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Abstract

Contemporary large models often exhibit behaviors suggesting the presence of
low-level primitives that compose into modules with richer functionality, but these
fundamental building blocks remain poorly understood. We investigate this compo-
sitional structure in linear layers by asking: can we identify/synthesize linear trans-
formations from a minimal set of geometric primitives? Using Clifford algebra, we
show that linear layers can be expressed as compositions of bivectors—geometric
objects encoding oriented planes—and introduce a differentiable algorithm that
decomposes them into products of rotors. This construction uses only O

(
log2 d

)
parameters, versus O(d2) required by dense matrices. Applied to the key, query,
and value projections in LLM attention layers, rotor-based layers match the perfor-
mance of strong baselines such as block-Hadamard and low-rank approximations.
Our findings provide an algebraic perspective on how these geometric primitives
can compose into higher-level functions within deep models.

1 Introduction

There is growing consensus [Kozachkov et al., 2023] that, like biological systems, modern models
may internally rely on low-level primitives that compose to form modules with more complex
functionality [Weiss et al., 2021]. This compositional perspective was one motivation behind capsule
networks [Sabour et al., 2017], which explicitly modeled part-whole relationships through vector-
based capsules. But the task of localizing and characterizing such primitives remains challenging
albeit interesting. A general capability to compose pre-trained modules in a prescribed way could,
in principle, lead to a larger model with predictable and more controllable functionality [Zou et al.,
2025, Schug et al., 2024, Ghazi et al., 2019, Abnar et al., 2023, Press et al., 2023], with potential
applications ranging from safety guardrails to interpretability.
Some recent results suggest some progress in this direction. In mixture-of-experts architectures
[Masoudnia and Ebrahimpour, 2014, Riquelme et al., 2021], specialized sub-networks are condi-
tionally activated and composed via routing [Büchel et al., 2025]. Model merging has evolved from
simple parameter averaging to more sophisticated alignment of different model latent representations
[Lähner and Moeller, 2024]. Fine-tuning methods like LoRA [Hu et al., 2021] implicitly assume that
low-dimensional adjustment of a base network should suffice—essentially a two-level composition.
Each approach offers a distinct perspective on composition (e.g., see Chytas et al. [2024]) but are not
focused on addressing how the mechanistic composition of low-level primitives gives more complex
behavior. To this end, mechanistic interpretability [Rai et al., 2024] and neurosymbolic methods
[Yang and Chaudhuri, 2022] explore this space, but are still in a nascent stage of development.

Scope of this paper. Consider a core module—with millions of parameters—in a large model. Can
we synthesize its functionality from its most basic primitives? How many such objects would we need?
This casts our broader interest in composition into a concrete problem: identifying a minimal set of
irreducibles that combine in specific ways to realize the full functionality of the module. We study this
problem for linear layers—noting that linear layers make up a large portion of parameters in large
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language models (LLMs). While prior work suggests various parameter-efficient approximations, our
interest is not only function approximation, rather to build up the functionality by characterizing its
algebraic structure. To formalize the above intuition, we use the language of Clifford algebra, where
linear transformations naturally decompose into simple bivectors—geometric objects representing
oriented planes. This view reveals how the functionality of a linear layer can be synthesized as a
structured composition of a few hundred geometric objects (parameters).
Our key contributions are: (a) We express linear transformations as compositions of geometric
primitives—specifically, bivectors in Clifford algebra—using rotor sandwich products acting on local
subspaces of an input multivector. This requires O

(
log2 d

)
scalar parameters, compared to O

(
d2
)

for dense layers, where d is the input/output dimension. (b) We propose a differentiable invariant
decomposition algorithm that maps bivectors to their corresponding rotors in closed-form, which
enables integration with autograd and gradient-based optimization. (c) Empirically, we replace
the key, query, and value projections in LLM attention layers and show comparable downstream
performance in accuracy and perplexity across various datasets.
Our goal is to show the feasibility of this algebraic decomposition approach. It is not a drop-in
replacement yet, since practical benefits will require additional system-level integration beyond the
scope of this work. The focus here is on the underlying algorithmic and mathematical foundations.

2 Preliminaries
We review some relevant concepts from Clifford algebra (also see Hestenes and Sobczyk [2012]).

Clifford algebra. A Clifford algebra, Clp,q(R), is an associative algebra over Rn equipped with
a quadratic form of signature (p, q), where n = p+ q. The algebra admits two basic products: the
inner product and outer (wedge) product, denoted by · and ∧ respectively. Their sum defines the
geometric product, which for vectors u, v ∈ Rn takes the form:

uv ≜ u · v + u ∧ v.

The algebra is generated by orthogonal basis vectors e1, . . . , en, called generators, satisfying:

e2i = +1 for 1 ≤ i ≤ p; e2j = −1 for p < j ≤ n; ei ∧ ej = −ej ∧ ei for i ̸= j.

e1

e2

e3

e1 ∧ e2

e 1
∧ e

3 e2 ∧ e3

e1 ∧ e2 ∧ e3
e1

e2

e3

Figure 1: The basis vectors,
bivectors, and trivector for Cl(3)

These relations encode the metric and orientation of the underlying
space. The algebra has a canonical basis of 2n elements: the scalar 1
and all distinct products of the basis vectors e1, . . . , en. In particular,
basis bivectors are wedge products of two distinct basis vectors,
i.e., ei ∧ ej = eiej for i < j. More generally, basis k-vectors are
wedge products of k distinct basis vectors (see Fig. 1), and there
are

(
n
k

)
such elements for each k. The total number of such basis

elements is the dimension of the algebra. The reversion, given by
†, reverses the order of basis vectors. For example, (e1e2)† = e2e1
and (e1e2e3)

† = e3e2e1.
The algebra decomposes into a direct sum of subspaces indexed by
grade: scalars (grade 0), vectors (grade 1), bivectors (grade 2), and
general k-vectors, which are linear combinations of corresponding
basis elements. A multivector is a general element of Clp,q(R),
expressed as a linear combination of components of multiple grades.
For example, e1e2 is a basis bivector; e1e3 + 2e2e3 is a bivector;
and 1+ (2e2 + e4)− e1e3 is a multivector composed of elements of
grades 0, 1, and 2. We denote the subspaces of vectors and bivectors
by Cl1(R) and Cl2(R), and more generally, Clk(R) for grade-k
elements. The algebra naturally splits into even and odd subalgebras based on grade parity. The
even subalgebra Cl+(n) ⊂ Cl(n) consists of elements of even grade (scalars, bivectors, 4-vectors,
etc), while odd elements include vectors, trivectors, and so on. Some well-known algebraic systems
arise as special cases of Clifford algebras: the real numbers R ∼= Cl0,0(R), the complex numbers
C ∼= Cl0,1(R), the quaternions H ∼= Cl0,2(R), and the hyperbolic numbers Cl1,0(R). This way,
Clifford algebras naturally generalize familiar algebraic systems by incorporating geometric structure.
To keep notations short, we write Clp,q(R) as Cl(p, q) and only consider Cl(n, 0), denoted as Cl(n).
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3 Algebraic Structure of Rotor-based Transformations

We aim to describe standard linear transformations in terms of the algebraic structure of Clifford
algebra. We begin by noting how any linear map can be expressed as a sum of multivector products,
and then show how restricting to rotors in the Spin group is helpful.

Clifford form of linear transformations. A linear map between two vector spaces is one that
preserves additivity and homogeneity. Traditionally, such transformations are represented as dense
matrices with independent parameters. In contrast, we consider Cl(n) and write these transformations
in terms of the geometric product between multivectors—algebraic objects that encode both magnitude
and orientation. We first restate a textbook result.
Lemma 1. (Hestenes and Sobczyk [2012]) Let at and bt denote multivectors in Cl(n). Any linear
function F from Clk(n) to Cl(n) can be written as the finite sum for some width w <∞,

F (x) =

w∑
t=1

atxbt. (1)

e1 e2

e3

x rxr†

π
6e1 ∧ e2

rotor r

ex
p

Figure 2: The sandwich product rotat-
ing a vector 60◦ in the e1 ∧ e2 plane.

This result shows that linear transformations in Clifford algebra
can be expressed as products involving multivectors acting
from both the left and right. Thus, Clifford algebra gives us
a way to represent a general, arbitrary linear map. But there
is a cost: arbitrary multivectors have too much freedom and
require all 2n parameters of the full Clifford algebra, which
makes the representation inefficient. We will constrain at and
bt to preserve rotational symmetries, leading to the Spin group

Spin(n) ≜
{
r ∈ Cl+(n)|rr† = 1

}
where Cl+(n) ⊂ Cl(n) is the even subalgebra and † denotes grade-wise reversion. The Spin group
captures the set of orientation-preserving rotations within Cl(n). The elements r ∈ Spin(n), called
rotors, act on multivectors x ∈ Cl(n) through the sandwich product as shown in Fig. 2,

x 7→ rxr†. (2)
Applying multiple rotors in parallel instantiates Lem. 1, where at = rt and bt = r†t . We clarify
that while the general Clifford algebra can represent any linear map, restricting to Spin(n) limits
transformations to orthogonal (rotation-preserving) ones. Consequently, our construction does not
capture arbitrary linear maps. In practice, expressivity is recovered by combining multiple rotor
modules acting on different subspaces and aggregating their outputs (see Sec. 5). While this sandwich
form is useful, we must efficiently parametrize these rotors. To do so, we first observe the relationship
between Spin(n) and the more familiar rotation group, SO(n).
Fact 1 (Gallier and Quaintance [2020]). Spin(n) is a double cover of the special orthogonal group
SO(n) for n ≥ 3.

This relationship is important in that while Spin(n) and SO(n) are topologically different (hence the
“double cover”), they share the same infinitesimal structure—namely, their Lie algebra. This allows
using parametrization techniques for SO(n) to represent elements of Spin(n). In particular, we will
see that rotors can be generated from bivectors via the exponential map, just as rotation matrices arise
from skew-symmetric matrices.
Remark. For vector inputs x, the sandwich product rxr† performs the same rotation as the corre-
sponding matrix in SO(n). However, the full utility of rotors becomes clear when x is multivector:
the transformation extends to higher-grade components within the Clifford algebra, going beyond the
vector subspace. This makes rotors especially suitable for operating on the richer representations.

We return to the question: can we efficiently represent rotors so that at, bt in Lem. 1 belong to
Spin(n)?

Constructing rotors from bivectors. Rotors in Spin(n) can be parametrized via bivectors: grade-
2 elements of Cl(n) that encode oriented planes of rotation. To understand this parametrization, we
examine the connection between rotors and rotation matrices via Lie groups and their Lie algebras.
Definition 1. A Lie group G is a smooth manifold with the usual group properties along with smooth
(infinitely differentiable) group operations. Its associated Lie algebra is a vector space equipped with
an antisymmetric, bilinear operation [X,Y ], called the Lie bracket, satisfying the Jacobi identity.
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Figure 3: The [bivector→ invariant decomposition→ rotor de-
composition→ rotor] process that enables exact parametrization.
Note that a pure rotor is one that corresponds to a simple bivector.

Let us check examples. Spin(n) and
SO(n) are different Lie groups with
the same Lie algebra. Specifically, the
Lie algebra of skew-symmetric matrices,
so(n) ≜

{
B ∈ Rn×n|B = −BT

}
, un-

derlies both Spin(n) and SO(n), de-
spite their topological differences. This
shared structure is important. The ex-
ponential map gives a surjective corre-
spondence between so(n) to SO(n) as

exp(B) =

∞∑
i=0

Bi

i!
, (3)

showing that every rotation in SO(n) can be realized as exp(B) for some B ∈ so(n) using only
dim(so(n)) =

(
n
2

)
independent parameters—fewer than the n2 entries of a matrix [Lezcano-Casado

and Martínez-Rubio, 2019]. The bridge to the Clifford algebra setting is from another key isomor-
phism:
Fact 2 (Doran and Lasenby [2003]). The space of skew-symmetric matrices is isomorphic to that of
bivectors, i.e., so(n) ∼= Cl2(n).

Given a skew-symmetric matrix B ∈ so(n), the corresponding bivector b ∈ Cl2(n) is constructed as

b =
∑

1≤i<j≤n

Bi,j ei ∧ ej .

