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ABSTRACT

Natural Language Inference (NLI) is a core task for language understanding, yet
existing NLI datasets are static and no longer challenging, allowing current Large
Language Models (LLMs) to perform well without truly revealing their capabili-
ties and shortcomings. To address this problem, we propose a new data augmen-
tation framework to automatically build more challenging NLI datasets based on
existing datasets, by iteratively fusing rich facts into the premise and hypothesis
of an NLI instance. We use a strict fact filter to ensure that fused facts are non-
contradictory and non-redundant. Applied to SNLI and MNLI, our augmentation
substantially increases data length and complexity, and the performance of a range
of LLMs on the augmented datasets drops significantly (up to 30%). Ablation ex-
periments and human quality checks confirm the high quality of the generated
data.

1 INTRODUCTION

Natural Language Inference (NLI) is a foundational task in language understanding: given a
premise, decide whether a hypothesis is entailed, contradicted, or neutral (Dagan et al., 2006). De-
spite its centrality, we argue that current benchmarks face two core weaknesses: simplicity and
staticity, resulting in modern systems to often report very high scores on standard NLI benchmarks,
failing to reveal genuine performance on NLI tasks and understanding capacity.

Regarding simplicity, widely used datasets such as the Stanford Natural Language Inference cor-
pus (SNLI; Bowman et al., 2015) and the Multi-Genre Natural Language Inference corpus (MNLI;
Williams et al., 2018) concentrate on short, lexically cued items that hinge on single, local relations.
Such items underrepresent longer contexts, multi-fact dependencies, and diverse semantic phenom-
ena, making it easy for models to succeed without robust content coverage or careful semantic
comparison (Gururangan et al., 2018; Poliak et al., 2018; McCoy et al., 2019).

Regarding staticity, these datasets are typically collected once (via crowdsourcing/annotation) and
then frozen. As a result, they do not keep pace with evolving knowledge, domains, or usage, and
they offer no mechanism to systematically adjust difficulty or enrich instances over time—an issue
evident across widely used static resources such as SICK (Marelli et al., 2014), and XNLI (Conneau
et al., 2018).

To address the issue of simplicity, earlier studies turned to human-in-the-loop adversarial collec-
tion: by iteratively eliciting model failures, they constructed more challenging and diverse exam-
ples. ANLI (Nie et al., 2020a) proceeds in rounds of human–model interaction to expose systematic
weaknesses; Dynabench (Kiela et al., 2021) extends this paradigm into a platform for continuously
updating datasets against deployed models; and WANLI (Liu et al., 2022) leverages worker–model
collaboration to generate candidates that are subsequently filtered by humans. While such ap-
proaches improve hard-example coverage, they remain static once collected, incur substantial an-
notation costs, and do not provide a mechanism for continuously injecting verifiable evidence or
systematically scaling difficulty.

In parallel, model-based synthetic augmentation has rapidly developed: large language models are
prompted to generate new premise–hypothesis pairs, sometimes with templates or instructions, fol-
lowed by lightweight filtering. Hosseini et al. (2024) showed that large-scale synthetic NLI can
enhance domain generalization; more broadly, recent surveys confirm the potential of LLM-driven
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Figure 1: A one-level augmentation case with selected Facts

synthetic data to reduce annotation cost and expand coverage across domains and longer contexts
(Nadas et al., 2025). However, such methods rely heavily on the generative model itself, often in-
troducing unverifiable content, label drift, and stylistic artifacts. Even with partial human review,
they lack explicit alignment with external evidence, making controllable difficulty and traceability
difficult to guarantee.

To fully solve the problem,we propose a dynamic, automated, fact-enhanced augmentation
framework that operates on existing NLI samples. For each (premise, hypothesis, label), we (i)
retrieve premise-conditioned evidence from Wikipedia to ground the instance in verifiable content;
(ii) filter candidate facts to ensure non-contradiction and non-redundancy so that labels are pre-
served; and (iii) fuse accepted facts into the premise and a conservative subset into the hypothesis.
A multi-level framework enables tunable difficulty by progressively composing more evidence while
maintaining label fidelity. Consequently, evidence-backed fusion directly addresses simplicity by in-
creasing length and semantic richness with real, citable content, and mitigates staticity by enabling
ongoing, retrieval-driven updates and depth control—without re-annotating from scratch. Figure 1
shows an example with one-level augmentation.

Applied to SNLI (Bowman et al., 2015) and MNLI (Williams et al., 2018), our augmentation (i)
reveals consistent, depth-controlled performance drops across diverse model families (up to 30% at
higher depths) ; (ii) expands example length by multiple folds (up to 10×) and increases semantic
density via multi-fact composition; and (iii) preserves labels and instance coherence, as verified
by ablations and human evaluation—thereby exposing substantial headroom that static benchmarks
conceal. To summarize, we list our main contributions as follows:

• We introduce a dynamic and automated fact-enhanced augmentation framework that en-
riches existing NLI items via a retrieval–filtering–fusion process, which preserves original
labels, and enables depth-controlled difficulty.

• We apply our augmentation framework on SNLI and MNLI datasets and release new chal-
lenging benchmarks to benefit the research community.

• We conduct a comprehensive evaluation across a range of LLM-based NLI models, show-
ing consistent, depth-controlled performance degradation that highlights a substantive chal-
lenge understated by current static benchmarks.
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2 RELATED WORK

2.1 CLASSIC NLI BENCHMARKS AND HUMAN-IN-THE-LOOP CURATION

The Stanford Natural Language Inference corpus (SNLI; Bowman et al. (2015)) first established a
large-scale, three-way classification benchmark, but its short, lexically cued pairs made it easy for
models to exploit shallow cues rather than deep inference. The Multi-Genre NLI corpus (MNLI;
Williams et al. (2018)) broadened coverage across genres, yet still preserved relatively short con-
texts, leaving similar vulnerabilities. The SICK dataset (Marelli et al., 2014) focused on compo-
sitional semantics, but its small size limited robustness. XNLI (Conneau et al., 2018) extended
MNLI to 15 languages, enabling cross-lingual evaluation but again freezing into a static test set.
HANS (McCoy et al., 2019) directly targeted heuristic shortcuts, showing that high accuracy on
SNLI/MNLI does not imply robust inference. DocNLI (Yin et al., 2021) scaled inference to full
documents, though without mechanisms for dynamic difficulty control.

To increase difficulty, ANLI (Nie et al., 2020a) introduced iterative adversarial collection where
annotators probe system weaknesses, raising difficulty but at significant annotation cost. Dynabench
(Kiela et al., 2021) generalized this into a platform for continuous interactive collection, though
instances ultimately re-freeze into fixed test sets. ChaosNLI (Nie et al., 2020b) proposed retaining
distributions over human judgments, highlighting interpretive variability, and Jiang & Pavlick (2022)
further analyzed sources of label disagreement, but such work still lacks attached, verifiable evidence
for each instance. In sum, while human-in-the-loop methods raise challenge and capture subjectivity,
they remain expensive, hard to scale, and insufficient for long-context inference.

