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ABSTRACT

Large Language Models (LLMs) have shown impressive capabilities across a
range of language tasks. However, questions remain about whether LLMs effec-
tively encode linguistic structures such as phrases and sentences and how closely
these representations align with those in the human brain. Here, we introduce the
Hierarchical Frequency Tagging Probe (HFTP) to probe the phrase and sentence
representations in LLMs and the human brain in a unified manner. HFTP uti-
lizes frequency-domain analysis to identify which LLM computational modules
(multilayer perceptron (MLP) neurons) or human cortical areas encode phrases
or sentences. Human brain activity is recorded using intracranial electrodes. The
results revealed distinct sensitivities to sentences and phrases across various lay-
ers of LLMs (including GPT-2, Gemma, Llama 2, Llama 3.1, and GLM-4) and
across different regions of the human brain. Notably, while LLMs tend to pro-
cess sentences and phrases within similar layers, the human brain engages distinct
regions to process these two syntactic levels. Additionally, representational sim-
ilarity analysis (RSA) shows that the syntactic representations of all five LLMs
are more aligned with neural representations in the left hemisphere—the domi-
nant hemisphere for language processing. Among the LLMs, GPT-2 and Llama 2
show the greatest similarity to human brain syntactic representations, while Llama
3.1 demonstrates a weaker resemblance. Overall, our findings provide deeper in-
sights into syntactic processing in LLMs and highlight the effectiveness of HFTP
as a versatile tool for detecting syntactic structures across diverse LLM architec-
tures and parameters, as well as in parallel analyses of human brains and LLMs,
thereby bridging computational linguistics and cognitive neuroscience.

1 INTRODUCTION

Language is fundamental to human communication, thought, and cultural transmission. Accord-
ing to the framework proposed by Noam Chomsky, language is divided into three key components:
semantics (meaning), phonology (sound), and syntax (hierarchical sentence structure) (Chomsky,
1965). Syntax is particularly crucial as it governs how words combine into meaningful sentences,
enabling the recursive and generative properties unique to human language. The theory of univer-
sal grammar proposed by Noam Chomsky suggests that all human languages share innate syntactic
rules (Chomsky, 1980). Building on this foundation, cognitive scientists have shown that syntactic
processing is distinct from other language functions, relying on mechanisms specifically dedicated
to organizing abstract grammatical structures (Matchin & Hickok, 2017; Pylkkanen & Bemis, 2011).
Furthermore, as sentence complexity increases, the neural workload also intensifies, reflecting the
capacity of the human brain to resolve syntactic ambiguities and manage grammatical dependen-
cies (Pylkkanen & Bemis, 2011). As more advances are made in understanding human syntactic
processing, language models in the field of artificial intelligence have been developed that aim to
capture and comprehend human language.

In recent years, large language models (LLMs) have rapidly evolved, surpassing human-level capa-
bilities in numerous tasks (Vaswani et al., 2017; Brown et al., 2020). Specially, the performance of
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LLMs in natural language understanding, translation, and summarization has led to claims that they
possess a remarkable degree of human-like linguistic ability, especially in generating language that
adheres to the surface rules of syntax (Radford et al., 2019). However, the question of whether LLMs
can process the hierarchical structures of sentences in a manner comparable to humans remains un-
clear. While some studies suggest that LLMs can successfully capture and manipulate hierarchical
structures of sentences (Manning et al., 2020), others argue that LLMs lack the deeper syntactic
processing capabilities observed in human cognition (Linzen et al., 2016; McCoy et al., 2019). This
controversy stems from the absence of a unified framework to rigorously evaluate and compare the
syntactic processing abilities of LLMs with those of the human brain, making it difficult to draw
definitive conclusions about their true linguistic competence (Tenney et al., 2019; Warstadt et al.,
2020). Therefore, it is crucial to develop a method that can simultaneously probe the hierarchical
syntactic structure representations in both LLMs and the human brain, and on this basis, explore the
internal similarities of syntactic representations between them.

Ding and colleagues (Ding et al., 2016) introduced the hierarchical frequency tagging (HFT) tech-
nique to uncover how the human brain processes hierarchical linguistic structures during natural
speech comprehension. In this paradigm, monosyllabic words are presented at a rate of 4Hz to
form phrases at 2Hz, which combine into sentences at 1Hz. Using frequency-domain analysis of
electrophysiological signals, Ding and colleagues deconstruct the processing of linguistic structures
such as phrases and sentences. Subsequent research further highlighted the importance of atten-
tional mechanisms in processing these hierarchical structures (Ding et al., 2018), while other studies
have shown that HFT captures distinct neural responses to different linguistic elements (Keitel et al.,
2018). Moreover, Martin et al. extended this framework by exploring how the brain organizes com-
plex linguistic stimuli (Martin & Doumas, 2017). These studies demonstrate the effectiveness of
HFT in revealing language processing patterns. Given the differences in temporal processing be-
tween LLMs and the human brain, aligning their syntactic representations in the frequency domain
is a feasible and necessary approach.

Building on the HFT paradigm Ding et al. (2016), here we developed the Hierarchical Frequency
Tagging Probe (HFTP) to investigate whether specific computational modules within LLMs process
hierarchical sentence structures. HFTP offers a unified approach to explore internal similarities and
systematically examine the alignment of syntactic representations between LLMs and the human
brain. The key contributions of this paper are: (1) We innovatively employed frequency-domain
analysis using HFTP to characterize the syntactic representations of every computational unit in
each layer of LLMs; (2) HFTP provides a simple and universally applicable approach for both
LLMs and the human brain, establishing a platform for studying the alignment of syntactic structure
representations between them; (3) Using syntactic templates derived from HFTP, we identified brain
regions highly correlated with LLMs, predominantly located in key language-processing areas of the
left hemisphere; (4) By comparing five LLMs, we found that the internal syntactic representations
of GPT-2 and Llama 2 exhibit higher overall similarity to those of the human brain. In sum, HFTP
effectively aligns representations between LLMs and the human brain, providing a novel platform
for future alignment studies.

2 RELATED WORK

Syntactic processing in the human brain In humans, syntactic processing involves a complex
neural network that organizes words into hierarchical structures, enabling infinite expression from a
finite set of elements. Research on brain damage and neuroimaging has indicated a left hemisphere
advantage in language processing (Friederici & Brauer, 2009; Hagoort, 2013; Blank et al., 2016),
with further evidence suggesting that this lateralization may stem from distinct sensitivity to tem-
poral modulations crucial for speech perception (Albouy et al., 2020). However, recent evidence
suggests that syntactic processing relies on a distributed network across frontal and temporal ar-
eas, with significant overlap in regions responsible for both syntactic and semantic functions (Blank
et al., 2016; Fedorenko et al., 2020). These findings demonstrate that syntactic processing is not
confined to isolated regions but is part of a broad, interconnected network.

