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Abstract10

In recent years, generative AI has attracted significant public attention, and its11

use has been rapidly expanding across a wide range of domains. From creative12

tasks such as text summarization, idea generation, and source code generation,13

to the streamlining of medical support tasks like diagnostic report generation and14

summarization, AI is now deeply involved in many areas. Today’s breadth of AI15

applications is clearly distinct from what was seen before generative AI gained16

widespread recognition. Representative generative AI services include DALL·E 317

(OpenAI, California, USA) and Stable Diffusion (Stability AI, London, England,18

UK) for image generation, ChatGPT (OpenAI, California, USA), and Gemini19

(Google, California, USA) for text generation. The rise of generative AI has20

been influenced by advances in deep learning models and the scaling up of data,21

models, and computational resources based on the scaling laws. Moreover, the22

emergence of foundation models, which are trained on large-scale datasets and23

possess general-purpose knowledge applicable to various downstream tasks, is24

creating a new paradigm in AI development. These shifts brought about by gener-25

ative AI and foundation models also profoundly impact medical image processing,26

fundamentally changing the framework for AI development in healthcare. This27

paper provides an overview of diffusion models used in image generation AI and28

large language models (LLMs) used in text generation AI, and introduces their29

applications in medical support. This paper also discusses foundation models,30

which are gaining attention alongside generative AI, including their construction31
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methods and applications in the medical field. Finally, the paper explores how32

to develop foundation models and high-performance AI for medical support by33

fully utilizing national data and computational resources.34

Keywords: Generative AI, Diffusion model, Large language model, Foundation35

model, National AI model36

1 Introduction37

In November 2022, ChatGPT (OpenAI, California, USA), powered by GPT-3.5 model,38

was released. Due to its significantly improved performance compared to previous39

chatbot AI models, it quickly gained global attention. Around the same time, Stable40

Diffusion emerged, enabling high-quality image generation and signaling a technolog-41

ical transformation in image generation. Since then, generative AI has become widely42

recognized, leading to numerous research projects and commercial services leveraging43

this technology. Today, generative AI is used in a wide range of applications, from44

creative tasks such as text generation, summarization, idea generation, illustration,45

digital art, and source code generation to the streamlining of medical support tasks46

like diagnostic report generation and summarization. The breadth of generative AI47

applications significantly departs from the pre-generative AI era. Notable generative48

AI services include DALL·E 3 (OpenAI, California, USA), Stable Diffusion (Stability49

AI, London, England, UK) for image generation, and ChatGPT and Gemini (Google,50

California, USA) for text generation. The rapid rise of generative AI has been driven by51

advancements in deep learning models and changes in training methodologies. These52

innovations can potentially reshape the framework for AI development in medical53

image processing.54

This paper provides an overview of diffusion models and large language models55

(LLMs) used in generative AI development, along with examples of their applications56

in medical image processing. Additionally, this paper discusses foundational models,57
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which have garnered attention with generative AIs, and explores new AI development58

approaches utilizing these models. Finally, this paper examines strategies to leverage59

national computational and informational resources to develop internationally compet-60

itive, nationally produced foundational models and high-performance AI for medical61

image processing.62

2 Discriminative AI and generative AI63

The introduction of AlexNet [1] in 2012 marked the beginning of active research64

in image processing using deep learning. At that time, most deep learning models65

took data such as images as input and produced classification or detection results66

as output. These models can be categorized as “Discriminative AI.” The main tasks67

performed by Discriminative AI include image classification, object detection, and68

segmentation. Among these, segmentation is a process that performs pixel-wise classi-69

fication. A key characteristic of Discriminative AI is that the output data contains less70

information than the input data. Additionally, models such as Convolutional Neural71

Networks (CNNs) and Fully Convolutional Networks (FCNs) are commonly used in72

its architecture.73

Generative AI, on the other hand, takes inputs such as text and produces outputs74

such as text or images using a generation model. A defining feature of Generative AI75

is its ability to generate high-information outputs, such as long text or images, from76

relatively low-information inputs, such as short sentences. Recent Generative AI mod-77

els often adopt Diffusion Models or large-scale Transformers [2] as their architecture,78

although some Generative AI models still use CNNs or FCNs. Details of diffusion79

models are explained in 3.2.80

A common way to interact with Generative AI is by providing instructions in the81

form of text, leading to the widespread use of the term “prompt” to describe the82

input given to Generative AI. In the past, due to AI’s limited capabilities, it was83
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seen as merely a machine that followed human instructions. However, with recent84

advancements in AI performance, Generative AI is increasingly perceived as an entity85

capable of intelligent reasoning, which has led to the adoption of the term “prompt,”86

like how humans give instructions to one another.87

The following chapters will discuss image generation AI and text generation AI,88

both of which fall under the category of Generative AI.89

3 Image generation AI90

3.1 Overview91

Previously, Variational Autoencoders (VAEs) [3] and Generative Adversarial Networks92

