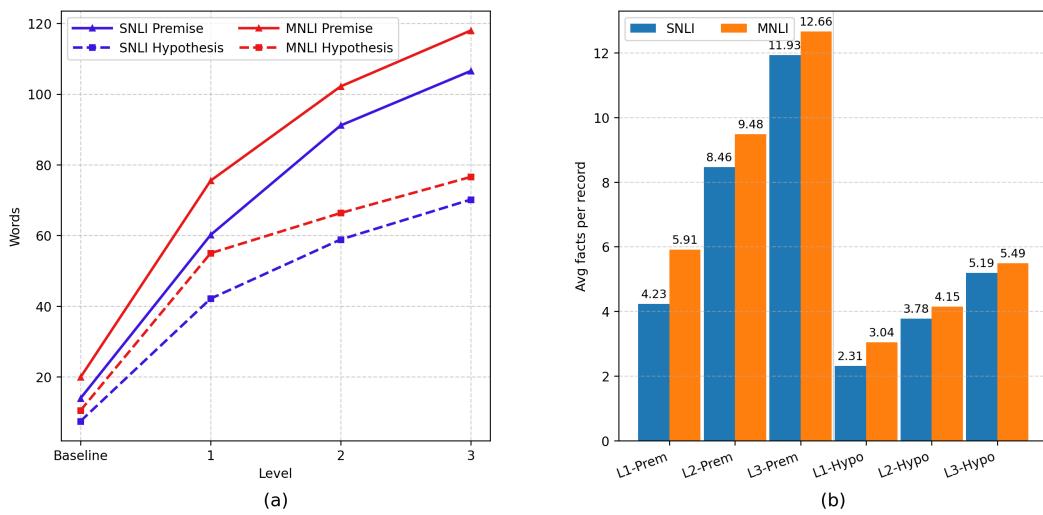


Figure 3: **Length growth and fact fusion by level.** (a) Average word counts vs. level ($L=0$ baseline, then $L=1, 2, 3$) for SNLI and MNLI, shown separately for premise (solid) and hypothesis (dashed). (b) Average fused facts per record at levels $L=1, 2, 3$ on both sides (Prem/Hypo); numbers above bars indicate the exact averages. Baseline ($L=0$) is omitted for clarity.

Let $\Delta_{\text{words}}^{(L-1 \rightarrow L)} = \overline{\text{words}}_L - \overline{\text{words}}_{L-1}$. The increment peaks at the first step ($L:0 \rightarrow 1$) and then tapers off at higher levels, for both premises and hypotheses.

In the fact-tracked subset, both premise-side and hypothesis-side fact counts rise monotonically with depth. Crucially, deeper levels do not merely pad the premise; they consolidate verified facts into the hypothesis, increasing the proportion of decision-bearing content and thereby strengthening semantic pressure (Fig. 3b).

From both word counts and the number of facts, we observe the largest gain from $L=0 \rightarrow 1$, validating the method’s design; subsequent levels still deliver improvements, albeit diminishing. Crucially, this growth in factual load is mirrored by consistent declines in model accuracy across models and metrics—the steeper drop at $L=1$ followed by continued reductions at higher levels. The alignment between rising fact counts and falling accuracy indicates that fact-based augmentation is an effective mechanism for increasing task difficulty, and that the level parameter L provides reliable, predictable control over that difficulty.

4.4 ABLATIONS

Setup. To isolate the effect of the *truth set* and *entailment-graph filter*, we re-run the framework with the filter disabled (NO-FILTER)—which means we no longer maintain a truth set or an entailment graph—while holding everything else fixed. We report results at $L=3$ (primary endpoint) and include level sensitivity at $L=1, 2$.

378 **Results.** The truth set and entailment-graph filter enforces global consistency by vetoing contradictions and suppressing redundancies. When we disable it, three failure modes emerge: (i) *label drift*—often driven by two mechanisms: items originally labeled *Contradiction* flip to *Neutral* or *Entailment* when we inject premise-entailed facts into both the premise and hypothesis (neutralizing the contradiction), and items originally labeled *Entailment* flip to *Contradiction* when conflicting facts are introduced; (ii) *corpus conflicts*—predominantly mismatches in time, location, or participants/roles (e.g., inconsistent dates, places, or entities across fused sources), as well as cross-source negations; and (iii) *redundant fusion*—already-entailed content is restated via near-duplicates or mechanical repetition across segments, inflating length (and sometimes superficial coverage) without adding genuine new information.

388 Consequently, we report No-
 389 FILTER to exhibit a larger accuracy drop as shown in Table 3, to
 390 appear superficially “harder”—
 391 *together with* degraded coherence:
 392 reduced label preservation,
 393 increased internal contradiction,
 394 and elevated redundancy.
 395

397 In short, removing the filter makes instances look harder primarily by introducing inconsistency and
 398 noise rather than principled difficulty. To quantitatively assess quality more accurately, we redefine
 399 our evaluation metrics; details are provided in Section §4.5.

400 4.5 EX-POST HUMAN AUDIT

402 **Design.** Following common practice in evaluation studies for NLI, fact verification, and factuality
 403 assessment, we run a *blinded, stratified, double-annotation* audit (Bowman et al., 2015; Williams
 404 et al., 2018; Thorne et al., 2018; Nie et al., 2020a; Kiela et al., 2021; Maynez et al., 2020; Pagnoni
 405 et al., 2021). We sample enhanced items across levels $L \in \{1, 2, 3\}$ with proportional stratification
 406 by dataset (SNLI/MNLI), fixing the number of items per stratum. Annotators see only the root
 407 premise/hypothesis/label, the enhanced texts, and the exact evidence snippets used during enhance-
 408 ment; they are blind to model predictions and to whether an item comes from the full framework or
 409 an ablation. Each item is independently labeled by two annotators; disagreements are adjudicated
 410 by a senior third annotator. We include attention checks and a brief calibration round with gold
 411 items before the main task (Nangia et al., 2021). We report inter-annotator agreement using Co-
 412 hen’s κ for categorical questions and linearly weighted κ for ordinal scales. Unless noted otherwise,
 413 percentages are macro-averaged across strata.