Syntactic processing in language models Even before the development of LLMs, researchers found
that simple LSTM language models could capture syntax-sensitive dependencies, such as subject-
verb agreement (Linzen et al., 2016; Kuncoro et al., 2018). Using a technique called structural
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probing, Manning and colleagues discovered that transformer-based models like BERT can encode
hierarchical syntactic trees, enabling such models to implicitly represent complex syntax without
direct training (Hewitt & Manning, 2019). These transformer-based models excel at tracking both
local and long-range dependencies through specialized attention mechanisms, distributing syntactic
knowledge across layers (Clark, 2019; Tenney et al., 2019; Manning et al., 2020). However, the
methods employed in these studies of language models make it challenging to apply findings to the
exploration of human brain activity.

Alignment between LLMs and the human brain Previous research on the alignment between
LLMs and human brain representations has largely focused on next-word prediction without dis-
tinguishing between semantics and syntax. This approach compares the prediction probabilities of
LLMs with human brain activity to assess shared computational principles (Schrimpf et al., 2021;
Goldstein et al., 2022). Recent studies indicate that syntactic processing representations closely cor-
relate with brain regions responsible for hierarchical syntax (Caucheteux & King, 2022; Oota et al.,
2024). Moreover, efforts to disentangle syntax from semantics reveal distinct patterns in both neural
and model representations (Caucheteux et al., 2021). While some alignment exists, variations in
task complexity suggest that LLMs display more layer-specific syntactic processing (Tuckute et al.,
2024). However, these studies utilize different corpora, alignment methods, and LLMs, making it
difficult to conduct a systematic investigation of syntactic representations in large models. A unified
tool is needed to probe syntactic structure representations across the human brain and various LLMs,
enabling systematic comparisons of representation similarities at the neuronal population level.

3 METHODS

Figure 1: A framework for Hierarchical Frequency Tagging Probes (HFTP) and an illustration of
neurons involved in different levels of hierarchical linguistic processing in both large LLMs and the
human brain. A, hierarchical linguistic structure in English and Chinese including syllable, phrase,
and sentence. B, hierarchical linguistic pattern observed both in LLMs and C, human brain.

We present the framework of the proposed HFTP methodology (see Figure 1). This framework
is organized into four parts: Section 3.1 describes the syntactic corpora used and the LLM archi-
tectures; Section 3.2 details the application of HFTP to identify significant sentence and phrase
neurons; Section 3.3 explains how the HFTP approach is applied to human intracranial stereo-
electroencephalography (sEEG) data; and Section 3.4 correlates syntactic structure representations
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in LLMs and the human brain by comparing frequency-domain representations and identifying sim-
ilarities in how syntactic structures are encoded across both systems.

3.1 DATA AND LLMS

We utilized Chinese and English corpora adapted from (Ding et al., 2016), consisting of four-syllable
sequences in Chinese or four-word sequences in English, where the first two and last two units form
phrases (see Figure 1). Further details regarding the corpus can be found in Appendix A.6. For both
the sEEG and model-brain alignment experiments, we used the same two Chinese corpora—the
sentence and phrase corpora—from (Sheng et al., 2019). While these corpora share a similar
structure to the Chinese syntactic corpus used in the LLM experiments, they differ in content. To
control for semantic processing, we created a word-order randomized version for each corpus as
a control condition. In this randomized version, the semantics of individual words are preserved,
while the syntactic structure is disrupted.

We applied HFTP to five state-of-the-art LLMs—GPT-2, Gemma, Llama 2, Llama 3.1, and GLM-
4—which vary in both architecture and parameter scale (see Table 3). As GPT-3.5 and its subse-
quent versions are not open-source, we were limited to using GPT-2 from the GPT series for LLM
experiments. Notably, the term “MLP neuron” refers here to computational modules within the mul-
tilayer perceptron (MLP) layers of a Transformer model. These neurons are part of the feed-forward
network, which follows the attention mechanism in each layer. The MLP consists of two fully con-
nected layers, and the number of neurons corresponds to the hidden units that process the input after
attention has been applied.

3.2 SYNTACTIC STRUCTURE PROBE IN LLMS

For each LLM, sequences from both the Chinese and English syntactic corpora were concatenated
into a continuous text to capture neural-like activations. During this process, each Chinese syl-
lable (or English word) outputted an activation value, allowing the signal corresponding to every
individual linguistic unit to be traced. These time-domain activations were then transformed into
frequency-domain information via fast-fourier transform (FFT). Due to the lack of time-course in-
formation inherent to LLM input structures, we artificially defined a time scale on which the activa-
tion values are output at a frequency of 4 Hz, and we also manually constrained the sampling rate
to 4 Hz, limiting the observable frequencies to the 0-2 Hz range. This adjustment ensured that the
syntactic rhythms analogous to those observed in human brain data could be captured within the
model activations.

LLMs, with their multiple layers and thousands of MLP neurons per layer, require a systematic
approach to identify which neurons are responsible for either sentence or phrase processing. We
developed a method to identify significant syntactic processing units, applicable to both LLMs and
human brain data. For the LLMs, we conducted a permutation test, randomizing the model acti-
vations derived from the structured input corpus 1000 times. The original frequency bins at 1 Hz
and 2 Hz, representing sentence and phrase rhythms respectively (their real parts of amplitudes
are denoted as real[amp(1Hz)], real[amp(2Hz)]), were compared to the 95% confidence intervals
(CI) generated by the distribution of permuted activations. Neurons whose real[amp(1Hz)] and
real[amp(2Hz)] values exceeded this threshold were classified as significant MLP neurons (see 1),
indicating their involvement in syntactic processing with statistical robustness against random noise.

Definition 1 (Significant MLP Neurons). For a fixed frequency f , a neuron is a significant MLP
neuron, if and only if its FFT result satisfies

real[amp(f)] /∈ 95% CI of permuted distribution. (1)

The set containing all the significant MLP neurons in terms of frequency f is denoted as Sf .