(GANs) [4] were commonly used for image generation. VAEs offer stable training93

and make it easier to evaluate training progress, but they struggle to create highly94

expressive models. On the other hand, GANs can generate highly detailed images, as95

seen in StyleGAN2 [5], which has demonstrated impressive facial image generation.96

However, GANs suffer from unstable training and difficulty in evaluating training97

progress.98

Recent image generation services like DALL·E 3, Stable Diffusion, and Midjourney99

can produce more visually appealing illustrations and photorealistic images than VAEs100

or GANs. These services utilize diffusion models for image generation.101

This chapter discusses the mechanism of diffusion models and their applications102

in medical image processing.103

3.2 Diffusion models104

This section provides a brief explanation of diffusion models. Diffusion models are105

inspired by thermodynamics, where the concentration of substances, temperature,106

and energy differences tend to equalize over time. This phenomenon occurs because107

molecules within a substance undergo random motion due to thermal energy, gradually108
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Fig. 1 Conceptual diagram of task-specific AI development using foundation models

mixing until they achieve a uniform distribution. The Diffusion Probabilistic Model109

(DPM) [6], which forms the foundation of diffusion models, was developed based on110

this diffusion process. In DPM, noise is gradually added to the data distribution,111

transforming it into a completely noisy distribution (diffusion process). The model then112

reconstructs the data distribution by reversing this process (reverse diffusion process).113

Please note that the assumption of the existence of reverse transformations of the114

diffusion process in DPM is different from the diffusion process in thermodynamics.115

For image generation, a commonly used variant of DPM is the Denoising Diffusion116

Probabilistic Model (DDPM) [7]. In DDPM, an image undergoes a diffusion process,117

where gradual noise is added until the image is completely transformed into pure noise.118

Then, through the reverse diffusion process, the model progressively removes the noise119

to reconstruct an image. Since this reverse diffusion process creates an image, it is also120

called the generation process. This process can be understood as a transformation from121

a noise distribution to the target image distribution. Figure 1 illustrates the diffusion122

and reverse diffusion processes in DDPM.123

In the implementation of DDPM, the reverse diffusion process, removing noise and124

reconstructing an image, is typically performed using a deep learning model such as125

U-Net [8]. The U-Net is an encoder-decoder style FCN model, which is commonly used126

to perform medical image segmentation. This model takes a noisy image as input and127

outputs an image with slightly reduced noise. The final generated image is obtained128
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by repeatedly applying this noise reduction process. Since the deep learning model129

needs to reduce noise at each iteration appropriately, it receives both the step count130

and generation conditions as input. The reverse diffusion process typically involves131

about 1,000 steps to generate high-quality images.132

In image generation, text or other images are often used to control the output. This133

control is achieved by providing embedding representations of generation conditions134

to the deep learning model at each step of the reverse diffusion process. For exam-135

ple, in DALL·E 3, which generates images based on text descriptions, a Transformer136

converts text into an embedding representation, which is then used as a generation137

condition in the reverse diffusion process. Similarly, in diffusion model-based segmen-138

tation methods, images are converted into embedding representations and used as139

generation conditions.140

3.3 Medical image generation using diffusion models141

Many methods utilizing diffusion models have emerged in medical image processing,142

and this section, along with the following sections, introduces some of the most rep-143

resentative examples. Soon after diffusion models gained attention, medical image144

generation techniques using diffusion models were proposed.145

Methods for generating 2D brain MR images [9], 3D brain MR images [10], and 4D146

cardiac MR images [11] using diffusion models have been introduced, and these papers147

indicate that they achieve better results than GAN-based image generation. Addi-148

tionally, diffusion models have been applied to generate laparoscopic images during149

surgery [12, 13]. These laparoscopic image generation methods introduced techniques150

to control the presence of surgical instruments and organs in the generated images.151

Zhou et al. [12] used text descriptions as generation conditions, while Venkatesh et al.152

[13] used label images. In these approaches, text or label images are first converted153
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into embedding representations, which are then fed into the diffusion model for image154

generation.155

Here, this paper examines how generated medical images can benefit computer-156

aided medical applications. While diffusion models can generate realistic medical157

images, these generated images are not actual patient images and, therefore, cannot158

be used directly for diagnostic or therapeutic support. However, this does not mean159

that generated medical images are useless. Image generation using diffusion models160

allows the incorporation of text descriptions, label images, and other generation con-161

ditions, making it possible to produce images that accurately reflect real anatomical162

structures, diseases, and intraoperative conditions when appropriately controlled. As163

a result, generated medical images play a valuable role in data augmentation for train-164

ing deep learning models used in diagnostic and therapeutic support. Compared to165

traditional data augmentation techniques such as geometric transformations, color166

transformations, and Mixup [14], which have been widely used, image generation using167

diffusion models can create more realistic and diverse variations in datasets.168

