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ABSTRACT

Multi-task learning (MTL) can leverage shared knowledge across tasks to improve
data efficiency and generalization performance, and has been applied in various
scenarios. However, task imbalance remains a major challenge for existing MTL
methods. While the prior works have attempted to mitigate inter-task unfairness
through loss-based and gradient-based strategies, they still exhibit imbalanced per-
formance across tasks on common benchmarks. This key observation motivates us
to consider performance-level information as an explicit fairness indicator, which
can more accurately reflect the current optimization status of each task, and ac-
cordingly help to adjust the gradient aggregation process. Specifically, we utilize
the performance variance among tasks as the fairness indicator and introduce a
dynamic weighting strategy to gradually reduce the performance variance. Based
on this, we propose PIVRG, a novel performance-informed variance reduction
gradient aggregation approach. Extensive experiments show that PIVRG achieves
state-of-the-art performance across various benchmarks, spanning both supervised
learning and reinforcement learning tasks with task numbers ranging from 2 to 40.
Results from the ablation study also show that our approach can be integrated into
existing methods, significantly enhancing their performance while reducing the
variance in task performance, thus achieving fairer optimization.

1 INTRODUCTION

Multi-task learning (MTL) (Caruanal [1997; Ruder, 2017} |[Zhang & Yang| |2021) is an approach
where a single model is trained to solve multiple tasks simultaneously. This paradigm allows tasks
to share information and representations, which can enhance the generalization capabilities of the
model and improve performance across tasks (Baxter, |2000; |Standley et al., [2020; Navon et al.,
2020). MTL is especially beneficial in scenarios where computational resources are limited, as it
reduces the need for separate models for each task. Its applications span a variety of domains, such
as computer vision (Achituve et al. [2021; Zheng et al., [2023} [Liu et al.l |2019), natural language
processing (Chen et al.l 2024} [Liu et al., 2017; |Pilault et al., 2020), and robotics (Devin et al.,
2017; Xiong et al.| [2023). Despite its advantages, MTL faces one major significant challenge: task
imbalance, which describes the phenomenon where some tasks dominate the learning process while
others are under-optimized, leading to degraded overall performance. Overcoming this challenge
requires careful design of optimization strategies to ensure that all tasks benefit equally from the
shared model.

To address these issues, previous works have focused on two primary approaches: loss-based and
gradient-based methods (Liu et al., 2021b; [Senushkin et al.,|2023). Loss-based methods aggregate
the losses of different tasks by adjusting the loss scales, then backpropagate the total loss to compute
gradients for shared parameters. These methods attempt to reflect the optimization status of each task
through their respective losses. However, since tasks often use different loss functions (e.g., cross-
entropy for classification and L1 loss for regression), their scales can differ significantly, making
it hard to compare or balance them directly. Various techniques have been proposed to normalize
these losses, such as linear scaling, logarithmic scaling, and polynomial scaling, but the fundamental
issue of differing loss magnitudes remains. On the other hand, gradient-based methods compute the
gradient for each task separately and then aggregate these gradients using various algorithms to
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produce a final update. Although these methods ensure that the gradient of each task is considered,
relying on the gradients to represent optimization fairness can be misleading at certain stages of
the optimization process. For instance, the gradient approaches zero at a local minimum, while the
optimization state may still be suboptimal. Additionally, these methods typically aim to equalize
the task gradients at the shared layers (Chen et al., 2018; [Liu et al.| [2021b), but can not guarantee
the balance in the training progress because the difficulty of tasks may differ. Easier tasks may
converge quickly, while difficult tasks require more time to optimize (Guo et al., | 2018). As a result,
considering only gradients can overlook differences in task difficulty, making it insufficient to ensure
balanced optimization across all tasks.

A clear illustration of the issues above can be observed in the widely used NYUv2 benchmark (Sil-
berman et al.,|2012)), which involves three tasks: segmentation, depth estimation, and surface normal
prediction. While recent MTL methods have demonstrated improvements over single-task learning
(STL), as evidenced by negative average performance drops Am (Navon et al. 2022} [Liu et al
2024} Ban & Ji,[2024), their experiments show that these methods outperform STL primarily on the
segmentation and depth tasks. However, their performance on the surface normal task consistently
lags behind STL, leading to a substantial variance in the performance drop across tasks. This vari-
ance contradicts the original goal of MTL, which aims to achieve balanced optimization across all
tasks. This key observation prompts us to rethink: Is information from loss-level and gradient-level
metrics sufficient to represent fairness in multi-task optimization? In our view, performance-level
information should also be considered, and Am is a good choice for this purpose. On one hand,
Am serves as the final performance metric we ultimately compare, providing a direct and definitive
reflection of each task’s optimization status. On the other hand, Am for each task reflects its relative
performance drop compared to its respective STL baseline, leading to an invariant scale across tasks.
This property allows for a direct comparison of optimization progress and provides a guideline for
promoting fairness in the optimization process. While this observation may seem intuitive, it is
precisely the aspect that has been overlooked by most previous MTL methods.

Building upon the above motivation that considers performance-level fairness, we employ the per-
formance variance across tasks as an indicator and implement a dynamic weighting approach aimed
at progressively decreasing this performance variance. This enhances the generalization and robust-
ness of the shared representations, reducing excessive performance discrepancies between tasks. In
summary, our contributions can be outlined as follows:

1). We rethink the fairness representation in MTL optimization and suggest incorporating
performance-level information as a prior. Based on the common task imbalance issues observed
in the NYUv2 benchmark, we argue that loss-level and gradient-level information is insufficient to
capture fairness in MTL. Instead, performance-level information should be considered to reflect the
varying difficulty levels across different tasks.