2.2 SYNTHETIC AUGMENTATION FOR NLI

Synthetic generation has emerged as a practical response to data scarcity. STraTA (Vu et al., 2021)
integrates self-training with LM-generated premise–hypothesis pairs, increasing volume but offer-
ing no guarantees of evidence alignment. The GAL framework (He et al., 2022) likewise generates
unlabeled text and relies on teacher models for annotation, lowering labeling cost while risking label
drift. Li et al. (2023) provide a systematic analysis showing that synthetic data can improve classifi-
cation in some settings, yet task subjectivity moderates gains and raises concerns about unverifiable
artifacts. WANLI (Liu et al., 2022) combines automatic filtering with selective human review after
GPT-3 expansion of “challenging pockets” in MNLI, achieving strong out-of-domain improvements
but at renewed human cost. More recent work emphasizes domain-diverse augmentation (Hosseini
et al., 2024), underscoring the promise of scaling with LLMs while exposing persistent issues of
model priors and style biases.

3 METHOD

Natural Language Inference (NLI) determines the relationship between a premise and a hypothe-
sis(Dagan et al., 2006). The outcome is one of three labels. Entailment means the premise provides
sufficient information to conclude the hypothesis is true. Contradiction means the premise pro-
vides sufficient information to conclude the hypothesis is false. Neutral means the premise neither
supports nor rules out the hypothesis.

3.1 OVERVIEW

Our goal is to automatically transform standard NLI samples into more challenging ones via adding
verified facts to the premise and to the hypothesis in a multi-level manner. Given an input (p, h, l)
with premise p, hypothesis h, and label l ∈ {entailment, neutral, contradiction}, we iteratively ex-
pand p and h with external evidence while preserving logical consistency and the original label.
After L levels, we obtain an enriched sample (p(L), h(L), l) in which p(L) and h(L) incorporate
verified new facts.

As shown in Fig. 4, our method consists of three steps at every level: (i) Facts acquisition — Retrieve
clean, verifiable facts for augmentation. (ii) Truth-set and graph filtering — Ensure no redundance
and contradiction by removing conflicts and duplicates facts pairs. (iii) Premise and hypothesis

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Overview of the full framework. (a) Premise-conditioned retrieval and fact extraction. (b)
Truth-set and graph-based filtering of facts, where the initial truth set is derived from the original
premise. (c) The complete multi-level augmentation framework; facts drop partly denotes the subset
of facts retained into the hypothesis relative to the premise.

fusion — Merge selected facts into the premise and hypothesis while preserving the original label.
We present details of each step as follows.

3.2 FACTS ACQUISITION

To select corpora closely related to premise for constructing the snippet pool used in later fusion
, at level t, we use the former premise p(t−1) as the query to retrieve candidate Wikipedia pages.
From each page, we take the introductory summary and split it into sentences. We compare sentence
embeddings to the query embedding via cosine similarity. We keep sentences with score≥ τ , where
τ is a fixed, moderate threshold. The retained sentences form the snippet pool P(t). This pool is the
only evidence used in subsequent steps (Fig. 4a).

Given only P(t), we apply a strong LLM (GPT-4o) to extract atomic facts. Specifically, we introduce
a carefully designed prompt to ensure that the extracted facts contain no external knowledge or
inference and are grounded in exactly one snippet from P(t). The output is the candidate fact set
C(t). Full prompt templates with more rules appear in Appendix B.1. Further implementation details
are provided in Section §4.1.

3.3 TRUTH-SET AND GRAPH FILTERING

To ensure the facts to be fused do not conflict with or duplicate the current premise, we maintain
a truth set T(t) including facts fused at earlier levels and extracted from the original premise. We
then construct an entailment graph G to check pairwise relations among candidate facts and remove
conflicting or redundant items.
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At level t, the candidates set C(t) is first checked against truth-set: for each f ∈ C(t), a
lightweight NLI model compares f with every element of T(t−1) and assigns a relation in
{entailment, contradiction, neutral}. Any f that contradicts an element of T(t−1) is discarded. Any
f that is entailed by T(t−1) is marked as redundant and discarded. Facts that are neutral with respect
to all elements of T(t−1) are retained. Denote the retained facts by V(t).

We discard conflicts and redundancies among the retained facts by constructing an undirected graph
G(t) on V(t). An edge connects u, v ∈ V(t) if and only if their relation is neutral; pairs in entailment
or contradiction are excluded to prevent conflict and redundancy. We take the maximum clique
of the neutral-edge graph G(t) (constructed on V(t)) as the level-t fact set, denoted F(t). A clique
guarantees pairwise neutrality among all selected facts; choosing the largest such clique yields the
broadest subset that is simultaneously non-conflicting and non-redundant under our criterion.

We then update the truth set by
T(t) = T(t−1) ∪ F(t) .

This two-stage procedure removes conflicts with prior facts, suppresses items already implied by his-
tory, and at each level admits a maximal cluster of pairwise neutral (non-entailed, non-contradictory)
facts, thereby preserving global consistency as T grows (Fig. 4b). Detailed algorithms are provided
in Appendix C.

3.4 PREMISE AND HYPOTHESIS FUSION

At each level t = 1, . . . , d, we have selected a set of novel facts F(t) from the candidates after
flitering. We then update the premise by fusing F(t) with the previous anchor p(t−1) via a constrained
LLM prompt to produce a short paragraph p(t). By construction, p(t) entails p(t−1), fully covers the
content in F(t), and introduces no information beyond p(t−1) ∪ F(t).

In contrast, for the hypothesis, we always enhance from the original hypothesis h. At level t, for
each i ∈ {1, . . . , t} we select a subset F̂(i) ⊆ F(i) from level i, and then form the aggregate F∗ =⋃t

i=1 F̂(i). We fuse F∗ with h to obtain h(t), which entails h, fully reflects F∗, and adds nothing
beyond h ∪ F∗. The detailed prompt templates are provided in Appendix B.2. The final enhanced
sample at level t is (p(t), h(t), l).

Note that h(t) is always generated directly from the original hypothesis h (rather than from h(t−1)) to
avoid semantic drift and label reinterpretation across levels. This also enables controlled difficulty
scaling: by aggregating F∗ at higher t, we inject more verified, decision-bearing content into the
hypothesis without compounding generation artifacts.

Finally, across the L levels we obtain L enhanced premise–hypothesis pairs {(p(t), h(t), l)}Lt=1
(Fig. 4(c)).We provide a complete case in Appendix G.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Table 1: Dataset sizes used in augmentation.

Dataset Split Size

SNLI test 9,824
MNLI validation matched 9,815
MNLI validation mismatched 9,832

Augmentation Data Source. We ap-
ply our framework to all instances
from the following official splits (no
sub-sampling): SNLI (Bowman et al.,
2015) test; MNLI (Williams et al.,
2018) validation matched and
validation mismatched. Dataset sizes
are shown in Table 1.

We choose these splits for two practical reasons: (i) many widely used pretrained or instruction-
tuned models have been (directly or indirectly) fine-tuned on the training portions of SNLI/MNLI,
so evaluating on the official held-out splits mitigates train–test contamination; and (ii) the public test
split of MNLI does not release gold labels, hence evaluation customarily uses the labeled valida-
tion matched and validation mismatched splits instead.
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Both corpora adopt a unified instance schema (p, h, l) comprising a premise, a hypothesis, and a
label. In their original construction protocols, human annotators wrote hypotheses conditioned on
sampled premises and assigned labels to the resulting pairs.

Implementation Details. We deliberately separate generation from filtering. The only strong
LLM in our framework is GPT-4O (OpenAI, 2023), used for two operations: (i) snippet-faithful
fact extraction and (ii) constrained fusion to produce both the level-wise enriched premise and the
final hypothesis.