Since the significant MLP neurons are distributed almost uniformly across all layers, identifying
the specific neurons that contribute to sentence and phrase processing requires a more objective and
systematic method. To achieve this, we applied z-scores to the FFT amplitudes at 1 Hz and 2 Hz
in both the experimental and control groups for all significant MLP neurons across layers. The z-
score deviation between the experimental and control groups was then calculated for each neuron.
Neurons associated with sentence processing and phrase processing were defined as those whose z-
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scores deviated by more than two standard deviations from the mean, at 1 Hz and 2 Hz, respectively
(see 2).
Definition 2 (Sentence MLP Neurons and Phrase MLP Neurons). A neuron n is defined as a sen-
tence/phrase MLP neuron if it satisfies

n ∈ Sf , zf (n) ≥ µzf + 2σzf , (2)

where zf (n) denotes the z-score of the FFT amplitude for neuron n at fruquency f , µzf denotes the
mean z-score across all neurons for the frequency f , σzf denotes the standard deviation of z-scores
across all neurons for the frequency f , and the frequency f is specified as 1Hz and 2Hz for sentence
and phrase MLP neuron respectively.

Following this, we identified and analysed sentence and phrase MLP neurons across layers and
LLMs, with full details provided in Section 4.1. We also conducted bilingual experiments to as-
sess the ability of different LLMs to perceive syntactic structures across Chinese and English (see
Appendix A.2).

3.3 SYNTACTIC STRUCTURE PROBE IN THE HUMAN BRAIN

In the human sEEG experiment, we recorded sEEG signals from 26 native Chinese speakers, using
two Chinese corpora: the sentence and phrase corpora. The Chinese corpus was presented to the
human subjects in the auditory modality. In the sentence corpus, every nine four-syllable sequences
were concatenated into a single trial, yielding 40 trials per subject. Similarly, in the phrase corpus,
every 18 two-syllable phrases were concatenated, also resulting in 40 trials per subject. Each syllable
had a duration of 250 ms, and sEEG signals were sampled at 512 Hz for most participants, except
for one with a sampling rate of 2,048 Hz. Note that to reduce the strong neural responses at word
onset during auditory presentation, we only used sEEG recordings from the final 32 syllables of
each trial per subject.

To analyze the sEEG data, we employed inter-trial phase coherence (ITPC), a frequency-domain
method relatively resistant to noise that quantifies the consistency of phase relationships in oscilla-
tory brain activity across multiple trials (Cohen, 2014). SEEG Electrode localization was performed
similarly to our previous studies (Xu et al., 2023; Wang et al., 2024); all electrodes were mapped to
brain regions defined by the Automated Anatomical Labeling (AAL) system. We then grouped cer-
tain AAL regions to form 12 brain regions of interest (ROIs) (details in Appendix A.7). Subsequent
experiments were conducted based on brain ROIs.

As previously outlined, the proposed HFTP approach is designed to be applicable to both LLMs
and human brain data. For the human brain analysis, we employed the same permutation testing
procedure on the time-domain sEEG data that captured cortical activity during listening to Chinese
corpora. Specifically, ITPC results were randomized 1000 times for each channel in each subject.
The original frequency bins, real[amp(1Hz)] and real[amp(2Hz)], were then assessed to determine
whether they fell within the 95% confidence interval of the permuted ITPC distribution (see 3).
Definition 3. A channel c is defined as a sentence/phrase channel if its ITPC result satisfies

real[amp(f)] /∈ 95% CI of permuted ITPC, (3)

where f = 1Hz for sentence channel and f = 2Hz for phrase channel.

Using this probe, we identified and analyzed the distribution of sentence and phrase channels across
various brain ROIs, with full details provided in Section 4.2.

3.4 ALIGNMENT OF SYNTACTIC STRUCTURE REPRESENTATIONS OF LLMS WITH THE
HUMAN BRAIN

To explore syntactic structure representation alignment between LLMs and the human brain, we
compared their frequency-domain representations using the same sentence and phrase corpora. For
each computational modular (a MLP neuron in LLMs or an sEEG electrode channel in the hu-
man brain), we extracted values in the frequency spectrum as a feature. This approach creates a
multi-dimensional space based on frequency-domain features, where each syntactic structure cor-
responds to a specific point in this space (see Figure 2). We then compute the distances between
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Figure 2: Alignment pipeline between LLMs and human brain. SRDMs are computed for both MLP
neurons and brain channels using cosine similarity. RSA is then applied to quantify the similarity
between model and brain representations.

these points for different syntactic structures within the same computational unit using cosine simi-
larity. Through pairwise comparisons, we constructed Structure Representational Dissimilarity Ma-
trices (SRDMs) for each computational module, which are similar to Representational Dissimilarity
Matrices (RDMs) but specifically capture the representations of syntactic structures (Cichy et al.,
2014; Khaligh-Razavi & Kriegeskorte, 2014). We then applied Representational Similarity Analysis
(RSA) to enable cross-modal comparisons between LLMs and brain data, correlating the represen-
tations in both systems (Kriegeskorte et al., 2008). This approach allowed us to quantify alignment
and use statistical tests to identify significant overlaps. We introduced two key measures: model-
brain similarity (Sm,b) and model-region similarity (Sm,br ), to evaluate alignment globally and in
specific brain ROI, and used the contribution ratio (CRr) to assess the impact of each region on
the alignment. For more details on the alignment pipeline, see Appendix A.1. The comprehensive
discussion of the alignment results can be found in Section 4.3.

4 EXPERIMENTS

In our experiments, we employed the Hierarchical Frequency Tagging Probe (HFTP) to investi-
gate structural processing capabilities in both the human brain and LLMs, including GPT-2 (0.7B),
Gemma (2B), Llama 2 (7B), Llama 3.1 (8B), and GLM-4 (9B). This unified approach allowed us to
detect syntactic patterns across both systems and facilitate alignment between their representations.

4.1 MLP NEURONS REPRESENT SENTENCES AND PHRASES IN LLMS

Using the HFTP method, we identified neurons in all five models that selectively represent sentences
(sentence neurons), phrases (phrase neurons), and neurons that simultaneously represent both (sen-
tence & phrase neurons). In the examples shown, we highlight MLP neurons which display distinct
hierarchical frequency patterns. Figure 3 demonstrates four patterns: a significant peak at the sen-
tence frequency (fsentence), a significant peak at the phrase frequency (fphrase), dual peaks at both
fsentence and fphrase, and no significant peaks. Frequencies beyond 2 Hz have been artificially set
to zero for smoothness in the representation.

For the five LLMs tested, we identified their sentence and phrase neurons using the HFTP method.
Figure 4 shows the distribution of exclusive sentence/phrase neurons and those representing both
across different layers, based on experiments using the Chinese syntactic corpus. All five models
contain neurons dedicated to capturing sentences and phrases, demonstrating their ability to encode
the syntactic hierarchies of human language. However, distinct distribution patterns suggest varied
syntactic processing strategies: Llama and GLM primarily process syntactic information in later

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 3: Hierarchical frequency patterns of MLP neurons selectively represent sentence features,
phrase features, and shared features of both. Here, “experiment” denotes the original corpus, while
“random” indicates the randomized version. Significant frequency peaks are marked (*p < 0.05).

layers, indicating a more integrated approach, while GPT has higher concentrations of sentence and
phrase neurons in its middle layers. In contrast, Gemma presents a two-step process, with dense
concentrations in both early and late layers.