A study [15] explored the use of diffusion-generated images for training deep-169

learning models in mammogram-based diagnostic support. This study used Stable170

Diffusion to generate mammogram images with embedded tumors. During image gen-171

eration, text-based prompts were used to control the position and size of the embedded172

tumors. By incorporating these generated images into the training of diagnostic sup-173

port deep-learning models, the study successfully developed a higher-performance174

model compared to training with only real images. Thus, generated images using dif-175

fusion models can serve as an advanced data augmentation technique, significantly176

enhancing the effectiveness of medical AI applications.177
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3.4 Medical image segmentation using diffusion models178

One of the most effective applications of diffusion models in medical image processing179

is segmentation. Among the early methods utilizing diffusion models for segmenta-180

tion, MedSegDiff [16] was one of the first proposed approaches. This method generates181

segmentation result images through the reverse diffusion process, where embedding182

representations extracted from medical images are provided as generation conditions.183

This process enables the generation of segmentation results as images corresponding184

to the input medical images. Compared to previously proposed FCN-based methods,185

such as SegNet and nnU-Net, and FCN+Vision Transformer (ViT) approaches, such186

as TransUNet, MedSegDiff demonstrated higher segmentation accuracy. In addition to187

MedSegDiff and its improved version, MedSegDiff-V2 [17], many diffusion model-based188

segmentation methods have emerged and gained attention at MICCAI, a leading inter-189

national conference on computer-aided medical applications. This section introduces190

several diffusion model-based medical image segmentation methods.191

The reverse diffusion process used for segmentation in diffusion models can be192

implemented using a U-Net-based model. However, U-Net may sometimes fail to gen-193

erate images that faithfully correspond to the medical images given as generation194

conditions. To address this issue, Chowdary et al. [18] proposed a Multi-sized Trans-195

former U-Net (MT U-Net), a deep learning model designed explicitly for diffusion196

model-based segmentation. In diffusion models, the deep learning model takes two197

inputs: the output image from the previous reverse diffusion step and the original med-198

ical image. MT U-Net enhances image generation by extracting effective features from199

these two inputs using Cross Attention between image feature representations. Addi-200

tionally, it incorporates a Multi-size Transformer module, which utilizes information201

from various spatial positions and scales for image generation. These enhancements202

enabled MT U-Net to achieve better segmentation results than traditional FCN-based203

methods, FCN+ViT-based methods, and MedSegDiff and MedSegDiff-V2.204
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Other segmentation approaches have improved accuracy by refining the noise-205

generation process in diffusion models. Typically, diffusion models add Gaussian-206

distributed noise to images. However, Chen et al. [19] suggested that, for segmentation207

tasks that involve binary images, it is more effective to use Bernoulli-distributed noise,208

which takes only two discrete values. Their approach, which incorporated Bernoulli209

noise into a diffusion model for segmentation, demonstrated superior results when210

applied to MRI and CT images. Their method outperformed traditional FCN-based211

and ViT-based approaches and diffusion model-based methods that use Gaussian212

noise.213

Some medical images accompany text descriptions of their contents. When train-214

ing segmentation models, utilizing ground-truth label images and textual information215

enables efficient learning even with limited training data. A segmentation method pro-216

posed based on this idea is TextDiff [20]. The TextDiff has a diffusion model-based217

image encoder and a Clinical BioBERT as a text encoder. It combines embed-218

ding representations from both modalities using cross-modal attention. The resulting219

multi-scale attention map is upsampled and integrated to obtain the final segmenta-220

tion output. TextDiff uses pre-trained image and text encoders to improve learning221

efficiency while training only the cross-modal attention module and subsequent hid-222

den layers. This enables multi-modal segmentation models to be trained effectively223

even with limited data. This approach successfully developed a high-performance224

segmentation model using a small dataset of just 150 X-ray images.225

Diffusion models are also being applied to video-based segmentation. Lu et al.226

proposed Diff-VPS [21], a method for polyp segmentation in colonoscopy videos.227

This approach improves diffusion model-based segmentation accuracy by incorporat-228

ing multi-task learning and temporal information. The Diff-VPS introduces two key229

innovations. One is the multi-task learning. The model solves image classification230

and object detection as additional subtasks within the segmentation diffusion model,231
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enabling it to utilize high-level contextual information. The other one is the temporal232

reasoning module. To incorporate temporal information from video frames, this mod-233

ule is trained using a task that estimates the target frame based on previous frames.234

This training method allows the model to extract and leverage temporal information235

in the diffusion-based segmentation process. Experimental results demonstrated that236

Diff-VPS achieved higher segmentation accuracy than conventional methods for polyp237

segmentation in colonoscopy videos.238

4 Text generation AI239

4.1 Overview240

Text generation AI is designed to generate text based on given conditions. Notable241

commercial services utilizing text generation AI include ChatGPT and Gemini. Chat-242