414 **Annotation Task and Metrics.** Beyond accuracy on enhanced sets, we report five automatic diag-
 415 nostics—*label preservation* (agreement with the baseline label), *internal contradiction* (fraction of
 416 enhanced items with conflicts), *redundancy* (fraction of facts entailed by others), *factuality* (fraction
 417 of retained facts entailed by the final text), and *readability* (Likert)—and treat them as automatic
 418 proxies of quality. Complementarily, a stratified human audit elicits a single five-part judgment per
 419 item, aligned with these dimensions: (i) *label preservation* (E/N/C)—whether the enhanced pair
 420 maintains the original label; (ii) *internal contradiction / corpus conflict* (yes/no)—whether any se-
 421 lected facts contradict one another or the anchor premise, judged as evidence-based contradiction in
 422 the sense of fact verification Thorne et al. 2018; (iii) *redundant fusion* (none/some/many)—the ex-
 423 tent to which the enhanced text restates or paraphrases already-entailed content (cf. factuality audits
 424 Maynez et al. 2020; Pagnoni et al. 2021); (iv) *factuality w.r.t. evidence* (supported/partially/un-
 425 supported)—whether claims in the enhanced text are supported by the provided facts (as in FEVER
 426 Thorne et al. 2018); and (v) *readability* (Likert 1–5)—clarity and grammaticality of the enhanced
 427 text. This joint design lets human judgments be directly comparable, clarifying whether accuracy
 428 drops reflect principled, multi-level difficulty or artifacts of incoherent editing.

429 The complete annotation guidelines are provided in Appendix H.1.

430 **Sampling.** We pre-specify a per-stratum target of 240 items to detect data quality. More sampling
 431 details are provided in Appendix H.2

Table 3: Model accuracies at $L=0$ and $L=3$ under the Full framework and the NO-FILTER ablation.

Model	Acc _{L=0} (%)	Acc _{L=3, Full} (%)	Acc _{L=3, No-Filter} (%)
RoBERTa-large	90.3	59.3	26.0
GPT-4o	83.3	56.0	31.7

432
433Table 4: Ex-post human audit by level ($L \in \{1, 2, 3\}$), macro-averaged over datasets.434
435
436
437

Level	Label pres. (%)	Conflict (%)	Redundancy (%)	Factuality (%)	Readability
$L=1$	98.3	1.7	11.7	100.0	4.1
$L=2$	96.7	5.0	10.0	100.0	3.9
$L=3$	95.0	6.7	13.3	98.3	3.9

438
439
440
441
442
443
444
445
446Table 5: Full framework vs. NO-FILTER at $L=3$, macro-averaged over datasets.

Variant	Label pres. (%)	Conflict (%)	Redundancy (%)	Factuality (%)	Readability
Full	95.0	6.7	13.3	98.3	3.9
No-Filter	co	31.7	28.3	98.3	3.3

Results and Analysis. Table 4 summarizes level-wise outcomes for the full framework. The audit supports that our augmentation yields hard yet high-quality data. Label preservation remains high across levels; internal conflicts are rare under the full framework; and redundancy is controlled. According to the annotators’ reports, the repetition mainly stems from describing the same concept in different ways rather than from mechanical duplication, which is acceptable to some extent. Readability decreases slightly with level but stays in the “clear” range. These trends align with automatic diagnostics and the accuracy drops reported in §4.2.

Table 5 shows that, at $L=3$, disabling the filter (NO-FILTER) leads to a clear degradation in corpus quality. The NO-FILTER induces pronounced label drift, frequent contradictions, and elevated repetition alongside poorer readability. Factuality remains comparable, substantiating the effectiveness of our fusion mechanism. In short, the quality drop under NO-FILTER is unacceptable for evaluation or downstream use, and we therefore treat the filtered framework as the only reliable setting.

Final IAAs are reported in Table 6. Overall agreement is consistently high, demonstrating stable and replicable judgments across dimensions.

In summary, human evaluation shows that our augmentation raises difficulty while preserving high data quality. The filter design is crucial to this outcome: with the filter enabled, coherence is maintained (labels are preserved, contradictions are rare, and redundancy is controlled), whereas the NO-FILTER ablation exhibits a clear quality drop.

5 CONCLUSION

We presented a *dynamic, automated fact-based* augmentation framework that converts existing NLI examples into new challenging ones. By iteratively retrieving, distilling, filtering, and fusing atomic facts, our method increases semantic richness while preserving original labels. A tunable level L offers a simple knob to scale difficulty: even shallow enhancement suppresses shortcut signals, whereas deeper enhancement compounds inference demands. Across SNLI and MNLI, the augmented data produce consistent, monotonic accuracy reductions, suggesting improved discriminative power for inference ability. Ablations confirm that the truth-set and graph filter is essential for quality, and a blinded human audit supports label preservation, low internal conflict, and strong evidence grounding.

This shift from one-shot curation to iterative, retrieval-driven enrichment offers a practical path to benchmarks that better measure inference and evolve with models. Future work may expand beyond Wikipedia to domain-specific and multilingual corpora, and explore learned fusion together with causal and adversarial probes to test understanding and inference capabilities more directly.

Table 6: Inter-annotator agreement (IAA). Cohen’s κ for categorical tasks; linearly weighted κ for ordinal scales.

Dimension	κ
Absolute NLI label (E/N/C)	0.94
Internal contradiction (yes/no)	0.83
Redundancy (none/some/many)	0.68
Factuality vs. fact list (3-way)	0.98
Readability (Likert 1–5; weighted)	0.57

486 STATEMENT
487

488 **Ethics Statement.** We adhere to the ICLR Code of Ethics. Our work augments public NLI benchmarks (SNLI, MNLI) with automatically generated fact-enhanced variants and conducts a small-
489 scope human evaluation. All annotators were adults who provided informed consent and could
490 withdraw at any time; no personally identifiable information was collected. Source texts come from
491 publicly available corpora under their original licenses.
492

494 **Reproducibility Statement.** We submit a compressed archive containing the code and datasets
495 required to reproduce all results end-to-end. The prompts embedded in our code are identical to those
496 documented in Appendix B; the filtering algorithm follows Appendix C; and the dataset specification
497 and release procedures follow Appendix G.
498

499 REFERENCES
500

501 Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large an-
502 notated corpus for learning natural language inference. In *Proceedings of the 2015 Con-
503 ference on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 632–642, Lisbon,
504 Portugal, 2015. Association for Computational Linguistics. doi: 10.18653/v1/D15-1075. URL
505 <https://aclanthology.org/D15-1075/>.