(a) GPT-2 (b) Llama 2 (c) Llama 3.1

(d) Gemma (e) GLM-4

Figure 4: Statistics of exclusive sentence/phrase MLP neurons and sentence & phrase MLP neurons
in each layer across five LLMs

A comparative analysis shows a notable decrease in the maximum proportions of sentence neurons
(from 8.9% in Llama 2 to 3.0% in Llama 3.1) and phrase neurons (from 6.8% to 0.9%). Since Llama
3.1 is an updated version of Llama 2, this suggests a potential shift in computational resources. To
improve performance on complex tasks—such as reasoning and higher cognitive functions—Llama
3.1 may reduce the specialized processing of syntactic structures (sentences and phrases), reallocat-
ing neurons to these advanced cognitive functions.

Additionally, a consistent covariant trend between sentence and phrase neurons across layers was
observed for all five models, with high statistical correlations, including Gemma (r = 0.841), GPT-2
(r = 0.585), GLM (r = 0.993), Llama 2 (r = 0.912), and Llama 3.1 (r = 0.934). These findings suggest
that LLMs share similar underlying mechanisms for sentence and phrase processing.

4.2 SENTENCES AND PHRASES REPRESENTATIONS IN THE HUMAN BRAIN

Using the HFTP approach, we identified neuron populations in the human brain that selectively rep-
resent sentences and phrases. Each sEEG channel captures collective responses from nearby neuron
populations, providing high spatio-temporal resolution of neural activity. This allows us to assess
sentence and phrase selectivity precisely. As shown in Figure 5, we found channels representing
sentences and phrases, as well as channels with shared representations, while some channels did
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not represent either. These findings align with those observed in LLMs, demonstrating that HFTP
effectively investigates the internal representations of syntactic structures in both systems.

Figure 5: Hierarchical frequency patterns of MLP neurons selectively represent sentence features,
phrase features, and shared features of both. Here, “experiment” denotes the original corpus, while
“random” indicates the randomized version. Significant frequency peaks are marked (*p < 0.05).

Similar to our analysis of neuron types in LLM layers, we calculated the proportions of sentence and
phrase channels within each brain ROI. As shown in Figure 6, phrase channels decrease from lower
layers (A1) to higher layers (e.g., IFG), while sentence channels show the opposite trend, increasing
at higher brain layers. This pattern aligns with earlier MEG studies Sheng et al. (2019), support-
ing distinct processing mechanisms for sentences and phrases. Correlations between sentence and
phrase channels across brain ROIs in both hemispheres revealed no significant relationship (left: r
= -0.1685, p = 0.606; right: r = -0.197, p = 0.539), suggesting that sentence and phrase processing
operate independently. This contrasts with the behavior of LLMs, implying that while the human
brain segregates sentence and phrase processing across different regions, LLMs integrate both syn-
tactic levels within the same model layers. This difference further demonstrates that the layered
representations of LLMs may not directly align with the differentiated processing roles observed in
distinct brain ROIs.

(a) sEEG channel locations and Brain ROIs (b) Significant sEEG channel distribution

Figure 6: (a) Brain ROIs of the left and right hemispheres used in this study. The black electrodes
represent the sEEG channel locations across all participants. (b) Distribution of significant exclusive
sentence/phrase and sentence & phrase channels (sentence corpus) in different brain ROIs.

4.3 ALIGNMENT OF SYNTACTIC STRUCTURE REPRESENTATIONS BETWEEN LLMS AND THE
HUMAN BRAIN

Since the layered representations of LLMs do not align directly with the specific processing func-
tions of various brain ROIs, we sought to investigate whether overall syntactic representations in
LLMs are comparable to those in the human brain, both globally and across individual brain ROIs.
To accomplish this, we employed Searchlight representational alignment, taking syntactic repre-
sentations from LLMs as reference points. Specifically, we extracted sentence MLP neuron rep-
resentations and correlated them with the SRDMs of each sEEG channel, identifying the top 100
most correlated channels to calculate average correlation values. This analysis provided model-brain
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similarity (Sm,b) and model-region similarity (Sm,br ) across the five LLMs in different hemispheres.
Correlations were computed separately for exclusive sentence/phrase neurons and sentence & phrase
neurons under the sentence corpus.

Table 1: Averaged top 100 Spearman correlation coefficients between SRDMs of sEEG channels
and those of MLP neurons under the sentence corpus condition, separated by left (L) and right
(R) hemispheres. Note that ’/’ denotes cases where the model lacks channels corresponding to the
brain ROI in that hemisphere within the top 100 Spearman-ranked channels. The values in the rows
corresponding to brain ROIs represent the model-region similarity Sm,br .

GPT-2 Gemma Llama 2 Llama 3.1 GLM-4

L R L R L R L R L R
Sm,b 0.646 0.437 0.590 0.422 0.651 0.439 0.533 0.410 0.603 0.446
A1 0.674 0.475 0.647 0.331 0.605 0.635 0.511 / 0.657 /

STG 0.647 0.422 0.628 0.378 0.689 0.431 0.494 0.341 0.620 0.408
MTG 0.668 0.397 0.609 0.352 0.679 0.439 0.526 0.389 0.602 0.385
ITG 0.638 0.449 0.579 0.421 0.636 0.428 0.544 0.397 0.594 0.449

Insula 0.606 0.446 0.545 0.406 0.627 0.430 0.540 0.434 0.577 0.470
TPJ 0.598 0.472 0.543 0.357 0.620 0.338 0.557 0.460 0.573 0.469

Temporal Pole 0.698 0.450 0.563 0.512 0.591 0.466 / 0.588 0.595 0.425
Sensorimotor 0.600 0.465 0.567 0.429 0.638 0.468 0.527 0.406 0.593 0.503

IFG 0.717 0.410 0.596 0.522 0.656 0.487 0.538 0.434 0.616 0.507
MFG 0.631 0.411 0.534 0.536 0.602 / 0.562 0.363 0.584 0.395

Hippocampus 0.755 0.391 0.542 0.430 0.572 0.366 0.590 0.424 0.580 0.437
Amygdala / 0.461 / 0.594 / 0.556 / / / 0.481

As shown in Table 1, we observed that Llama 2 (r=0.651) and GPT-2 (r=0.646) exhibited the high-
est average correlations with human brain activity at the sentence level. Unexpectedly, Llama 3.1
(r=0.533), an updated version of Llama 2, showed lower alignment with the human brain. Although
Llama 3.1 has employed multiple techniques—such as task balancing and post-processing iterative
alignment—to enhance its overall performance (Dubey et al., 2024), including its language capabili-
ties, it remains unclear whether these improvements result in a closer similarity between the internal
model representations and those of the human brain. The limitations of scaling up LLMs in semantic
role understanding, as demonstrated by their struggles with complex arguments and nuanced differ-
ences in semantic roles (Cheng et al., 2024), suggest that the computational principles underlying
language processing in Llama 3.1 may have gradually diverged from those of the human brain. This
divergence potentially leads LLMs to develop their own unique patterns for language processing
representations, differing from human semantic processing.