Similar to the exponential map relating so(n) and SO(n) (i.e., exp(B) generating rotations in SO(n)),
every rotor r ∈ Spin(n) is the exponential of some bivector b ∈ Cl2(n) given explicitly by the series

r = exp(b) =

∞∑
i=0

bi

i!
, (4)

where bk is the k-fold geometric product of b with itself. This means that we can encode a rotor with
only dim

(
Cl2(n)

)
=

(
n
2

)
parameters—the dimension of the bivector space.

Main advantage. At first glance, our parametrization may seem to offer no advantage. We have
parametrized both Spin(n) and SO(n) from the same

(
n
2

)
parameters from so(n). Notice that

while SO(n) acts only on n-dimensional vectors, rotors in Spin(n) act on a subset of the full 2n-
dimensional space of multivectors. By utilizing rotors as the action on multivector input and bivectors
as our irreducible primitives, we will use exponentially fewer parameters.
Example 3.1. A d× d dense matrix with d = 2048, common in self-attention blocks and projection
layers (e.g., in LLaMa), uses more than 4M parameters. If w (e.g., ≃ 3) is the width hyperparameter
in Lem. 1, approximating with bivector irreducibles requires only w

(
log2 d

2

)
= 55 w.

This reduction (to 55× 3) comes from identifying bivectors as the primitive that generate rich linear
maps through composition. Note that the infinite series in (4) is problematic due to the need for
approximation. We avoid this by presenting a closed-form solution that preserves differentiability.

4 Algorithmic Implementation and Analysis of our Rotor-gadget

We discussed above how rotors can be parametrized through bivectors via the exponential map in (4).
A remaining challenge is the infinite series. Of course, we can truncate to a finite length and incur
approximation errors. However, for a special class of bivectors, the exponential map admits an exact
closed-form solution, which prevents any approximation errors. Moreover, this form remains fully
differentiable. We describe the details of this alternative here.

4.1 Closed-form differentiable computations of rotors

A key observation is that when a skew-symmetric matrix B ∈ so(n) generates a rotation restricted to
a single 2-dimensional plane, the matrix exponential in (3) reduces to a finite closed-form expression—
mirroring the simplicity of the classic Rodrigues formula for axis-angle rotations [Goldstein et al.,
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Algorithm 1 Differentiable Inv. Decomp.

Require: b ∈ Cl2(n), v ∈ Cl1(n)k−1

Ensure: Inv. Decomp. {b1, . . . bk},
singular vectors {v1, . . . , vk−1}

1: Initialize decomp, vectors← ∅, ∅
2: for i = 1 to k − 1 do
3: bs, vi ← Projsimple(b, vi)
4: b← b− bs
5: decomp← decomp ∪ {bs}
6: vectors← vectors ∪ {vi}
7: end for
8: decomp← decomp ∪ {b}
9: return decomp, vectors

Algorithm 2 GA Power Iteration

Require: b ∈ Cl2(n), v ∈ Cl1(n),
threshold ϵ ∈ R

Ensure: Approximate Projsimple(b)
1: vprev ← v
2: while ∥v + vprev∥ > ϵ do
3: vprev ← v
4: v ← b⌞(b⌞v)
5: v ← v/∥v∥2
6: end while
7: σu = b⌞v
8: bs ← σu ∧ v
9: return bs, v

2002]. An analogous simplification holds for bivectors. The exponential map in (4) admits a
closed form when b ∈ Cl2(n) is simple, meaning it can be written as b = u ∧ v for some vectors
u, v ∈ Cl1(n), or equivalently b ∧ b = 0. This ensures that b represents a single-plane rotation rather
than a composition of rotations. The resulting closed-form expression is:

exp(b) = cos(∥b∥) + sin(∥b∥)
∥b∥

b. (5)

This form is exact [Doran and Lasenby, 2003]. However, restricting to simple bivectors is limiting,
as simple bivectors span only a subset of Cl2(n), and thus generate only a subset of Spin(n). To
capture the full expressivity of rotor-based transformations, we wish to extend to general bivectors.

Building bivectors from simple bivectors. To utilize the closed-form exponential in (5) while
retaining the full richness of Cl2(n), we need a way to express arbitrary bivectors in terms of
simple ones. Fortunately, Roelfs and Keninck [2021] show that any bivector b ∈ Cl2(n) admits an
invariant decomposition as a sum of at most k ≜ ⌊n/2⌋ mutually commuting, orthogonal, simple
bivectors {b1, b2, . . . , bk}. This decomposition has two key advantages: (1) each component bi admits
an efficient closed-form solution exp(bi) in (5) since bi is simple, and (2) mutual commutativity
ensures exp

(∑k
i=1 bi

)
=

∏k
i=1 exp(bi), via the standard Lie algebra identity exp(X + Y ) =

exp(X) exp(Y ) when their commutator [X,Y ] = 0. In so(n), the Lie bracket is [X,Y ] = XY −
Y X , which vanishes when X and Y commute. With these benefits in place, the remaining question
is how to construct the decomposition? A recent result provides a spectral formulation in terms of the
eigenvectors and eigenvalues of b, stated below.

Lemma 2 (Thm. 4.8 in Eelbode et al. [2024]). Let b ∈ Cl2(n) have as many eigenvectors as its
effective pseudo-dimension. Then, we have

b =

k∑
j=1

µj

vµ+
j
∧ vµ−

j

vµ+
j
· vµ−

j

,

where σ(b) = {±µ1, . . . , µk} is the spectrum of b and vµ+
j

and vµ−
j

are partner eigenvectors.

Differentiable invariant decomposition. While the invariant decomposition can be computed
using eigendecomposition, standard algorithms pose challenges. The eigenvalues of a bivector
come in conjugate pairs, and singular values come in positive pairs, making differentiation (and
backpropagation) not as straightforward due to the numerical instability of eigen-decomposition for
near-degenerate singular values. To address this, we introduce a Krylov subspace-inspired algorithm
that iteratively extracts the simple bivectors without requiring explicit eigendecomposition. The
procedure is shown in Alg. 1. It includes a subroutine for projecting a bivector onto the manifold of
simple bivectors, which we accomplish with a Clifford algebraic adaptation of the power iteration
method shown in Alg. 2. This uses right contraction b⌞v, which extracts the components of b that lie
in the direction of v, avoiding the need to construct explicit matrix representations.
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The projection has the closed-form expression Projsimple(b) = σ(u ∧ v) where σ is the top singular
value of b, and u, v are the corresponding left and right singular vectors. Note that because of sign
symmetry of the paired singular vectors, we detect convergence by the sum, not their difference,
and threshold ϵ. Further discussion and proofs of Alg.1 –2 are in Appendix B. We provide a full
visualization of bivector to rotor in Fig. 3.

Computation graph size. To control the size of the computation graph, we adapt DEQ [Bai et al.,
2019]: we run the fixed-point iteration without gradient tracking, and then perform a single final
forward pass with tracking enabled. This ensures that the graph scales only with k (number of
components in decomposition), and not the number of iterations in Alg. 2, which depends on the
spectral gap and threshold ϵ. Also, while one could initialize v in Alg. 2 using a non-differentiable
SVD, this is unnecessary. Under small perturbations of b, the singular vectors vary smoothly. This
follows from matrix perturbation results, which guarantees that in non-degenerate cases, eigenspaces
vary analytically with the matrix entries (Ch. 2 of Kato [1980]). Thus, warm-starting with the
previous singular vectors yields fast convergence, if gradient steps are not too large.

4.2 A Generalized Rotor Gadget

x ∈ Rdin xIi ∈ Cl(n)
i ∈ {1, 2, 3}

yOj ∈ Cl(n)
j ∈ {1, 2}

y ∈ Rdout

Six rotors
ψrij ,sij

pooling

Figure 4: Rotor architecture with c1 = 3 and c2 = 2.
An input x is split into

{
xIi

}
i∈[c1]

, each mapped to yOj

via rotor maps ψrij ,sij , for each j ∈ [c2]. The outputs{
yOj

}
are pooled and assembled into the final output y.

Occasionally, we may need mappings between
arbitrary dimensional spaces. To do so, we now
describe a generalized rotor gadget. Instead
of the standard sandwich product in (2), we
can allow two different rotors on left/right for
more expressiveness. Define the rotor-based
transformation as:

ψr,s(x) ≜ rxs†, (6)

where r, s ∈ Spin(n). This construction, how-
ever, assumes the linear map acts on data with
dimension of the Clifford algebra, a power
of 2. To address this, we use multiple rotor-
sandwich modules operating on different sub-
spaces. For arbitrary input and output dimen-
sions din and dout, we utilize the rotor-sandwich
modulesψr,s(x) as building blocks to construct
a map ψ : Rdin → Rdout . Fix positive integers c1, c2, and n with 2n ≤ min(din, dout) and let
[h] ≜ {1, 2, . . . , h}. For each i ∈ [c1] and j ∈ [c2], define Ii ⊆ [din] and Oj ⊆ [dout] as 2n subsets of
input and output coordinates, respectively. We associate each pair with a rotor map ψrij ,sij defined
by rotors rij , sij ∈ Spin(n), parametrized by their corresponding bivectors aij , bij ∈ Cl2(n). Then,
each sub-module operates on Cl(n) and computes the rotor-sandwich action ψrij ,sij : RIi → ROj .
The full output is defined by aggregating all c1c2 rotor maps:

ψ(x) ≜ σ
({
ψrij ,sij

(
xIi

)
| i ∈ [c1], j ∈ [c2]

})
, (7)

where σ is a pooling operator on the outputs of ψrij ,sij . Note that ∪iIi = [din] and ∪jOj = [dout]
are needed to fully cover the input and output dimensions. This gives us a general rotor-based
transformation from arbitrary input and output dimensions parametrized by bivectors which is
visualized in Fig. 4. We now analyze the number of learnable parameters ψ requires.

Theorem 1 (ψ Parameter Count). Let ψ : Rdin → Rdout be the mapping defined above, composed of
rotor modules ψrij ,sij with i ∈ [c1] and j ∈ [c2], each acting in Cl(n) with 2n ≤ min(din, dout) ≜ d.
The total number of learnable parameters is upper bounded by

2c1c2

(
n

2

)
= O

(
log2 d

)
.

Thm. 1 shows that rotor maps use only O
(
log2 min(din, dout)

)
parameters. In comparison, a standard

dense layer and rank-r factorization require O(dindout) and O(r(din + dout)), respectively.
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5 Experiments

Goals. We empirically evaluate rotors by replacing key, query, and value linear layers in pre-
trained LLMs and measuring downstream performance on perplexity (PPL) and accuracy. Our
experiments span multiple models and datasets. The main goals are to: (G-1) Demonstrate the
feasibility of composing linear layers from bivector primitives by assessing whether rotors match
baseline performance of Low-Rank and Block-Hadamard approximations across diverse settings.
(G-2) Quantify rotor parameter efficiency compared to dense and approximate alternatives. (G-
3) Analyze how rotor architectural choices—such as width and depth—affect performance.
We focus on linear layers in smaller pre-trained language models (up to 1.5B parameters), where
reduced redundancy compared to larger models makes preserving performance harder. We do not
attempt full model conversion—which would require larger calibration datasets and a layerwise
optimization scheme like GPTQ [Frantar et al., 2022]. Instead, we selectively replace 1-3 attention
layers (key, query, and value projections) to isolate the effect, and assess whether rotor decomposition
offers competitive PPL and accuracy relative to baselines.

End-to-end training with rotors. While the main LLM experiments train rotor layers to mimic
individual dense layers in isolation (see Sec. 5.1), we also assess their behavior when used throughout
a network trained jointly from scratch. To keep the setup lightweight, we replace all dense layers
in a simple MLP (except the classification head) with rotor layers and train the model end-to-end
on FMNIST [Xiao et al., 2017] under identical conditions as the dense baseline. Details and results
are provided in Sec. 5.2, with experimental settings in Appendix C. With this experiment, we aim to
complement the layerwise LLM analysis by testing full-network training with rotor layers.