All screening steps rely on lightweight models for scalability: sentence-level relevance is computed
with ALL-MINILM-L6-V2 embeddings (Reimers & Gurevych, 2019; Wang et al., 2020) (with sim-
ple lexical hygiene), and entailment/contradiction/neutral edges in the truth-set graph are assigned
by a compact cross-encoder based on DEBERTA-V3-BASE (He et al., 2021b;a), following stan-
dard cross-encoder reranking practice (Nogueira & Cho, 2019). This design emphasizes GPT-4o for
content generation while delegating relevance and entailment filtering to efficient small models.

We intentionally isolate generation from inference to avoid leakage and bias. Premise updates are
generated only from the previous anchor and selected facts, and hypotheses are generated only from
the root hypothesis and the aggregated facts—never from any premise text. Gold labels remain fixed,
and E/C/N decisions (and relevance scoring) are handled by lightweight discriminative models rather
than GPT-4o. This separation reduces label and cross-side leakage, keeps generation orthogonal to
the core reasoning task, and yields more impartial examples.

Tested Models. We evaluate seven models—ROBERTA-LARGE (Liu et al., 2019), DEBERTA-
V3-LARGE (He et al., 2021a), GPT-4O (OpenAI, 2023), LLAMA-3-8B-INSTRUCT (Grattafiori
et al., 2024), QWEN2.5-14B-INSTRUCT (Yang et al., 2024), DEEPSEEK-V3 (Liu et al., 2024),
and DEEPSEEK-R1 (Guo et al., 2025)—on the original datasets (L=0, orig) on our dynamically
enhanced versions at three levels (L=1, 2, 3).

4.2 MAIN RESULTS

Across all datasets and models, augmentation produces a consistent accuracy drop that grows with
the level, as shown in Table 2, indicating that the enhanced sets increase task hardness while pre-
serving labels.

Performance decays approximately monotonically from L=0→1→2→3, with the largest stepwise
decline typically at the first enhancement (0→1) and smaller but still nontrivial declines from 1→2
and 2→3.

Across both SNLI and MNLI, accuracies drop sharply at the first enhancement step (L=1) and
then decline more gradually at higher levels (Table 2); GPT-4O follows this pattern, as do other
models. This indicates that a single shallow enhancement (L:0→ 1) already induces most of the
added difficulty, while deeper levels mainly accumulate incremental complexity. Taken together,
the results show that our framework strengthens understanding and inference from the outset, with
deeper levels providing refinement and further improvements.

To summarize, dynamic fact-enhanced augmentation consistently reduces accuracy across models
and datasets in a level-controlled manner, turning standard NLI benchmarks into stronger stress tests
for text inference abilities.

4.3 ANALYSIS OF DIFFERENT LEVELS

We treat the original data as level L=0 (baseline) and track length as enhancement level rises to
L=1, 2, 3. We report word counts for both premise and hypothesis .

Across datasets, baselines are short: premises average 14–20 words and hypotheses 7–10. By L=3,
premises reach 101–118 and hypotheses 70–76. In relative terms, premise length grows by 5–8×
and hypothesis length by 7–10×, with steady gains at each level (Fig. 3a), indicating increased
semantic load on both sides while preserving gold labels.
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Table 2: Accuracy on Enhanced Datasets at Varying Levels (L)

SNLI MNLI
Model AccL=0 AccL=1 AccL=2 AccL=3 AccL=0 AccL=1 AccL=2 AccL=3

RoBERTa-large 89.3 70.8 64.7 60.8 90.4 73.7 70.4 68.1
DeBERTa-v3-large 92.4 77.1 69.0 67.2 90.1 74.2 71.9 69.7
Llama-3-8B-Instruct 55.6 43.2 41.6 41.1 64.3 55.3 53.4 52.3
Qwen2.5-14B-Instruct 82.4 64.7 59.4 56.7 82.3 62.3 59.5 58.8
GPT-4o 84.8 62.1 58.7 55.3 83.5 67.5 67.0 66.7
DeepSeek-V3 81.3 64,8 62.7 61.5 82.3 69.7 68.5 67.0
DeepSeek-R1 78.9 60.2 56.6 53.1 82.2 71.7 70.9 63.3

Average 80.7 63.3 59.0 56.7 82.2 67.8 65.9 63.7

Figure 3: Length growth and fact fusion by level. (a) Average word counts vs. level (L=0 baseline,
then L=1, 2, 3) for SNLI and MNLI, shown separately for premise (solid) and hypothesis (dashed).
(b) Average fused facts per record at levels L=1, 2, 3 on both sides (Prem/Hypo); numbers above
bars indicate the exact averages. Baseline (L=0) is omitted for clarity.

Let ∆(L−1→L)
words = wordsL − wordsL−1. The increment peaks at the first step (L:0→ 1) and then

tapers off at higher levels, for both premises and hypotheses.

In the fact-tracked subset, both premise-side and hypothesis-side fact counts rise monotonically
with depth. Crucially, deeper levels do not merely pad the premise; they consolidate verified facts
into the hypothesis, increasing the proportion of decision-bearing content and thereby strengthening
semantic pressure (Fig. 3b).

From both word counts and the number of facts,we observe the largest gain from L=0→1, validat-
ing the method’s design; subsequent levels still deliver improvements, albeit diminishing. Crucially,
this growth in factual load is mirrored by consistent declines in model accuracy across models and
metrics—the steeper drop at L=1 followed by continued reductions at higher levels. The align-
ment between rising fact counts and falling accuracy indicates that fact-based augmentation is an
effective mechanism for increasing task difficulty, and that the level parameter L provides reliable,
predictable control over that difficulty.

4.4 ABLATIONS

Setup. To isolate the effect of the truth set and entailment-graph filter, we re-run the framework
with the filter disabled (NO-FILTER)—which means we no longer maintain a truth set or an entail-
ment graph—while holding everything else fixed. We report results at L=3 (primary endpoint) and
include level sensitivity at L=1, 2.
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Results. The truth set and entailment-graph filter enforces global consistency by vetoing contra-
dictions and suppressing redundancies. When we disable it, three failure modes emerge: (i) label
drift—often driven by two mechanisms: items originally labeled Contradiction flip to Neutral or
Entailment when we inject premise-entailed facts into both the premise and hypothesis (neutralizing
the contradiction), and items originally labeled Entailment flip to Contradiction when conflicting
facts are introduced; (ii) corpus conflicts—predominantly mismatches in time, location, or partici-
pants/roles (e.g., inconsistent dates, places, or entities across fused sources), as well as cross-source
negations; and (iii) redundant fusion—already-entailed content is restated via near-duplicates or me-
chanical repetition across segments, inflating length (and sometimes superficial coverage) without
adding genuine new information.

Table 3: Model accuracies at L=0 and L=3 under the Full frame-
work and the NO-FILTER ablation.

Model AccL=0(%) AccL=3, Full(%) AccL=3, No-Filter(%)

RoBERTa-large 90.3 59.3 26.0
GPT-4o 83.3 56.0 31.7

Consequently, we report NO-
FILTER to exhibit a larger accu-
racy drop as shown in Table 3, to
appear superficially “harder”—
together with degraded coher-
ence: reduced label preser-
vation, increased internal con-
tradiction, and elevated redun-
dancy.

In short, removing the filter makes instances look harder primarily by introducing inconsistency and
noise rather than principled difficulty. To quantitatively assess quality more accurately, we redefine
our evaluation metrics; details are provided in Section §4.5.