Additionally, the top brain ROI for each model—primarily in the left hemisphere—highlighted re-
gions critical for syntactic processing, such as the left STG, MTG, and IFG, with Llama 2 showing
particularly strong correlations in these areas. We found that other LLMs also exhibited relatively
high Sm,br in these three brain ROIs. Similarly, phrase-level experiments (see Table 2) yielded com-
parable findings, reinforcing the robustness of the HFTP approach and suggesting its potential as a
valuable tool for future studies of model-brain alignment.

5 CONCLUSION

In conclusion, this study advances our understanding of syntactic processing in both LLMs and
the human brain. By introducing the Hierarchical Frequency Tagging Probe (HFTP), we provide
a unified methodology for analyzing hierarchical syntax and exploring representational similarities
between artificial and biological systems. The findings demonstrate that while LLMs capture some
aspects of human syntactic processing, their underlying mechanisms diverge notably from those
of the human brain. This highlights the need for further refinement of LLMs to better emulate
human-like cognitive processes. This research bridges the gap between computational linguistics
and cognitive neuroscience, paving the way for future interdisciplinary studies that can enhance
both artificial intelligence and our understanding of human cognition.
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Charlotte Caucheteux and Jean-Rémi King. Brains and algorithms partially converge in natural
language processing. Communications biology, 5(1):134, 2022.

Charlotte Caucheteux, Alexandre Gramfort, and Jean-Remi King. Disentangling syntax and se-
mantics in the brain with deep networks. In International conference on machine learning, pp.
1336–1348. PMLR, 2021.

Ning Cheng, Zhaohui Yan, Ziming Wang, Zhijie Li, Jiaming Yu, Zilong Zheng, Kewei Tu, Jinan
Xu, and Wenjuan Han. Potential and limitations of llms in capturing structured semantics: A case
study on srl. In International Conference on Intelligent Computing, pp. 50–61. Springer, 2024.

Noam Chomsky. Aspects of the Theory of Syntax. MIT Press, 1965.

Noam Chomsky. Rules and Representations. Columbia University Press, 1980.

Radoslaw Martin Cichy, Aditya Khosla, Dimitrios Pantazis, Antonio Torralba, and Aude Oliva.
Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object
recognition reveals hierarchical correspondence. arXiv preprint arXiv:1406.3284, 2014.

Kevin Clark. What does bert look at? an analysis of bert’s attention. arXiv preprint
arXiv:1906.04341, 2019.

Michael X. Cohen. Analyzing Neural Time Series Data: Theory and Practice. MIT Press, 2014.

Nai Ding, Lucia Melloni, Hang Zhang, Xing Tian, and David Poeppel. Cortical tracking of hier-
archical linguistic structures in connected speech. Nature Neuroscience, 19(1):158–164, January
2016.

Nai Ding, Xunyi Pan, Cheng Luo, Naifei Su, Wen Zhang, and Jianfeng Zhang. Attention is required
for knowledge-based sequential grouping: insights from the integration of syllables into words.
Journal of Neuroscience, 38(5):1178–1188, 2018.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Evelina Fedorenko, Idan Asher Blank, Matthew Siegelman, and Zachary Mineroff. Lack of selec-
tivity for syntax relative to word meanings throughout the language network. Cognition, 203:
104348, 2020.

Angela D Friederici and Jens Brauer. Syntactic complexity in the brain. In Functional neuroimaging
of syntactic processing, pp. 491–506. John Benjamins Publishing, 2009.

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Diego Rojas, Guanyu
Feng, Hanlin Zhao, Hanyu Lai, et al. Chatglm: A family of large language models from glm-130b
to glm-4 all tools. arXiv preprint arXiv:2406.12793, 2024.

Ariel Goldstein, Zaid Zada, Eliav Buchnik, Mariano Schain, Amy Price, Bobbi Aubrey, Samuel A
Nastase, Amir Feder, Dotan Emanuel, Alon Cohen, et al. Shared computational principles for
language processing in humans and deep language models. Nature neuroscience, 25(3):369–380,
2022.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Peter Hagoort. Muc (memory, unification, control) and beyond. Frontiers in Psychology, 4:416,
2013.

John Hewitt and Christopher D. Manning. A structural probe for finding syntax in word repre-
sentations. In Jill Burstein, Christy Doran, and Thamar Solorio (eds.), Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and Short Papers), pp. 4129–4138, Minneapolis,
Minnesota, June 2019. Association for Computational Linguistics.

Anne Keitel, Joachim Gross, and Christoph Kayser. Perceptually relevant speech tracking in audi-
tory and motor cortex reflects distinct linguistic features. PLoS biology, 16(3):e2004473, 2018.

Seyed Mohammad Khaligh-Razavi and Nikolaus Kriegeskorte. Deep supervised, but not unsu-
pervised, models may explain it cortical representation. PLoS computational biology, 10(11):
e1003915, 2014.

Nikolaus Kriegeskorte, Marieke Mur, and Peter Bandettini. Representational similarity analy-
sis–connecting the branches of systems neuroscience. Frontiers in systems neuroscience, 2:4,
2008.

Adhiguna Kuncoro, Chris Dyer, John Hale, Dani Yogatama, Stephen Clark, and Phil Blunsom.
Lstms can learn syntax-sensitive dependencies well, but modeling structure makes them better. In
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 1426–1436, 2018.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg. Assessing the ability of lstms to learn syntax-
sensitive dependencies. Transactions of the Association for Computational Linguistics, 4:521–
535, 2016.

Christopher D Manning, Kevin Clark, John Hewitt, Urvashi Khandelwal, and Omer Levy. Emergent
linguistic structure in artificial neural networks trained by self-supervision. Proceedings of the
National Academy of Sciences, 117(48):30046–30054, 2020.

