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Abstract
Efficiently managing logistics operations, particularly Vehicle Rout-
ing Problems (VRPs), is critical in modern supply chains. These
operations are often characterized by complex challenges including
heterogeneous vehicle fleets, diverse demand types, and stochas-
tic environmental factors like travel times, all requiring real-time
adaptive decision-making. Existing approaches often struggle to
simultaneously address these multifaceted issues. This paper in-
troduces HARL (Hierarchical Emergency Logistics Planning with
Reinforcement Learning), a novel framework designed for real-time
policy optimization in such complex logistics scenarios. HARL fea-
tures an attention-based policy optimizer with a unique hierarchical
decoder architecture and dilated temporal convolutions to manage
intricate action spaces and temporal dependencies. Trained using
the REINFORCE algorithm, the model dynamically adapts to chang-
ing conditions. We demonstrate HARL’s effectiveness through ex-
periments on synthetic VRP instances and a real-world case study
derived from disaster response logistics. Results show that HARL
significantly outperforms state-of-the-art reinforcement learning
baselines and traditional heuristics in both solution quality and com-
putational efficiency, offering a robust and generalizable approach
for complex VRP research and AI-driven supply chain optimization.

CCS Concepts
• Computing methodologies → Reinforcement learning; •
Applied computing→ Transportation; •Theory of computation
→ Routing and network design problems.
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1 Introduction
The efficient flow of goods and services is the backbone of modern
economies, with logistics operations and Vehicle Routing Prob-
lems (VRPs) playing a pivotal role in supply chain performance [5].
However, real-world logistics are fraught with complexities that
challenge traditional optimization approaches. Disaster response
logistics starkly exemplifies these challenges: events like Hurricane
Katrina, where the Defense Logistics Agency distributed millions of
meals and billions of gallons of fuel [2], or the 2023 Canadian wild-
fires necessitating large-scale evacuations and supply distribution
[8], underscore the critical need for highly adaptive and responsive
systems. While these emergency scenarios are extreme, the core
operational difficulties resonate across a wide spectrum of general
logistics and supply chain management.

The intricate nature of such logistics problems is illustrated
in Figure 1. Consider a central hub (𝐻0) tasked with distributing
essential resources (e.g., water, food, medical supplies) to various
help centers using a heterogeneous fleet of vehicles (e.g., helicopters,
specialized trucks, standard vans), each with different capacities
and speeds.

In a stable situation (Scenario 1 in Figure 1), where road con-
ditions are known and demand distribution is fixed, an optimal
routing plan can be derived using standard optimization techniques.
Vehicles are assigned to routes and demand types based on their ca-
pabilities to minimize costs or delivery times. However, real-world
logistics, especially in dynamic contexts like disaster response or
even daily urban deliveries, rapidly shift towards more complex
situations (Scenario 2). Here, unforeseen events like major road
blockages drastically alter travel times, and the spatial distribution
or intensity of demands can change abruptly. A plan optimized
for Scenario 1 would become highly suboptimal or even infeasi-
ble in Scenario 2. This necessitates a system capable of real-time
re-evaluation and adaptation to maintain operational effectiveness.

This illustrative example highlights three primary interacting
challenges that make real-time VRP optimization particularly diffi-
cult:

(1) Heterogeneous Fleets and Demands: Logistics networks
typically involve diverse vehicle types (e.g., trucks, vans,
drones, specialized vehicles) each with unique capacities, op-
erating costs, speeds, and compatibilities with different cargo
or service types. Simultaneously, demands are not uniform;
they vary by type (e.g., perishable goods, bulk items, medical
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Figure 1: Illustrative scenarios highlighting complexities in logistics operations. Scenario 1 depicts a stable situation amenable
to pre-planning. Scenario 2 introduces dynamic disruptions (e.g., blocked routes, shifting demand patterns).

supplies), priority, and handling requirements. Effectively
matching the right vehicle to the right demand at the right
time is a significant combinatorial challenge.

(2) Stochastic and Dynamic Environments: Travel times
are rarely deterministic due to traffic congestion, weather
conditions, road closures, or (in disaster contexts) damaged
infrastructure [4]. Demand itself can be dynamic, with new
orders arriving or existing ones changing. This environmen-
tal uncertainty requires solutions that can adapt to evolving
conditions rather than relying on static plans.

(3) Real-TimeDecision-Making: The dynamic nature of these
factors necessitates rapid re-planning and decision-making.
Pre-computed optimal routes can quickly become obsolete,
leading to inefficiencies or failures if the system cannot re-
spond in near real-time to new information [13].