4.5 EX-POST HUMAN AUDIT

Design. Following common practice in evaluation studies for NLI, fact verification, and factuality
assessment, we run a blinded, stratified, double-annotation audit (Bowman et al., 2015; Williams
et al., 2018; Thorne et al., 2018; Nie et al., 2020a; Kiela et al., 2021; Maynez et al., 2020; Pagnoni
et al., 2021). We sample enhanced items across levels L ∈ {1, 2, 3} with proportional stratifica-
tion by dataset (SNLI/MNLI), fixing the number of items per stratum. Annotators see only the root
premise/hypothesis/label, the enhanced texts, and the exact evidence snippets used during enhance-
ment; they are blind to model predictions and to whether an item comes from the full framework or
an ablation. Each item is independently labeled by two annotators; disagreements are adjudicated
by a senior third annotator. We include attention checks and a brief calibration round with gold
items before the main task (Nangia et al., 2021). We report inter-annotator agreement using Co-
hen’s κ for categorical questions and linearly weighted κ for ordinal scales. Unless noted otherwise,
percentages are macro-averaged across strata.

Annotation Task and Metrics. Beyond accuracy on enhanced sets, we report five automatic diag-
nostics—label preservation (agreement with the baseline label), internal contradiction (fraction of
enhanced items with conflicts), redundancy (fraction of facts entailed by others), factuality (fraction
of retained facts entailed by the final text), and readability (Likert)—and treat them as automatic
proxies of quality. Complementarily, a stratified human audit elicits a single five-part judgment per
item, aligned with these dimensions: (i) label preservation (E/N/C)—whether the enhanced pair
maintains the original label; (ii) internal contradiction / corpus conflict (yes/no)—whether any se-
lected facts contradict one another or the anchor premise, judged as evidence-based contradiction in
the sense of fact verification Thorne et al. 2018; (iii) redundant fusion (none/some/many)—the ex-
tent to which the enhanced text restates or paraphrases already-entailed content (cf. factuality audits
Maynez et al. 2020; Pagnoni et al. 2021); (iv) factuality w.r.t. evidence (supported/partially/unsup-
ported)—whether claims in the enhanced text are supported by the provided facts (as in FEVER
Thorne et al. 2018); and (v) readability (Likert 1–5)—clarity and grammaticality of the enhanced
text. This joint design lets human judgments be directly comparable, clarifying whether accuracy
drops reflect principled, multi-level difficulty or artifacts of incoherent editing.

The complete annotation guidelines are provided in Appendix H.1.

Sampling. We pre-specify a per-stratum target of 240 items to detect data quality. More sampling
details are provided in Appendix H.2
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Table 4: Ex-post human audit by level (L ∈ {1, 2, 3}), macro-averaged over datasets.

Level Label pres. (%) Conflict (%) Redundancy (%) Factuality (%) Readability
L=1 98.3 1.7 11.7 100.0 4.1
L=2 96.7 5.0 10.0 100.0 3.9
L=3 95.0 6.7 13.3 98.3 3.9

Table 5: Full framework vs. NO-FILTER at L=3 , macro-averaged over datasets.

Variant Label pres. (%) Conflict (%) Redundancy (%) Factuality (%) Readability
Full 95.0 6.7 13.3 98.3 3.9
No-Filter co 31.7 28.3 98.3 3.3

Table 6: Inter-annotator agreement (IAA). Co-
hen’s κ for categorical tasks; linearly weighted
κ for ordinal scales.

Dimension κ

Absolute NLI label (E/N/C) 0.94
Internal contradiction (yes/no) 0.83
Redundancy (none/some/many) 0.68
Factuality vs. fact list (3-way) 0.98
Readability (Likert 1–5; weighted) 0.57

Results and Analysis. Table 4 summarizes
level-wise outcomes for the full framework. The
audit supports that our augmentation yields hard
yet high-quality data. Label preservation remains
high across levels; internal conflicts are rare un-
der the full framework; and redundancy is con-
trolled. According to the annotators’ reports, the
repetition mainly stems from describing the same
concept in different ways rather than from me-
chanical duplication, which is acceptable to some
extent. Readability decreases slightly with level
but stays in the “clear” range. These trends align with automatic diagnostics and the accuracy drops
reported in §4.2 .

Table 5 shows that, at L=3, disabling the filter (NO-FILTER) leads to a clear degradation in corpus
quality . The NO-FILTER induces pronounced label drift, frequent contradictions, and elevated rep-
etition alongside poorer readability. Factuality remains comparable, substantiating the effectiveness
of our fusion mechanism. In short, the quality drop under NO-FILTER is unacceptable for evaluation
or downstream use, and we therefore treat the filtered framework as the only reliable setting.

Final IAAs are reported in Table 6. Overall agreement is consistently high, demonstrating stable and
replicable judgments across dimensions.

In summary, human evaluation shows that our augmentation raises difficulty while preserving high
data quality. The filter design is crucial to this outcome: with the filter enabled, coherence is main-
tained (labels are preserved, contradictions are rare, and redundancy is controlled), whereas the
NO-FILTER ablation exhibits a clear quality drop.

5 CONCLUSION

We presented a dynamic, automated fact-based augmentation framework that converts existing NLI
examples into new challenging ones. By iteratively retrieving, distilling, filtering, and fusing atomic
facts, our method increases semantic richness while preserving original labels. A tunable level L
offers a simple knob to scale difficulty: even shallow enhancement suppresses shortcut signals,
whereas deeper enhancement compounds inference demands. Across SNLI and MNLI, the aug-
mented data produce consistent, monotonic accuracy reductions, suggesting improved discrimina-
tive power for inference ability. Ablations confirm that the truth-set and graph filter is essential
for quality, and a blinded human audit supports label preservation, low internal conflict, and strong
evidence grounding.

This shift from one-shot curation to iterative, retrieval-driven enrichment offers a practical path to
benchmarks that better measure inference and evolve with models. Future work may expand beyond
Wikipedia to domain-specific and multilingual corpora, and explore learned fusion together with
causal and adversarial probes to test understanding and inference capabilities more directly.
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XNLI: Evaluating cross-lingual sentence representations. In Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP), pp. 2475–2485, Brussels,
Belgium, 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1269. URL
https://aclanthology.org/D18-1269/.

Ido Dagan, Oren Glickman, and Bernardo Magnini. The PASCAL recognising textual entailment
challenge. In Machine Learning Challenges. Evaluating Predictive Uncertainty, Visual Object
Classification, and Recognising Textual Entailment (MLCW 2005), volume 3944 of Lecture Notes
in Computer Science, pp. 177–190. Springer, 2006. doi: 10.1007/11736790 9. URL https:
//link.springer.com/chapter/10.1007/11736790_9.

Armand Grattafiori et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024. URL
https://arxiv.org/abs/2407.21783.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, and et al. Deepseek-r1: Incentivizing
reasoning capability in llms via reinforcement learning. arXiv preprint, January 2025. URL
https://arxiv.org/abs/2501.12948.

Suchin Gururangan, Swabha Swayamdipta, Omer Levy, Roy Schwartz, Samuel Bowman, and
Noah A. Smith. Annotation artifacts in natural language inference data. In Proceedings of
the 2018 Conference of the North American Chapter of the Association for Computational
Linguistics (NAACL): Human Language Technologies, Volume 2 (Short Papers), pp. 107–112,
New Orleans, Louisiana, 2018. Association for Computational Linguistics. URL https:
//aclanthology.org/N18-2017/.

Hangfeng He, Zhe Zeng, and Heng Ji. Generate, annotate, learn: Generative data augmentation
for knowledge-intensive nlp tasks. Transactions of the Association for Computational Linguistics
(TACL), 10:154–172, 2022. doi: 10.1162/tacl a 00449. URL https://aclanthology.
org/2022.tacl-1.9/.