506 Alexis Conneau, Guillaume Lample, Marc’Aurelio Ranzato, Ludovic Denoyer, and Hervé Jégou.
507 XNLI: Evaluating cross-lingual sentence representations. In *Proceedings of the 2018 Con-
508 ference on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 2475–2485, Brussels,
509 Belgium, 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1269. URL
510 <https://aclanthology.org/D18-1269/>.
511

512 Ido Dagan, Oren Glickman, and Bernardo Magnini. The PASCAL recognising textual entailment
513 challenge. In *Machine Learning Challenges. Evaluating Predictive Uncertainty, Visual Object
514 Classification, and Recognising Textual Entailment (MLCW 2005)*, volume 3944 of *Lecture Notes
515 in Computer Science*, pp. 177–190. Springer, 2006. doi: 10.1007/11736790_9. URL https://link.springer.com/chapter/10.1007/11736790_9.
516

517 Armand Grattafiori et al. The llama 3 herd of models. *arXiv preprint arXiv:2407.21783*, 2024. URL
518 <https://arxiv.org/abs/2407.21783>.
519

520 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, and et al. Deepseek-r1: Incentivizing
521 reasoning capability in llms via reinforcement learning. *arXiv preprint*, January 2025. URL
522 <https://arxiv.org/abs/2501.12948>.
523

524 Suchin Gururangan, Swabha Swayamdipta, Omer Levy, Roy Schwartz, Samuel Bowman, and
525 Noah A. Smith. Annotation artifacts in natural language inference data. In *Proceedings of
526 the 2018 Conference of the North American Chapter of the Association for Computational
527 Linguistics (NAACL): Human Language Technologies, Volume 2 (Short Papers)*, pp. 107–112,
528 New Orleans, Louisiana, 2018. Association for Computational Linguistics. URL <https://aclanthology.org/N18-2017/>.
529

530 Hangfeng He, Zhe Zeng, and Heng Ji. Generate, annotate, learn: Generative data augmentation
531 for knowledge-intensive nlp tasks. *Transactions of the Association for Computational Linguistics
532 (TACL)*, 10:154–172, 2022. doi: 10.1162/tacl_a_00449. URL <https://aclanthology.org/2022.tacl-1.9/>.
533

534 Pengcheng He, Jianfeng Gao, et al. Debertav3: Improving deberta using electra-style pre-training
535 with gradient-disentangled embedding sharing. *arXiv preprint arXiv:2111.09543*, 2021a. URL
536 <https://arxiv.org/abs/2111.09543>.
537

538 Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert
539 with disentangled attention. In *International Conference on Learning Representations (ICLR)*,
2021b. URL <https://openreview.net/forum?id=XPu3gFHfW9c>.
540

540 Mohammad Javad Hosseini, Andrey Petrov, Alex Fabrikant, and Annie Louis. A synthetic data approach for domain generalization of NLI models. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (ACL), Volume 1: Long Papers*, pp. 2212–2226, Bangkok, Thailand, 2024. Association for Computational Linguistics. URL <https://aclanthology.org/2024.acl-long.120/>.

545 Nancy Jiang and Ellie Pavlick. Investigating reasons for disagreement in natural language inference. In *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (ACL), Volume 1: Long Papers*, pp. 2280–2295, Dublin, Ireland, 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.162. URL <https://aclanthology.org/2022.acl-long.162/>.

550 Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh Kaushik, Atticus Geiger, Zhengxuan Wu, Bertie Vidgen, Grusha Prasad, Amanpreet Singh, Pratik Ringshia, Zhiyi Ma, Tristan Thrush, Sebastian Riedel, Zeerak Waseem, Pontus Stenetorp, Robin Jia, Mohit Bansal, Christopher Potts, and Adina Williams. Dynabench: Rethinking benchmarking in NLP. In *Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics (NAACL): Human Language Technologies*, pp. 4110–4124, Online, 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.324. URL <https://aclanthology.org/2021.naacl-main.324/>.

555 Zhiwei Li, Yanda Chen, Nan Duan, Furu Wei, and Ming Zhang. When does synthetic data help in classification tasks? In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 5981–5996, Singapore, 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.367. URL <https://aclanthology.org/2023.emnlp-main.367/>.

560 A Liu et al. Deepseek-v3 technical report. *arXiv preprint arXiv:2412.19437*, 2024. URL <https://arxiv.org/abs/2412.19437>.

565 Alisa Liu, Swabha Swayamdipta, Noah A. Smith, and Yejin Choi. WANLI: Worker and AI collaboration for natural language inference dataset creation. In *Findings of the Association for Computational Linguistics: EMNLP 2022*, pp. 6826–6847, Abu Dhabi, United Arab Emirates, 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-emnlp.508. URL <https://aclanthology.org/2022.findings-emnlp.508/>.

570 Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. *arXiv preprint arXiv:1907.11692*, 2019. URL <https://arxiv.org/abs/1907.11692>.

575 Marco Marelli, Luisa Bentivogli, Marco Baroni, Silvia Bernardini, Stefano Menini, and Roberto Zamparelli. A SICK cure for the evaluation of compositional distributional semantic models. In *Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)*, pp. 216–223, Reykjavik, Iceland, 2014. European Language Resources Association (ELRA).

580 Joshua Maynez, Shashi Narayan, Bernd Bohnet, and Ryan McDonald. On faithfulness and factuality in abstractive summarization. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL)*, pp. 1906–1919, Online, 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.173. URL <https://aclanthology.org/2020.acl-main.173/>.

585 R. Thomas McCoy, Ellie Pavlick, and Tal Linzen. Right for the wrong reasons: Diagnosing syntactic heuristics in natural language inference. In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (ACL)*, pp. 3428–3448, Florence, Italy, 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1334. URL <https://aclanthology.org/P19-1334/>.

590 Mihai Nadas, Laura Diosan, and Andreea Tomescu. Synthetic data generation using large language models: Advances in text and code. *arXiv preprint arXiv:2503.14023*, 2025. URL <https://arxiv.org/abs/2503.14023>.

594 Nikita Nangia, Saku Sugawara, Harsh Trivedi, Alex Warstadt, Clara Vania, and Samuel R. Bowman.
 595 What ingredients make for an effective crowdsourcing protocol for difficult NLU data collection
 596 tasks? In *Proceedings of the 59th Annual Meeting of the Association for Computational Lin-*
 597 *guistics and the 11th International Joint Conference on Natural Language Processing (Volume*
 598 *1: Long Papers)*, pp. 1221–1235, Online, 2021. Association for Computational Linguistics. doi:
 599 10.18653/v1/2021.acl-long.98. URL [https://aclanthology.org/2021.acl-long.](https://aclanthology.org/2021.acl-long.98/)
 600 98/.