Traditional optimization methods, such as Mixed Integer Linear
Programming (MILP), often struggle with the scale and dynamism
of such problems, especially when all three challenges are present
[3]. Heuristic and metaheuristic approaches offer more scalability
butmay not guarantee optimality or adapt sufficiently quickly. Deep
Reinforcement Learning (DRL) has shown considerable promise for
tackling complex, sequential decision-making problems under un-
certainty [6, 7]. However, many existing DRL applications to VRPs
tend to simplify one or more of the aforementioned heterogeneities
or assume deterministic settings, and often do not explicitly address
the deeply hierarchical nature of the action space (e.g., selecting a
location, then a specific vehicle from a diverse fleet, then a specific
demand type to service).

To address these limitations, we introduce HARL (Hierarchical
Adaptive Routing for Logistics). While motivated and validated
using a challenging disaster logistics scenario, HARL is designed as
a general framework for real-time policy optimization in complex
VRPs. Its main contributions are:

• A unified DRL framework that simultaneously considers
heterogeneous demand types, a diverse fleet of vehicles with
varying capabilities for each demand type, and stochastic
travel times.

• An end-to-end, attention-based policy optimizer using a
policy-gradient DRL model capable of generating adaptive
real-time policies.

• A novel hierarchical decoder architecture specifically de-
signed to manage the complex, multi-level action space in-
herent in assigning heterogeneous vehicles to heterogeneous
demands at various locations under stochastic conditions.

• The integration of dilated temporal convolutions within the
decoder to capture long-range spatio-temporal dependencies
and sequential patterns in routing decisions.

This work presents a significant step towards more robust and
intelligent AI systems for complex, real-world logistics and supply
chain optimization.

2 Related Works
The VRP and its variants have been extensively studied, with tradi-
tional approaches often relying on Mixed Integer Linear Program-
ming (MILP) [3, 10] and metaheuristics like Tabu Search or Genetic
Algorithms [11]. While powerful, these methods can be compu-
tationally intensive for large-scale, dynamic problems and often
assume deterministic environments.

Incorporating stochasticity, particularly in travel times or de-
mand, has been addressed [4, 13], but often with simplified assump-
tions about resource heterogeneity. Some works consider heteroge-
neous fleets or multi-modal transport [1], yet few integrate this with
comprehensive stochastic modeling and real-time decision-making
requirements.

Deep Reinforcement Learning (DRL) has emerged as a promising
direction for solving VRPs, with notable attention-based models
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[6] and policy optimization techniques [7]. These learning-based
approaches can generate solutions quickly once trained. How-
ever, many existing DRL models for VRPs do not fully address
the combined challenge of managing heterogeneous resources
(both vehicles and demands with specific compatibilities), stochas-
tic travel times, and a deeply hierarchical action space in a real-
time context. Our work aims to tackle these aspects simultaneously
through a novel hierarchical policy architecture. Few models, to our
knowledge, holistically address all three aspects—heterogeneous de-
mands/fleets and stochastic travel times—within a unified real-time
DRL framework for complex logistics problems.

3 The HARL Framework
To apply DRL, we formulate the logistics optimization problem as a
Markov Decision Process (MDP), defined by a tuple (S,A, 𝑃, 𝑅,𝛾).

3.1 Problem Formulation
State Space S: The state 𝑠𝑡 ∈ S at time step 𝑡 encapsulates all
relevant information for decision-making:

• Vehicle locations 𝑙𝑡 : Current location of each vehicle (depot
or a help center).

• Vehicle capacities 𝐶𝑡 : A matrix representing the remaining
capacity of each vehicle𝑚 ∈ V for each demand type 𝑘 ∈ K .
This captures vehicle heterogeneity in terms of what they
can carry and how much.

• Remaining demands 𝐷𝑡 : A matrix indicating the unfulfilled
demand of type 𝑘 at each help center 𝑛 ∈ H .

• Visit flags 𝑉𝑡 : Binary indicators to track which help centers
have been fully serviced or which vehicle-hub pairings have
occurred, used with action masking to prevent redundant
actions.

Action SpaceA: The action 𝑎𝑡 ∈ A is complex and hierarchical.
A full action involves selecting a help center 𝑛 to visit, a specific
vehicle𝑚 to dispatch, and a particular demand type 𝑘 that vehicle
𝑚 will service at 𝑛. An action can also be to return a vehicle to the
central depot 𝐻0.

