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Abstract

In recent years, generative Al has attracted significant public attention, and its
use has been rapidly expanding across a wide range of domains. From creative
tasks such as text summarization, idea generation, and source code generation,
to the streamlining of medical support tasks like diagnostic report generation and
summarization, Al is now deeply involved in many areas. Today’s breadth of Al
applications is clearly distinct from what was seen before generative AI gained
widespread recognition. Representative generative Al services include DALL-E 3
(OpenAl, California, USA) and Stable Diffusion (Stability AI, London, England,
UK) for image generation, ChatGPT (OpenAl, California, USA), and Gemini
(Google, California, USA) for text generation. The rise of generative Al has
been influenced by advances in deep learning models and the scaling up of data,
models, and computational resources based on the scaling laws. Moreover, the
emergence of foundation models, which are trained on large-scale datasets and
possess general-purpose knowledge applicable to various downstream tasks, is
creating a new paradigm in Al development. These shifts brought about by gener-
ative Al and foundation models also profoundly impact medical image processing,
fundamentally changing the framework for AI development in healthcare. This
paper provides an overview of diffusion models used in image generation Al and
large language models (LLMs) used in text generation Al, and introduces their
applications in medical support. This paper also discusses foundation models,
which are gaining attention alongside generative Al, including their construction
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methods and applications in the medical field. Finally, the paper explores how
to develop foundation models and high-performance AI for medical support by
fully utilizing national data and computational resources.

Keywords: Generative Al, Diffusion model, Large language model, Foundation
model, National AT model

1 Introduction

In November 2022, ChatGPT (OpenAl, California, USA), powered by GPT-3.5 model,
was released. Due to its significantly improved performance compared to previous
chatbot AI models, it quickly gained global attention. Around the same time, Stable
Diffusion emerged, enabling high-quality image generation and signaling a technolog-
ical transformation in image generation. Since then, generative Al has become widely
recognized, leading to numerous research projects and commercial services leveraging
this technology. Today, generative Al is used in a wide range of applications, from
creative tasks such as text generation, summarization, idea generation, illustration,
digital art, and source code generation to the streamlining of medical support tasks
like diagnostic report generation and summarization. The breadth of generative Al
applications significantly departs from the pre-generative Al era. Notable generative
AT services include DALL-E 3 (OpenAl, California, USA), Stable Diffusion (Stability
AT, London, England, UK) for image generation, and ChatGPT and Gemini (Google,
California, USA) for text generation. The rapid rise of generative AT has been driven by
advancements in deep learning models and changes in training methodologies. These
innovations can potentially reshape the framework for Al development in medical
image processing.

This paper provides an overview of diffusion models and large language models
(LLMs) used in generative AT development, along with examples of their applications

in medical image processing. Additionally, this paper discusses foundational models,
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which have garnered attention with generative Als, and explores new Al development
approaches utilizing these models. Finally, this paper examines strategies to leverage
national computational and informational resources to develop internationally compet-
itive, nationally produced foundational models and high-performance AI for medical

image processing.

2 Discriminative AI and generative Al

The introduction of AlexNet [1] in 2012 marked the beginning of active research
in image processing using deep learning. At that time, most deep learning models
took data such as images as input and produced classification or detection results
as output. These models can be categorized as “Discriminative AI.” The main tasks
performed by Discriminative Al include image classification, object detection, and
segmentation. Among these, segmentation is a process that performs pixel-wise classi-
fication. A key characteristic of Discriminative Al is that the output data contains less
information than the input data. Additionally, models such as Convolutional Neural
Networks (CNNs) and Fully Convolutional Networks (FCNs) are commonly used in
its architecture.

Generative Al, on the other hand, takes inputs such as text and produces outputs
such as text or images using a generation model. A defining feature of Generative Al
is its ability to generate high-information outputs, such as long text or images, from
relatively low-information inputs, such as short sentences. Recent Generative AT mod-
els often adopt Diffusion Models or large-scale Transformers [2] as their architecture,
although some Generative Al models still use CNNs or FCNs. Details of diffusion
models are explained in 3.2.

A common way to interact with Generative Al is by providing instructions in the
form of text, leading to the widespread use of the term “prompt” to describe the

input given to Generative AL In the past, due to Al's limited capabilities, it was
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seen as merely a machine that followed human instructions. However, with recent
advancements in Al performance, Generative Al is increasingly perceived as an entity
capable of intelligent reasoning, which has led to the adoption of the term “prompt,”
like how humans give instructions to one another.