601 Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal, Jason Weston, and Douwe Kiela. Adver-
 602 sarial NLI: A new benchmark for natural language understanding. In *Proceedings of the 58th*
 603 *Annual Meeting of the Association for Computational Linguistics (ACL)*, pp. 4885–4901, Online,
 604 2020a. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.441. URL
 605 <https://aclanthology.org/2020.acl-main.441/>.

606 Yixin Nie, Yicheng Zhang, Adina Williams, and Mohit Bansal. Learning with noisy labels for
 607 natural language inference. In *Proceedings of the 58th Annual Meeting of the Association for*
 608 *Computational Linguistics (ACL)*, pp. 8407–8418, Online, 2020b. Association for Computational
 609 Linguistics. doi: 10.18653/v1/2020.acl-main.746. URL [https://aclanthology.org/](https://aclanthology.org/2020.acl-main.746/)
 610 [2020.acl-main.746/](https://aclanthology.org/2020.acl-main.746/).

611 Rodrigo Nogueira and Kyunghyun Cho. Passage re-ranking with bert. *arXiv preprint arXiv:1901.04085*, 2019. URL <https://arxiv.org/abs/1901.04085>.

612 OpenAI. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*, 2023. URL <https://arxiv.org/abs/2303.08774>.

613 Artidoro Pagnoni, Vidhisha Balachandran, and Yulia Tsvetkov. Understanding factuality in ab-
 614 stractive summarization with FRANK: A benchmark for factuality metrics. In *Proceedings of*
 615 *the 2021 Conference of the North American Chapter of the Association for Computational Lin-*
 616 *guistics: Human Language Technologies (NAACL-HLT)*, pp. 4812–4829, Online, 2021. Asso-
 617 ciation for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.383. URL <https://aclanthology.org/2021.naacl-main.383/>.

618 Adam Poliak, Jason Naradowsky, Aparajita Haldar, Rachel Rudinger, and Benjamin Van Durme.
 619 Hypothesis only baselines in natural language inference. In *Proceedings of the Seventh*
 620 *Joint Conference on Lexical and Computational Semantics (*SEM 2018)*, pp. 180–191, New
 621 Orleans, Louisiana, 2018. Association for Computational Linguistics. URL <https://aclanthology.org/S18-2023/>.

622 Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
 623 networks. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language*
 624 *Processing (EMNLP)*, pp. 3982–3992, Hong Kong, China, 2019. Association for Computational
 625 Linguistics. URL <https://aclanthology.org/D19-1410/>.

626 James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal. Fever: a large-scale
 627 dataset for fact extraction and VERification. In *Proceedings of the 2018 Conference of the North*
 628 *American Chapter of the Association for Computational Linguistics: Human Language Tech-*
 629 *nologies, Volume 1 (Long Papers)*, pp. 809–819, New Orleans, Louisiana, 2018. Association for
 630 Computational Linguistics. doi: 10.18653/v1/N18-1074. URL <https://aclanthology.org/N18-1074/>.

631 Tu Vu, Tong Wang, Anh Tuan Luu, Quang Le, and Dinh Phung. STraTA: Self-training with task
 632 augmentation for better few-shot learning. In *Proceedings of the 2021 Conference on Empirical*
 633 *Methods in Natural Language Processing (EMNLP)*, pp. 5713–5728, Punta Cana, Dominican
 634 Republic, 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.
 635 460. URL <https://aclanthology.org/2021.emnlp-main.460/>.

636 Wenhui Wang, Hangbo Bao, Li Dong, and Furu Wei. Minilm: Deep self-attention distillation for
 637 task-agnostic compression of pre-trained transformers. In *Advances in Neural Information Pro-*
 638 *cessing Systems (NeurIPS)*, 2020. URL [https://proceedings.neurips.cc/paper/](https://proceedings.neurips.cc/paper/2020/hash/3f5ee243547dee91fb053c1c4a845aa-Abstract.html)
 639 [2020/hash/3f5ee243547dee91fb053c1c4a845aa-Abstract.html](https://proceedings.neurips.cc/paper/2020/hash/3f5ee243547dee91fb053c1c4a845aa-Abstract.html).

648 Adina Williams, Nikita Nangia, and Samuel R. Bowman. A broad-coverage challenge corpus for
649 sentence understanding through inference. In *Proceedings of the 2018 Conference of the North*
650 *American Chapter of the Association for Computational Linguistics (NAACL): Human Language*
651 *Technologies*, pp. 1112–1122, New Orleans, Louisiana, 2018. Association for Computational Lin-
652 *guistics*. URL <https://aclanthology.org/N18-1101/>.

653 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
654 Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
655 Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
656 Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
657 Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
658 Yuqiong Liu, Zeyu Cui, Zhenru Zhang, Zihan Qiu, and the Qwen Team. Qwen2.5 technical report.
659 *arXiv preprint arXiv:2412.15115*, 2024. URL <https://arxiv.org/abs/2412.15115>.

660 Fan Yin, Yuxian Meng, Yiming Zhang, Qinghong Han, Hanzi Xu, Peng Li, Xu Sun, and Jie Zhou.
661 Docnli: A large-scale dataset for document-level natural language inference. In *Proceedings of*
662 *the 59th Annual Meeting of the Association for Computational Linguistics (ACL) and the 11th*
663 *International Joint Conference on Natural Language Processing (IJCNLP)*, pp. 4913–4922, On-
664 *line*, 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.380. URL
665 <https://aclanthology.org/2021.acl-long.380/>.

666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 **A LLM USAGE**
703704 Large language models were used solely for grammar correction and stylistic polishing of the
705 manuscript text.
706707 **B PROMPT**
708709 **B.1 FACT EXTRACTION**
710711
712 [Task Description]
713 You are a meticulous information extractor. Your sole job is to read the
714 given SNIPPETS and return only literal, atomic facts present in those
715 snippets. You must not infer, generalize, add outside knowledge.716 [Inputs]
717 {SNIPPETS}
718
719 [Rules]
720 1) Source-only: use only snippet content; preserve tense, modality,
721 quantifiers, and negation exactly as written.
722 2) Minimality: each fact must be irreducible (cannot be further split).
723 3) No cross extraction: each fact must be fully supported by a single
724 snippet. Do not combine evidence across multiple snippets.
725 4) No ambiguous references: avoid vague or deictic pronouns (e.g., it,
726 they, he, she, this, that, former, latter, here, there); replace with
727 the explicit noun phrase from the snippet.
728 5) If nothing is extractable, return {"facts": []} exactly.
729730 [Output JSON]
731 {
732 "facts": [
733 {
734 "text": "<atomic fact1>,"
735 },
736 {
737 "text": "<atomic fact2>,"
738 }
739 ...
740]
741 }
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 B.2 PREMISE AND HYPOTHESIS FUSION
 757

758 The fusion procedure for the premise and the hypothesis is identical. In both cases, the to be fused p
 759 and h are provided as ANCHOR to the fusion step.