Andrea E Martin and Leonidas AA Doumas. A mechanism for the cortical computation of hierar-
chical linguistic structure. PLoS biology, 15(3):e2000663, 2017.

William Matchin and Gregory Hickok. Distinguishing syntactic operations in the brain: Dependency
and phrase-structure parsing. Neurobiology of Language, pp. 345–362, 2017.

Tom McCoy, Ellie Pavlick, and Tal Linzen. Right for the wrong reasons: Diagnosing syntactic
heuristics in natural language inference. Proceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics, pp. 3428–3448, 2019.

SubbaReddy Oota, Manish Gupta, and Mariya Toneva. Joint processing of linguistic properties in
brains and language models. Advances in Neural Information Processing Systems, 36, 2024.

Liina Pylkkanen and David K Bemis. Building by syntax: The neural basis of minimal linguistic
structures. Cerebral Cortex, 21:265–273, 2011.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Edmund T Rolls, Marc Joliot, and Nathalie Tzourio-Mazoyer. Implementation of a new parcellation
of the orbitofrontal cortex in the automated anatomical labeling atlas. Neuroimage, 122:1–5,
2015.

Martin Schrimpf, Idan A. Blank, Greta Tuckute, Conrad Kauf, Eliana A. Hosseini, Nancy Kan-
wisher, Joshua B. Tenenbaum, and Evelina Fedorenko. The neural architecture of language:
Integrative modeling converges on predictive processing. Proceedings of the National Academy
of Sciences, 118(45):e2105646118, 2021.

Jingwei Sheng, Li Zheng, Bingjiang Lyu, Zhehang Cen, Lang Qin, Li Hai Tan, Ming-Xiong Huang,
Nai Ding, and Jia-Hong Gao. The cortical maps of hierarchical linguistic structures during speech
perception. Cerebral cortex, 29(8):3232–3240, 2019.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tianyi Tang, Wenyang Luo, Haoyang Huang, Dongdong Zhang, Xiaolei Wang, Xin Zhao, Furu
Wei, and Ji-Rong Wen. Language-Specific Neurons: The Key to Multilingual Capabilities in
Large Language Models, February 2024.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
models based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. Bert rediscovers the classical nlp pipeline. In Proceed-
ings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 4593–4601.
ACL, 2019.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Greta Tuckute, Aalok Sathe, Shashank Srikant, Maya Taliaferro, Mingye Wang, Martin Schrimpf,
Kendrick Kay, and Evelina Fedorenko. Driving and suppressing the human language network
using large language models. Nature Human Behaviour, 8(3):544–561, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Informa-
tion Processing Systems, 30:5998–6008, 2017.

Qian Wang, Lu Luo, Na Xu, Jing Wang, Ruolin Yang, Guanpeng Chen, Jie Ren, Guoming Luan,
and Fang Fang. Neural response properties predict perceived contents and locations elicited by
intracranial electrical stimulation of human auditory cortex. Cerebral Cortex, 34(2):bhad517,
2024.

Alex Warstadt, Alicia Parrish, Haokun Liu, Aditi Mohananey, Wei Peng, and Samuel R. Bow-
man. Learning which features matter: Roberta acquires a preference for linguistic generalizations
(eventually). arXiv preprint arXiv:2004.14847, 2020.

Na Xu, Baotian Zhao, Lu Luo, Kai Zhang, Xiaoqiu Shao, Guoming Luan, Qian Wang, Wenhan Hu,
and Qun Wang. Two stages of speech envelope tracking in human auditory cortex modulated by
speech intelligibility. Cerebral Cortex, 33(5):2215–2228, 2023.

A APPENDIX

A.1 ALIGNMENT PIPELINE FOR SYNTACTIC PROCESSING BETWEEN LLMS AND THE HUMAN
BRAIN

This appendix we provide the detailed pipeline used to align the syntactic representations in LLMs
with those in the human brain, focusing on identifying and comparing sentence/phrase representa-
tions across both systems.

Data and Experimental Setup To maintain consistency between the LLM and human experiments,
we used the same two corpora: a sentence corpus (four-syllable Chinese sequence) and a phrase
corpus (two-syllable Chinese sequence). The word-order randomized version of each corpus was
used as a control condition, as detailed in Section 3.1. Each corpus included 40 trials and each trial
contains 36 syllables. For SRDM calculation, the corpora were divided into six experimental con-
ditions, each with 20 trials. Sentence/phrase representations of the last 32 syllables were extracted
from both LLMs and human subjects to reduce the strong responses at word onset in both systems.
The representations are then transformed into the frequency domain.

Frequency-Domain Transformation and Similarity Metrics For the LLMs, neuron activations
were transformed using FFT to capture the frequency components of structure processing across
the six conditions. From this transformation, we calculated the cosine similarity between each pair
of conditions, constructing an SRDM for each MLP neuron. Similarly, for the human brain, we
calculated the ITPC to capture frequency-domain representations for each brain channel, producing
a channel SRDM.
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To assess the structure alignment between LLMs and the human brain, we computed the Spearman
correlation between the SRDM of each LLM layer and the SRDM of each brain channel. We then
grouped the model SRDMs at the layer level by averaging the cosine similarity across neurons for
a fixed layer. The top 100 most relevant brain channels for each model layer were identified based
on Spearman correlation, and the overlap of sentence/phrase channels in these top 100 channels was
evaluated using a chi-square test. A significant overlap indicated alignment in structure processing
between LLMs and brain ROIs.

Model-Brain Similarity and Model-Region Similarity Two key metrics were defined to quan-
tify the structure alignment between LLMs and the human brain. The first, model-brain similarity
(Sm,b), represents the overall similarity of syntactic processing between an LLM and the human
brain. It is calculated as the average Spearman correlation between the SRDM of each LLM layer
and the top 100 most relevant brain channels:

Sm,b =
1

M

M∑
j=1

1

100

100∑
i∈top(j)

ρ(Lj , Ci), (4)

where M is the number of layers of an LLM; Lj and Ci denote the model layer and the brain channel
with the indices j and i respectively; top(j) means the indices of top 100 channels in terms of model
layer Lj ; and ρ(Lj , Ci) denotes the Spearman correlation between the model SRDM at layer Lj and
the SRDM for brain channel Ci.

The second metric, model-region similarity (Sm,br ), measures the alignment between LLMs and
specific brain ROIs. This is calculated by averaging the Spearman correlation for the top 100 chan-
nels within a particular brain ROI:

Sm,br =
1

M

M∑
j=1

1

n(j, r)

n(j,r)∑
i∈top(j)∩Cr

ρ(Lj , Ci), (5)

where Cr denotes the indices of all channels belonging to the specific region r, and n(j, r) means
the total number of indices in top(j) ∩ Cr, namely the number of channels belonging to region r
and at the same time within the top 100 channels in terms of model layer Lj .