Pengcheng He, Jianfeng Gao, et al. Debertav3: Improving deberta using electra-style pre-training
with gradient-disentangled embedding sharing. arXiv preprint arXiv:2111.09543, 2021a. URL
https://arxiv.org/abs/2111.09543.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert
with disentangled attention. In International Conference on Learning Representations (ICLR),
2021b. URL https://openreview.net/forum?id=XPu3gFHfW9c.

10

https://aclanthology.org/D15-1075/
https://aclanthology.org/D18-1269/
https://link.springer.com/chapter/10.1007/11736790_9
https://link.springer.com/chapter/10.1007/11736790_9
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2501.12948
https://aclanthology.org/N18-2017/
https://aclanthology.org/N18-2017/
https://aclanthology.org/2022.tacl-1.9/
https://aclanthology.org/2022.tacl-1.9/
https://arxiv.org/abs/2111.09543
https://openreview.net/forum?id=XPu3gFHfW9c


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Mohammad Javad Hosseini, Andrey Petrov, Alex Fabrikant, and Annie Louis. A synthetic data ap-
proach for domain generalization of NLI models. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (ACL), Volume 1: Long Papers, pp. 2212–
2226, Bangkok, Thailand, 2024. Association for Computational Linguistics. URL https:
//aclanthology.org/2024.acl-long.120/.

Nancy Jiang and Ellie Pavlick. Investigating reasons for disagreement in natural language infer-
ence. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(ACL), Volume 1: Long Papers, pp. 2280–2295, Dublin, Ireland, 2022. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2022.acl-long.162. URL https://aclanthology.
org/2022.acl-long.162/.

Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh Kaushik, Atticus Geiger, Zhengxuan Wu, Bertie
Vidgen, Grusha Prasad, Amanpreet Singh, Pratik Ringshia, Zhiyi Ma, Tristan Thrush, Sebastian
Riedel, Zeerak Waseem, Pontus Stenetorp, Robin Jia, Mohit Bansal, Christopher Potts, and Adina
Williams. Dynabench: Rethinking benchmarking in NLP. In Proceedings of the 2021 Confer-
ence of the North American Chapter of the Association for Computational Linguistics (NAACL):
Human Language Technologies, pp. 4110–4124, Online, 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.naacl-main.324. URL https://aclanthology.org/
2021.naacl-main.324/.

Zhiwei Li, Yanda Chen, Nan Duan, Furu Wei, and Ming Zhang. When does synthetic data help
in classification tasks? In Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 5981–5996, Singapore, 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.emnlp-main.367. URL https://aclanthology.org/
2023.emnlp-main.367/.

A Liu et al. Deepseek-v3 technical report. arXiv preprint arXiv:2412.19437, 2024. URL https:
//arxiv.org/abs/2412.19437.

Alisa Liu, Swabha Swayamdipta, Noah A. Smith, and Yejin Choi. WANLI: Worker and AI col-
laboration for natural language inference dataset creation. In Findings of the Association for
Computational Linguistics: EMNLP 2022, pp. 6826–6847, Abu Dhabi, United Arab Emirates,
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-emnlp.508.
URL https://aclanthology.org/2022.findings-emnlp.508/.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019. URL https://arxiv.org/abs/1907.
11692.

Marco Marelli, Luisa Bentivogli, Marco Baroni, Silvia Bernardini, Stefano Menini, and Roberto
Zamparelli. A SICK cure for the evaluation of compositional distributional semantic models.
In Proceedings of the Ninth International Conference on Language Resources and Evaluation
(LREC’14), pp. 216–223, Reykjavik, Iceland, 2014. European Language Resources Association
(ELRA).

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and Ryan McDonald. On faithfulness and factuality
in abstractive summarization. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics (ACL), pp. 1906–1919, Online, 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.acl-main.173. URL https://aclanthology.org/
2020.acl-main.173/.

R. Thomas McCoy, Ellie Pavlick, and Tal Linzen. Right for the wrong reasons: Diagnosing
syntactic heuristics in natural language inference. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics (ACL), pp. 3428–3448, Florence, Italy,
2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1334. URL https:
//aclanthology.org/P19-1334/.

Mihai Nadas, Laura Diosan, and Andreea Tomescu. Synthetic data generation using large language
models: Advances in text and code. arXiv preprint arXiv:2503.14023, 2025. URL https:
//arxiv.org/abs/2503.14023.

11

https://aclanthology.org/2024.acl-long.120/
https://aclanthology.org/2024.acl-long.120/
https://aclanthology.org/2022.acl-long.162/
https://aclanthology.org/2022.acl-long.162/
https://aclanthology.org/2021.naacl-main.324/
https://aclanthology.org/2021.naacl-main.324/
https://aclanthology.org/2023.emnlp-main.367/
https://aclanthology.org/2023.emnlp-main.367/
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://aclanthology.org/2022.findings-emnlp.508/
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://aclanthology.org/2020.acl-main.173/
https://aclanthology.org/2020.acl-main.173/
https://aclanthology.org/P19-1334/
https://aclanthology.org/P19-1334/
https://arxiv.org/abs/2503.14023
https://arxiv.org/abs/2503.14023


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Nikita Nangia, Saku Sugawara, Harsh Trivedi, Alex Warstadt, Clara Vania, and Samuel R. Bowman.
What ingredients make for an effective crowdsourcing protocol for difficult NLU data collection
tasks? In Proceedings of the 59th Annual Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference on Natural Language Processing (Volume
1: Long Papers), pp. 1221–1235, Online, 2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.acl-long.98. URL https://aclanthology.org/2021.acl-long.
98/.

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal, Jason Weston, and Douwe Kiela. Adver-
sarial NLI: A new benchmark for natural language understanding. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics (ACL), pp. 4885–4901, Online,
2020a. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.441. URL
https://aclanthology.org/2020.acl-main.441/.

Yixin Nie, Yicheng Zhang, Adina Williams, and Mohit Bansal. Learning with noisy labels for
natural language inference. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics (ACL), pp. 8407–8418, Online, 2020b. Association for Computational
Linguistics. doi: 10.18653/v1/2020.acl-main.746. URL https://aclanthology.org/
2020.acl-main.746/.

Rodrigo Nogueira and Kyunghyun Cho. Passage re-ranking with bert. arXiv preprint
arXiv:1901.04085, 2019. URL https://arxiv.org/abs/1901.04085.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023. URL https://arxiv.
org/abs/2303.08774.

Artidoro Pagnoni, Vidhisha Balachandran, and Yulia Tsvetkov. Understanding factuality in ab-
stractive summarization with FRANK: A benchmark for factuality metrics. In Proceedings of
the 2021 Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (NAACL-HLT), pp. 4812–4829, Online, 2021. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.383. URL https:
//aclanthology.org/2021.naacl-main.383/.

Adam Poliak, Jason Naradowsky, Aparajita Haldar, Rachel Rudinger, and Benjamin Van Durme.
Hypothesis only baselines in natural language inference. In Proceedings of the Seventh
Joint Conference on Lexical and Computational Semantics (*SEM 2018), pp. 180–191, New
Orleans, Louisiana, 2018. Association for Computational Linguistics. URL https://
aclanthology.org/S18-2023/.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 3982–3992, Hong Kong, China, 2019. Association for Computational
Linguistics. URL https://aclanthology.org/D19-1410/.