760 [Task Description]
 761 You are a precise composer. Begin with the given ANCHOR text verbatim,
 762 then add ONLY the supplied atomic facts from FACT_LIST_JSON. Do not
 763 introduce any new information beyond those facts.

764 [Inputs]
 765 {ANCHOR_TEXT}
 766 {FACT_LIST_JSON}
 767

768 [Rules]
 769 1) Anchor-centric: write a short paragraph that revolves around
 770 ANCHOR_TEXT.
 771 2) Facts-only: integrate all and only the provided facts; each fact
 772 appears once.
 773 3) Fidelity: preserve polarity, modality, time expressions, and named
 774 entities as given.
 775 4) Minimal glue: use neutral connectors ("Additionally,", "At <time>,", "
 776 In <location>,", "Meanwhile,") without adding new information.

777 [Output JSON]
 778 {
 779 "fusion_result": "<fused_paragraph>"
 780 }

781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809

810 C ALGORITHM
811

812 **Input:** Truth set T , candidate facts F , NLI model \mathcal{M} , thresholds τ_e, τ_c
 813 **Output:** Maximum neutral clique $S^* \subseteq F$ and directed entailment subgraph $G^{\Rightarrow}[S^*]$

814 1: **Predicates:**
 815 2: $\text{ENTAILS}(a, b) \triangleq \Pr_{\mathcal{M}}(a \Rightarrow b) \geq \tau_e$
 816 3: $\text{CONTRADICTS}(a, b) \triangleq \Pr_{\mathcal{M}}(a \perp b) \geq \tau_c$
 817 4: $\text{NEUTRAL}(a, b) \triangleq \neg \text{ENTAILS}(a, b) \wedge \neg \text{CONTRADICTS}(a, b)$

818 5: **Stage 1: Truth-set filtering**
819

820 6: $R \leftarrow \emptyset$
 821 7: **for** $f \in F$ **do**
 822 8: **if** $\forall t \in T : \neg \text{CONTRADICTS}(t, f) \wedge \neg \text{ENTAILS}(t, f)$ **then**
 823 9: $R \leftarrow R \cup \{f\}$

824 10: **Stage 2: Entailment edges and neutral graph on R**

825 11: $E^{\Rightarrow} \leftarrow \emptyset; \text{Adj}(u) \leftarrow \emptyset, \forall u \in R$
 826 12: **for** $i = 1$ **to** $|R|$ **do**
 827 13: **for** $j = i+1$ **to** $|R|$ **do**
 828 14: $u \leftarrow R[i], v \leftarrow R[j]$
 829 15: **if** $\text{ENTAILS}(u, v)$ **then**
 830 16: $E^{\Rightarrow} \leftarrow E^{\Rightarrow} \cup \{(u \rightarrow v)\}$
 831 17: **if** $\text{ENTAILS}(v, u)$ **then**
 832 18: $E^{\Rightarrow} \leftarrow E^{\Rightarrow} \cup \{(v \rightarrow u)\}$
 833 19: **if** $\text{NEUTRAL}(u, v)$ **then**
 834 20: $\text{Adj}(u) \leftarrow \text{Adj}(u) \cup \{v\}; \text{Adj}(v) \leftarrow \text{Adj}(v) \cup \{u\}$

835 21: **Stage 3: Maximum neutral clique (Bron–Kerbosch + pivot)**

836 22: $S^* \leftarrow \emptyset$
 837 23: **procedure** BK_PIVOT(C, P, X)
 838 24: **if** $P = \emptyset$ **and** $X = \emptyset$ **then**
 839 25: **if** $|C| > |S^*|$ **then**
 840 26: $S^* \leftarrow C$
 841 27: **return**
 842 28: choose $u \in P \cup X$ maximizing $|P \cap \text{Adj}(u)|$
 843 29: **for each** $v \in P \setminus \text{Adj}(u)$ **do**
 844 30: BK_PIVOT($C \cup \{v\}, P \cap \text{Adj}(v), X \cap \text{Adj}(v)$)
 845 31: $P \leftarrow P \setminus \{v\}; X \leftarrow X \cup \{v\}$
 846 32: BK_PIVOT(\emptyset, R, \emptyset)
 847

848 33: **Stage 4: Induced neutral subgraph**

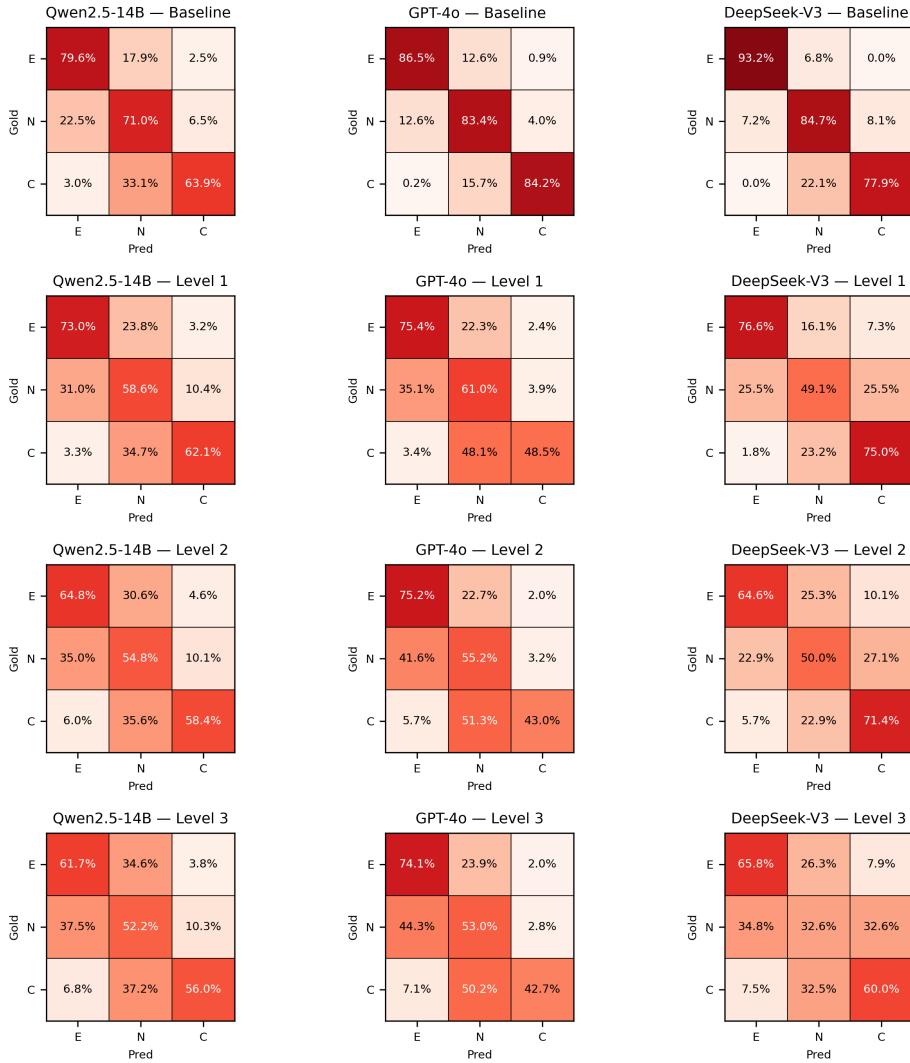
849 34: $G^{\Rightarrow} \leftarrow \text{subgraph of } (R, E^{\Rightarrow}) \text{ induced by } S^*$
 850 35: **return** S^*, G^{\Rightarrow}