5.1 Experimental Setup

Substituting attention layers. Given x ∈ Rd to a transformer block, we have:

Attn(x) =
[

softmax
(

mask
(
QK⊤
√
d

))
V

]
Wo,

where the query, key, and value linear projections are defined as Q = Wqx, K = Wkx, and
V =Wvx, with Wq , Wk, and Wv as dense learnable matrices. We jointly replace these linear layers
in 1–3 selected attention layers with rotors or baseline approximations, keeping other parameters fixed
except, for consistency, retraining the corresponding output linear layer Wo after each substitution.

Dataset Method LLaMa-3.2 1B Qwen-2.5 1.5B
one two three one two three

L
og

-P
PL

W
ik

ite
xt

2 Original ———– 2.575 ———– ———– 2.287 ———–
LR1 2.688 3.455 4.956 2.350 2.402 2.591
LR4 2.658 2.729 2.880 2.342 2.372 2.548
BH1 2.636 2.700 2.779 2.323 2.388 2.558
Rotor 2.629 2.717 2.818 2.307 2.369 2.515

C
4

Original ———– 3.151 ———– ———– 2.834 ———–
LR1 3.414 4.071 5.001 2.884 2.910 2.985
LR4 3.390 3.315 3.504 2.874 2.905 2.980
BH1 3.343 3.262 3.404 2.865 2.897 2.975
Rotor 3.261 3.285 3.428 2.854 2.900 2.977

PT
B

Original ———– 3.260 ———– ———– 2.985 ———–
LR1 3.358 4.684 6.904 3.046 3.151 3.225
LR4 3.316 3.400 3.466 3.034 3.127 3.192
BH1 3.293 3.355 3.395 3.025 3.101 3.168
Rotor 3.327 3.392 3.442 3.011 3.109 3.202

A
cc

ur
ac

y
(%

)

A
rc

C
ha

lle
ng

e Original ———– 58.37 ———– ———– 66.09 ———–
LR1 50.78 50.44 44.26 55.06 50.97 44.55
LR4 53.84 53.39 45.95 57.48 54.51 60.77
BH1 54.83 54.25 49.61 60.11 49.27 60.68
Rotor 55.31 54.50 49.64 61.34 52.27 47.28

H
el

la
sw

ag Original ———– 41.00 ———– ———– 55.00 ———–
LR1 36.17 28.93 14.47 42.53 32.33 13.93
LR4 38.02 33.79 33.87 44.41 40.53 11.27
BH1 39.10 35.27 35.87 45.96 42.73 13.06
Rotor 39.33 34.94 37.52 50.20 40.60 6.868

Table 1: Log-PPL (↓) and accuracy (↑) using original, Low-Rank (r = 1
or 4), BH1, and Rotor (ours) for 1–3 layer replacements. One-layer
results are averaged over all layers; two/three-layer results are averaged
over five random selections. Red indicates best, blue second-best per
setting.

Training protocol and architec-
tural choices. To fit each sub-
stitute layer (rotor, LR, or BH),
we extract hidden states from the
pre-trained model and minimize
MSE between the projected out-
puts of the original and approx-
imated layers. Each variant is
trained independently using the
Adam optimizer [Kingma and
Ba, 2017]. In our rotor architec-
ture, depth refers to the number
of stacked rotor maps ψ, while
width denotes the number of par-
allel rotor maps within each layer.
For example, the rotor map in
Fig. 4 has both width and depth
equal to 1 (i.e., one rotor map).
We also insert fixed permutations
between rotors to enable grade
mixing and add normalization
layers to stabilize training; both
are parameter-free. All architec-
tural details and hyperparameters
are provided in Appendix C.
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Dataset Method One layer replaced (Layer index)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Wikitext2 (↓)
LR1 3.620 2.750 2.754 2.781 2.742 2.705 2.703 2.714 2.695 2.622 2.632 2.628 2.612 2.630 2.647
LR4 3.851 2.723 2.752 2.673 2.673 2.650 2.671 2.667 2.674 2.620 2.628 2.614 2.602 2.620 2.634
BH1 3.615 2.686 2.675 2.645 2.657 2.637 2.645 2.653 2.647 2.612 2.617 2.612 2.592 2.606 2.614
Rotor 2.924 2.665 2.664 2.645 2.664 2.635 2.642 2.640 2.640 2.607 2.616 2.613 2.593 2.611 2.566

C4 (↓)
LR1 4.433 3.297 3.440 3.274 3.300 3.276 3.309 3.282 3.292 3.205 3.284 3.271 3.192 3.236 3.214
LR4 4.432 3.292 3.404 3.250 3.266 3.250 3.264 3.260 3.281 3.203 3.204 3.191 3.187 3.219 3.208
BH1 4.293 3.288 3.276 3.212 3.230 3.215 3.241 3.230 3.276 3.196 3.193 3.184 3.174 3.194 3.194
Rotor 3.660 3.258 3.292 3.232 3.242 3.228 3.249 3.245 3.248 3.197 3.196 3.187 3.176 3.202 3.203

PTB (↓)
LR1 5.401 3.468 3.435 3.406 3.419 3.346 3.358 3.401 3.363 3.322 3.281 3.308 3.271 3.322 3.292
LR4 5.183 3.394 3.395 3.316 3.347 3.304 3.315 3.334 3.328 3.281 3.276 3.265 3.264 3.308 3.287
BH1 4.835 3.352 3.336 3.293 3.324 3.288 3.292 3.307 3.302 3.273 3.266 3.268 3.255 3.265 3.270
Rotor 4.194 3.412 3.403 3.356 3.369 3.320 3.338 3.336 3.326 3.278 3.271 3.300 3.266 3.300 3.284

Arc
Challenge (↑)

LR1 50.64 53.22 46.78 46.35 45.49 51.07 52.79 51.93 33.05 50.21 56.65 55.80 56.65 55.08 55.79
LR4 50.64 53.22 50.64 51.93 54.51 55.79 54.08 51.07 46.35 51.07 58.80 59.23 57.51 56.22 57.51
BH1 53.22 54.51 52.79 54.94 57.08 54.08 53.65 52.36 51.93 50.21 57.94 57.94 57.08 58.80 57.51
Rotor 54.51 55.36 53.65 55.36 54.51 55.79 54.51 53.22 52.36 50.64 58.37 60.09 56.65 57.94 57.08

HellaSwag (↑)
LR1 29.00 32.00 34.33 39.67 34.00 33.00 34.00 33.00 34.67 37.00 41.00 38.33 40.33 40.00 39.67
LR4 32.67 39.67 34.67 39.00 37.67 37.00 35.00 38.67 33.67 37.67 41.33 40.00 40.33 40.33 40.00
BH1 37.33 37.67 37.67 41.00 37.00 40.00 40.33 37.00 36.33 36.33 42.67 40.00 41.33 42.00 41.33
Rotor 40.00 39.67 35.67 42.33 41.00 38.67 36.67 38.67 36.00 36.67 42.00 39.67 40.33 42.00 40.67

Dataset Method Two layers replaced (Layer pairs)
10,11 10,12 10,13 10,14 10,15 11,12 11,13 11,14 11,15 12,13 12,14 12,15 13,14 13,15 14,15

Wikitext2 (↓)
LR1 2.724 2.702 2.695 2.697 2.718 2.757 2.731 2.756 2.757 2.768 2.723 2.741 2.729 2.863 2.862
LR4 2.703 2.674 2.662 2.669 2.694 2.691 2.662 2.669 2.694 2.660 2.665 2.676 2.686 2.708 2.758
BH1 2.677 2.660 2.645 2.650 2.656 2.670 2.643 2.662 2.660 2.645 2.656 2.657 2.655 2.680 2.700
Rotor 2.679 2.670 2.654 2.660 2.676 2.662 2.652 2.667 2.677 2.667 2.667 2.675 2.662 2.688 2.745

C4 (↓)
LR1 3.298 3.273 3.258 3.296 3.293 3.315 3.276 3.315 3.303 3.263 3.300 3.281 3.285 3.278 3.386
LR4 3.290 3.258 3.249 3.279 3.269 3.265 3.255 3.287 3.271 3.241 3.278 3.246 3.281 3.268 3.353
BH1 3.281 3.241 3.228 3.246 3.244 3.242 3.227 3.246 3.244 3.216 3.237 3.226 3.234 3.232 3.296
Rotor 3.267 3.246 3.231 3.256 3.254 3.248 3.232 3.260 3.257 3.223 3.252 3.241 3.249 3.247 3.327

PTB (↓)
LR1 3.385 3.386 3.367 3.410 3.402 3.418 3.370 3.418 3.367 3.486 3.423 3.371 3.431 3.455 3.619
LR4 3.345 3.319 3.320 3.348 3.336 3.326 3.315 3.353 3.332 3.300 3.317 3.313 3.367 3.335 3.419
BH1 3.315 3.307 3.297 3.304 3.310 3.309 3.287 3.332 3.301 3.281 3.293 3.298 3.294 3.300 3.345
Rotor 3.336 3.343 3.311 3.349 3.334 3.339 3.303 3.342 3.299 3.311 3.359 3.336 3.352 3.342 3.441

Arc
Challenge (↑)

LR1 43.06 46.07 46.50 48.21 43.92 46.93 55.51 57.23 55.94 52.94 54.65 54.65 54.22 55.51 54.65
LR4 42.92 48.50 48.07 51.07 49.79 59.23 56.65 59.23 57.94 58.80 56.65 57.51 56.22 55.36 57.94
BH1 43.35 48.50 51.07 50.21 50.64 59.66 58.37 58.80 56.65 57.94 59.23 57.51 57.94 55.65 58.37
Rotor 45.49 48.93 53.65 52.79 51.50 57.94 57.94 58.80 56.65 59.66 56.65 57.08 57.03 55.79 57.05

HellaSwag (↑)
LR1 32.00 35.00 36.00 40.33 34.00 37.67 41.67 39.33 41.33 34.00 40.33 39.33 40.33 43.00 40.67
LR4 32.33 35.33 38.33 38.33 36.67 39.00 41.67 41.00 42.33 40.00 38.00 39.00 40.00 39.00 37.67
BH1 37.33 37.67 35.67 40.33 39.33 39.33 41.00 41.67 41.33 40.33 43.67 40.67 42.67 40.67 40.67
Rotor 36.00 37.67 38.67 38.67 37.67 39.33 41.67 41.33 41.33 39.33 41.67 39.00 41.00 40.33 40.33

Table 2: Performance on log-PPL (↓) and accuracy (↑) when replacing one attention layer (top) for layer
indices 1–15 and two attention layers (bottom) for pairs of indices from 10–15 of LLaMa-3.2 1B. Methods
are Low-Rank (r = 1 and 4), BH1, and Rotor.

Models, datasets, and baselines. We evaluate on two pre-trained LLMs: LLaMa-3.2 1B [Touvron
et al., 2023] and Qwen-2.5 1.5B [Qwen et al., 2025]. Metrics include log perplexity (↓) on three
language modeling datasets—Wikitext2, C4 [Dodge et al., 2021], and PTB [Marcus et al., 1993]—
and accuracy (↑) on two multiple-choice benchmarks—Arc Challenge [Clark et al., 2018] and
HellaSwag [Zellers et al., 2019]. We compare rotors to: (a) LR1 and LR4: Low-rank projections
with rank r = 1 or 4, where a dense matrix W ∈ Rdout×din is approximated as XY , with X ∈ Rdout×r

and Y ∈ Rr×din . (b) BH1: Block-Hadamard [Zeng et al., 2023] of depth 1, which approximate W by
BH , where H is a fixed Hadamard matrix and B is block-diagonal and learnable. Parameter counts
for all the methods are detailed in Tab. 4; reference LLM performance (with dense matrices) are
shown in Tab. 1. Additional experiments are provided in Appendix D.

5.2 Results and Discussion

Parameter efficiency. As shown in Tab. 4, rotors require significantly fewer parameters than both
dense and approximate baselines. For example, in LLaMa-3.2 1B, the query projection uses over
4.19M parameters in its dense form, compared to 16.4K in LR4, 32.7K in BH1, and just ≤ 896 in
rotors—4700× reduction over dense and 18× over LR4. Similar savings apply across key and value
layers, directly supporting G-2.
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#Epoch 1 2 3 4 5 6 7 8 9 10

Dense 85.05 86.23 87.17 88.07 87.90 88.54 89.07 89.36 89.53 89.67
Rotor 80.80 82.05 82.60 82.38 86.14 86.75 86.74 86.52 87.94 88.36

Table 3: Accuracy (%) on FMNIST over 10 epochs for dense and rotor-based MLPs.