James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal. Fever: a large-scale
dataset for fact extraction and VERification. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pp. 809–819, New Orleans, Louisiana, 2018. Association for
Computational Linguistics. doi: 10.18653/v1/N18-1074. URL https://aclanthology.
org/N18-1074/.

Tu Vu, Tong Wang, Anh Tuan Luu, Quang Le, and Dinh Phung. STraTA: Self-training with task
augmentation for better few-shot learning. In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp. 5713–5728, Punta Cana, Dominican
Republic, 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.
460. URL https://aclanthology.org/2021.emnlp-main.460/.

Wenhui Wang, Hangbo Bao, Li Dong, and Furu Wei. Minilm: Deep self-attention distillation for
task-agnostic compression of pre-trained transformers. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2020. URL https://proceedings.neurips.cc/paper/
2020/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

12

https://aclanthology.org/2021.acl-long.98/
https://aclanthology.org/2021.acl-long.98/
https://aclanthology.org/2020.acl-main.441/
https://aclanthology.org/2020.acl-main.746/
https://aclanthology.org/2020.acl-main.746/
https://arxiv.org/abs/1901.04085
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://aclanthology.org/2021.naacl-main.383/
https://aclanthology.org/2021.naacl-main.383/
https://aclanthology.org/S18-2023/
https://aclanthology.org/S18-2023/
https://aclanthology.org/D19-1410/
https://aclanthology.org/N18-1074/
https://aclanthology.org/N18-1074/
https://aclanthology.org/2021.emnlp-main.460/
https://proceedings.neurips.cc/paper/2020/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Adina Williams, Nikita Nangia, and Samuel R. Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics (NAACL): Human Language
Technologies, pp. 1112–1122, New Orleans, Louisiana, 2018. Association for Computational Lin-
guistics. URL https://aclanthology.org/N18-1101/.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, Zihan Qiu, and the Qwen Team. Qwen2.5 technical report.
arXiv preprint arXiv:2412.15115, 2024. URL https://arxiv.org/abs/2412.15115.

Fan Yin, Yuxian Meng, Yiming Zhang, Qinghong Han, Hanzi Xu, Peng Li, Xu Sun, and Jie Zhou.
Docnli: A large-scale dataset for document-level natural language inference. In Proceedings of
the 59th Annual Meeting of the Association for Computational Linguistics (ACL) and the 11th
International Joint Conference on Natural Language Processing (IJCNLP), pp. 4913–4922, On-
line, 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.380. URL
https://aclanthology.org/2021.acl-long.380/.

13

https://aclanthology.org/N18-1101/
https://arxiv.org/abs/2412.15115
https://aclanthology.org/2021.acl-long.380/


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A LLM USAGE

Large language models were used solely for grammar correction and stylistic polishing of the
manuscript text.

B PROMPT

B.1 FACT EXTRACTION

[Task Description]
You are a meticulous information extractor. Your sole job is to read the
given SNIPPETS and return only literal, atomic facts present in those
snippets.You must not infer, generalize, add outside knowledge.

[Inputs]
{SNIPPETS}

[Rules]
1) Source-only: use only snippet content; preserve tense, modality,
quantifiers, and negation exactly as written.
2) Minimality: each fact must be irreducible (cannot be further split).
3) No cross extraction: each fact must be fully supported by a single
snippet. Do not combine evidence across multiple snippets.
4) No ambiguous references: avoid vague or deictic pronouns (e.g., it,
they, he, she, this, that, former, latter, here, there) ; replace with
the explicit noun phrase from the snippet.
5) If nothing is extractable, return {"facts": []} exactly.

[Output JSON]
{

"facts": [
{
"text": "<atomic fact1>",

},
{
"text": "<atomic fact2>",

}
...

]
}
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B.2 PREMISE AND HYPOTHESIS FUSION

The fusion procedure for the premise and the hypothesis is identical.In both cases, the to be fused p
and h are provided as ANCHOR to the fusion step.

[Task Description]
You are a precise composer. Begin with the given ANCHOR text verbatim,
then add ONLY the supplied atomic facts from FACT_LIST_JSON. Do not
introduce any new information beyond those facts.

[Inputs]
{ANCHOR_TEXT}
{FACT_LIST_JSON}

[Rules]
1) Anchor-centric: write a short paragraph that revolves around
ANCHOR_TEXT.
2) Facts-only: integrate all and only the provided facts; each fact
appears once.
3) Fidelity: preserve polarity, modality, time expressions, and named
entities as given.
4) Minimal glue: use neutral connectors ("Additionally,", "At <time>,", "
In <location>,", "Meanwhile,") without adding new information.

[Output JSON]
{

"fusion_result": "<fused_paragraph>"
}
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C ALGORITHM

Input: Truth set T , candidate facts F , NLI modelM, thresholds τe, τc
Output: Maximum neutral clique S⋆ ⊆ F and directed entailment subgraph G⇒[S⋆]

1: Predicates:
2: ENTAILS(a, b) ≜ PrM(a⇒ b) ≥ τe
3: CONTRADICTS(a, b) ≜ PrM(a ⊥ b) ≥ τc
4: NEUTRAL(a, b) ≜ ¬ENTAILS(a, b) ∧ ¬CONTRADICTS(a, b)

5: Stage 1: Truth-set filtering
6: R← ∅
7: for f ∈ F do
8: if ∀t ∈ T : ¬CONTRADICTS(t, f) ∧ ¬ENTAILS(t, f) then
9: R← R ∪ {f}

10: Stage 2: Entailment edges and neutral graph on R
11: E⇒ ← ∅; Adj(u)← ∅, ∀u ∈ R
12: for i = 1 to |R| do
13: for j = i+1 to |R| do
14: u← R[i], v ← R[j]
15: if ENTAILS(u, v) then
16: E⇒ ← E⇒ ∪ {(u→v)}
17: if ENTAILS(v, u) then
18: E⇒ ← E⇒ ∪ {(v→u)}
19: if NEUTRAL(u, v) then
20: Adj(u)← Adj(u) ∪ {v}; Adj(v)← Adj(v) ∪ {u}

21: Stage 3: Maximum neutral clique (Bron–Kerbosch + pivot)
22: S⋆ ← ∅
23: procedure BK PIVOT(C,P,X)
24: if P = ∅ and X = ∅ then
25: if |C| > |S⋆| then
26: S⋆ ← C
27: return
28: choose u ∈ P ∪X maximizing |P ∩Adj(u)|
29: for each v ∈ P \Adj(u) do
30: BK PIVOT(C ∪ {v}, P ∩Adj(v), X ∩Adj(v))
31: P ← P \ {v}; X ← X ∪ {v}
32: BK PIVOT(∅, R, ∅)

33: Stage 4: Induced neutral subgraph
34: G⇒ ← subgraph of (R,E⇒) induced by S⋆

35: return S⋆, G⇒
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D ANALYSIS OF DIFFICULTY

The previous analysis shows that our multi-level augmentation substantially increases both sequence
length and the number of fused facts, and that model accuracy consistently decreases with higher
levels. A natural question is whether this difficulty is merely a side effect of longer, noisier inputs, or
whether it stems from models having to infer with additional, semantically aligned facts. We address
this with two controlled ablations that keep length and surface form comparable while manipulating
the informational content of the inputs.

Table 7: Difficulty ablations: accuracy on the original data, FactNLI (L=1), a rewrite-only variant,
and an unrelated-facts variant, all controlled to have comparable input lengths.