The following chapters will discuss image generation Al and text generation Al

both of which fall under the category of Generative Al

3 Image generation Al

3.1 Overview

Previously, Variational Autoencoders (VAEs) [3] and Generative Adversarial Networks
(GANS) [4] were commonly used for image generation. VAEs offer stable training
and make it easier to evaluate training progress, but they struggle to create highly
expressive models. On the other hand, GANs can generate highly detailed images, as
seen in StyleGAN2 [5], which has demonstrated impressive facial image generation.
However, GANs suffer from unstable training and difficulty in evaluating training
progress.

Recent image generation services like DALL-E 3, Stable Diffusion, and Midjourney
can produce more visually appealing illustrations and photorealistic images than VAEs
or GANSs. These services utilize diffusion models for image generation.

This chapter discusses the mechanism of diffusion models and their applications

in medical image processing.

3.2 Diffusion models

This section provides a brief explanation of diffusion models. Diffusion models are
inspired by thermodynamics, where the concentration of substances, temperature,
and energy differences tend to equalize over time. This phenomenon occurs because

molecules within a substance undergo random motion due to thermal energy, gradually
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Fig. 1 Conceptual diagram of task-specific Al development using foundation models

mixing until they achieve a uniform distribution. The Diffusion Probabilistic Model
(DPM) [6], which forms the foundation of diffusion models, was developed based on
this diffusion process. In DPM, noise is gradually added to the data distribution,
transforming it into a completely noisy distribution (diffusion process). The model then
reconstructs the data distribution by reversing this process (reverse diffusion process).
Please note that the assumption of the existence of reverse transformations of the
diffusion process in DPM is different from the diffusion process in thermodynamics.

For image generation, a commonly used variant of DPM is the Denoising Diffusion
Probabilistic Model (DDPM) [7]. In DDPM, an image undergoes a diffusion process,
where gradual noise is added until the image is completely transformed into pure noise.
Then, through the reverse diffusion process, the model progressively removes the noise
to reconstruct an image. Since this reverse diffusion process creates an image, it is also
called the generation process. This process can be understood as a transformation from
a noise distribution to the target image distribution. Figure 1 illustrates the diffusion
and reverse diffusion processes in DDPM.

In the implementation of DDPM, the reverse diffusion process, removing noise and
reconstructing an image, is typically performed using a deep learning model such as
U-Net [8]. The U-Net is an encoder-decoder style FCN model, which is commonly used
to perform medical image segmentation. This model takes a noisy image as input and

outputs an image with slightly reduced noise. The final generated image is obtained
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by repeatedly applying this noise reduction process. Since the deep learning model
needs to reduce noise at each iteration appropriately, it receives both the step count
and generation conditions as input. The reverse diffusion process typically involves
about 1,000 steps to generate high-quality images.

In image generation, text or other images are often used to control the output. This
control is achieved by providing embedding representations of generation conditions
to the deep learning model at each step of the reverse diffusion process. For exam-
ple, in DALL-E 3, which generates images based on text descriptions, a Transformer
converts text into an embedding representation, which is then used as a generation
condition in the reverse diffusion process. Similarly, in diffusion model-based segmen-
tation methods, images are converted into embedding representations and used as

generation conditions.

3.3 Medical image generation using diffusion models

Many methods utilizing diffusion models have emerged in medical image processing,
and this section, along with the following sections, introduces some of the most rep-
resentative examples. Soon after diffusion models gained attention, medical image
generation techniques using diffusion models were proposed.

Methods for generating 2D brain MR images [9], 3D brain MR images [10], and 4D
cardiac MR images [11] using diffusion models have been introduced, and these papers
indicate that they achieve better results than GAN-based image generation. Addi-
tionally, diffusion models have been applied to generate laparoscopic images during
surgery [12, 13]. These laparoscopic image generation methods introduced techniques
to control the presence of surgical instruments and organs in the generated images.
Zhou et al. [12] used text descriptions as generation conditions, while Venkatesh et al.

[13] used label images. In these approaches, text or label images are first converted
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into embedding representations, which are then fed into the diffusion model for image
generation.

Here, this paper examines how generated medical images can benefit computer-
aided medical applications. While diffusion models can generate realistic medical
images, these generated images are not actual patient images and, therefore, cannot
be used directly for diagnostic or therapeutic support. However, this does not mean
that generated medical images are useless. Image generation using diffusion models
allows the incorporation of text descriptions, label images, and other generation con-
ditions, making it possible to produce images that accurately reflect real anatomical
structures, diseases, and intraoperative conditions when appropriately controlled. As
a result, generated medical images play a valuable role in data augmentation for train-
ing deep learning models used in diagnostic and therapeutic support. Compared to
traditional data augmentation techniques such as geometric transformations, color
transformations, and Mixup [14], which have been widely used, image generation using
diffusion models can create more realistic and diverse variations in datasets.