Compute cost. Rotor layers are currently slower in wall-clock runtime. Depending on rotor width
(w) and depth (d), inference is roughly w × d times slower than dense layers in our experiments.
In terms of FLOPs, rotor layers require 35.8M × (wd) and 82.4M × (wd) on LLaMa-3.2 1B and
LLaMa-3.2 3B, compared to 206.1M and 515.3M for dense layers—owing to their block-diagonal
structure. These reductions arise naturally from the geometric formulation rather than from explicit
sparsity constraints. During training, gradient storage and backpropagation through the decomposition
(Fig. 3) add minor additional cost. Optimized kernels and hardware-aware implementations could
exploit this structure much better, as well as offer memory-bandwidth benefits discussed in Sec 7.

Rotor performance vs. baselines. Despite their compact size, rotors match or outperform LR1,
LR4, and BH1 across most datasets and models. In Tab. 1, on Wikitext2, rotors achieve 2.629
log-PPL in LLaMa-3.2 1B (vs. 2.636 for second-best BH1), and 2.307 in Qwen-2.5 1.5B (vs.
2.323 for second-best BH1) when a single attention layer is replaced. On Arc Challenge, rotor
layers yield 55.31% accuracy in LLaMa-3.2 1B (vs. 54.83% for BH1) and 61.34% in Qwen-2.5
1.5B (vs. 57.48% for LR4). Rotor projections are consistently either the best or second-best across
most settings.
Tab. 2 confirms rotor robustness across layer combinations. For example, replacing layers 12 and 13
in Qwen-2.5 1.5B yields 59.66% accuracy on Arc Challenge, outperforming LR4 (58.80%) and
BH1 (57.94%). In contrast, LR1, despite having 2–5× more parameters than rotors, shows significant
performance drops (e.g., log-PPL on Wikitext2 for LLaMa-3.2 1B). These results confirm G-1 and
show that rotors match downstream performance of other baselines only using far fewer parameters.
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Figure 5: Effect of rotor width and depth. Replac-
ing Layer-13 in Qwen-2.5 1.5B with rotors of vary-
ing depth and width. The dashed line (9.845) indicates
convergence to the base model’s perplexity.

In Fig. 5, PPL consistently decreases with both
increasing rotor width and depth. The strongest
improvements occur from depth 1 to 2, after which
gains taper off. This trend suggests that both stack-
ing more layers (depth) and using more parallel
rotor maps (width) contribute to better approxima-
tion of linear layers—showing G-3.

Results of end-to-end training on FMNIST. As
shown in Tab. 3, the dense network improves faster
in early epochs, while the rotor-based model learns
more gradually but reaches a comparable final
accuracy (89.67% vs. 88.36%). This suggests
that end-to-end optimization with rotors is slightly
slower—potentially due to the high compression—but ultimately competitive with dense layers.
Overall, the LLM results support our claim: rotor layers—constructed from bivector primitives—offer
insight into how linear layers can be synthesized from a compact set of building blocks. Moreover,
the FMNIST experiment shows that rotor layers are feasible when trained jointly with the rest of the
network end-to-end from scratch. Our full codebase, including datasets and hyperparameters for all
experiments, is available at https://github.com/vsingh-group/ComposingLinearLayers.
Key architectural and training details are also provided in Appendix C.

6 Related Work

Compositions in machine learning. Building complex model behavior from composition of
simpler compute primitives is an active research topic. Capsule networks [Sabour et al., 2017]
modeled part-whole relations, while mixture-of-experts [Riquelme et al., 2021] and model merging
[Lähner and Moeller, 2024] compose specialized sub-modules in a conditional manner. Recent studies
show how internal circuits in LLMs organize around functional units [Weiss et al., 2021]. In NLP,
Tree-structured models [Tai et al., 2015] have been used to encode syntactic composition, while works
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on compositional semantics [Mitchell and Lapata, 2008] investigate how word meanings compose
to form sentence meanings. The ability to understand new combinations of familiar components
remains a challenge [Zhou et al., 2024, Lake and Baroni, 2018] and a few strategies are being studied
[Li et al., 2022, Chen et al., 2020, Chytas et al., 2024]. Other directions include modular approaches
[Das et al., 2018, Pfeiffer et al., 2023].

Method Key Query Value

Dense 1048576 4194304 1048576
LR1 2560 4096 2560
LR4 10240 16384 10240
BH1 8192 32768 8192
Rotor ≤ 1080 ≤ 896 ≤ 1080

Table 4: Summary of the number of pa-
rameters used for key, query, and value
projections in a single attention layer of
LLaMa-3.2 1B.

Approximating linear layers. To reduce the cost of
dense layers, various structured approximations are com-
mon. Low-rank factorization such as LoRA [Hu et al.,
2021] constrains weights to rank-r matrices. Other matri-
ces such as circulant [Yu et al., 2014, Cheng et al., 2015],
Toeplitz [Sindhwani et al., 2015], Walsh-Hadamard [Alam
et al., 2024], and Block-Hadamard [Zeng et al., 2023],
among others, have been shown to be resource efficient.
Our goal is to understand the compositional structure of
the linear transformation itself. Resource efficiency is the
result, not the key motivation.

Clifford/Geometric algebra in ML. Recent works have explored Clifford algebra for encoding
geometric structure in ML models. GCANs [Ruhe et al., 2023b] and CGENNs [Ruhe et al., 2023a]
construct equivariant layers by combining GA-based transformations. Clifford neural layers [Brand-
stetter et al., 2023] was applied to physical modeling tasks. GA has been connected to convex training
of ReLU networks [Pilanci, 2024] and randomized methods for multivector representations [Wang
et al., 2024] are available. GA has also been used for time-series models [Chen et al., 2025].

7 Conclusions and Future Work

We show that the functionality of standard linear layers can be expressed with exponentially fewer
parameters, O

(
log2 d

)
versus O

(
d2
)
, while maintaining competitive performance when applied to

attention mechanisms in modern LLMs. In particular, our experiments on 1–1.5B parameter models
demonstrate that rotor-based modules can effectively reproduce the behavior of dense linear layers
when trained in isolation, while our end-to-end experiment on FMNIST shows their feasibility when
trained jointly with the rest of the network from scratch. The underlying algebraic structure reveals
a rich compositional hierarchy, where geometric primitives combine through rotor operations to
form expressive yet compact transformations. This is achieved by mapping bivector parameters to
their corresponding rotor operations. These insights open several promising directions, including
the development of interpretable architectures and parameter-efficient models that leverage this
compositional structure. Beyond that, our framework connects to statistical models involving
interaction decomposition, such as ANOVA [St et al., 1989], multivariate analysis [Mardia et al.,
2024], and mechanisms to approximate Shapley features [Chen et al., 2023]. For example, modeling
high-order dependencies in statistical learning often suffers from exponential parameter growth.
While ideas such as Tucker tensor decomposition [Li et al., 2018] factorize the full coefficient tensor,
our framework offers an alternative by mapping k predictor variables to a multivectorX and modeling
the response variable via a rotor transformation as ŷ = ⟨exp(a)X exp(b)†⟩0 learned from O(k2),
where (a, b) are learned bivectors from our algorithms. This constructs interaction spaces through the
composition of 2-way primitives.

Practical considerations. Our current implementation remains computationally demanding, since
it does not yet exploit the inherent sparsity or algebraic structure of rotor decompositions (see
Appendix A for a discussion of limitations). In parallel, a promising direction is to leverage these
ideas to mitigate memory bandwidth bottlenecks that dominate large-model inference. As noted
in Davies et al. [2025], (i) memory capacity requirements for frontier LLMs exceed hundreds of
gigabytes, and (ii) memory bandwidth, rather than compute, is the primary bottleneck for inference
throughput. Our approach directly addresses (ii): instead of loading millions of dense-layer weights
from memory, rotor layers can, in principle, synthesize them on-chip from a small set of geometric
parameters, effectively trading compute for memory bandwidth. Future work will focus on developing
sparse and hardware-aware Clifford kernels to realize these gains in practice and on extending the
framework to full-model training and dynamic rotor composition for scalable deployment.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claim made in the abstract is that we can express a linear layer in
O(log2 d) parameters with algebraic primitives. The framework is detailed in Sections 3
and 4 with supporting experimental results in Section 5 and Appendix D.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in Appendix A.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The proofs of Alg. 1 and 2 are in Appendix B.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We detail the experimental setup in Section 5 and give hyperparameters and
training details in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We include our codebase and instructions to run the code in supplementary
material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The details are given in Section 5 with hyperparameters and additional details
on data splits and experiments given in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Error bars are not reported for accuracy because it would be too computation-
ally expensive. See Appendix C for GPU hours and resources required.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Appendix C for GPU hours and memory requirements.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This paper conforms, in every respect, with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This is a technical paper that has no societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

18

https://neurips.cc/public/EthicsGuidelines


• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risk.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets, models, and pre-existing code bases used are cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: None used
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

In the Appendix, we provide additional discussions, formal proofs, and further experimental details
that support the main paper. Section A outlines the limitations of this work. Section B presents the
proofs of the algorithms and theorems, along with general results for certain special cases. Section
C describes the hyperparameters and training setups used in the experiments. Section D includes
additional experimental results.

A Limitations

While our results demonstrate feasibility, they remain theoretical at this stage—though rotor layers
achieve competitive performance when replacing attention layers, the benefits are primarily in a
radical parameter count reduction rather than immediate compute speedup in practice. Realizing such
gains will require dedicated systems-level optimizations beyond the scope of this work.
Our current implementation relies on dense matrix representations of rotors and does not yet exploit
the inherent sparsity of the rotor decomposition. Leveraging this sparsity will require new backpropa-
gation schemes and software libraries, particularly when training from scratch. We discuss the matrix
representation and sparse structure of rotors in detail in Section B.
Overall, this work is intended to highlight the feasibility and promise of decomposing linear layers—
key building blocks in modern large models—into smaller (potentially geometric) modules, such as
bivectors and rotors, to facilitate more compact and interpretable architectures.

B Proofs

B.1 Correctness Proofs for Main Algorithms

We prove the correctness of Alg. 1 and 2 in the theorems below.

Theorem 2. Given a bivector b ∈ Cl2(n), a random vector v ∈ Cl1(n) that has a non-zero
component in the direction of the dominant simple component, and a threshold ϵ ∈ R, Alg. 2 returns
an approximate simple projection of b in a differentiable way.

Proof. Let B ∈ so(n) be the skew-symmetric matrix corresponding to b. We begin by showing that
b⌞v = Bv for any vector v. Fix an orthonormal basis {e1, . . . , en} of Rn and let

b =
∑

1≤i<j≤n

bij(ei ∧ ej) and v =

n∑
k=1

vkek,

noting that [B]ij = bij for 1 ≤ i < j ≤ n and [B]ij = −bji for 1 ≤ j < i ≤ n. It is easy to verify
that (ei ∧ ej)⌞v = vjei − viej . By bilinearity of the right contraction, we have

b⌞v =
∑
i<j

bij(vjei − viej)

=
∑
i<j

bij(vjei)−
∑
i<j

bij(viej)

=
∑
i<j

bij(vjei)−
∑
j<i

bji(vjei) swapping i and j

=
∑
i<j

[B]ij(vjei) +
∑
j<i

[B]ij(vjei)

=
∑
i

∑
j

[B]ijvj ei =
∑
i

(Bv)iei = Bv.

It follows that
b⌞(b⌞v) = b⌞Bv = B2v = −BTBv.