Model Original FactNLI L=1 Rewrite Unrelated-Facts

GPT-4o 84.8 62.1 78.6 80.7
DeepSeek-V3 81.3 64.8 76.9 71.9
DeBERTa-v3-large 92.4 77.1 80.4 85.2
Qwen2.5-14B-Instruct 82.4 64.7 78.0 72.1

Length-controlled rewrite-only ablation. First, we isolate the effect of sequence length. For
each original (p, h) pair, we construct a rewrite-only variant (p̃, h̃) by prompting a LLM to expand
p and h into longer paraphrases that preserve their meaning, while targeting the same length dis-
tribution as our fact-augmented data (we use the L=1 setting as the target length, since matching
L=3 would require extreme expansion and makes it difficult for the rewrite-only variant to preserve
the original meaning without introducing new information). Crucially, no external facts are added
in this condition: all content in (p̃, h̃) is a rephrasing or elaboration of the original sentence pair.
We then evaluate the same models on the original data, the FactNLI L=1 data, and the rewrite-only
(length-matched) data.

Across all evaluated setups (Table 7), rewriting to match FactNLI length leads to only modest drops
relative to the original benchmark, whereas FactNLI-L=1 produces substantially larger declines for
the same models and datasets. This pattern indicates that longer sequences and more tokens, by
themselves, do not fully account for the observed difficulty; the specific way in which we inject
external factual content matters.

Unrelated-facts ablation. To test whether the injected facts themselves truly participate in infer-
ence and are responsible for the additional difficulty, rather than generic noise from extra sentences,
we design an unrelated-facts control. Starting from the same original (p, h) pairs, we follow the
FactNLI fusion protocol but replace filtered Wikipedia facts with commonsense or encyclopedic
statements that are deliberately unrelated to the premise and hypothesis (different entities, topics,
or events), while keeping length and discourse style comparable to FactNLI. In other words, this
variant adds irrelevant information around (p, h).

As shown in Table 7, augmenting with unrelated factual sentences again yields only small changes
in accuracy compared to the original data, while FactNLI causes a much larger drop on the same
models. Since sequence length and the amount of added text are comparable across FactNLI and
the unrelated-facts control, this result suggests that the extra difficulty is not driven simply by more
context or more information, but by the presence of semantically aligned facts that interact with the
entities and events in (p, h) and must be selectively integrated or ignored.

Taken together, these two ablations show that FactNLI increases difficulty in a way that goes beyond
one-dimensional length scaling. Models do not fail merely because the inputs are longer or noisier;
they fail when they must jointly reason over the original premise–hypothesis pair and a large set
of newly injected, entity-aligned facts, treating all atomic statements in the combined context as
candidates for inference. This is precisely the kind of evidence that our augmentation is designed
to introduce, and it explains why performance on FactNLI is substantially lower than on both the
original benchmarks and length-matched controls.
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E CONFUSION MATRICES

Figure 4: Confusion Matrices for Model Performance Across Different Levels and Models
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F OPEN-SOURCE GENERATION

Our main experiments use GPT-4o as the backbone generator in the retrieve–filter–fuse framework.
To verify that the framework is not tied to a single proprietary model, we additionally instantiate the
generative components with the open-source Qwen2.5-14B-Instruct model on the SNLI dataset.

Generation setup. We keep the retrieval procedures, fact-filtering steps, and label-preservation
checks identical to the GPT-4o setup, and only replace the backbone generator with Qwen2.5-14B-
Instruct . For each base SNLI pair and enhancement level L=0, 1, 2, 3, Qwen expands the original
premise and hypothesis into longer, more discursive versions and integrates retrieved Wikipedia
facts at levels L=1, 2, 3, ensuring entity and topic alignment. Prompts follow the same structure as
in App. B, adapted to Qwen’s chat template.

Evaluation on Dataset Quality. We treat Qwen2.5-14B-Instruct as the NLI solver and evaluate
it on the Qwen-generated SNLI variants , reporting accuracy drops in a manner consistent with the
main experiments . The overall trend mirrors our findings with GPT-4o: performance degrades
monotonically as the enhancement level increases, indicating that a open-source model also make
SNLI substantially harder .

Table 8: Accuracy on Qwen-generated Datasets at Varying Levels (L)

Model AccL=0 AccL=1 AccL=2 AccL=3

GPT-4o 84.8 55.3 49.7 50.0
DeepSeek-V3 81.3 53.5 51.3 45.8
Qwen2.5-14B-Instruct 82.4 58.5 53.4 51.6

In addition, we conduct a small-scale manual audit like Sec 4.5. As Tabel 9 shown, open-source
models show a slight decrease in label preservation, factual coverage, and readability compared
to the proprietary model, they still maintain a high level of performance. The injected sentences
are consistently topically aligned and logically compatible with the original premise and hypothe-
sis. These findings demonstrate that our retrieve-filter-fuse framework is effective across different
models, ensuring high-quality augmentation with preserved logical consistency and topic relevance.

Table 9: Ex-post human audit on two versions of datasets.

Model Label pres. (%) Conflict (%) Redundancy (%) Factuality (%) Readability
GPT 96.7 4.5 11.7 99.4 4.0
Qwen 93.3 5.0 5.3 91.0 3.5
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G CASE STUDY

Table 10 shows the 3-level augmentation process of an example from SNLI with label entailment.

Table 10: Per-Level Fusion for an NLI Example: Facts, Premises, and Hypotheses (L0 → L3)

Label Text

Original
Premise

A woman wearing a yellow tank top and white pants looking into a window
on a city street.

Original
Hypothesis A woman wearing a tank top and pants looks through some glass.

L1 Facts

• Carnaby Street is a shopping street in Soho, City of Westminster.
• Carnaby Street is pedestrianised.
• Street fashion is associated with youth culture.
• Street fashion is seen in major urban centers.

L1 Premise

A woman wearing a yellow tank top and white pants is looking into a
window on a city street, where street fashion, often associated with youth
culture, is prominently displayed in major urban centers like Carnaby Street,
a pedestrianised shopping street in Soho, City of Westminster.

L1 Hypothesis
A woman wearing a tank top and pants looks through some glass, embodying
the street fashion that is often seen in major urban centers and is closely
associated with youth culture.

L2 Facts

• Fashions from small urban youth groups influenced elite designers and
mass-market manufacturers in the middle of the decade.

• Fashion examples include miniskirts, culottes, and go-go boots, along with
less common PVC dresses.

• The 1960s fashion featured diverse trends and broke many traditions,
adopting new cultures.

• London is situated on the River Thames in southeast England and has been
a major settlement for nearly 2,000 years.

• London is the capital and largest city of England and the UK, with a
population of 9,841,000 in 2025.

(continued on next page)
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Label Text

L2 Premise

A woman wearing a yellow tank top and white pants is looking into a
window on a city street, where street fashion, often associated with youth
culture, is prominently displayed in major urban centers like Carnaby Street,
a pedestrianised shopping street in Soho, City of Westminster. The 1960s
fashion featured diverse trends such as miniskirts, culottes, go-go boots, and
less common PVC dresses, breaking many traditions and adopting new
cultures, influenced by small urban youth groups that impacted elite
designers and mass-market manufacturers in the middle of the decade.
London, situated on the River Thames in southeast England, has been a major
settlement for nearly 2,000 years and had a population of 9,841,000 in 2025.