851
852
853
854
855
856
857
858
859
860
861
862
863

864 **D ANALYSIS OF DIFFICULTY**
865866 The previous analysis shows that our multi-level augmentation substantially increases both sequence
867 length and the number of fused facts, and that model accuracy consistently decreases with higher
868 levels. A natural question is whether this difficulty is merely a side effect of longer, noisier inputs, or
869 whether it stems from models having to infer with additional, semantically aligned facts. We address
870 this with two controlled ablations that keep length and surface form comparable while manipulating
871 the informational content of the inputs.872 Table 7: Difficulty ablations: accuracy on the original data, FactNLI ($L=1$), a rewrite-only variant,
873 and an unrelated-facts variant, all controlled to have comparable input lengths.
874

875 Model	876 Original	877 FactNLI $L=1$	878 Rewrite	879 Unrelated-Facts
GPT-4o	84.8	62.1	78.6	80.7
DeepSeek-V3	81.3	64.8	76.9	71.9
DeBERTa-v3-large	92.4	77.1	80.4	85.2
Qwen2.5-14B-Instruct	82.4	64.7	78.0	72.1

880 **Length-controlled rewrite-only ablation.** First, we isolate the effect of sequence length. For
881 each original (p, h) pair, we construct a rewrite-only variant (\tilde{p}, \tilde{h}) by prompting a LLM to expand
882 p and h into longer paraphrases that preserve their meaning, while targeting the same length dis-
883 tribution as our fact-augmented data (we use the $L=1$ setting as the target length, since matching
884 $L=3$ would require extreme expansion and makes it difficult for the rewrite-only variant to preserve
885 the original meaning without introducing new information). Crucially, no external facts are added
886 in this condition: all content in (\tilde{p}, \tilde{h}) is a rephrasing or elaboration of the original sentence pair.
887 We then evaluate the same models on the original data, the FactNLI $L=1$ data, and the rewrite-only
888 (length-matched) data.889 Across all evaluated setups (Table 7), rewriting to match FactNLI length leads to only modest drops
890 relative to the original benchmark, whereas FactNLI- $L=1$ produces substantially larger declines for
891 the same models and datasets. This pattern indicates that longer sequences and more tokens, by
892 themselves, do not fully account for the observed difficulty; the specific way in which we inject
893 external factual content matters.894 **Unrelated-facts ablation.** To test whether the injected facts themselves truly participate in inference
895 and are responsible for the additional difficulty, rather than generic noise from extra sentences,
896 we design an *unrelated-facts* control. Starting from the same original (p, h) pairs, we follow the
897 FactNLI fusion protocol but replace filtered Wikipedia facts with commonsense or encyclopedic
898 statements that are deliberately unrelated to the premise and hypothesis (different entities, topics,
899 or events), while keeping length and discourse style comparable to FactNLI. In other words, this
900 variant adds irrelevant information around (p, h) .901 As shown in Table 7, augmenting with unrelated factual sentences again yields only small changes
902 in accuracy compared to the original data, while FactNLI causes a much larger drop on the same
903 models. Since sequence length and the amount of added text are comparable across FactNLI and
904 the unrelated-facts control, this result suggests that the extra difficulty is not driven simply by more
905 context or more information, but by the presence of semantically aligned facts that interact with the
906 entities and events in (p, h) and must be selectively integrated or ignored.907 Taken together, these two ablations show that FactNLI increases difficulty in a way that goes beyond
908 one-dimensional length scaling. Models do not fail merely because the inputs are longer or noisier;
909 they fail when they must jointly reason over the original premise–hypothesis pair and a large set
910 of newly injected, entity-aligned facts, treating *all* atomic statements in the combined context as
911 candidates for inference. This is precisely the kind of evidence that our augmentation is designed
912 to introduce, and it explains why performance on FactNLI is substantially lower than on both the
913 original benchmarks and length-matched controls.914
915
916
917

918 E CONFUSION MATRICES
919
920
921
922948 Figure 4: Confusion Matrices for Model Performance Across Different Levels and Models
949
950
951
952
953
954
955
956
957

972 F OPEN-SOURCE GENERATION
973974 Our main experiments use GPT-4o as the backbone generator in the retrieve–filter–fuse framework.
975 To verify that the framework is not tied to a single proprietary model, we additionally instantiate the
976 generative components with the open-source **Qwen2.5-14B-Instruct** model on the SNLI dataset.
977978 **Generation setup.** We keep the retrieval procedures, fact-filtering steps, and label-preservation
979 checks identical to the GPT-4o setup, and only replace the backbone generator with Qwen2.5-14B-
980 Instruct . For each base SNLI pair and enhancement level $L=0, 1, 2, 3$, Qwen expands the original
981 premise and hypothesis into longer, more discursive versions and integrates retrieved Wikipedia
982 facts at levels $L=1, 2, 3$, ensuring entity and topic alignment. Prompts follow the same structure as
983 in App. B, adapted to Qwen’s chat template.984 **Evaluation on Dataset Quality.** We treat Qwen2.5-14B-Instruct as the NLI solver and evaluate
985 it on the Qwen-generated SNLI variants , reporting accuracy drops in a manner consistent with the
986 main experiments . The overall trend mirrors our findings with GPT-4o: performance degrades
987 monotonically as the enhancement level increases, indicating that a open-source model also make
988 SNLI substantially harder .
989990 Table 8: Accuracy on Qwen-generated Datasets at Varying Levels (L)991
992