A study [15] explored the use of diffusion-generated images for training deep-
learning models in mammogram-based diagnostic support. This study used Stable
Diffusion to generate mammogram images with embedded tumors. During image gen-
eration, text-based prompts were used to control the position and size of the embedded
tumors. By incorporating these generated images into the training of diagnostic sup-
port deep-learning models, the study successfully developed a higher-performance
model compared to training with only real images. Thus, generated images using dif-
fusion models can serve as an advanced data augmentation technique, significantly

enhancing the effectiveness of medical Al applications.
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3.4 Medical image segmentation using diffusion models

One of the most effective applications of diffusion models in medical image processing
is segmentation. Among the early methods utilizing diffusion models for segmenta-
tion, MedSegDiff [16] was one of the first proposed approaches. This method generates
segmentation result images through the reverse diffusion process, where embedding
representations extracted from medical images are provided as generation conditions.
This process enables the generation of segmentation results as images corresponding
to the input medical images. Compared to previously proposed FCN-based methods,
such as SegNet and nnU-Net, and FCN+Vision Transformer (ViT) approaches, such
as TransUNet, MedSegDiff demonstrated higher segmentation accuracy. In addition to
MedSegDiff and its improved version, MedSegDiff-V2 [17], many diffusion model-based
segmentation methods have emerged and gained attention at MICCAI, a leading inter-
national conference on computer-aided medical applications. This section introduces
several diffusion model-based medical image segmentation methods.

The reverse diffusion process used for segmentation in diffusion models can be
implemented using a U-Net-based model. However, U-Net may sometimes fail to gen-
erate images that faithfully correspond to the medical images given as generation
conditions. To address this issue, Chowdary et al. [18] proposed a Multi-sized Trans-
former U-Net (MT U-Net), a deep learning model designed explicitly for diffusion
model-based segmentation. In diffusion models, the deep learning model takes two
inputs: the output image from the previous reverse diffusion step and the original med-
ical image. MT U-Net enhances image generation by extracting effective features from
these two inputs using Cross Attention between image feature representations. Addi-
tionally, it incorporates a Multi-size Transformer module, which utilizes information
from various spatial positions and scales for image generation. These enhancements
enabled MT U-Net to achieve better segmentation results than traditional FCN-based

methods, FCN+ViT-based methods, and MedSegDiff and MedSegDiff-V2.
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Other segmentation approaches have improved accuracy by refining the noise-
generation process in diffusion models. Typically, diffusion models add Gaussian-
distributed noise to images. However, Chen et al. [19] suggested that, for segmentation
tasks that involve binary images, it is more effective to use Bernoulli-distributed noise,
which takes only two discrete values. Their approach, which incorporated Bernoulli
noise into a diffusion model for segmentation, demonstrated superior results when
applied to MRI and CT images. Their method outperformed traditional FCN-based
and ViT-based approaches and diffusion model-based methods that use Gaussian
noise.

Some medical images accompany text descriptions of their contents. When train-
ing segmentation models, utilizing ground-truth label images and textual information
enables efficient learning even with limited training data. A segmentation method pro-
posed based on this idea is TextDiff [20]. The TextDiff has a diffusion model-based
image encoder and a Clinical BioBERT as a text encoder. It combines embed-
ding representations from both modalities using cross-modal attention. The resulting
multi-scale attention map is upsampled and integrated to obtain the final segmenta-
tion output. TextDiff uses pre-trained image and text encoders to improve learning
efficiency while training only the cross-modal attention module and subsequent hid-
den layers. This enables multi-modal segmentation models to be trained effectively
even with limited data. This approach successfully developed a high-performance
segmentation model using a small dataset of just 150 X-ray images.

Diffusion models are also being applied to video-based segmentation. Lu et al.
proposed Diff-VPS [21], a method for polyp segmentation in colonoscopy videos.
This approach improves diffusion model-based segmentation accuracy by incorporat-
ing multi-task learning and temporal information. The Diff-VPS introduces two key
innovations. One is the multi-task learning. The model solves image classification

and object detection as additional subtasks within the segmentation diffusion model,
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enabling it to utilize high-level contextual information. The other one is the temporal
reasoning module. To incorporate temporal information from video frames, this mod-
ule is trained using a task that estimates the target frame based on previous frames.
This training method allows the model to extract and leverage temporal information
in the diffusion-based segmentation process. Experimental results demonstrated that
Diff-VPS achieved higher segmentation accuracy than conventional methods for polyp

segmentation in colonoscopy videos.