𝑎𝑡 =

{
(𝑛,𝑚, 𝑘) Send vehicle𝑚 to hub 𝑛 for demand type 𝑘
(𝐻0,𝑚, ∅) Vehicle𝑚 returns to depot

(1)
This structure naturally lends itself to a hierarchical decision pro-
cess, which is a core feature of our proposed decoder.

Transition Dynamics 𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ): These govern how the
state evolves. Vehicle locations change based on the chosen 𝑛. Ca-
pacities 𝐶𝑡 decrease, and demands 𝐷𝑡 are reduced based on the
service provided. Visit flags 𝑉𝑡 are updated.

Travel Time Stochasticity: Travel time 𝜏𝑖 𝑗 between locations
𝑖 and 𝑗 is stochastic. We model it based on Euclidean distance
| |𝑝𝑖 − 𝑝 𝑗 | |2 modulated by a random variable 𝜉 ∼ N(𝜇𝑡 , 𝜎2𝑡 ), where
𝜇𝑡 and 𝜎2𝑡 can themselves be learned or set to reflect environmental
conditions.

𝜏𝑖 𝑗 = | |𝑝𝑖 − 𝑝 𝑗 | |2 · 𝜉 (2)

Reward Function 𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1): The reward 𝑟𝑡 guides the learn-
ing process. It’s designed to minimize operational costs and priori-
tize urgent demands:

𝑟𝑡 = − (𝜏𝑎𝑐𝑡𝑖𝑜𝑛 · 𝑐𝑚)︸          ︷︷          ︸
Travel cost

− (𝜔𝑘 · 𝜙𝑚,𝑘 · 𝛿𝑚,𝑘 )︸                ︷︷                ︸
Delivery cost/penalty

(3)

where 𝜏𝑎𝑐𝑡𝑖𝑜𝑛 is the travel time for the action, 𝑐𝑚 is the travel cost
coefficient for vehicle𝑚, 𝜔𝑘 is the urgency weight for demand type
𝑘 , 𝜙𝑚,𝑘 is the cost rate for vehicle𝑚 delivering demand type 𝑘 , and
𝛿𝑚,𝑘 is the amount delivered. The negative sign indicates we are
minimizing costs (maximizing reward).

The formulation satisfies the Markov property as the current
state 𝑠𝑡 contains all necessary information for future decisions, and
transitions/rewards depend only on 𝑠𝑡 and 𝑎𝑡 .

3.2 Hierarchical Policy Optimization Model
HARL utilizes an encoder-decoder architecture within an actor-
critic REINFORCE framework

3.2.1 Encoder Architecture. The encoder processes static and dy-
namic state information. Static inputs, such as help center loca-
tions 𝑝𝑖 and their initial demand profiles 𝑑𝑖 , are first projected into
high-dimensional embeddings using an MLP: ℎ0

𝑖
= MLP( [𝑝𝑖 ;𝑑𝑖 ]).

These initial node embeddings 𝐻0 = {ℎ00, ℎ
0
1, . . . , ℎ

0
𝑁
} are then fed

into a multi-head self-attention (MHSA) layer [12]. The MHSA
layer allows the model to learn rich contextual representations
𝐻 = MHSA(𝐻0) by capturing dependencies and relationships
among all help centers. This provides a global understanding of the
problem instance. Dynamic information (current vehicle locations,
capacities) is separately embedded and combined with these static
embeddings at the decoder stage.

3.2.2 Hierarchical Decoder. A core novelty of HARL is its hierarchi-
cal decoder, which breaks down the complex action selection into
two sequential levels, making the learning process more tractable
and the policy more interpretable.

(1) Level 1 - Hub Selection: The first level decides which help
center𝑛 (or the depot𝐻0) to target next. Given the global con-
text 𝐻 from the encoder and the current dynamic state em-
bedding ℎ𝑑𝑦𝑛 (representing current vehicle locations, time,
etc.), an attention mechanism computes attention scores 𝛼𝑛
over all possible destination nodes:

𝛼𝑛 = Softmax
©­­«
(𝑊𝑞ℎ𝑑𝑦𝑛)𝑇 (𝑊𝑘ℎ𝑛)√︃

𝑑𝑘𝑒𝑦

ª®®¬ (4)

where ℎ𝑛 ∈ 𝐻 is the embedding of hub 𝑛, and𝑊𝑞,𝑊𝑘 are
learned weight matrices. This produces a probability distri-
bution over hubs.