Model	Acc _{L=0}	Acc _{L=1}	Acc _{L=2}	Acc _{L=3}
GPT-4o	84.8	55.3	49.7	50.0
DeepSeek-V3	81.3	53.5	51.3	45.8
Qwen2.5-14B-Instruct	82.4	58.5	53.4	51.6

993 In addition, we conduct a small-scale manual audit like Sec 4.5. As Tabel 9 shown, open-source
994 models show a slight decrease in label preservation, factual coverage, and readability compared
995 to the proprietary model, they still maintain a high level of performance. The injected sentences
996 are consistently topically aligned and logically compatible with the original premise and hypothesis.
997 These findings demonstrate that our retrieve-filter-fuse framework is effective across different
998 models, ensuring high-quality augmentation with preserved logical consistency and topic relevance.
999

1000 Table 9: Ex-post human audit on two versions of datasets.

1001
1002

Model	Label pres. (%)	Conflict (%)	Redundancy (%)	Factuality (%)	Readability
GPT	96.7	4.5	11.7	99.4	4.0
Qwen	93.3	5.0	5.3	91.0	3.5

1026 **G CASE STUDY**
10271028 Table 10 shows the 3-level augmentation process of an example from SNLI with label *entailment*.
10291030 Table 10: Per-Level Fusion for an NLI Example: Facts, Premises, and Hypotheses (L0 → L3)
1031

1034 Label	1034 Text
1037 Original Premise	A woman wearing a yellow tank top and white pants looking into a window on a city street.
1041 Original Hypothesis	A woman wearing a tank top and pants looks through some glass.
1046 L1 Facts	<ul style="list-style-type: none"> • Carnaby Street is a shopping street in Soho, City of Westminster. • Carnaby Street is pedestrianised. • Street fashion is associated with youth culture. • Street fashion is seen in major urban centers.
1053 L1 Premise	A woman wearing a yellow tank top and white pants is looking into a window on a city street, where street fashion, often associated with youth culture, is prominently displayed in major urban centers like Carnaby Street, a pedestrianised shopping street in Soho, City of Westminster.
1058 L1 Hypothesis	A woman wearing a tank top and pants looks through some glass, embodying the street fashion that is often seen in major urban centers and is closely associated with youth culture.
1066 L2 Facts	<ul style="list-style-type: none"> • Fashions from small urban youth groups influenced elite designers and mass-market manufacturers in the middle of the decade. • Fashion examples include miniskirts, culottes, and go-go boots, along with less common PVC dresses. • The 1960s fashion featured diverse trends and broke many traditions, adopting new cultures. • London is situated on the River Thames in southeast England and has been a major settlement for nearly 2,000 years. • London is the capital and largest city of England and the UK, with a population of 9,841,000 in 2025.

1076 *(continued on next page)*
1077

1080	Label	Text
1081	L2 Premise	<p>A woman wearing a yellow tank top and white pants is looking into a window on a city street, where street fashion, often associated with youth culture, is prominently displayed in major urban centers like Carnaby Street, a pedestrianised shopping street in Soho, City of Westminster. The 1960s fashion featured diverse trends such as miniskirts, culottes, go-go boots, and less common PVC dresses, breaking many traditions and adopting new cultures, influenced by small urban youth groups that impacted elite designers and mass-market manufacturers in the middle of the decade. London, situated on the River Thames in southeast England, has been a major settlement for nearly 2,000 years and had a population of 9,841,000 in 2025.</p>
1082	L2 Hypothesis	<p>A woman wearing a tank top and pants looks through some glass, reflecting the influence of street fashion seen in major urban centers like London, which is situated on the River Thames in southeast England and has been a major settlement for nearly 2,000 years. Fashion examples include miniskirts, culottes, and go-go boots, along with less common PVC dresses, where fashions from small urban youth groups influenced elite designers and mass-market manufacturers in the middle of the decade.</p>
1083	L3 Facts	<ul style="list-style-type: none"> • Street fashion is linked to youth culture and is commonly found in major urban centers. • The neighborhood is historically known for clothing production and has a high concentration of fashion-related uses. • Magazines and newspapers often feature candid photos of individuals in urban, stylish clothing. • Fashion capitals are cities with significant influence on the international fashion scene.
1084	L3 Premise	<p>A woman wearing a yellow tank top and white pants is looking into a window on a city street, where street fashion, often associated with youth culture, is prominently displayed in major urban centers like Carnaby Street, a pedestrianised shopping street in Soho, City of Westminster. Street fashion is linked to youth culture and is commonly found in major urban centers, and the neighborhood is historically known for clothing production with a high concentration of fashion-related uses. London, the capital and largest city of England and the UK, is located on the River Thames in southeast England, has been a major settlement for nearly 2,000 years, and had a population of 9,841,000 in 2025. Fashion capitals are cities with significant influence on the international fashion scene, and magazines and newspapers often feature candid photos of individuals in urban, stylish clothing.</p>
1085		
1086		
1087		
1088		
1089		
1090		
1091		
1092		
1093		
1094		
1095		
1096		
1097		
1098		
1099		
1100		
1101		
1102		
1103		
1104		
1105		
1106		
1107		
1108		
1109		
1110		
1111		
1112		
1113		
1114		
1115		
1116		
1117		
1118		
1119		
1120		
1121		
1122		
1123		
1124		
1125		
1126		
1127		
1128		
1129		
1130		
1131		
1132		
1133		

(continued on next page)

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

Label	Text
L3 Hypothesis	A woman wearing a tank top and pants looks through some glass, in a neighborhood historically known for clothing production, where street fashion is prevalent and magazines often feature candid photos of individuals in urban, stylish clothing, reflecting the influence of fashion capitals like London, which is situated on the River Thames in southeast England and has been a major settlement for nearly 2,000 years. Fashion examples include miniskirts, culottes, and go-go boots, along with less common PVC dresses.

1188 **H HUMAN AUDIT**1189 **H.1 ANNOTATOR GUIDELINE**

1190 **Purpose.** Evaluate the *enhanced* NLI items for *absolute* quality. Judge: (i) the NLI relation, (ii)
 1191 factual correctness *with respect to the provided fact list*, (iii) internal consistency, (iv) redundancy,
 1192 and (v) readability. **Do not** use outside sources or personal knowledge.