4 Text generation Al

4.1 Overview

Text generation Al is designed to generate text based on given conditions. Notable
commercial services utilizing text generation Al include ChatGPT and Gemini. Chat-
GPT, introduced in November 2022, attracted worldwide attention because it could
generate text more naturally and human-likely compared to previous text generation
Als.

This section briefly introduces natural language processing (NLP), which underlies
text generation AI, and discusses LLMs, which have significantly focused on NLP

research in recent years.

4.2 Advances in NLP and emergence of LLMs

NLP aims to enable computers to process natural language, which humans use daily,
and solve various language-related tasks. The core tasks in NLP include text classifi-
cation and generation, and research has been conducted to enhance these capabilities.
Some practical applications of NLP include machine translation, kana-kanji conver-
sion, search engines, and dialogue systems, many of which had already been studied

and commercially applied even before ChatGPT emerged.

10
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Similar to image processing, NLP models have increasingly adopted deep learning
techniques. To handle sequential data such as text, early models relied on Recurrent
Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks [22], which
improved RNNs’ ability to process long sequences. However, recent high-performance
text generation AI models predominantly utilize Transformer-based NLP architec-
tures [23]. The Transformer model first converts extracted morphemes from text into
embedding representations, then applies Multi-Head Self-Attention to learn the rela-
tionships between embeddings, ultimately generating the output. This mechanism has
also been adapted for image processing in models such as ViT [24].

The performance of Transformer-based natural language processing models has
improved significantly, leading to their widespread adoption in commercial services.
OpenAT’'s ChatGPT uses the Generative Pre-trained Transformer (GPT), while
Google’s Gemini is based on PaLM 2 and a Transformer model also named Gemini.
Additionally, Meta’s Llama is another example of a Transformer-based model. The
rapid performance gains of these NLP models are driven by the scaling up of data,
model size, and computational resources.

In 2020, OpenAl published research on Scaling Laws for Neural Language Models
[25], reporting that the performance of language models improves as the amount of
training data, the number of model parameters, and the computational resources used
during training increase. Based on these findings, OpenAl developed the GPT mod-
els using massive datasets collected from the internet, Transformer-based models with
many parameters, and extensive GPU resources. The first GPT model (GPT-1), intro-
duced in 2018, was trained on 4.5GB of text data, had 117 million parameters, and
was trained using eight GPUs [26]. OpenAl rapidly expanded the scale of its models,
leading to GPT-2 in 2019, which utilized 40GB of text data and had 1.5 billion param-

eters. GPT-3, released in 2020, was trained on 570GB of text data, had 175 billion

11
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Table 1 LLMs and numbers of model parameters, scales of training data, and number of GPUs
used for their development. ‘—’ indicates that information has not been disclosed

LLM Num. of parameters Training data Num. of GPUs Released
GPT-1[26] (OpenAl) 117M 4.5GB (text) 8 GPUs June, 2018
GPT-2 (OpenAl) 1.5B 40GB (text) - Feb., 2019
GPT-3 (OpenAl) 175B 570GB (text) 10,000 GPUs[27] June, 2020
GPT-3.5 (OpenAl) 355B - - March, 2022
GPT-4 (OpenAl) - - - March, 2023
Llama 2 (Meta) 70B 2T (token) - July, 2023
Llama 3 (Meta) 405B 15.6T (token) - July, 2024
PaLM 2 (Google) 540B - - May, 2023
Gemini (Google) 1.6T - - Dec., 2023

parameters, and was trained using 10,000 GPUs (NVIDIA V100) [27]. By 2022, GPT-
3.5 had increased in scale to 355 billion parameters, and ChatGPT was built using a
customized version of GPT-3.5. These details are summarized in Table 1. Models with
such many parameters are categorized as LLMs, which achieve high performance by
leveraging vast amounts of data and large-scale computational environments.

Since LLMs require an enormous amount of text data for training, it is impractical
to annotate correct answers for such large datasets manually. Instead, Self-Supervised
Learning (SSL) is used for training. One example of SSL in Transformer-based large-
scale models is BERT [28], which is trained using a masked language modeling (MLM)
approach. In this method, a sentence is converted into a fill-in-the-blank problem. For
example, given the sentence “The capital of Aichi Prefecture is Nagoya City”, the
training model sees “The capital of Aichi Prefecture is ?” and learns to predict the
missing word “Nagoya City”. GPT models also utilize a similar SSL approach, allowing
them to learn from massive datasets without relying on manually annotated data.
After the pre-training phase, the model undergoes fine-tuning and human-in-the-loop

adjustments to optimize its performance for specific tasks.