Contribution Ratio of Brain ROIs To further investigate the role of specific brain ROIs in syntactic
processing, we introduced the contribution ratio (CRr). The contribution ratio highlights which
brain ROIs contribute most significantly to the syntactic alignment between LLMs and the human
brain. Fixing a model layer, this metric quantifies the influence of each brain ROIs by calculating the
proportion of channels from a given region within the top 100 most relevant channels, normalized
by the overall representation of the ROIs (results can be found in Appendix A.4). The contribution
ratio is defined as:

CRr(Lj) =
N top

r (Lj)/N
top

N total
r /N total , (6)

where N top
r (Lj) is the number of channels in region r within the top 100 channels in terms of the

LLM layer Lj , N top is the total number of top channels, which is specified as 100 in this case, N total
r

is the total number of channels in region r, and N total is the total number of brain channels.

A.2 SENTENCES AND PHRASES REPRESENTATIONS IN MULTILINGUAL LLMS

Previous studies have explored how LLMs handle different languages, concluding that while most
neurons are shared across languages, a smaller subset of neurons is dedicated to processing specific
languages (Tang et al., 2024). But does this hold true for syntactic structure perception? This
appendix provides insights into this question. The results in Figure 7 suggest that language-specific
syntactic neurons (i.e., exclusive sentence/phrase neurons) tend to cluster toward the final layers of
Llama 2, Llama 3.1, and GLM-4, with the proportion of bilingual neurons (Chinese & English)
increasing progressively in deeper layers. In contrast, Gemma displays a different pattern, where
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both language-specific and bilingual neurons are found not only in deeper layers but also in the
initial layers.

(a) Gemma (b) Llama 2

(c) Llama 3.1 (d) GLM-4

Figure 7: Cross-language neural representations extracted from four multilingual models (Gemma,
Llama 2, Llama 3.1, and GLM) depicting syntactic processing capabilities.

Interestingly, Llama 3.1 shows a notably lower count of Chinese-specific neurons compared to
English-specific neurons, and fewer Chinese & English neurons than the other three multilingual
LLMs. Although Llama 3.1 was pre-trained on 176 languages (Dubey et al., 2024), it appears to
have less specialization in Chinese, which may explain the reduced presence of Chinese-specific
neurons and, consequently, fewer bilingual neurons. It is important to note that GPT-2 is a mono-
lingual model designed for English, so bilingual representation comparisons were not applicable for
this model.

A.3 ALIGNMENT RESULTS ON PHRASE-LEVEL SYNTACTIC REPRESENTATIONS

In this appendix, we present the alignment results for phase-level syntactic representations. These
results closely mirror those observed in the sentence-level analysis (see Table 1), reinforcing the
overall consistency of our findings. As we can see from Table 2, the alignment results highlight
the effectiveness of the HFTP in capturing phase-level syntactic representations. GPT-2 exhibits a
strong average correlation in the left hemisphere (r = 0.647), while Llama 2 shows a comparable
alignment (r = 0.645). Similar to the findings for sentence-level processing, notably, the syntactic
structure representations of Llama 2 also align most closely with the left STG, MTG, and IFG. In
contrast, Llama 3.1 exhibits a lower correlation (r = 0.516), suggesting that enhancements in model
architecture do not necessarily lead to better alignment with human brain activity. Additionally,
other LLMs also demonstrate relatively high Sm,br values in these key brain ROIs.

A.4 CONTRIBUTION RATIOS OF LLMS

In this appendix we present the contribution ratio results for five large language models (LLMs)
used in this study: GPT-2, Gemma, Llama 2, Llama 3.1, and GLM-4. The contribution ratios for
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Table 2: Averaged top 100 Spearman correlation coefficients between SRDMs of sEEG channels
and those of MLP neurons under the phrase corpus condition, separated by left (L) and right (R)
hemispheres. Note that ’/’ denotes cases where the model lacks channels corresponding to the
brain ROIs in that hemisphere within the top 100 Spearman-ranked channels The values in the rows
corresponding to brain ROIs represent the model-region similarity Sm,br .

GPT-2 Gemma Llama 2 Llama 3.1 GLM-4

L R L R L R L R L R
Sm,b 0.647 0.455 0.591 0.434 0.645 0.440 0.516 0.400 0.600 0.439
A1 0.678 0.389 0.625 0.339 0.594 0.625 0.525 / 0.585 /

STG 0.652 0.430 0.599 0.361 0.661 0.443 0.505 0.357 0.636 0.414
MTG 0.652 0.396 0.637 0.398 0.696 0.461 0.527 0.260 0.603 0.421
ITG 0.628 0.464 0.577 0.425 0.642 0.426 0.510 0.422 0.597 0.430

Insula 0.605 0.495 0.547 0.438 0.619 0.472 0.492 0.388 0.577 0.454
TPJ 0.617 0.447 0.586 0.335 0.623 0.357 0.544 0.378 0.565 0.483

Temporal Pole 0.675 0.462 0.580 0.514 0.603 0.462 0.461 0.540 0.582 0.405
Sensorimotor 0.629 0.487 0.587 0.426 0.615 0.442 0.516 0.358 0.573 0.494

IFG 0.712 0.458 0.577 0.490 0.650 0.5 0.475 0.458 0.602 0.438
MFG 0.610 0.421 0.603 0.635 0.558 0.300 0.475 0.388 0.517 0.398

Hippocampus 0.632 0.399 0.525 0.479 0.564 0.372 0.571 0.370 0.503 0.454
Amygdala / 0.471 / 0.560 / 0.516 / 0.382 / 0.451

each model were computed in a manner consistent with the methodology outlined in the main paper.
Specifically, the contribution ratio for each model was calculated based on the number of top 100
significant channels within each brain ROIs, as described in Appendix A.1. Below, we present the
results for both the left (L) and right (R) hemispheres of each model (See Figures 8, 9, 10, 11 and
12). These figures offer further insights into how different LLMs align with human brain ROIs in
terms of syntactic processing.