GPT, introduced in November 2022, attracted worldwide attention because it could243

generate text more naturally and human-likely compared to previous text generation244

AIs.245

This section briefly introduces natural language processing (NLP), which underlies246

text generation AI, and discusses LLMs, which have significantly focused on NLP247

research in recent years.248

4.2 Advances in NLP and emergence of LLMs249

NLP aims to enable computers to process natural language, which humans use daily,250

and solve various language-related tasks. The core tasks in NLP include text classifi-251

cation and generation, and research has been conducted to enhance these capabilities.252

Some practical applications of NLP include machine translation, kana-kanji conver-253

sion, search engines, and dialogue systems, many of which had already been studied254

and commercially applied even before ChatGPT emerged.255
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Similar to image processing, NLP models have increasingly adopted deep learning256

techniques. To handle sequential data such as text, early models relied on Recurrent257

Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks [22], which258

improved RNNs’ ability to process long sequences. However, recent high-performance259

text generation AI models predominantly utilize Transformer-based NLP architec-260

tures [23]. The Transformer model first converts extracted morphemes from text into261

embedding representations, then applies Multi-Head Self-Attention to learn the rela-262

tionships between embeddings, ultimately generating the output. This mechanism has263

also been adapted for image processing in models such as ViT [24].264

The performance of Transformer-based natural language processing models has265

improved significantly, leading to their widespread adoption in commercial services.266

OpenAI’s ChatGPT uses the Generative Pre-trained Transformer (GPT), while267

Google’s Gemini is based on PaLM 2 and a Transformer model also named Gemini.268

Additionally, Meta’s Llama is another example of a Transformer-based model. The269

rapid performance gains of these NLP models are driven by the scaling up of data,270

model size, and computational resources.271

In 2020, OpenAI published research on Scaling Laws for Neural Language Models272

[25], reporting that the performance of language models improves as the amount of273

training data, the number of model parameters, and the computational resources used274

during training increase. Based on these findings, OpenAI developed the GPT mod-275

els using massive datasets collected from the internet, Transformer-based models with276

many parameters, and extensive GPU resources. The first GPT model (GPT-1), intro-277

duced in 2018, was trained on 4.5GB of text data, had 117 million parameters, and278

was trained using eight GPUs [26]. OpenAI rapidly expanded the scale of its models,279

leading to GPT-2 in 2019, which utilized 40GB of text data and had 1.5 billion param-280

eters. GPT-3, released in 2020, was trained on 570GB of text data, had 175 billion281
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Table 1 LLMs and numbers of model parameters, scales of training data, and number of GPUs
used for their development. ‘–’ indicates that information has not been disclosed

LLM Num. of parameters Training data Num. of GPUs Released

GPT-1[26] (OpenAI) 117M 4.5GB (text) 8 GPUs June, 2018
GPT-2 (OpenAI) 1.5B 40GB (text) - Feb., 2019
GPT-3 (OpenAI) 175B 570GB (text) 10,000 GPUs[27] June, 2020
GPT-3.5 (OpenAI) 355B - - March, 2022
GPT-4 (OpenAI) - - - March, 2023
Llama 2 (Meta) 70B 2T (token) - July, 2023
Llama 3 (Meta) 405B 15.6T (token) - July, 2024
PaLM 2 (Google) 540B - - May, 2023
Gemini (Google) 1.6T - - Dec., 2023

parameters, and was trained using 10,000 GPUs (NVIDIA V100) [27]. By 2022, GPT-282

3.5 had increased in scale to 355 billion parameters, and ChatGPT was built using a283

customized version of GPT-3.5. These details are summarized in Table 1. Models with284

such many parameters are categorized as LLMs, which achieve high performance by285

leveraging vast amounts of data and large-scale computational environments.286

Since LLMs require an enormous amount of text data for training, it is impractical287

to annotate correct answers for such large datasets manually. Instead, Self-Supervised288

Learning (SSL) is used for training. One example of SSL in Transformer-based large-289

scale models is BERT [28], which is trained using a masked language modeling (MLM)290

approach. In this method, a sentence is converted into a fill-in-the-blank problem. For291

example, given the sentence “The capital of Aichi Prefecture is Nagoya City”, the292

training model sees “The capital of Aichi Prefecture is ?” and learns to predict the293

missing word “Nagoya City”. GPT models also utilize a similar SSL approach, allowing294

them to learn from massive datasets without relying on manually annotated data.295

After the pre-training phase, the model undergoes fine-tuning and human-in-the-loop296

adjustments to optimize its performance for specific tasks.297

4.3 LLMs for medical applications and Japanese language298

LLMs built using general text data may not achieve sufficient performance for special-299

ized tasks such as medical support. To address this, many LLMs trained on medical300
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Table 2 LLMs developed using medical text corpora. Numbers of model parameters, scales of
training data, and number of GPUs used for their development are also shown. ‘–’ indicates that
information has not been disclosed