4.3 LLMs for medical applications and Japanese language

LLMs built using general text data may not achieve sufficient performance for special-

ized tasks such as medical support. To address this, many LLMs trained on medical

12
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Table 2 LLMs developed using medical text corpora. Numbers of model parameters, scales of
training data, and number of GPUs used for their development are also shown. ‘-’ indicates that
information has not been disclosed

LLM Num. of parameters  Training data  Num. of GPUs Released
BioBERT 110M 18G (token) 8 GPUs Sep., 2019
BioMedLM 2.7B 110GB - March, 2024
GatorTronGPT 20B 277B (token) - Nov., 2023
PMC-LLaMA 13B 79B (token) 32 GPUs Aug., 2023
Med-PaLM (Google) 540B - - Dec., 2022
Med-PaLLM 2 (Google) - - - May, 2023

text corpora have been proposed [29]. One example is BioBERT, a model with 110
million parameters trained on texts from PubMed and PMC. In addition, larger-
scale models such as BioMedLM, GatorTronGPT, and PMC-LLaMA have also been
introduced. These models are summarized in Table 2.

LLMs built using Japanese-language corpora have also been introduced. These
are summarized in Table 3. ELYZA Inc. has released ELYZA-japanese-Llama-2-
7b and Llama-3-ELYZA-JP-70B, versions of Meta’s Llama 2/3 models fine-tuned
on Japanese text. In addition, Preferred Networks and Preferred Elements have
released PLaMo-13B and PLaMo-100B, while Japan’s National Institute of Informat-
ics (NII) has published LLM-jp-13B and LLM-jp-3 172B. Among them, LLM-jp-3
172B is particularly notable. It has 172 billion parameters, making it compara-
ble in scale to OpenAl’'s GPT-3. Other notable examples include LLMs fine-tuned
using data from Japan’s National Examination for Medical Practitioners, such as
Llama3-Preferred-MedSwallow-70B and Preferred-MedLLM-Qwen-72B, both released

by Preferred Networks.

4.4 Medical support using LLMs

Research on the medical applications of LLMs is rapidly advancing, enabling capabili-
ties such as automatic generation and summarization of radiology reports, structuring

medical findings, and automatic anonymization of clinical text. Numerous research
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Table 3 LLMs developed using Japanese text corpora. Numbers of model parameters, scales of training data, and

()

number of GPUs used for their development are also shown.

indicates that information has not been disclosed

LLM Num. of parameters  Training data Num. of GPUs Released
PLaMo-13B
(Preferred Networks) 13B 1.4T (token) 480 GPUs Sep., 2023
PLaMo-100B
(Preferred Elements) 100B 2T (token) - Sep., 2024
ELYZA-japanese-Llama-2-7b
(ELYZA) 7B 18B (token) 32 GPUs Aug., 2023
Llama-3-ELYZA-JP-70B
(ELYZA) 70B - - June, 2024
LLM-jp-13B (NII) 13B 300B (token) 96 GPUs Oct., 2023
LLM-jp-3 172B (NII) 172B 2.1T (token) - Sep., 2024
Llama3-Preferred-MedSwallow-70B
(Preferred Networks) 0B ) ) July, 2024
Preferred-Med LLM-Qwen-72B 798 ) ) March, 2025

(Preferred Networks)

results have been reported, and several companies have released LLM-based commer-
cial medical support services.

As an example of commercial service using LLMs, Therapixel (France) offers
MammoScreen [30], which automatically detects tumors in mammogram images and
generates drafts of radiology reports, including findings and impressions. In the United
States, RADPAIR [31] provides tools for radiology report input via dictation and
automated report generation support. In the future, more companies providing image-
based diagnostic support are expected to begin incorporating LLMs to assist in
radiology report creation.

Research studies using LLMs in medical support are also increasing rapidly. One of
the early studies applying LLMs in this context [32] explored the automatic generation
of descriptive text from medical images. This approach, called ChatCAD, performs
tasks such as tumor detection on medical images and then uses an LLM to generate
explanatory text based on the results. Another example, introduced in Section 3.4, is
TextDiff [20], which applies LLMs to medical image segmentation. This method uses
Clinical BioBERT, a specialized LLM for clinical text, as a text encoder and combines

textual and image information to generate segmentation results.

14
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5 Foundation models

5.1 Generalized performance of large-scale models

In Section 4.2 in the chapter on text generation AI, this paper introduced the Scal-
ing Laws [25], which state that the performance of neural language models improves
with increases in the amount of training data, the number of model parameters, and
the scale of computation during training. This principle applies not only to language
models but also to image processing models.