(2) Level 2 - Vehicle and Resource Allocation: Once a hub
𝑛∗ is selected (e.g., by sampling from 𝛼𝑛), the second level de-
termines which available vehicle𝑚 should transport which
type of required demand 𝑘 to 𝑛∗. This decision is conditioned
on ℎ𝑛∗ , ℎ𝑑𝑦𝑛 (including current vehicle capacities 𝐶𝑚,𝑘

𝑡 and
demand 𝐷

𝑛∗,𝑘
𝑡 ). An MLP followed by a softmax layer com-

putes a joint probability distribution 𝛽𝑛
∗

𝑚,𝑘
over valid (vehicle,
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demand type) pairs for the selected hub 𝑛∗:

𝛽𝑛
∗

𝑚,𝑘
= Softmax(MLP( [ℎ𝑛∗ ;ℎ𝑑𝑦𝑛 ;𝐶

𝑚,𝑘
𝑡 ;𝐷𝑛∗,𝑘

𝑡 ])) (5)

The overall action probability for𝑎𝑡 = (𝑛∗,𝑚∗, 𝑘∗) is then𝜋 (𝑎𝑡 |𝑠𝑡 ) =
𝛼𝑛∗ · 𝛽𝑛∗

𝑚∗,𝑘∗ . This factorization manages the combinatorial complex-
ity of the action space.

3.2.3 Dilated Temporal Convolutions for Sequential Context. To
effectively model long-range dependencies and sequential patterns
in the sequence of decisions (e.g., the order in which hubs are vis-
ited), we incorporate dilated temporal convolutions [9] within the
decoder, particularly influencing the hub selection stage. Standard
RNNs can struggle with long sequences, while full Transformers
can be computationally expensive for very long horizons. Dilated
convolutions offer an efficient alternative by applying filters over an
input sequence with exponentially increasing dilation rates across
layers. This allows the network to have a large receptive field with
relatively few layers and parameters, capturing temporal context
from distant past decisions without explicit recurrent connections.
These convolutions operate on sequences of hub embeddings gen-
erated during the rollout or features derived from the history of
actions, enhancing the model’s ability to make contextually aware,
far-sighted decisions.

3.2.4 Actor-Critic Policy Optimization. We employ an actor-critic
architecture based on the REINFORCE algorithm to train the policy
network 𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ).

• Actor (𝜋𝜃 ): The actor is the policy network described above,
including the encoder and hierarchical decoder. It outputs a
probability distribution over actions.

• Critic (𝑉𝜙 (𝑠𝑡 )): The critic is a separate neural network that
estimates the state-value function 𝑉 (𝑠𝑡 ), which is the ex-
pected cumulative discounted reward from state 𝑠𝑡 . It helps
reduce the variance of the policy gradient estimates. The
critic typically processes the same encoded state representa-
tions as the actor.

The policy parameters 𝜃 are updated using the policy gradient
theorem:

∇𝜃 𝐽 (𝜃 ) = E𝜏∼𝜋𝜃

[
𝑇−1∑︁
𝑡=0

∇𝜃 log𝜋𝜃 (𝑎𝑡 |𝑠𝑡 )𝐴(𝑠𝑡 , 𝑎𝑡 )
]

(6)

where 𝐴(𝑠𝑡 , 𝑎𝑡 ) = 𝑅𝑡 − 𝑉𝜙 (𝑠𝑡 ) is the advantage function. 𝑅𝑡 =∑𝑇−1
𝑡 ′=𝑡 𝛾

𝑡 ′−𝑡𝑟𝑡 ′ is the discounted cumulative return. The critic pa-
rameters 𝜙 are updated by minimizing a loss function, typically the
mean squared error between 𝑉𝜙 (𝑠𝑡 ) and 𝑅𝑡 .

3.2.5 Action Masking and Constraint Handling. To ensure that the
policy only selects feasible actions, an action masking mechanism
is applied. For example, a vehicle cannot be dispatched if it lacks
the capacity for a specific demand, or a hub that has all its demands
satisfied might be masked out. This is typically done by adding
large negative values to the logits of invalid actions before the fi-
nal softmax activation, effectively assigning them zero probability.
Stochastic travel times are handled by sampling from their distri-
butions during simulation for training and evaluation. Dynamic
capacity updates are part of the environment’s transition logic.

Table 1: Inference Reward (R) and Time (T, secs) for HARL
vs. Best Baselines (selected scenarios).