LLM Num. of parameters Training data Num. of GPUs Released

BioBERT 110M 18G (token) 8 GPUs Sep., 2019
BioMedLM 2.7B 110GB - March, 2024

GatorTronGPT 20B 277B (token) - Nov., 2023
PMC-LLaMA 13B 79B (token) 32 GPUs Aug., 2023

Med-PaLM (Google) 540B - - Dec., 2022
Med-PaLM 2 (Google) - - - May, 2023

text corpora have been proposed [29]. One example is BioBERT, a model with 110301

million parameters trained on texts from PubMed and PMC. In addition, larger-302

scale models such as BioMedLM, GatorTronGPT, and PMC-LLaMA have also been303

introduced. These models are summarized in Table 2.304

LLMs built using Japanese-language corpora have also been introduced. These305

are summarized in Table 3. ELYZA Inc. has released ELYZA-japanese-Llama-2-306

7b and Llama-3-ELYZA-JP-70B, versions of Meta’s Llama 2/3 models fine-tuned307

on Japanese text. In addition, Preferred Networks and Preferred Elements have308

released PLaMo-13B and PLaMo-100B, while Japan’s National Institute of Informat-309

ics (NII) has published LLM-jp-13B and LLM-jp-3 172B. Among them, LLM-jp-3310

172B is particularly notable. It has 172 billion parameters, making it compara-311

ble in scale to OpenAI’s GPT-3. Other notable examples include LLMs fine-tuned312

using data from Japan’s National Examination for Medical Practitioners, such as313

Llama3-Preferred-MedSwallow-70B and Preferred-MedLLM-Qwen-72B, both released314

by Preferred Networks.315

4.4 Medical support using LLMs316

Research on the medical applications of LLMs is rapidly advancing, enabling capabili-317

ties such as automatic generation and summarization of radiology reports, structuring318

medical findings, and automatic anonymization of clinical text. Numerous research319
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Table 3 LLMs developed using Japanese text corpora. Numbers of model parameters, scales of training data, and
number of GPUs used for their development are also shown. ‘–’ indicates that information has not been disclosed

LLM Num. of parameters Training data Num. of GPUs Released

PLaMo-13B
(Preferred Networks)

13B 1.4T (token) 480 GPUs Sep., 2023

PLaMo-100B
(Preferred Elements)

100B 2T (token) - Sep., 2024

ELYZA-japanese-Llama-2-7b
(ELYZA)

7B 18B (token) 32 GPUs Aug., 2023

Llama-3-ELYZA-JP-70B
(ELYZA)

70B - - June, 2024

LLM-jp-13B (NII) 13B 300B (token) 96 GPUs Oct., 2023
LLM-jp-3 172B (NII) 172B 2.1T (token) - Sep., 2024

Llama3-Preferred-MedSwallow-70B
(Preferred Networks)

70B - - July, 2024

Preferred-MedLLM-Qwen-72B
(Preferred Networks)

72B - - March, 2025

results have been reported, and several companies have released LLM-based commer-320

cial medical support services.321

As an example of commercial service using LLMs, Therapixel (France) offers322

MammoScreen [30], which automatically detects tumors in mammogram images and323

generates drafts of radiology reports, including findings and impressions. In the United324

States, RADPAIR [31] provides tools for radiology report input via dictation and325

automated report generation support. In the future, more companies providing image-326

based diagnostic support are expected to begin incorporating LLMs to assist in327

radiology report creation.328

Research studies using LLMs in medical support are also increasing rapidly. One of329

the early studies applying LLMs in this context [32] explored the automatic generation330

of descriptive text from medical images. This approach, called ChatCAD, performs331

tasks such as tumor detection on medical images and then uses an LLM to generate332

explanatory text based on the results. Another example, introduced in Section 3.4, is333

TextDiff [20], which applies LLMs to medical image segmentation. This method uses334

Clinical BioBERT, a specialized LLM for clinical text, as a text encoder and combines335

textual and image information to generate segmentation results.336
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5 Foundation models337