A report by Zhai et al. [33] demonstrated that in ViT-based image processing
models, increasing the amount of training data, the number of model parameters, and
the scale of computation similarly leads to performance improvements. One well-known
example of an image processing model built using massive datasets and large-scale
computation is Meta’s Segment Anything Model (SAM) [34]. SAM was trained on 11
million images and over one billion region annotations, resulting in a ViT-based model
with over 600 million parameters. Another example is Flamingo by DeepMind [35],
which also leverages large-scale data and models to achieve high performance. Meta
has also released an improved version, Segment Anything Model 2 (SAM 2) [36], which
enhances SAM’s accuracy and supports video processing. Compared to SAM, SAM 2
offers better accuracy and faster processing speed, incorporating temporal attention
into the model. SAM 2 was trained on approximately 51,000 videos, enabling it to
segment objects in video sequences accurately.

Large-scale image processing models such as SAM, sometimes called Large Vision
Models (LVMs), possess general-purpose capabilities that are not limited to specific
tasks. While SAM is primarily trained on natural images and performs well in segment-
ing natural scenes, it has also been shown to work for medical image segmentation.
Several studies have reported the applications of SAM to medical images, includ-

ing tumor segmentation in pathology images [37], cardiac segmentation in ultrasound
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images [19], and segmentation across various imaging modalities [38]. Although SAM’s
segmentation accuracy is generally lower than that of task-specific models, it can still
perform segmentation across various scenarios, regardless of differences in object scale
and shape or whether the image is color or grayscale. SAM can recognize and segment
images without additional fine-tuning using the target task data (i.e., zero-shot learn-
ing), even for medical images such as pathology images. These results indicate that

large-scale image processing models exhibit strong generalization capabilities.

5.2 Foundation models and changes in AI development

In traditional machine learning-based AI development, data collection and model
development were carried out separately for each task, resulting in task-specific Al
systems. However, this approach requires repeated efforts for every new task and is
not efficient.

In contrast, training relatively large-scale models using cross-task datasets makes
it possible to create models with general-purpose performances that can be applied
to multiple tasks. These models are known as foundation models. Foundation models

have the following characteristics:

® They are trained on large-scale, cross-task datasets.

® They can be transferred to a wide range of downstream tasks.

SAM is a foundation model in image processing, while GPT is an example in natural
language processing.

The value of foundation models lies in their ability to reduce the burden of Al devel-
opment for individual tasks. Using a foundation model minimizes the effort required for
task-specific data collection and rapidly builds models with performance comparable
to task-specific Al systems. This capability has the potential to transform traditional

AT development methodologies. In recent years, various approaches to developing Al
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Fig. 2 Conceptual diagram of task-specific AI development using foundation models

for downstream tasks using foundation models have been proposed. Figure 2 illus-
trates some of these. Zero-shot learning is the method of adapting a foundation model
to a task without using any task-specific data by adjusting its state with prompts.
Few-shot learning is a method of fine-tuning a foundation model with a small amount
of task-specific data. Additionally, methods such as parameter-efficient learning have
been proposed, which enable efficient training of large foundation models on limited
computational resources.

Various methods of AI development using foundation models are also being
explored in medical image processing. Two core challenges in medical image processing
are the significant effort required to collect large-scale datasets and the limited data
availability for rare diseases. In this context, foundation models’ ability to support
downstream task development using only small amounts of data is extremely valuable.
Further research advancements in this area are highly anticipated. In his keynote talk
at the SPIE Medical Imaging 2024 international conference, Shuo Li discussed one
vision for the ideal form of a medical foundation model [39]. His idea involved build-
ing a general-purpose medical foundation model that could be transferred to various
downstream tasks in healthcare support, thereby enabling the development of Al sys-
tems for various medical tasks. He described a hierarchical structure of downstream
tasks in medical support, where tasks are organized by organ, and beneath each organ

task, there are disease-specific tasks. This concept is illustrated in Fig. 3.
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5.3 Methods for developing vision foundation models

This section introduces methods used to develop foundation models for image process-
ing. In foundation model development, self-supervised learning (SSL) is typically used
for pretraining, using many unlabeled images [40]. After pretraining, transfer learn-
ing or fine-tuning is performed using labeled images for the target downstream task,
resulting in a task-specific model. The most commonly used SSL techniques for pre-
training vision foundation models include Contrastive Learning (CL), Masked Image
Modeling (MIM), and a combination of CL and MIM.