Model (20,3,3) (30,5,5) (50,7,5)
R T R T R T

A3C (RL) -0.619 0.46 -0.732 0.93 -0.632 0.80
POMO (RL) -0.391 1.32 -0.720 2.12 -0.583 1.88
LKH-3 (Heur.) -0.278 783 -0.628 943 -0.733 1546

HARL (Ours) -0.163 0.14 -0.263 0.19 -0.326 0.32

4 Experiments
We evaluated HARL on synthetic VRP instances with varying num-
bers of help centers (20 to 50), vehicle types (3 to 7), and demand
types (3 to 7), denoted as (hubs, vehicles, demands). Stochastic travel
times were used throughout. We focus on two key experiments and
a real-world case study. All models were trained for 10,000 epochs.

4.1 Comparison with Baselines
HARL was compared against several policy-based RL baselines
including A3C, POMO [7]), and traditional heuristics (LKH-3 (sim-
plified). For LKH-3 we used a rollout mechanism for stochastic
travel times compatibility.

Table 1 summarizes inference-time reward (higher is better, val-
ues are typically negative costs) and response time (seconds). HARL
consistently achieves superior rewards with significantly faster re-
sponse times, crucial for real-time applications. For instance, in
the (50,5,5) scenario, HARL achieved a reward of -0.301 in 0.351s,
while the best RL baseline (POMO) scored -0.429 in 3.21s, and the
best heuristic (LKH-3) scored -0.418 but took 1342s. This highlights
HARL’s strong balance of solution quality and speed.

4.2 Ablation Study
We analyzed the impact of the hierarchical decoder (H) and dilated
temporal convolutions (D). Configurations: (H+, D+) is the full
model; (H+, D-) removes dilated convolutions (uses linear layers);
(H-, D+) uses a flat decoder; (H-, D-) removes both.

Table 2 shows inference-time reward and Consecutive Node Ac-
tions (CNA), where higher CNA indicates better spatial coherence
in routing. The full model (H+, D+) consistently yields the best
rewards and higher CNA values across scenarios. For example, in
(30,7,7), (H+, D+) achieved -0.289 reward and 92 CNA, while (H-,
D-) scored -1.31 reward and 36 CNA. This confirms that both the hi-
erarchical structure and dilated convolutions are crucial for HARL’s
performance and ability to generate spatially coherent plans.

4.3 Case Study: Wildfire Relief Logistics
To demonstrate real-world applicability, we adapted HARL to a
scenario inspired by the 2021 Kelowna Wildfire, Canada, using
anonymized location-based movement data to model demand zones
(20 help centers, 3 vehicle types, 3 demand types). Figure 2 illustrates
the setup and the optimized policy by HARL.

HARL achieved an average reward of -0.37, outperforming other
RL methods (e.g., POMO: -0.54, A3C: -0.86). This underscores its
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Table 2: Ablation: Reward (R) and CNA for different model
configurations (selected scenarios).

2*Config. (20,5,5) (30,7,7) (50,5,7)
R CNA R CNA R CNA

H+, D+ (Full) -0.211 44 -0.289 92 -0.429 113
H+, D- -0.423 37 -0.351 81 -0.832 92
H-, D+ -0.366 32 -0.311 61 -0.855 104
H-, D- -1.42 17 -1.310 36 -2.790 42

[Demand Zones

Hubs]
[HARL

Policy]

Figure 2: Kelowna Wildfire case study: (a) Derived help cen-
ters and demand types. (b) Optimized routing policy by
HARL.

effectiveness in handling complex, spatio-temporally evolving de-
mands in a realistic setting, further supporting its potential as a
general tool for dynamic logistics optimization.

5 Conclusion
This paper introduced HARL, a novel hierarchical reinforcement
learning framework for real-time policy optimization in complex lo-
gistics networks characterized by heterogeneous resources, diverse
demands, and stochastic travel times. Key innovations include a

hierarchical decoder for structured action selection and the use of
dilated temporal convolutions for capturing sequential dependen-
cies in traversed routing policy.

Comprehensive experiments, including comparisons with state-
of-the-art RL and heuristic methods, and an ablation study, demon-
strated HARL’s superior performance in terms of both solution
quality and computational speed. A real-world case study based on
wildfire relief logistics further validated its applicability. HARL of-
fers a robust and generalizable approach for AI-driven optimization
in dynamic supply chain and VRP research, capable of providing
high-quality, real-time decisions under uncertainty. Future work
will explore extensions to multi-objective optimization and richer
real-time information fusion.
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