5.1 Generalized performance of large-scale models338

In Section 4.2 in the chapter on text generation AI, this paper introduced the Scal-339

ing Laws [25], which state that the performance of neural language models improves340

with increases in the amount of training data, the number of model parameters, and341

the scale of computation during training. This principle applies not only to language342

models but also to image processing models.343

A report by Zhai et al. [33] demonstrated that in ViT-based image processing344

models, increasing the amount of training data, the number of model parameters, and345

the scale of computation similarly leads to performance improvements. One well-known346

example of an image processing model built using massive datasets and large-scale347

computation is Meta’s Segment Anything Model (SAM) [34]. SAM was trained on 11348

million images and over one billion region annotations, resulting in a ViT-based model349

with over 600 million parameters. Another example is Flamingo by DeepMind [35],350

which also leverages large-scale data and models to achieve high performance. Meta351

has also released an improved version, Segment Anything Model 2 (SAM 2) [36], which352

enhances SAM’s accuracy and supports video processing. Compared to SAM, SAM 2353

offers better accuracy and faster processing speed, incorporating temporal attention354

into the model. SAM 2 was trained on approximately 51,000 videos, enabling it to355

segment objects in video sequences accurately.356

Large-scale image processing models such as SAM, sometimes called Large Vision357

Models (LVMs), possess general-purpose capabilities that are not limited to specific358

tasks. While SAM is primarily trained on natural images and performs well in segment-359

ing natural scenes, it has also been shown to work for medical image segmentation.360

Several studies have reported the applications of SAM to medical images, includ-361

ing tumor segmentation in pathology images [37], cardiac segmentation in ultrasound362
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images [19], and segmentation across various imaging modalities [38]. Although SAM’s363

segmentation accuracy is generally lower than that of task-specific models, it can still364

perform segmentation across various scenarios, regardless of differences in object scale365

and shape or whether the image is color or grayscale. SAM can recognize and segment366

images without additional fine-tuning using the target task data (i.e., zero-shot learn-367

ing), even for medical images such as pathology images. These results indicate that368

large-scale image processing models exhibit strong generalization capabilities.369

5.2 Foundation models and changes in AI development370

In traditional machine learning-based AI development, data collection and model371

development were carried out separately for each task, resulting in task-specific AI372

systems. However, this approach requires repeated efforts for every new task and is373

not efficient.374

In contrast, training relatively large-scale models using cross-task datasets makes375

it possible to create models with general-purpose performances that can be applied376

to multiple tasks. These models are known as foundation models. Foundation models377

have the following characteristics:378

• They are trained on large-scale, cross-task datasets.379

• They can be transferred to a wide range of downstream tasks.380

SAM is a foundation model in image processing, while GPT is an example in natural381

language processing.382

The value of foundation models lies in their ability to reduce the burden of AI devel-383

opment for individual tasks. Using a foundation model minimizes the effort required for384

task-specific data collection and rapidly builds models with performance comparable385

to task-specific AI systems. This capability has the potential to transform traditional386

AI development methodologies. In recent years, various approaches to developing AI387
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Fig. 2 Conceptual diagram of task-specific AI development using foundation models

for downstream tasks using foundation models have been proposed. Figure 2 illus-388

trates some of these. Zero-shot learning is the method of adapting a foundation model389

to a task without using any task-specific data by adjusting its state with prompts.390

Few-shot learning is a method of fine-tuning a foundation model with a small amount391

of task-specific data. Additionally, methods such as parameter-efficient learning have392

been proposed, which enable efficient training of large foundation models on limited393

computational resources.394

Various methods of AI development using foundation models are also being395

explored in medical image processing. Two core challenges in medical image processing396

are the significant effort required to collect large-scale datasets and the limited data397

availability for rare diseases. In this context, foundation models’ ability to support398

downstream task development using only small amounts of data is extremely valuable.399

Further research advancements in this area are highly anticipated. In his keynote talk400

at the SPIE Medical Imaging 2024 international conference, Shuo Li discussed one401

vision for the ideal form of a medical foundation model [39]. His idea involved build-402

ing a general-purpose medical foundation model that could be transferred to various403

downstream tasks in healthcare support, thereby enabling the development of AI sys-404

tems for various medical tasks. He described a hierarchical structure of downstream405

tasks in medical support, where tasks are organized by organ, and beneath each organ406

task, there are disease-specific tasks. This concept is illustrated in Fig. 3.407
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Fig. 3 Relationship between medical foundation model and downstream tasks as proposed by Shuo
Li at SPIE Medical Imaging 2024 [39]

5.3 Methods for developing vision foundation models408

This section introduces methods used to develop foundation models for image process-409

ing. In foundation model development, self-supervised learning (SSL) is typically used410

for pretraining, using many unlabeled images [40]. After pretraining, transfer learn-411

ing or fine-tuning is performed using labeled images for the target downstream task,412

resulting in a task-specific model. The most commonly used SSL techniques for pre-413

training vision foundation models include Contrastive Learning (CL), Masked Image414

Modeling (MIM), and a combination of CL and MIM.415

Contrastive Learning (CL) generates two augmented versions of the same image416

through data augmentation. The model extracts feature representations using an417

encoder, and training is performed to increase similarity between positive pairs (images418

augmented from the same original image) and decrease similarity between negative419

pairs (images augmented from different images). Several CL-based methods have been420

proposed. Among them, SimCLR [41] is a fundamental contrastive learning method.421