From these figures, we observe that across all LLMs, regions such as A1 and STG in the left hemi-
sphere, and the Insula, Temporal Pole, and Amygdala in the right hemisphere contribute more sig-
nificantly to the alignment with human brain syntactic processing. These regions are known to
be involved in language-specific processes in the human brain, particularly in the left hemisphere,
where the STG and A1 are crucial for auditory and syntactic processing. The alignment between
these brain ROIs and the LLMs suggests that these models may be capturing aspects of hierarchical
syntactic structures in ways that are functionally similar to human neural mechanisms. The Insula,
Temporal Pole, and Amygdala, though not traditionally highlighted as primary language regions,
may also play supporting roles in language comprehension, possibly through emotion and memory-
related pathways. This suggests that LLMs might engage both language-specific and auxiliary brain
ROIs to process syntax, mirroring the integrated and distributed nature of human brain networks
involved in language processing.
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Figure 8: Contribution ratios for GPT-2 Chinese model: Left hemisphere (top) and Right hemisphere
(bottom).

Figure 9: Contribution ratios for Gemma model: Left hemisphere (top) and Right hemisphere (bot-
tom).
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Figure 10: The contribution ratios of the left (up) and right (bottom) hemispheres in the Llama-2-
7b model. The upper bar highlights the brain ROIs that contribute most significantly to syntactic
processing.

Figure 11: Contribution ratios for Llama 3.1 model: Left hemisphere (top) and Right hemisphere
(bottom).
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Figure 12: Contribution ratios for GLM-4B model: Left hemisphere (top) and Right hemisphere
(bottom).

A.5 MODEL DETAILS

In this appendix, we present the details of the LLMs used in this study. Table 3 summarizes key
parameters, including model size, number of layers, attention heads, and MLP neurons.

Table 3: Comparison of model parameters.

Model Size Layer Attention head MLP neuron

GPT-2 (Radford et al., 2019) 774M 36 20 5120
Gemma (Team et al., 2024) 2B 18 8 16384

Llama 2 (Touvron et al., 2023) 7B 32 32 11008
Llama 3.1 (Dubey et al., 2024) 8B 32 32 14336

GLM 4 (GLM et al., 2024) 9B 40 32 13696

A.6 SYNTACTIC CORPORA

For the HFTP experiments in LLMs, we reconstructed two syntactic corpora based on (Ding et al.,
2016): one comprising sentences with four-syllable sequences in Chinese and the other with four-
word sequences in English. These corpora were utilized to assess the syntactic processing capabili-
ties of the models (see Table 4 and Table 5).

For the HFTP experiment in the human brain, we utilized two Chinese corpora: the sentence and
phrase corpora. To ensure consistent analysis of syntactic processing across both LLMs and the
human brain, the same corpora were applied to the alignment experiment. The corpus are originated
from (Sheng et al., 2019).

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 4: Chinese syntactic corpus.

Four-syllable Sequences

老牛耕地 朋友请客 厨师做饭 竹鼠啃笋 农民种菜
青草发芽 和尚念经 老师讲课 鲸鱼喷水 绵羊吃草
英雄救火 游客爬山 鸭子划水 蜘蛛结网 祖父下棋
医生看病 护士打针 母鸡下蛋 行人过街 法官判案
狮子吃肉 老鹰捕鱼 蜜蜂采花 小孩读书 猴子摘果
画家作画 船夫摇桨 诗人吟诗 麻雀筑巢 猴子摘桃
渔夫撒网 骆驼饮水 狐狸捕鼠 海豹顶球 小猫抓鱼
老马拉车 鸽子衔枝 孩童拾贝 雏鸡啄米 山雀捉虫
青鸟啄木 樵夫砍柴 黑熊爬树 土狼挖洞 军鸽传信
燕雀喂仔 野猪拱地 渔民划船 蚯蚓钻土 蚕蛾吐丝

Table 5: English syntactic corpus.

Four-word Sequences

fat rat sensed fear wood shelf holds cans tan girls drove trucks
gold lamps shine light dry fur rubs skin sly fox stole eggs
top chefs cook steak our boss wrote notes two teams plant trees
all moms love kids new plans give hope large ants built nests
teen apes hunt bugs rude cats claw dogs rich cooks brewed tea
fun games waste time pink toys hurt girls huge waves hit ships
deaf ears hear you his aunt tied shoes kind words warm hearts
long fight caused hate dead sharks leak blood smart dogs dig holes
slim kids like jeans sick boys fail tests rear doors hide cups
pale hands make bread bad smells fill town mad foes smack chefs
quiet lamb ate grass soft fork brings food green frogs miss flies
black skies show stars tall guys flee camp gray goat climb hills
iced beer costs cents old kings gave speech blue eyes shed tears
white cars need gas young child closed doors thin threads hang plates
their store sold cars cute cubs drink milk six farms lost cows
sharp knife cuts cheese round soap killed germs loud sound scared mom
weird clowns wear hats her sons paint walls
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1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
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A.7 BRAIN ROIS

As discussed in Section 3.3, we reorganized the original sEEG data by grouping the Automated
Anatomical Labeling (AAL) annotations into newly defined brain ROIs for our experiments (Rolls
et al., 2015). In this appendix, we provide the full names of AAL regions, the corresponding AAL
labels used in the sEEG data, and their mapped brain ROIs in Table 6 .

Table 6: Automated Anatomical Labeling (AAL) annotations from the original sEEG data, along
with their mapped brain ROIs. Note that the regions are distinguished by the left and right hemi-
spheres.

AAL Full Name AAL Label ROI
Heschl Gyrus Heschl A1

Superior Temporal Gyrus Temporal Sup STG
Middle Temporal Gyrus Temporal Mid MTG
Inferior Temporal Gyrus Temporal Inf ITG
Parahippocampal Gyrus ParaHippocampal ITG

Fusiform Gyrus Fusiform ITG
Insular Cortex Insula Insula
Angular Gyrus Angular TPJ

Supramarginal Gyrus SupraMarginal TPJ
Inferior Parietal Lobule Parietal Inf TPJ
Superior Temporal Pole Temporal Pole Sup Temporal Pole
Middle Temporal Pole Temporal Pole Mid Temporal Pole

Paracentral Lobule Paracentral Lobule Sensorimotor
Supplementary Motor Area Supp Motor Area Sensorimotor

Rolandic Operculum Rolandic Oper Sensorimotor
Precentral Gyrus Precentral Sensorimotor
Postcentral Gyrus Postcentral Sensorimotor

Inferior Frontal Gyrus, Opercular part Frontal Inf Oper IFG
Inferior Frontal Gyrus, Triangular part Frontal Inf Tri IFG

Inferior Frontal Gyrus, Orbital part Frontal Inf Orb IFG
Middle Frontal Gyrus Frontal Mid MFG

Middle Frontal Gyrus, Orbital part Frontal Mid Orb MFG
Hippocampus Hippocampus Hippocampus

Amygdala Amygdala Amygdala
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