Since B2 is symmetric, we may apply the power iteration method. Observe, by skew-symmetry, the
non-zero eigenvalues of B come in conjugate pairs

{±iσ1,±iσ2, . . . ,±iσk},
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with σ1 ≥ σ2 ≥ · · · ≥ σk and k ≤ ⌊n/2⌋. An associated orthonormal set of complex eigenvectors
can be written as {uj ± ivj}j≤k. Since σ1, the dominant eigenvalue for B2, has multiplicity 2, the
power method on B2 will not converge in a single direction. Instead, it will oscillate within the
two-dimensional span of {u1, v1} Wilkinson [1965].
Let v be one of the singular vectors on which the algorithm terminates. Since singular vectors are
unique up to rotation, WLOG we choose v to be the right singular vector. Then, the left singular
vector u and singular value σ satisfy b⌞v = Bv = σu by definition.
By the Eckart-Young-Mirsky theorem [Golub and Van Loan, 2013], the best rank-2 approximation to
B is its projection onto its simple two-dimensional subspace spanned by top two singular directions:

Projsimple(b) = σ1u1v
T
1 + σ2u2v

T
2 .

As the singular values come in pairs for B, this reduces to σ1
(
u1v

T
1 + u2v

T
2

)
. But for B, the two

right singular vectors v1, v2 and the two left singular vectors u1, u2 lie in the same two-plane, coming
from the dominant eigenvalue conjugate pair, ±iσ1. Thus, we can choose u2 = v1 and v2 = −u1 (or
vice versa), which ensures u1 ⊥ v1 and u2 ⊥ v2. It follows that

Projsimple(b) = σ1
(
u1v

T
1 − v1u

T
1

)
= σ1(u1 ∧ v1).

Since Alg 2 solves only approximately for σ(u ∧ v) ≈ σ1(u1 ∧ v1), we have that

Projsimple(b) ≈ σ1(u1 ∧ v1).
Note that since the right contraction implementation is differentiable, Alg 2 is differentiable.

Theorem 3. Given b ∈ Cl2(n) and k − 1 many vectors v ∈ Cl1(n), Alg. 1 returns the invariant
decomposition in a differentiable way.

Proof. The heavy lifting is done by Eelbode et al. [2024] in Lem. 2, which states that b can be written
as the sum of at most k commuting, orthogonal, simple bivectors

b =

k∑
j=1

µj

vµ+
j
∧ vµ−

j

vµ+
j
· vµ−

j

where {±µ1,±µ2, . . . ,±µk} is the spectrum of b and vµ+
j

and vµ−
j

are partner eigenvectors.

To obtain the full decomposition, it suffices to iteratively extract each term. If we have a differentiable
subroutine to find the first term, then we can subtract it from b, apply the same routine to the residual,
and repeat. Thus, it suffices to prove that the first term in the sum is equal to the projection of b onto
the simple bivectors.
From the proof of Alg. 2, we know that

Projsimple(b) = σ(u ∧ v)
where σ is the largest singular value and u, v are the corresponding left and right singular vectors.
We wish to show that

σ(u ∧ v) = µ1

vµ+
1
∧ vµ−

1

vµ+
1
· vµ−

1

.

The partner eigenvectors take the form vµ+
1
= u+ iv and vµ−

1
= u− iv, as cited in the proof of Alg.

2. Then, the numerator reduces to

vµ+
1
∧ vµ−

1
= (u+ iv) ∧ (u− iv)

= u ∧ u− iu ∧ v + iv ∧ u+ v ∧ v
= −iu ∧ v + iv ∧ u
= −2iu ∧ v.

as the wedge product is antisymmetric. The denominator reduces to

vµ+
1
· vµ−

1
= (u+ iv) · (u− iv)

= u · u− iu · v + iv · u+ v · v
= u · u+ v · v
= 2
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as singular vectors are orthonormal. Since µ1 = iσ, we have that

µ1

vµ+
1
∧ vµ−

1

vµ+
1
· vµ−

1

= iσ
−2iu ∧ v

2
= σ(u ∧ v) = Projsimple(b),

as desired. Subtraction is differentiable and as Projsimple(b) can be found in a differentiable way,
this algorithm is differentiable.

B.2 Parameter Count

We revisit the main theorem on the parameter count for rotor maps and provide a proof of the
statement.

Theorem 4 (ψ Parameter Count). Let ψ : Rdin → Rdout be a linear map composed of rotor modules
ψrij ,sij with i ∈ [c1] and j ∈ [c2], each acting in Cl(n). Let 2n ≤ d ≜ min(din, dout). Then, the total
number of learnable parameters is upper bounded by

2c1c2

(
n

2

)
= O(log2 d).

Proof. Each rotor is the exponential of a bivector. As general bivectors are a linear combination of
basis bivectors, of which there are

(
n
2

)
, parametrizing a bivector takes

(
n
2

)
scalar parameters. Hence,

a single rotor-sandwich map ψrij ,sij is parametrized using 2
(
n
2

)
scalar parameters. The result is then

immediate, since there are c1c2 such modules, corresponding to all input and output pairs.

Tab. 7 summarizes the number of parameters required for each key, query, and value projection per
attention layer using different replacement methods across all LLMs used in our experiments.

B.3 Technical Analysis of Matrix Representation of Rotor Application

We implement the sandwich product in (2), along with other operations such as grade-restricted
wedge and inner products, using the torch_ga Clifford algebra package for PyTorch, available at
Alesiani. In our implementation of (2), the rotor action is represented by a matrix M . In this section,
we describe the construction of M and introduce some of its key properties. These results highlight
the special orthogonality and block structure of M . While the two-rotor map ψr,s(x) in (6) does not
satisfy these properties exactly, it appears to share similar properties and structure; we do not discuss
it here.
We compute the sandwich product using a change-of-basis matrix.

Definition 2. Let r ∈ Spin(n), and let {eJ}J⊆[n] denote the canonical basis of Cl(n) (where J is
an ordered multi-index). Define

Nr = [τ(ψr(eJ))]J⊆[n],

where ψr(x) = rxr† and τ is the canonical vector-space isomorphism τ : Cl(n) → R2n . That is,
each row of Nr is the coefficients of reJr† expressed in the basis. We refer to Nr as the change-of-
basis matrix for r.

Lemma 3. Let x ∈ Cl(n), r ∈ Spin(n), and Nr be defined as in Def. 2. Then, the two mappings

x 7→ xNr and x 7→ rxr†

are the same linear map up to isomorphism.

Proof. Write x as
x =

∑
J⊆[n]

xJeJ ,

where xJ is the real coefficient of the basis element eJ . Let τ : Cl(n) → R2n be the canonical
vector-space isomorphism that gives the row vector coordinates of the multivector, ϕr(x) = rxr†

for x ∈ Cl(n), and δ(y) = yNr for y ∈ R2n . To prove ϕ and δ are the same up to isomorphism, we
must prove that τ(ϕr(x)) = δ(τ(x)) for all x ∈ Cl(n).
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For each basis element eJ , the sandwich product gives some multivector ψ(eJ) = reJr
†, which we

express as

reJr
† =

∑
I⊆[n]

[Nr]J,IeI ,

since (Nr)J,I stores the coefficient of eI in reJr† by definition. Then,

τ(ϕr(x)) = τ
(
rxr†

)
= τ

r
 ∑
J⊆[n]

xJeJ

 r†


= τ

 ∑
J⊆[n]

xJreJr
†


= τ

 ∑
J⊆[n]

xJ

 ∑
I⊆[n]

[Nr]J,IeI


= τ

 ∑
I⊆[n]

 ∑
J⊆[n]

xJ [Nr]J,I

 eI


=
∑
I⊆[n]

 ∑
J⊆[n]

xJ [Nr]J,I

 τ(eI) by linearity

= τ(x)Nr

= δ(τ(x))

where the second to last step follows as the inner sum is the dot product of τ(x) with the Ith column
of Nr.

This allows us to compute the rotor sandwich product via matrix multiplication. However, this gives
us very little insight into the structure of Nr itself. For one, Nr must respect the grade-preserving
property of rotors, meaning it is a block diagonal matrix. The following alternative view provides
more insight into its structure.

A more revealing view of Nr. Let b ∈ Cl2(n) be the bivector associated with r ∈ Spin(n) by
r = exp(b), and let B ∈ so(n) be the corresponding skew-symmetric matrix. Let R ≜ exp(2B) ∈
SO(n) via the matrix exponential map. For each grade 0 ≤ k ≤ n, set

Mk ≜ Ck(R) ∈ R(
n
k)×(

n
k),

where Ck(R) is the kth compound matrix of R. Algebraically, Ck(R) is the kth exterior power of R,
i.e., the unique linear map

∧k
(R) such that

k∧
(R)(m1 ∧m2 ∧ · · · ∧mk) = Rm1 ∧Rm2 ∧ · · · ∧Rmk

for all mi ∈ Rn for i ∈ [k] [Conrad, n.d.].

Definition 3. Let Mk be the kth compound, or exterior power, of R. Stack the Mk on the diagonal to
form

M ≜ diag(M0,M1, . . . ,Mn) ∈ R2n×2n .

We first show that Nr and M are in fact the same matrix.

Theorem 5. Let Nr and M be defined as in Def. 2 and 3. Then, M = Nr.
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Proof. The rotor sandwich product is a grade-preserving automorphism, implying ψr(Cl
k(n)) =

Clk(n). Thus, Nr is block-diagonal, one block per grade. First, we show ψr(v) = Rv for a vector v,
where R = exp(2B). Observe

rvr† = ebv
(
eb
)†

= ebveb
†
= ebve−b,

where the second equality follows as reversion is an anti-automorphism and the third equality
follows as b† = −b. Now, consider the adjoint operator in an associative algebra defined as
adX(Y ) ≜ [X,Y ] = XY − Y X . The Hadamard lemma and Taylor expansion together imply

ebve−b =
∑
k≥0

1

k!
(adb)

k(v) = exp(adb)v.

We also note the following identity:

adb(v) = bv − vb = (b · v + b ∧ v)− (v · b+ v ∧ b) = 2b · v = 2Bv,

where B is the skew-symmetric matrix for b. Putting these together, it follows that ψr(v) ≜ rvr† =
exp(2B)v = Rv. Now, consider any k-vector v = ei1 ∧ · · · ∧ eik . We have

ψr(v) = ψ(ei1) ∧ · · · ∧ ψ(eik) ψr is a grade-preserving automorphism
= (Rei1) ∧ · · · ∧ (Reik) from above

=

k∧
(R)(v).

Since the mapping is unique, we are done.

Note that this block-diagonal structure highlights the grade-preserving behavior of rotors. This
motivates our design choice to allow grade-mixing in our gadget for more expressivity. In particular,
we insert random permutations between rotor layers so that information can mix across different
grade components of the input multivector. Now that we have an alternative characterization of the
sandwich product, we analyze its structure and the space in which it lives. Below, we examine several
structural properties of the matrix M .

Property 1. The matrix M in Def. 3 is a block diagonal matrix with at most
(
2n
n

)
non-zero entries.

Proof. M = Nr by Thm. 5 and so M is block diagonal. There are n + 1 blocks, each of size(
n
k

)
×

(
n
k

)
for 0 ≤ k ≤ n. Thus, the total number of non-zero entries is at most

n∑
k=0

(
n

k

)2

=

(
2n

n

)
,

which is far less than the 22n of a dense 2n × 2n matrix.

Property 2. For every grade 0 ≤ k ≤ n, the block Mk = Ck(R) lies in SO
((

n
k

))
. Consequently,

M ∈ SO(2n).

Proof. By assumption, B ∈ so(n), and so exp(2B) = R ∈ SO(n). Taking the kth exterior power
preserves orthogonality and a determinant of 1. For each k, the kth compound matrix Mk = Ck(R)

is the matrix representation of the kth exterior power
∧k

(R) with respect to the standard basis of k-
vectors. Since R is orthogonal,

∧k
(R) preserves the induced inner product on k-vectors, making Mk

orthogonal. Moreover, since det(R) = 1, we have det(Mk) = det
(∧k

(R)
)
= (det(R))(

n−1
k−1) = 1.

Therefore, Mk ∈ SO
((

n
k

))
for all 0 ≤ k ≤ n. To prove M ∈ SO(2n), we note that since M is

block diagonal, MT = diag
(
MT

0 , . . . ,M
T
n

)
and so MTM = I as the Mk are special orthogonal.

det(M) = 1 as the determinant of block diagonal matrices is the product of the determinant of the
blocks, meaning det(M) =

∏n
k=0 det(Mk) =

∏n
k=0 1 = 1.
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Note that under this view, we obtain a map from so(n) to SO(2n) by first applying the surjective
exponential map from so(n) to SO(n), and then lifting SO(n) to SO(2n) via the exterior powers.
This transformation enables an exponential reduction in the number of parameters required to
represent rotor layers. We conclude by identifying the class of matrices which M belongs. The
following is a simple but useful characterization. The group of invertible elements of Cl(n) is

Cl×(n) =
{
a ∈ Cl(n)|∃a−1 ∈ Cl(n) st. aa−1 = a−1a = 1

}
.