Contrastive Learning (CL) generates two augmented versions of the same image
through data augmentation. The model extracts feature representations using an
encoder, and training is performed to increase similarity between positive pairs (images
augmented from the same original image) and decrease similarity between negative
pairs (images augmented from different images). Several CL-based methods have been
proposed. Among them, SimCLR [41] is a fundamental contrastive learning method.
MoCo [42] reuses negative samples efficiently during training. SimSiam [43] and DINO
[44] perform CL without using negative samples. SimCLR2 [45] and MoCov2 [46]
are enhanced versions of SimCLR and MoCo, respectively. A multimodal version of
CL that utilizes image-text pairs is CLIP [47], which is widely used for developing

multimodal foundation models.
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Masked Image Modeling (MIM) divides an image into patches, masks a portion
of them, and trains the model to reconstruct the original image using the unmasked
patches. MIM is commonly used as an SSL technique when employing ViT. A fun-
damental approach in MIM is the Masked Autoencoder [48]. It has been shown that
masking up to 75% of patches during training still leads to high accuracy in down-
stream tasks. Variants such as Attention-guided MIM [49] have also been proposed,
which adjust the masking process using attention weights to focus on semantically
meaningful regions.

Several methods combine CL and MIM to enhance model performance. For exam-
ple, Contrastive Masked Autoencoders (CMAE) [50] create positive and negative
image pairs using pixel shifts and then apply masking and reconstruction in the
encoder similar to a masked autoencoder. The model is trained using loss functions
from both CL and MIM. Other notable approaches include “What Do Self-Supervised

Vision Transformers Learn?” [51], which further explores SSL for ViT-based models.

5.4 Foundation models for medical image processing

One significant advantage of foundation models is their applicability across a wide
range of downstream tasks. However, achieving high performance, even with transfer
learning, becomes difficult if there is a large domain gap between the image data
used to train the foundation model and the downstream task’s image domain. To
achieve better transfer learning results in specific image domains, using a foundation
model built using data closely aligned with the target domain is more effective. For
example, SAM was trained on general-purpose natural images and may not provide
sufficient accuracy when directly applied to medical image processing. Therefore, a
variety of foundation models have been proposed that are specifically trained using
single- or multi-modal medical images. This section introduces such foundation models

for medical image processing.
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MedSAM [38] is a segmentation-oriented foundation model applicable to 2D medi-
cal images from various modalities. It was created by training the SAM architecture on
medical images, including CT, MR, X-ray, ultrasound, mammography, optical coher-
ence tomography (OCT), endoscopy, dermoscopy, fundus, and pathology images, with
over 1.57 million images used for training. Unlike SAM, which allows various prompts,
MedSAM uses only bounding boxes as prompts. It has been shown to outperform
SAM in tasks like organ and tumor segmentation from 2D medical images.

MedSAM-2 [52] extends SAM 2 to support 3D medical images and video segmen-
tation. By treating one spatial axis of a 3D image as a temporal axis, MedSAM-2
leverages SAM 2’s temporal modeling capabilities to enable 3D segmentation.

BiomedCLIP [53] is a multimodal foundation model that combines images and
text. Built on the CLIP framework, it incorporates PubMedBERT [54] as its text
encoder to improve performance in the medical domain. It was trained on PMC-15M,
a 15 million figure-caption pairs dataset extracted from 4.4 million scientific articles
in PubMed Central (PMC). BiomedCLIP supports tasks such as image classification
and visual question answering (VQA).

BioViL-T [55] is another multimodal model that combines X-ray images with radi-
ology report text. It uses a custom multimodal architecture trained on about 174,100
image-text pairs from the MIMIC-CXR v2 dataset. BioViL-T can be used for image
classification and text generation from images.

PathAsst [56] is a multimodal foundation model for pathology images and text.
Based on the CLIP framework, it was trained on over 207,000 image-text pairs col-
lected from sources such as PubMed. PathAsst is suitable for image classification and

text generation.

20



477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

Prov-GigaPath [57] is a single-modality foundation model tailored for pathology
images. It was pretrained on 1.3 billion image patches extracted from 171,000 whole-
slide images, using methods such as DINOv2. It is applicable to various downstream
tasks in pathology.

RETFound [58] is a foundation model developed for ophthalmology, supporting
fundus and OCT images. It was trained on 1.6 million images using the Masked
Autoencoder framework. RETFound has shown excellent performance across various

retinal image-based downstream tasks.

6 Future directions in medical image processing

research

6.1 Overview

In general image processing and natural language processing, the development of large-
scale models and foundation models has progressed by referencing the Scaling Laws.
Large models such as GPTs and Gemini are developed using the vast computational
resources of big tech companies, making it difficult for academic researchers to compete
in model development.