L2 Hypothesis

A woman wearing a tank top and pants looks through some glass, reflecting
the influence of street fashion seen in major urban centers like London, which
is situated on the River Thames in southeast England and has been a major
settlement for nearly 2,000 years. Fashion examples include miniskirts,
culottes, and go-go boots, along with less common PVC dresses, where
fashions from small urban youth groups influenced elite designers and
mass-market manufacturers in the middle of the decade.

L3 Facts

• Street fashion is linked to youth culture and is commonly found in major
urban centers.

• The neighborhood is historically known for clothing production and has a
high concentration of fashion-related uses.

• Magazines and newspapers often feature candid photos of individuals in
urban, stylish clothing.

• Fashion capitals are cities with significant influence on the international
fashion scene.

L3 Premise

A woman wearing a yellow tank top and white pants is looking into a
window on a city street, where street fashion, often associated with youth
culture, is prominently displayed in major urban centers like Carnaby Street,
a pedestrianised shopping street in Soho, City of Westminster. Street fashion
is linked to youth culture and is commonly found in major urban centers, and
the neighborhood is historically known for clothing production with a high
concentration of fashion-related uses. London, the capital and largest city of
England and the UK, is located on the River Thames in southeast England,
has been a major settlement for nearly 2,000 years, and had a population of
9,841,000 in 2025. Fashion capitals are cities with significant influence on
the international fashion scene, and magazines and newspapers often feature
candid photos of individuals in urban, stylish clothing.

(continued on next page)
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Label Text

L3 Hypothesis

A woman wearing a tank top and pants looks through some glass, in a
neighborhood historically known for clothing production, where street
fashion is prevalent and magazines often feature candid photos of individuals
in urban, stylish clothing, reflecting the influence of fashion capitals like
London, which is situated on the River Thames in southeast England and has
been a major settlement for nearly 2,000 years. Fashion examples include
miniskirts, culottes, and go-go boots, along with less common PVC dresses.
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H HUMAN AUDIT

H.1 ANNOTATOR GUIDELINE

Purpose. Evaluate the enhanced NLI items for absolute quality. Judge: (i) the NLI relation, (ii)
factual correctness with respect to the provided fact list, (iii) internal consistency, (iv) redundancy,
and (v) readability. Do not use outside sources or personal knowledge.

Materials per item.

• Sample texts: a premise and a hypothesis.

• Fact list: 3–15 atomic facts (short, self-contained statements) used to construct or justify
the sample.

Core labeling principles (from standard NLI practice).

1. Judge the hypothesis relative to the premise, not real-world truth.

2. Use only minimal, text-licensed inference: paraphrase, synonymy, simple hyper-
nymy/hyponymy, obvious arithmetic, and straightforward temporal/order reasoning.

3. Use the fact list as the only external support. If a central claim is not supported or clearly
entailed by the facts, mark it unsupported.

4. Prefer certainty over plausibility. If the premise does not guarantee truth or falsity,
choose Neutral.

How to read.

1. Read the premise and hypothesis carefully.

2. Read the fact list: skim once for coverage, then re-read to verify specific claims in the texts
against the facts.

3. Factuality rule: judge factuality only against the fact list. New content not supported (or
clearly entailed) by the listed facts is unsupported.

What to answer (absolute, five-part judgment).

1. Absolute NLI label (E/N/C): choose Entailment (premise makes the hypothesis certainly
true), Contradiction (certainly false), or Neutral (neither guaranteed nor refuted).

2. Internal contradiction (yes/no): mark “yes” if the premise and hypothesis (or content inside
them) contradict themselves or each other, independent of the fact list.

3. Redundancy (none/some/many): rate repetition or trivial paraphrase without a new rea-
soning step: None (no noticeable repetition), Some (occasional), Many (frequent, length-
inflating).

4. Factuality w.r.t. fact list (supported/partially/unsupported): check each central claim
against the facts only.

5. Readability (Likert 1–5): 1 (unreadable), 2 (poor), 3 (adequate), 4 (good), 5 (clear and
natural).

Allowed vs. not allowed.

• Allowed: paraphrase, synonymy, simple hypernymy/hyponymy, basic arithmetic, direct
temporal reasoning, transitivity—when licensed by the text/facts.

• Not allowed: web search, outside knowledge, multi-hop world knowledge not in the facts,
speculative assumptions.
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Submission checklist (per item).

• Absolute NLI label (E/N/C).
• Internal contradiction: yes/no (+ short note if “yes”).
• Redundancy: none/some/many (+ brief reason if “many”).
• Factuality vs. fact list: supported/partially/unsupported (cite fact IDs if helpful).
• Readability: 1–5.

REFERENCE EXAMPLES

A. NLI label (E/N/C) examples

• Entailment (E).
Premise: “The match was postponed due to heavy rain.”
Hypothesis: “Weather caused the match to be delayed.”

• Contradiction (C).
Premise: “The museum is closed on Mondays.”
Hypothesis: “The museum is open every Monday.”

• Neutral (N).
Premise: “A chef entered the kitchen.”
Hypothesis: “The chef prepared pasta.”

B. Internal contradiction example

• Yes (contradictory).
Premise: “The event starts at 8 pm and starts at 9 pm.”
Hypothesis: (any)

C. Redundancy examples

• None. “The match took place in Paris.” (no repetition)
• Some. “The match took place in Paris, France.” (light paraphrase once)
• Many. “The match took place in Paris, which is in France. The game occurred in France,

specifically Paris.” (repeated content)

D. Factuality vs. fact list examples

• Facts: F1 “The Eiffel Tower is in Paris.” F2 “Roland Garros is a tennis venue in Paris.”
• Supported.

Premise: “The final was held at Roland Garros in Paris.”
Hypothesis: “The final took place in Paris.”
Why: Premise aligns with F2; hypothesis follows from the premise.

• Partially.
Premise: “The final was held at a major stadium.”
Hypothesis: “The final took place in Paris.”
Why: “Major stadium” is underspecified by F1/F2; location remains unclear.

• Unsupported.
Premise: “The final was held in Berlin.”
Hypothesis: “The final took place in Paris.”
Why: Conflicts with the premise and not backed by F1/F2.

E. Readability anchors (Likert)

• 1 (unreadable). “Win match rain delay heavy because.” (severe errors)
• 3 (adequate). “The match was delayed due to rain; wording is a bit awkward but clear.”
• 5 (clear). “Heavy rain delayed the match.” (natural and fluent)
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H.2 HUMAN EVALUATION SETUP

Scope and blinding. Annotators see only the enhanced premise and hypothesis plus a compact
fact list (3–15 atomic facts) for each item. They do not see original/root texts, original labels, model
predictions, or the system variant (Full vs. ablation). Item order is individually randomized to avoid
order and fatigue effects.

Sampling. We draw a stratified sample from the enhanced pool with strata defined by dataset
(SNLI, MNLI) and level L ∈ {1, 2, 3}. The sampling frame contains 9,824 SNLI items per level
and 19,647 MNLI items per level. Within each (dataset, L) stratum, we uniformly sample without
replacement a target of ns items—SNLI: ns=20 per level; MNLI: ns=40 per level. This yields

Nenhanced = (3× 20)SNLI + (3× 40)MNLI = 180.

Where feasible, we balance the root label distribution (E/N/C) at sampling time only to ensure
coverage; annotators are not shown root labels.

Separately, from the NO-FILTER ablation sets we sample L=3 only: 20 SNLI items and 40 MNLI
items, i.e.,

Nablation = 20SNLI + 40MNLI = 60.

Thus the combined total is

Nall = Nenhanced + Nablation = 240.
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