Let
ϕ : Cl×(n) → GL(2n,R)

be the mapping which assigns to each a ∈ Cl×(n) its change-of-basis matrix Na. Then for any Nr

corresponding to r ∈ Spin(n),
Nr ∈ ϕ(Spin(n)).

We now give a more refined version of Prop. 2.
Property 3. Let ϕ be defined as above. Then,

ϕ(Spin(n)) = SO (2n) ∩ ϕ
(
Cl×(n)

)
.

Proof. The first direction, ϕ(Spin(n)) ⊆ SO(2n) ∩ ϕ
(
Cl×(n)

)
, is immediate. If r ∈ Spin(n), then

by definition r is an invertible element in Cl+(n) which satisfies rr† = 1s (where 1s denotes the
scalar identity). Thus, Spin(n) ⊆ Cl×(n), which implies ϕ(Spin(n)) ⊆ ϕ

(
Cl×(n)

)
. Furthermore,

Prop. 2 and Thm 5 state Nr ∈ SO(2n) for r ∈ Spin(n), which ensures ϕ(Spin(n)) ⊆ SO(2n).

For the other direction SO(2n) ∩ ϕ
(
Cl×(n)

)
⊆ ϕ(Spin(n)), we start by taking an arbitrary element

from the set on the LHS and show it must also be in the set on the RHS. Thus, we assume g ∈ Cl×(n)
(an invertible multivector) such that its corresponding matrix Ng = ϕ(g) is in SO(2n). We wish to
show g ∈ Spin(n). To do this, it suffices to prove two conditions: gg† = 1s (i.e., g is unit-norm),
and g ∈ Cl+(n) (i.e., g is an even multivector).
The matrix Ng represents the linear transformation Tg(X) = gXg†. The condition Ng ∈ SO(2n)
means that Ng is an orthogonal matrix with det(Ng) = 1s. We know that due to orthogonality, Tg
preserves the canonical inner product on Cl(n). We define this inner product as ⟨X,Y ⟩ =

〈
X†Y

〉
0
,

where ⟨·⟩0 denotes the scalar part of a multivector.
We will first show that g†g = 1s. Since Tg is an orthogonal transformation w.r.t. ⟨X,Y ⟩ =

〈
X†Y

〉
0
,

it must satisfy T ∗
g Tg = I, where I is the identity map and T ∗

g is the adjoint of Tg w.r.t. the inner
product. The adjoint T ∗

g is given by T ∗
g (Y ) = g†Y g. This can be verified by checking the main

property of an adjoint, ⟨Y, Tg(X)⟩ =
〈
T ∗
g (Y ), X

〉
:

⟨Y, Tg(X)⟩ =
〈
Y † (gXg†)〉

0

=
〈(
g†Y †g

)
X
〉
0

(cyclically permute multivectors inside

scalar part operation, ⟨MNP ⟩0 = ⟨PMN⟩0)

=
〈(
g†Y g

)†
X
〉
0

(since (ABC)† = C†B†A† and
(
A†)† = A)

=
〈
T ∗
g (Y ), X

〉
.

Now, applying the condition T ∗
g Tg = I means T ∗

g (Tg(X)) = X for all X ∈ Cl(n). Substituting the
explicit forms for Tg and T ∗

g , we get

g†
(
gXg†

)
g = X(

g†g
)
X

(
g†g

)
= X.

Let A = g†g. The equation becomes AXA = X for all X ∈ Cl(n). By the Wedderburn-Artin
theorem Cohn [2003], the Clifford algebra Cl(n, 0) is isomorphic to a matrix algebra (or a direct
sum of two such algebras) over R, C, or H. In such matrix algebras (and hence in Cl(n, 0) or its
relevant simple components where A lives, noting A is even), if an element A satisfies AXA = X
for all elements X of the algebra, then A must be a scalar multiple of the identity, specifically ±1s.
Therefore, we must have A = g†g = ±1s.
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Fix an orthonormal basis eJ (where J is an ordered multi-index). Note that e†JeJ = 1s for every eJ .
Write g =

∑
J cJeJ for scalar coefficients cJ ∈ R. Then, the scalar part of g†g is

〈
g†g

〉
0
=

∑
J c

2
J .

Since g is invertible, we have g ̸= 0, so at least one cJ ̸= 0, making this sum strictly positive. Since
g†g = λ · 1s (where λ = ±1s), its scalar part is λ. As this scalar part

〈
g†g

〉
0

must be positive, we
must conclude that λ = 1s, so g†g = 1s.
Next, we will show that gg† = 1s. From the previous result, g†g = 1s. This means g is invertible
and its unique inverse is g−1 = g†. Then, we can write gg† = gg−1 = 1s. This helps us establish the
first condition required for g to be an element of Spin(n).

Finally, we will need to show that g ∈ Cl+(n) (i.e., g is an even multivector). Since Ng ∈ SO(2n),
we have det(Ng) = 1s. Since gg† = 1s, it follows that g† = g−1. The transformation can
now be written as Tg(X) = gXg−1, which is an inner automorphism of Cl(n) induced by g;
such transformations are algebra automorphisms, meaning that they preserve the algebraic product
structure (i.e., Tg(XY ) = Tg(X)Tg(Y )). The elements g that satisfy gg† = 1s are known as versors.
Versors who are products of an odd number of vectors (odd versors) are elements of Pin(n)\Spin(n),
while those that are products of an even number of vectors (even versors) are elements of Spin(n).
Note that Pin(n) is the group of all such versors, and Spin(n) = Pin(n) ∩ Cl+(n).
We know that if g were indeed an odd versor (an element of Pin(n) \ Spin(n)), the induced
inner automorphism X 7→ gXg−1 when restricted to the vector subspace Cl1(n) is an orthogonal
transformation with determinant −1s (as it includes a reflection, reversing orientation). It is a
known result from the representation theory of Clifford algebras that the determinant of the full
automorphism Ng : X 7→ gXg−1 acting on the entire algebra Cl(n) corresponds to the parity of the
versor g. Specifically, det(Ng) = +1s if g is an even versor (i.e., g ∈ Spin(n)), and det(Ng) = −1s
if g is an odd versor (i.e., g ∈ Pin(n) \ Spin(n)). This directly links the parity of the versor g to the
determinant of the full transformation matrix Ng . Since we know det (Ng) = 1s, g must be an even
versor, i.e., g ∈ Cl+(n).

Since we have shown both gg† = 1s and g ∈ Cl+(n), we must conclude that g ∈ Spin(n) by its
definition. Thus, SO(2n) ∩ ϕ

(
Cl×(n)

)
⊆ ϕ(Spin(n)).

Prop. 3 provides an alternative characterization of the group of matrices associated with rotor
conjugation, i.e., Nr lives in the intersection of the special orthogonal group and the subgroup of
matrices defined by the group of units of Cl(n).

C Hyperparameters and Experiment Details

We detail the training configurations for all experiments involving Rotor, Low-Rank (LR), and
Block-Hadamard (BH) projections used to approximate attention layers.

C.1 Training Details

Learning approximation layers in attention. To approximate the linear projections in attention
layers of an LLM, we train all replacement modules (Rotor, LR, or BH) by minimizing mean squared
error (MSE) loss between the predicted and true projection outputs, based on latent representations
extracted from LLMs.
Formally, let W ∈ Rdout×din be the dense projection matrix (i.e., query, key, or value) we want to
approximate within a transformer block. Given hidden input x ∈ Rdin , the projection computes
y =Wx ∈ Rdout . To train an approximate layer, we collect a dataset D = {(xi, yi)}Ni=1 by prompting
the LLM with a set of prompts {Pj}j≤n (e.g., Arc Challenge) and extracting the relevant hidden
states at the target layer. Since hidden states are available for each token position in a sequence for
self-attention, we haveN = nT , where T is the average prompt length. We then learn an approximate
layer Hθ (rotors, LR, or BH) by minimizing

min
θ

N∑
i=1

(Hθxi − yi)
2,

where θ denotes the set of trainable parameters (e.g., bivector coefficients for rotors). Optimization is
done via gradient descent using the Adam optimizer [Kingma and Ba, 2017].
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We jointly replace the query, key, and value projections within an attention layer of a transformer
block. In our experiments, we replace up to three such attention layers and evaluate the resulting
model on downstream tasks of perplexity and accuracy metrics across various prompt datasets. When
replacing multiple attention layers, say layers I < J < K, we train them sequentially in order: first
I , then J , and finally K. For each layer, we first replace all earlier trained layers (e.g., I before J),
and then extract the input-output data for training the new layer under this modified model. This is to
ensure that each replacement layer is trained with respect to the distribution induced by preceding
replacements. Also, whenever we replace layer L, we retrain the output linear projection WL

o within
the same attention block, using the same MSE and Adam optimizer for consistency.

Model Key Query Value

LLaMa-3.2 1B 2048→ 512 2048→ 2048 2048→ 512
LLaMa-3.2 3B 3072→ 1024 3072→ 3072 3072→ 1024
Qwen-2.5 1.5B 1536→ 256 1536→ 1536 1536→ 256
Fox-1.0 1.6B 2048→ 512 2048→ 2048 2048→ 512

Table 5: Input/output hidden dimensions for key, query, and value projections in a single attention layer of
different LLMs.

In Tab. 5, we summarize the input and output hidden dimension for different LLMs.

Rotor networks. We define the rotor-based transformation as:

ψr,s(x) ≜ rxs†,

where r, s ∈ Spin(n). Each rotor map is then composed as

ψ(x) ≜ σ
({
ψrij ,sij

(
xIi

)
| i ∈ [c1], j ∈ [c2]

})
,

where σ is a pooling operator applied over the outputs of individual rotor transformation ψrij ,sij .
More details are given in Subsection 4.2. As discussed, each rotor is parameterized by a small number
of bivector coefficients that encode geometric rotations, leading to significantly fewer learnable
parameters compared to dense or baseline layers. A rotor layer is constructed by stacking multiple
rotor maps in depth and arranging them in parallel across width. For example, with width 2 and depth
3, the layer contains 6 rotor maps, each parameterized independently. In our experiments, to reduce
computational cost, we use at most width 2 and depth 3 for a rotor layer, which along with any up
and down projection needed that is done by the generalized version in 4.2 sums up to roughly 1000
scalar parameters per projection (i.e., per Q/K/V) layer for LLaMa-3.2 1B, compared to 1− 4M in
original dense layers.
Each rotor map is followed by a sequence of fixed (i.e., parameter-free) permutations, normalizations,
and a nonlinearity. Since rotor sandwich products are grade-preserving (see Section B), we apply
fixed permutations to enable interaction across grades and increase expressivity. We found that
normalization improves training stability.
Hyperparameters such as depth, width, learning rate, and weight decay are selected via grid search; the
final values along with the values we explored are listed in Tab. 6. All Clifford algebraic operations,
including exponentiation of simple bivectors and sandwich products, are implemented entirely in
PyTorch using the torch_ga library Alesiani, which supports differentiation. We modified several
methods in this package to reduce memory usage. For example, the original package computes the
geometric product using a very sparse three dimensional Cayley table of shape 2n × 2n × 2n [Hitzer,
2013]. However, since we only require the geometric product between a pure rotor and a multivector
when computing the sandwich product, we discard all but 1 +

(
n
2

)
parts of the third dimension, rather

than keeping the full 2n.