In contrast, even big companies face challenges in collecting massive datasets in
medical image processing. As a result, current efforts focus on developing task-specific
foundation models within this domain. Moreover, in developing Al for medical support,
it is essential to be mindful of data bias related to country or race. However, no
foundation model that is specifically suited to the Japanese patient population has
yet been realized. To develop Al tailored to medical support needs in each country,
foundation models that account for regional and demographic biases must be created.
Collaboration among academic researchers in medical image processing is necessary

to achieve this, particularly for data collection and model development.
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What is required to make this a reality? Recalling the Scaling Laws, three key
factors are necessary to improve model performance, including a large amount of
training data, a large number of model parameters, and a significant scale of compu-
tational resources during training. While preparing these elements is not easy, it is not
impossible if we fully utilize national data and computational resources. Assuming the
implementation of large-scale models is possible through software development, the
following sections will explore how to prepare the necessary large-scale medical image

datasets and computational resources.

6.2 Building large-scale medical image datasets

There are already examples where large-scale medical image datasets have been devel-
oped. One notable case is the "Medical Image Big Data Cloud Platform” developed
by the Medical Big Data Research Center at Japan’s National Institute of Informatics
(NII). This platform stores over 400 million medical images across various modalities,
including radiological, endoscopic, ophthalmologic, and pathology images. Since 2017,
the center has collected these images through the SINET network, resulting in one of
Japan’s most significant medical image datasets.

Once a vast number of images is collected, the next major challenge becomes how
to annotate them efficiently. A notable report by Qu et al. [59] describes an approach
using a human-in-the-loop system to enable large-scale annotation. In their study, they
annotated multi-organ abdominal segmentation regions on 8,448 CT cases (approxi-
mately 3.2 million 2D slice images) in an impressive three-week period. Their workflow
involved Al-driven automatic segmentation, followed by manual correction by human
experts, which is a human-in-the-loop setup. They utilized three segmentation mod-
els, including Swin UNETR, nnU-Net, and U-Net, and leveraged model disagreement
(inter-model uncertainty) to prioritize and streamline human correction. Such a system
demonstrates that efficient annotation of large datasets is feasible within a reasonable

time.
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Additionally, synthetic and simulation data are proving highly effective in building
large annotated datasets. Constructing Al models using easily generated synthetic or
simulation data and then fine-tuning them on real data can significantly reduce the
overall data collection cost. Due to advances in simulation technologies, the sim-to-
real approach, which is commonly used in robotics and autonomous driving, is now
being actively researched in biomedical applications. One such example is the 4D
eXtended CArdiac-Torso (XCAT) Phantom [60], which can generate virtual medical
images by simulating various biological characteristics such as age, gender, body size,
organ structure, and motion on a virtual human model. It can even simulate realistic
noise and imaging artifacts, making it possible to generate large-scale medical image
datasets at low cost. Another example is a study by Menten et al. [61], which used
vascular development simulation for training an AI for blood vessel segmentation.
They generated numerous 3D retinal vascular structures via simulation and created
annotated OCT angiography images, which were used to train a segmentation Al
Their results showed that using simulated data led to higher segmentation accuracy
than using only real data. As these research efforts demonstrate, integrating synthetic
and simulation data into data collection and Al development is extremely promising

and valuable in the context of medical support applications.

6.3 Utilizing large-scale computational resources

Currently, Al development requires distributed training using many GPUs, espe-
cially for large-scale models. However, acquiring many high-performance GPUs is a
significant challenge. To overcome this, researchers can leverage supercomputers devel-
oped by universities and research institutions. Considering the growing demands of
AT development, many of these supercomputers are equipped with many GPUs and
support general development environments, including Python. With access to such

infrastructure, it is entirely feasible to develop large-scale Al models. Although using
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supercomputers typically incurs usage fees, several support programs are available to
subsidize these costs. When effectively utilized, these programs can allow access to
powerful computational resources with little to no financial burden.

As discussed throughout this chapter, large-scale medical image datasets and com-
putational resources essential for developing foundation models for medical support
are realistically available. By maximizing the use of national data and computing
resources, we can anticipate the emergence of nationally developed foundation mod-
els and high-performance Al systems that contribute to the advancement of medical

support technologies.

7 Conclusions

In this paper, the mechanisms of image generation Al and text generation Al, along
with examples of their applications in the medical field are introduced. Furthermore,
this paper introduced the Scaling Laws, a concept that has gained prominence as gen-
erative Al continues to evolve, and introduced foundation models, which are expected
to significantly impact the future of Al development. Finally, this paper examined the
importance of preparing large-scale medical image datasets and securing large-scale
computing resources to realize foundation models for medical image processing. This
paper emphasized the necessity of developing foundation models for medical support
using national data and computing resources. As medical image processing enters a
new era, I hope that academic researchers will continue to play a key role and make

meaningful contributions to its advancement.
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