1193 **Materials per item.**

- 1194 • **Sample texts:** a *premise* and a *hypothesis*.
- 1195 • **Fact list:** 3–15 *atomic facts* (short, self-contained statements) used to construct or justify
 1196 the sample.

1201 **Core labeling principles (from standard NLI practice).**

- 1202 1. **Judge the hypothesis relative to the premise**, not real-world truth.
- 1203 2. **Use only minimal, text-licensed inference:** paraphrase, synonymy, simple hyper-
 1204 nymy/hyponymy, obvious arithmetic, and straightforward temporal/order reasoning.
- 1205 3. **Use the fact list as the only external support.** If a central claim is not supported or clearly
 1206 entailed by the facts, mark it *unsupported*.
- 1207 4. **Prefer certainty over plausibility.** If the premise does not guarantee truth or falsity,
 1208 choose **Neutral**.

1212 **How to read.**

- 1213 1. Read the premise and hypothesis carefully.
- 1214 2. Read the fact list: skim once for coverage, then re-read to verify specific claims in the texts
 1215 against the facts.
- 1216 3. **Factuality rule:** judge factuality *only* against the fact list. New content not supported (or
 1217 clearly entailed) by the listed facts is *unsupported*.

1221 **What to answer (absolute, five-part judgment).**

- 1222 1. *Absolute NLI label (E/N/C):* choose **Entailment** (premise makes the hypothesis certainly
 1223 true), **Contradiction** (certainly false), or **Neutral** (neither guaranteed nor refuted).
- 1224 2. *Internal contradiction (yes/no):* mark “yes” if the premise and hypothesis (or content inside
 1225 them) contradict themselves or each other, independent of the fact list.
- 1226 3. *Redundancy (none/some/many):* rate repetition or trivial paraphrase without a new rea-
 1227 soning step: **None** (no noticeable repetition), **Some** (occasional), **Many** (frequent, length-
 1228 inflating).
- 1229 4. *Factuality w.r.t. fact list (supported/partially/unsupported):* check each *central claim*
 1230 against the facts only.
- 1231 5. *Readability (Likert 1–5):* 1 (unreadable), 2 (poor), 3 (adequate), 4 (good), 5 (clear and
 1232 natural).

1236 **Allowed vs. not allowed.**

- 1237 • **Allowed:** paraphrase, synonymy, simple hypernymy/hyponymy, basic arithmetic, direct
 1238 temporal reasoning, transitivity—when licensed by the text/facts.
- 1239 • **Not allowed:** web search, outside knowledge, multi-hop world knowledge not in the facts,
 1240 speculative assumptions.

1242
1243**Submission checklist (per item).**

1244

- Absolute NLI label (E/N/C).
- Internal contradiction: yes/no (+ short note if “yes”).
- Redundancy: none/some/many (+ brief reason if “many”).
- Factuality vs. fact list: supported/partially/unsupported (cite fact IDs if helpful).
- Readability: 1–5.

1250

REFERENCE EXAMPLES

1251

A. NLI label (E/N/C) examples

1252

1253

- **Entailment (E).**

Premise: “The match was postponed due to heavy rain.”

Hypothesis: “Weather caused the match to be delayed.”

1254

- **Contradiction (C).**

Premise: “The museum is closed on Mondays.”

Hypothesis: “The museum is open every Monday.”

1255

- **Neutral (N).**

Premise: “A chef entered the kitchen.”

Hypothesis: “The chef prepared pasta.”

1256

B. Internal contradiction example

1257

1258

1259

1260

1261

1262

1263

- **Yes (contradictory).**

Premise: “The event starts at 8 pm and starts at 9 pm.”

Hypothesis: (any)

1264

C. Redundancy examples

1265

1266

1267

1268

- **None.** “The match took place in Paris.” (no repetition)

- **Some.** “The match took place in Paris, France.” (light paraphrase once)

- **Many.** “The match took place in Paris, which is in France. The game occurred in France, specifically Paris.” (repeated content)

1269

D. Factuality vs. fact list examples

1270

1271

1272

1273

1274

1275

- **Facts:** F1 “The Eiffel Tower is in Paris.” F2 “Roland Garros is a tennis venue in Paris.”

- **Supported.**

Premise: “The final was held at Roland Garros in Paris.”

Hypothesis: “The final took place in Paris.”

Why: Premise aligns with F2; hypothesis follows from the premise.

- **Partially.**

Premise: “The final was held at a major stadium.”

Hypothesis: “The final took place in Paris.”

Why: “Major stadium” is underspecified by F1/F2; location remains unclear.

- **Unsupported.**

Premise: “The final was held in Berlin.”

Hypothesis: “The final took place in Paris.”

Why: Conflicts with the premise and not backed by F1/F2.

1276

1277

E. Readability anchors (Likert)

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

- **1 (unreadable).** “Win match rain delay heavy because.” (severe errors)

- **3 (adequate).** “The match was delayed due to rain; wording is a bit awkward but clear.”

- **5 (clear).** “Heavy rain delayed the match.” (natural and fluent)

1296 H.2 HUMAN EVALUATION SETUP
12971298 **Scope and blinding.** Annotators see only the *enhanced* premise and hypothesis plus a compact
1299 *fact list* (3–15 atomic facts) for each item. They do *not* see original/root texts, original labels, model
1300 predictions, or the system variant (Full vs. ablation). Item order is individually randomized to avoid
1301 order and fatigue effects.1302 **Sampling.** We draw a stratified sample from the enhanced pool with strata defined by *dataset*
1303 (SNLI, MNLI) and *level* $L \in \{1, 2, 3\}$. The sampling frame contains 9,824 SNLI items per level
1304 and 19,647 MNLI items per level. Within each (*dataset*, L) stratum, we uniformly sample without
1305 replacement a target of n_s items—SNLI: $n_s=20$ per level; MNLI: $n_s=40$ per level. This yields
1306

1307
$$N_{\text{enhanced}} = (3 \times 20)_{\text{SNLI}} + (3 \times 40)_{\text{MNLI}} = 180.$$

1308 Where feasible, we balance the root label distribution (E/N/C) *at sampling time only* to ensure
1309 coverage; annotators are not shown root labels.1310 Separately, from the NO-FILTER ablation sets we sample $L=3$ only: 20 SNLI items and 40 MNLI
1311 items, i.e.,

1312
$$N_{\text{ablation}} = 20_{\text{SNLI}} + 40_{\text{MNLI}} = 60.$$

1313 Thus the combined total is

1314
$$N_{\text{all}} = N_{\text{enhanced}} + N_{\text{ablation}} = 240.$$

1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349