Low-rank approximations. We use low-rank (LR) approximation as one of our baselines, follow-
ing prior work such as Hu et al. [2021]. Given a dense matrix W ∈ Rdout×din , we approximate it as
the product of two lower-dimensional matrices: X ∈ Rdout×r and Y ∈ Rr×din , such that

W ≈ XY,

where r ≪ din, dout. This decomposition effectively constrains the rank of the approximation to
at most r, capturing a low-rank subspace of the original operator. Low-rank approximations have
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Method Hyperparameter Values Explored Final Value

Rotor

Chunk Size 1024, 2048, 4096 2048
Depth 1,2,3 1 or 3
Width 1,2,3 1 or 2
Nonlinearity ReLU, PReLU, GELU PReLU
Normalization true, false true
Permutations true, false true
Learning rate 0.001, 0.005, 0.01, 0.05 0.05
ℓ2 weight decay 0.001, 0.01, 0.1, 0 0
Batch size 16, 32, 64, 128, 256 64
Cosine annealing true, false true

Low-Rank (LR)
Learning rate 0.001, 0.005, 0.01, 0.05 0.01
ℓ2 weight decay 0.001, 0.01, 0.1, 0 0
Batch size 16, 32, 64, 128, 256 256
Cosine annealing true, false true

Block-Hadamard (BH)
Block number 64 64
Learning rate 0.001, 0.005, 0.01, 0.05 0.01
ℓ2 weight decay 0.001, 0.01, 0.1, 0 0
Batch size 16, 32, 64, 128, 256 256
Cosine annealing true, false true

Table 6: Hyperparameter settings used for each method.

been shown to be effective in downstream tasks, especially when applied as additive fine-tuning
modules to frozen large pre-trained weights. They are also computationally efficient, requiring only
O(r(dout + din)) parameters and operations. In our experiments, we choose r = 1 and r = 4, and
LR1 requires roughly 3− 5× parameters than rotor layers. Hyperparameters are listed in Tab. 6.

Block-Hadamard approximations. We adopt the Block-Hadamard (BH) projection as another
baseline. The idea is to alternate Hadamard transforms with learnable block-diagonal matrices,
enabling a trade-off between expressivity and efficiency through the block size [Zeng et al., 2023].
Formally, it is defined as

W ≈
m∏
i=1

BiH,

where each Bi is a learnable block-diagonal matrix with block size b, and H is a fixed Hadamard
transform. This approximation requires only O(b ·max(din, dout)) parameters, and can be interpreted
as analogous to grouped convolutions followed by channel shuffling [Zhang et al., 2017]. The
parameter m controls the depth of the transformation. In our experiments, we use m = 1 (i.e., BH1)
to reduce parameter count as much as possible and match the scale of rotor-based models. Even with
this minimal configuration, BH1 has 8-40× more parameters than rotors in the case of LLaMa-3.2
1B. Specifically, we use the approximation W ≈ BH , where B is a block-diagonal matrix composed
of n rectangular blocks, each of height h = dout/n and width w = din/n for the number n of blocks.
Hyperparameters are listed in Tab. 6.

Hyperparameters and model architecture of FMNIST experiments. We trained both dense and
rotor-based MLPs under identical conditions. Each model consists of 2 hidden layers (either rotor
or dense), followed by ReLU activations. All dense layers were replaced with rotor layers in our
rotor variant, except for the final classification head. The dense layers had hidden dimension of 512,
while the rotor layers used Cl(15) with width 3 and depth 1. We performed a search over learning
rates η ∈ (0.001, 0.1) and selected η = 0.005 for the rotor-based model and η = 0.002 for the dense
baseline based on validation accuracy.
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Figure 6: Number of iterations required by Alg 2 to converge within a tolerance of ϵ = 10−3, plotted against
the number of gradient updates applied to the parameters of rotors (i.e., bivector coefficients). Results are
averaged over 50 runs and simple bivectors in the invariant decomposition, with one standard deviation shown
as error bars. The results demonstrate that warm-starting with previously learned singular vectors significantly
accelerates convergence.

C.2 Computational Resources for Experiments

The experiments for each LLaMa-3.2 1B and Qwen-2.5 1.5B each took around 1500 GPU hours,
Fox-1.0 1.6B around 1000 GPU hours, and LLaMa-3.2 3B around 500 GPU hours for a total of
around 4500 GPU hours. This was spread across 8 NVIDIA A100 PCIe GPUs with 40 GBs of HBM2
memory. Total time of execution was around 3 weeks of run-time across all 8 GPUs.
A note on the execution time of the rotor gadget. We have not optimized the current code for speed or
memory. At inference time, rotor layers are implemented as dense matrix multiplications. Therefore,
its runtime scales with the depth of the rotor layer used in the replacement. In our experiments, we
used hyperparameters of at most depth 2 and width 3; with an optimized implementation, this will
result in at most 2× slowdown, since width is trivially parallelizable.
It is important to note that this corresponds to a direct implementation—we currently do not leverage
the block sparsity structure described in Section B.3, as current software support is quite limited.
Custom kernels have recently become available to batch matrix-matrix multiplication of different
dimensions, such as those available in cublasGemmGroupedBatchedEx, but our setting requires
vector-matrix multiplication. We found that this is slower than performing the dense implementation,
though performance is expected to improve significantly once specialized vector-matrix versions
become available. While custom kernels such as cublasSgemmStridedBatched support batching
matrix-matrix multiplication of the same dimension, their adaptation to rotors remains limited: even
when applied to the parallel portions of the rotor gadget, they must operate sequentially on each block
of the block sparse matrices. As a result, this gives a modest speedup, and there remains substantial
room for further optimization.

D Additional Experimental Results

In Fig. 6, we report the number of iterations required by Alg. 2 to converge within a tolerance
of ϵ = 10−3, as a function of the number of gradient updates applied to the rotors (i.e., bivector
coefficients). Synthetic data was generated with random input and having output come from the
rotation corresponding to a random bivector. Each gradient update step is towards learning that
random bivector with MSE loss. As expected, higher-dimensional projections require more iterations
to converge. Notably, warm-starting from previously learned singular values significantly reduces the
convergence speed across all dimensions, supporting our claim in Section 4.1.
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Model Method Key Query Value Total

LLaMa-3.2 1B

Dense 1,048,576 4,194,304 1,048,576 6,291,456
LR1 2,560 4,096 2,560 9,216
LR4 10,240 16,384 10,240 36,864
BH1 8,192 32,768 8,192 49,152
Rotor ≤1,080 ≤896 ≤1,080 ≤3,056

LLaMa-3.2 3B

Dense 3,145,728 9,437,184 3,145,728 15,728,640
LR1 4,098 6,148 4,098 14,344
LR4 16,384 24,576 16,384 57,344
BH1 32,768 98,304 32,768 163,840
Rotor ≤1,080 ≤1,120 ≤1,080 ≤3,280

Qwen-2.5 1.5B

Dense 393,216 2,359,296 393,216 3,145,728
LR1 1,792 3,072 1,792 6,656
LR4 7,168 12,288 7,168 26,624
BH1 4,096 24,576 4,096 32,768
Rotor ≤904 ≤896 ≤904 ≤2,704

Fox-1.0 1.6B

Dense 1,048,576 4,194,304 1,048,576 6,291,456
LR1 2,560 4,096 2,560 9,216
LR4 10,240 16,384 10,240 36,864
BH1 8,192 32,768 8,192 49,152
Rotor ≤1,080 ≤896 ≤1,080 ≤3,056

Table 7: Number of parameters for key, query, and value projections in a single attention layer of each model,
with the rightmost column showing their sum.

In Tab. 8, 9, and 10, we provide additional experimental results on Qwen-2.5 1.5B, LLaMa-3.2
3B, and Fox-1.0 1.6B [Hu et al., 2025], where a single attention layer is replaced by Rotor, LR1,
LR4, or BH1 approximations. In Tab. 11, we provide averages for single and two-layer replacements
for Fox-1-1.6B. The trends observed in the main paper persist: our rotor-based method consistently
matches the baselines with significantly fewer parameters (see Tab. 7). These results further support
our central claim: linear layers can be synthesized from a small number of geometric primitives
encoding rotations.
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Dataset Method One layer replaced (Layer index)
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Wikitext2 (↓)
LR1 2.669 2.330 2.351 2.354 2.332 2.316 2.350 2.340 2.326 2.315 2.381 2.311 2.514 2.306
LR4 2.635 2.320 2.334 2.343 2.320 2.310 2.335 2.331 2.318 2.310 2.368 2.307 2.456 2.306
BH1 2.341 2.316 2.329 2.323 2.323 2.308 2.338 2.321 2.314 2.307 2.354 2.308 2.417 2.307
Rotor 2.312 2.299 2.305 2.312 2.308 2.298 2.301 2.315 2.303 2.300 2.321 2.304 2.320 2.301

C4 (↓)
LR1 3.129 2.880 2.891 2.867 2.863 2.846 2.875 2.862 2.870 2.854 2.891 2.854 2.992 2.848
LR4 3.007 2.880 2.890 2.869 2.862 2.846 2.873 2.862 2.867 2.854 2.888 2.853 2.939 2.848
BH1 2.943 2.872 2.878 2.864 2.856 2.844 2.870 2.858 2.863 2.849 2.879 2.851 2.925 2.847
Rotor 2.892 2.863 2.861 2.856 2.852 2.841 2.846 2.854 2.852 2.848 2.861 2.848 2.858 2.845

PTB (↓)
LR1 3.115 3.034 3.063 3.073 3.011 3.023 3.081 3.031 3.033 3.023 3.102 3.019 3.173 3.018
LR4 3.110 3.021 3.063 3.055 3.006 3.015 3.076 3.030 3.028 3.012 3.078 3.018 3.150 3.017
BH1 3.091 3.007 3.046 3.044 3.004 3.007 3.076 3.020 3.022 3.007 3.064 3.015 3.101 3.012
Rotor 3.045 2.998 3.018 3.025 3.001 2.998 3.014 3.015 3.008 3.003 3.028 3.012 3.034 3.009

Arc
Challenge (↑)

LR1 62.23 63.95 59.23 47.21 60.52 66.52 52.36 58.37 57.51 50.21 40.34 58.80 22.32 57.51
LR4 59.66 62.66 64.81 54.94 60.94 66.09 56.22 62.66 66.09 58.37 55.79 61.37 9.01 58.80
BH1 63.52 64.38 58.80 60.04 62.23 63.09 62.66 63.52 65.24 60.94 58.88 59.66 53.22 50.21
Rotor 64.81 67.38 65.61 62.23 62.66 64.38 61.80 63.95 65.24 66.09 62.23 64.81 60.09 56.22

HellaSwag (↑)
LR1 36.00 47.00 45.00 46.67 50.00 51.00 50.33 44.00 17.33 36.00 46.00 52.67 31.33 20.00
LR4 38.00 54.00 46.33 48.00 51.00 55.00 56.33 51.00 26.00 43.67 49.00 54.33 31.33 20.00
BH1 45.67 48.00 46.00 48.33 48.67 50.67 51.67 52.33 38.33 44.67 48.00 51.33 24.33 32.67
Rotor 50.67 53.00 53.67 52.33 52.00 55.33 57.00 54.67 48.67 55.33 51.00 57.00 51.33 32.00

Dataset Method One layer replaced (Layer index)
15 16 17 18 19 20 21 22 23 24 25 26 27

Wikitext2 (↓)
LR1 2.317 2.304 2.314 2.317 2.323 2.316 2.331 2.316 2.309 2.301 2.409 2.300 2.316
LR4 2.317 2.304 2.314 2.317 2.323 2.316 2.331 2.316 2.309 2.301 2.409 2.300 2.316
BH1 2.313 2.301 2.314 2.316 2.320 2.311 2.311 2.315 2.309 2.300 2.398 2.297 2.309
Rotor 2.307 2.299 2.302 2.309 2.308 2.307 2.306 2.311 2.304 2.296 2.358 2.295 2.308

C4 (↓)
LR1 2.866 2.854 2.900 2.860 2.869 2.866 2.898 2.883 2.861 2.866 2.872 2.854 2.860
LR4 2.865 2.851 2.899 2.859 2.868 2.866 2.889 2.866 2.856 2.851 2.858 2.853 2.858
BH1 2.862 2.847 2.856 2.858 2.867 2.862 2.872 2.857 2.854 2.849 2.852 2.850 2.853
Rotor 2.855 2.844 2.849 2.851 2.863 2.858 2.862 2.852 2.851 2.846 2.851 2.849 2.853