MoCo [42] reuses negative samples efficiently during training. SimSiam [43] and DINO422

[44] perform CL without using negative samples. SimCLR2 [45] and MoCov2 [46]423

are enhanced versions of SimCLR and MoCo, respectively. A multimodal version of424

CL that utilizes image-text pairs is CLIP [47], which is widely used for developing425

multimodal foundation models.426
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Masked Image Modeling (MIM) divides an image into patches, masks a portion427

of them, and trains the model to reconstruct the original image using the unmasked428

patches. MIM is commonly used as an SSL technique when employing ViT. A fun-429

damental approach in MIM is the Masked Autoencoder [48]. It has been shown that430

masking up to 75% of patches during training still leads to high accuracy in down-431

stream tasks. Variants such as Attention-guided MIM [49] have also been proposed,432

which adjust the masking process using attention weights to focus on semantically433

meaningful regions.434

Several methods combine CL and MIM to enhance model performance. For exam-435

ple, Contrastive Masked Autoencoders (CMAE) [50] create positive and negative436

image pairs using pixel shifts and then apply masking and reconstruction in the437

encoder similar to a masked autoencoder. The model is trained using loss functions438

from both CL and MIM. Other notable approaches include “What Do Self-Supervised439

Vision Transformers Learn?” [51], which further explores SSL for ViT-based models.440

5.4 Foundation models for medical image processing441

One significant advantage of foundation models is their applicability across a wide442

range of downstream tasks. However, achieving high performance, even with transfer443

learning, becomes difficult if there is a large domain gap between the image data444

used to train the foundation model and the downstream task’s image domain. To445

achieve better transfer learning results in specific image domains, using a foundation446

model built using data closely aligned with the target domain is more effective. For447

example, SAM was trained on general-purpose natural images and may not provide448

sufficient accuracy when directly applied to medical image processing. Therefore, a449

variety of foundation models have been proposed that are specifically trained using450

single- or multi-modal medical images. This section introduces such foundation models451

for medical image processing.452
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MedSAM [38] is a segmentation-oriented foundation model applicable to 2D medi-453

cal images from various modalities. It was created by training the SAM architecture on454

medical images, including CT, MR, X-ray, ultrasound, mammography, optical coher-455

ence tomography (OCT), endoscopy, dermoscopy, fundus, and pathology images, with456

over 1.57 million images used for training. Unlike SAM, which allows various prompts,457

MedSAM uses only bounding boxes as prompts. It has been shown to outperform458

SAM in tasks like organ and tumor segmentation from 2D medical images.459

MedSAM-2 [52] extends SAM 2 to support 3D medical images and video segmen-460

tation. By treating one spatial axis of a 3D image as a temporal axis, MedSAM-2461

leverages SAM 2’s temporal modeling capabilities to enable 3D segmentation.462

BiomedCLIP [53] is a multimodal foundation model that combines images and463

text. Built on the CLIP framework, it incorporates PubMedBERT [54] as its text464

encoder to improve performance in the medical domain. It was trained on PMC-15M,465

a 15 million figure-caption pairs dataset extracted from 4.4 million scientific articles466

in PubMed Central (PMC). BiomedCLIP supports tasks such as image classification467

and visual question answering (VQA).468

BioViL-T [55] is another multimodal model that combines X-ray images with radi-469

ology report text. It uses a custom multimodal architecture trained on about 174,100470

image-text pairs from the MIMIC-CXR v2 dataset. BioViL-T can be used for image471

classification and text generation from images.472

PathAsst [56] is a multimodal foundation model for pathology images and text.473

Based on the CLIP framework, it was trained on over 207,000 image-text pairs col-474

lected from sources such as PubMed. PathAsst is suitable for image classification and475

text generation.476
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Prov-GigaPath [57] is a single-modality foundation model tailored for pathology477

images. It was pretrained on 1.3 billion image patches extracted from 171,000 whole-478

slide images, using methods such as DINOv2. It is applicable to various downstream479

tasks in pathology.480

RETFound [58] is a foundation model developed for ophthalmology, supporting481

fundus and OCT images. It was trained on 1.6 million images using the Masked482

Autoencoder framework. RETFound has shown excellent performance across various483

retinal image-based downstream tasks.484

6 Future directions in medical image processing485

research486

6.1 Overview487

In general image processing and natural language processing, the development of large-488

scale models and foundation models has progressed by referencing the Scaling Laws.489

Large models such as GPTs and Gemini are developed using the vast computational490

resources of big tech companies, making it difficult for academic researchers to compete491

in model development.492

In contrast, even big companies face challenges in collecting massive datasets in493

medical image processing. As a result, current efforts focus on developing task-specific494

foundation models within this domain. Moreover, in developing AI for medical support,495

it is essential to be mindful of data bias related to country or race. However, no496

foundation model that is specifically suited to the Japanese patient population has497

yet been realized. To develop AI tailored to medical support needs in each country,498

foundation models that account for regional and demographic biases must be created.499

Collaboration among academic researchers in medical image processing is necessary500

to achieve this, particularly for data collection and model development.501
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What is required to make this a reality? Recalling the Scaling Laws, three key502

factors are necessary to improve model performance, including a large amount of503

training data, a large number of model parameters, and a significant scale of compu-504

tational resources during training. While preparing these elements is not easy, it is not505

impossible if we fully utilize national data and computational resources. Assuming the506

implementation of large-scale models is possible through software development, the507

following sections will explore how to prepare the necessary large-scale medical image508

datasets and computational resources.509

6.2 Building large-scale medical image datasets510

There are already examples where large-scale medical image datasets have been devel-511

oped. One notable case is the ”Medical Image Big Data Cloud Platform” developed512

by the Medical Big Data Research Center at Japan’s National Institute of Informatics513

(NII). This platform stores over 400 million medical images across various modalities,514

including radiological, endoscopic, ophthalmologic, and pathology images. Since 2017,515

the center has collected these images through the SINET network, resulting in one of516

Japan’s most significant medical image datasets.517

Once a vast number of images is collected, the next major challenge becomes how518

to annotate them efficiently. A notable report by Qu et al. [59] describes an approach519

using a human-in-the-loop system to enable large-scale annotation. In their study, they520

annotated multi-organ abdominal segmentation regions on 8,448 CT cases (approxi-521

mately 3.2 million 2D slice images) in an impressive three-week period. Their workflow522

involved AI-driven automatic segmentation, followed by manual correction by human523

experts, which is a human-in-the-loop setup. They utilized three segmentation mod-524

els, including Swin UNETR, nnU-Net, and U-Net, and leveraged model disagreement525

(inter-model uncertainty) to prioritize and streamline human correction. Such a system526

demonstrates that efficient annotation of large datasets is feasible within a reasonable527

time.528
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Additionally, synthetic and simulation data are proving highly effective in building529

large annotated datasets. Constructing AI models using easily generated synthetic or530

simulation data and then fine-tuning them on real data can significantly reduce the531

overall data collection cost. Due to advances in simulation technologies, the sim-to-532

real approach, which is commonly used in robotics and autonomous driving, is now533

being actively researched in biomedical applications. One such example is the 4D534

eXtended CArdiac-Torso (XCAT) Phantom [60], which can generate virtual medical535

images by simulating various biological characteristics such as age, gender, body size,536

organ structure, and motion on a virtual human model. It can even simulate realistic537

noise and imaging artifacts, making it possible to generate large-scale medical image538

datasets at low cost. Another example is a study by Menten et al. [61], which used539

vascular development simulation for training an AI for blood vessel segmentation.540

They generated numerous 3D retinal vascular structures via simulation and created541

annotated OCT angiography images, which were used to train a segmentation AI.542

Their results showed that using simulated data led to higher segmentation accuracy543

than using only real data. As these research efforts demonstrate, integrating synthetic544

and simulation data into data collection and AI development is extremely promising545

and valuable in the context of medical support applications.546

6.3 Utilizing large-scale computational resources547

Currently, AI development requires distributed training using many GPUs, espe-548

cially for large-scale models. However, acquiring many high-performance GPUs is a549

significant challenge. To overcome this, researchers can leverage supercomputers devel-550

oped by universities and research institutions. Considering the growing demands of551

AI development, many of these supercomputers are equipped with many GPUs and552

support general development environments, including Python. With access to such553

infrastructure, it is entirely feasible to develop large-scale AI models. Although using554
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supercomputers typically incurs usage fees, several support programs are available to555

subsidize these costs. When effectively utilized, these programs can allow access to556

powerful computational resources with little to no financial burden.557

As discussed throughout this chapter, large-scale medical image datasets and com-558

putational resources essential for developing foundation models for medical support559

are realistically available. By maximizing the use of national data and computing560

resources, we can anticipate the emergence of nationally developed foundation mod-561

els and high-performance AI systems that contribute to the advancement of medical562

support technologies.563

7 Conclusions564

In this paper, the mechanisms of image generation AI and text generation AI, along565

with examples of their applications in the medical field are introduced. Furthermore,566

this paper introduced the Scaling Laws, a concept that has gained prominence as gen-567

erative AI continues to evolve, and introduced foundation models, which are expected568

to significantly impact the future of AI development. Finally, this paper examined the569

importance of preparing large-scale medical image datasets and securing large-scale570

computing resources to realize foundation models for medical image processing. This571

paper emphasized the necessity of developing foundation models for medical support572

using national data and computing resources. As medical image processing enters a573

new era, I hope that academic researchers will continue to play a key role and make574

meaningful contributions to its advancement.575
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