PTB (↓)
LR1 3.025 3.003 3.020 3.021 3.036 3.019 3.086 3.010 3.014 3.012 3.019 3.061 3.098
LR4 3.024 3.003 3.026 3.018 3.034 3.017 3.017 3.010 3.015 2.997 3.017 3.012 3.024
BH1 3.017 3.000 3.008 3.014 3.029 3.012 3.010 3.009 3.011 2.995 3.015 3.005 3.016
Rotor 3.009 2.998 3.003 3.006 3.019 3.008 3.008 3.001 3.007 2.993 3.012 3.001 3.011

Arc
Challenge (↑)

LR1 41.20 65.24 27.90 65.24 68.24 16.31 47.64 67.38 66.95 65.67 65.24 66.09 66.52
LR4 31.76 69.1 58.37 65.24 68.24 16.31 47.64 67.38 66.95 65.67 65.24 66.09 66.52
BH1 49.79 68.67 48.50 62.23 62.24 42.49 48.93 65.24 67.81 64.39 65.31 65.79 65.24
Rotor 56.65 70.82 61.37 60.09 69.53 51.07 47.21 67.81 66.52 66.09 65.67 66.09 65.24

HellaSwag (↑)
LR1 28.67 49.67 32.67 45.67 51.00 5.67 36.33 52.67 57.33 53.33 53.67 53.67 54.67
LR4 28.67 49.67 32.67 45.67 51.00 5.67 36.33 52.67 57.33 53.33 53.67 53.67 54.67
BH1 33.67 56.67 45.67 45.67 53.33 22.67 37.67 53.67 53.67 47.67 52.33 56.00 51.67
Rotor 42.67 55.00 49.33 51.33 52.67 18.67 35.00 51.00 56.67 54.00 54.33 54.00 56.67

Table 8: Performance on log-PPL (↓) and accuracy (↑) when replacing one attention layer for layer indices
1–27 of Qwen-2.5 1.5B. Methods are Low-Rank (r = 1 and 4), BH1, and Rotor. Original log-PPL and
accuracy are: Wikitext2 2.287, C4 2.834, PTB 2.985, Arc Challenge 66.09, Hellaswag 55.00.

Dataset Method One layer replaced (Layer index)
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Wikitext2 (↓)
LR1 3.867 2.539 2.525 2.521 2.517 2.509 2.557 2.499 2.507 2.519 2.510 2.505 2.550 2.519
LR4 3.389 2.514 2.512 2.501 2.510 2.492 2.531 2.488 2.494 2.497 2.501 2.500 2.510 2.503
BH1 2.552 2.505 2.492 2.502 2.502 2.492 2.516 2.487 2.486 2.497 2.493 2.488 2.505 2.494
Rotor 2.594 2.520 2.497 2.499 2.517 2.498 2.521 2.488 2.492 2.511 2.499 2.492 2.506 2.510

Dataset Method One layer replaced (Layer index)
15 16 17 18 19 20 21 22 23 24 25 26 27

Wikitext2 (↓)
LR1 2.501 2.487 2.481 2.473 2.487 2.484 2.477 2.479 2.487 2.489 2.490 2.479 2.519
LR4 2.497 2.485 2.477 2.471 2.480 2.479 2.471 2.467 2.480 2.474 2.471 2.471 2.503
BH1 2.484 2.479 2.476 2.471 2.472 2.475 2.466 2.469 2.477 2.476 2.475 2.469 2.482
Rotor 2.488 2.481 2.477 2.471 2.476 2.478 2.466 2.471 2.482 2.484 2.482 2.477 2.496

Table 9: Performance on log-PPL (↓) and accuracy (↑) when replacing one attention layer for layer indices
1–27 of LLaMa-3.2 3B. Methods are Low-Rank (r = 1 and 4), BH1, and Rotor. Original log-PPL is 2.460.
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Dataset Method One layer replaced (Layer index)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Wikitext2 (↓)
LR1 2.645 2.573 2.549 2.535 2.531 2.546 2.550 2.533 2.581 2.540 2.557 2.546 2.538 2.538 2.536 2.546
LR4 2.614 2.568 2.538 2.535 2.530 2.544 2.545 2.531 2.570 2.538 2.552 2.535 2.538 2.538 2.536 2.534
BH1 2.633 2.548 2.545 2.534 2.530 2.545 2.544 2.531 2.577 2.536 2.550 2.538 2.537 2.537 2.534 2.532
Rotor 2.544 2.542 2.541 2.532 2.529 2.538 2.540 2.530 2.537 2.533 2.549 2.536 2.534 2.531 2.531 2.531

C4 (↓)
LR1 2.997 2.915 2.879 2.877 2.877 2.891 2.884 2.878 2.889 2.886 2.876 2.884 2.874 2.881 2.878 2.875
LR4 2.960 2.914 2.880 2.877 2.877 2.891 2.884 2.878 2.888 2.885 2.877 2.883 2.874 2.881 2.878 2.874
BH1 2.991 2.901 2.875 2.878 2.876 2.891 2.881 2.878 2.889 2.879 2.874 2.876 2.872 2.879 2.877 2.872
Rotor 2.924 2.901 2.875 2.876 2.876 2.890 2.881 2.878 2.882 2.878 2.873 2.876 2.872 2.878 2.876 2.871

PTB (↓)
LR1 3.359 3.270 3.222 3.231 3.226 3.255 3.222 3.231 3.279 3.233 3.229 3.268 3.232 3.237 3.231 3.279
LR4 3.317 3.259 3.215 3.231 3.225 3.260 3.224 3.230 3.276 3.232 3.229 3.235 3.230 3.242 3.229 3.226
BH1 3.318 3.230 3.214 3.230 3.224 3.259 3.224 3.229 3.277 3.231 3.228 3.234 3.230 3.241 3.227 3.227
Rotor 3.283 3.229 3.212 3.229 3.224 3.257 3.223 3.228 3.255 3.229 3.228 3.232 3.228 3.234 3.225 3.225

Arc
Challenge (↑)

LR1 31.76 31.33 33.05 42.06 42.49 47.64 36.48 44.64 22.75 41.63 24.03 39.48 39.91 20.17 21.03 29.18
LR4 27.47 26.61 27.90 36.91 39.06 48.50 36.05 41.20 15.45 35.19 18.88 31.33 42.06 16.74 21.03 23.61
BH1 34.33 21.46 28.33 32.19 38.20 45.06 26.61 42.49 11.59 36.48 14.16 21.89 46.78 24.89 25.75 9.44
Rotor 27.04 21.03 26.18 23.61 30.47 36.48 29.18 39.91 22.32 31.33 13.30 22.32 31.76 28.33 24.46 18.45

HellaSwag (↑)
LR1 31.33 37.00 35.33 34.33 44.00 44.67 42.67 45.33 8.33 17.33 5.00 28.67 31.33 42.67 23.33 39.00
LR4 35.67 36.67 25.00 33.00 42.67 43.33 43.00 44.67 6.33 19.00 4.33 26.67 31.33 41.33 18.67 39.33
BH1 40.00 34.00 24.67 35.33 44.33 45.00 42.67 45.33 9.67 19.67 5.33 22.67 36.00 40.00 29.67 33.33
Rotor 40.00 37.33 28.33 36.67 44.67 44.33 41.00 44.33 17.33 32.33 18.33 35.67 34.00 42.67 26.33 38.33

Dataset Method One layer replaced (Layer index)
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Wikitext2 (↓)
LR1 2.536 2.530 2.564 2.553 2.534 2.544 2.546 2.523 2.537 2.522 2.535 2.617 2.540 2.544 2.571
LR4 2.534 2.528 2.563 2.553 2.534 2.543 2.541 2.523 2.536 2.523 2.534 2.558 2.531 2.543 2.541
BH1 2.532 2.528 2.558 2.550 2.530 2.538 2.537 2.521 2.530 2.521 2.532 2.556 2.529 2.539 2.532
Rotor 2.531 2.527 2.531 2.548 2.529 2.538 2.534 2.521 2.529 2.521 2.531 2.553 2.528 2.537 2.531

C4 (↓)
LR1 2.879 2.878 2.891 2.884 2.879 2.888 2.879 2.872 2.885 2.872 2.875 2.875 2.870 2.876 2.904
LR4 2.879 2.877 2.891 2.884 2.880 2.889 2.879 2.872 2.884 2.872 2.874 2.875 2.870 2.875 2.890
BH1 2.878 2.876 2.883 2.883 2.878 2.886 2.878 2.871 2.879 2.870 2.872 2.873 2.868 2.874 2.886
Rotor 2.877 2.875 2.881 2.883 2.878 2.885 2.877 2.871 2.879 2.870 2.872 2.874 2.868 2.874 2.883

PTB (↓)
LR1 3.229 3.233 3.253 3.246 3.220 3.237 3.227 3.218 3.248 3.221 3.219 3.249 3.220 3.242 3.264
LR4 3.224 3.221 3.239 3.240 3.214 3.226 3.222 3.213 3.230 3.219 3.218 3.222 3.212 3.233 3.235
BH1 3.222 3.222 3.238 3.239 3.214 3.226 3.222 3.210 3.230 3.217 3.217 3.222 3.212 3.221 3.226
Rotor 3.221 3.220 3.232 3.238 3.213 3.225 3.220 3.210 3.228 3.216 3.217 3.220 3.211 3.220 3.223

Arc
Challenge (↑)

LR1 4.72 6.87 39.91 44.21 18.45 33.91 34.33 21.46 7.30 27.47 18.88 29.18 47.64 10.30 7.73
LR4 6.87 8.15 38.63 41.63 18.88 30.90 34.33 21.46 8.58 27.04 18.88 31.76 48.07 12.45 13.73
BH1 10.30 5.58 35.62 42.49 20.17 30.04 32.19 24.03 9.87 25.32 19.31 25.32 46.78 18.88 24.46
Rotor 20.17 18.88 25.32 33.91 21.03 30.04 26.61 24.46 11.59 26.18 21.46 24.89 45.49 19.74 24.46

HellaSwag (↑)
LR1 27.33 26.33 42.33 47.33 41.33 37.00 37.67 32.00 23.67 40.00 34.67 46.67 47.33 28.67 12.00
LR4 25.00 28.33 41.00 46.33 40.00 37.00 38.67 32.33 26.67 40.67 36.33 44.33 46.00 31.33 28.00
BH1 28.67 27.67 42.33 47.67 44.00 40.67 38.33 34.67 27.33 39.67 36.67 42.33 47.00 32.33 36.67
Rotor 33.67 34.00 33.00 34.67 37.67 41.00 38.33 34.33 29.67 39.67 33.67 40.67 46.33 31.67 38.67

Table 10: Performance on log-PPL (↓) and accuracy (↑) when replacing one attention layer for layer indices
1–31 results of Fox-1.0 1.6B. Methods are Low-Rank (r = 1 and 4), BH1, and Rotor. Original log-PPL and
accuracy are: Wikitext2 2.517, C4 2.862, PTB 3.205, Arc Challenge 24.89, Hellaswag 38.33.
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Dataset Method Fox-1.0 1.6B
one two

L
og

-P
PL

W
ik

ite
xt

2 Original —- 2.517 —-
LR1 2.550 2.589
LR4 2.540 2.578
BH1 2.538 2.573
Rotor 2.534 2.576

C
4

Original —- 2.862 —-
LR1 2.881 2.907
LR4 2.880 2.901
BH1 2.878 2.898
Rotor 2.877 2.901

PT
B

Original —- 3.205 —-
LR1 3.238 3.299
LR4 3.230 3.276
BH1 3.228 3.275
Rotor 3.226 3.259

A
cc

ur
ac

y
(%

) A
rc

C
ha

lle
ng

e Original —- 24.89 —-
LR1 29.03 26.40
LR4 27.40 27.12
BH1 26.77 31.42
Rotor 25.82 30.22

H
el

la
sw

ag

Original —- 38.33 —-
LR1 32.33 25.49
LR4 32.41 24.40
BH1 33.92 27.73
Rotor 35.14 32.87

Table 11: Log-PPL (↓) and accuracy (↑) using original, Low-Rank (r = 1 or 4), BH1, and Rotor for 1–2 layer
replacements on Fox-1.0 1.6B. One-layer results are averaged over all layers; two-layer results are averaged
over five random selections. Red indicates best, blue second-best per setting.
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