2). We propose PIVRG, a novel performance-informed variance reduction gradient aggrega-
tion approach. Specifically, we utilize the performance variance among tasks as a fairness indicator
and introduce a dynamic weighting strategy, which serves as a regularization mechanism balancing
the performance drop across different tasks during MTL. Both theoretical analysis and experimen-
tal results demonstrate that our method not only converges to the Pareto stationary point but also
achieves superior performance.

3). Extensive experiments demonstrate that PIVRG achieves state-of-the-art performance
across various benchmarks. Notably, on the NYUv2 benchmark, unlike previous methods that
consistently underperform compared to STL on the surface normal task, PIVRG surpasses STL
across all three tasks and achieves the best overall performance drop. Moreover, on the Cityscapes
and CelebA benchmarks, PIVRG is the first to achieve a negative performance drop, meaning it
surpasses STL in average performance for the first time. On the more challenging QM9 benchmark,
PIVRG reduces the average performance drop by over 20%.

4). The proposed performance-informed dynamic weighting strategy is orthogonal to existing
approaches, making it possible to integrate with these methods. Experimental results demon-
strate that incorporating our dynamic weighting strategy not only significantly improves the overall
performance of these methods but also substantially reduces the performance variance across tasks,
leading to a more balanced optimization. This further validates the potential of our approach.
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2 RELATED WORK

Loss-based MTL approaches. These methods reweight task-specific losses with loss-level infor-
mation. A key advantage of loss-based methods is their efficiency, as they only require backprop-
agation on the aggregated loss, reducing computational overhead compared to handling each task
individually (Liu et al.| 2024). These approaches include operations on the scale of the loss, such as
Linear Scalarization (LS), which minimizes the sum of task losses, and Scale-Invariant (SI), which
reduces the sum of logarithmic losses. Additionally, various approaches for handling task weights
have been proposed, including using homoscedastic uncertainty weighting (Kendall et al.| 2018b),
task prioritization (Guo et al., |2018)), dynamic weight averaging (Liu et al.,[2019), self-paced learn-
ing (Murugesan & Carbonell, [2017)), geometric loss (Chennupati et al.,|2019), random loss weight-
ing (Lin et al.l [2021b)), impartial loss weighting (Liu et al., 2021b) and fast adaptive optimization
(Liu et al., [2024). Although loss-oriented methods are more computationally efficient, they often
underperform gradient-oriented ones in most multi-task benchmarks.

Gradient-based MTL approaches. These methods address the task-balancing problem by fully
leveraging the gradient information of the shared network across different tasks. Several studies
have reported notable performance improvements using techniques such as Pareto optimal solutions
(Sener & Koltunl [2018)), gradient normalization (Chen et al., 2018), projecting gradient conflicts
(Yu et al.;|2020a)), gradient sign dropout (Chen et al.| |2020), impartial gradient weighting (Liu et al.,
2021b), conflict-averse gradients (Liu et al. [2021al), independent gradient alignment (Senushkin
et al., |2023), and Bayesian uncertainty gradients (Achituve et al., 2024). Recent works by Navon
et al.[(2022) and Ban & Ji/(2024) employ the Nash bargaining solution and fair resource allocation
respectively to address the gradient aggregation problem. Their utility functions are primarily based
on the first-order Taylor expansion of the loss, thereby incorporating loss-level information. Follow-
ing Navon et al.[(2022)) and [Ban & Ji| (2024)), our proposed PIVRG method is also a gradient-based
approach. However, it not only incorporates loss-level information but also introduces higher-order
insights from the performance-level.

3 METHOD

3.1 PRELIMINARIES

Pareto Optimality. Optimization in MTL can be understood as a specific instance of multi-objective
optimization (MOO). For a set of objective functions ¢1, - - - , {1, the quality of a solution x is deter-
mined by the vector of its corresponding objective values, i.e., (¢1(z), - ,x(x)). A key character-
istic of MOO is the absence of a natural linear ordering for such vectors, meaning that solutions are
not always directly comparable, and thus no single optimal solution exists.

We define a solution x as dominating another solution z’ if it is strictly better in at least one ob-
jective while being no worse in all others. A solution that is not dominated by any other solution
is termed Pareto optimal, and the set of all such solutions forms the Pareto front. In the case of
non-convex problems, a solution is considered locally Pareto optimal if it is Pareto optimal within
a neighborhood around it. Furthermore, a solution is called Pareto stationary when there exists a
convex combination of the gradients at that point that equals zero, which is a necessary condition
for Pareto optimality.

Multi-Task Optimization Objectives. One of the most crucial distinctions between different MTL
methods lies in their choice of optimization objectives. A traditional approach is to minimize the
average loss across all tasks:

. 1g
meln{ﬁ(é)) = k;@(e)}, (1)

where 6 € R"™ is the parameter shared across tasks. Directly optimizing Eq. [l|can lead to significant
under-optimization for certain tasks and this is often caused by the varying scales of the different loss
functions as discussed in Sec[I] Gradient-based methods typically propose an aggregation algorithm
A (e.g., conflict projection (Yu et al., 2020al), cosine similarity balancing (Liu et al.| [2021b)), which
solves an optimization problem .A(g1, g2, - - , gr) to obtain the update direction d. Recent works
(Navon et al.| 2022; Ban & Ji, [2024) represent updates at each iteration as 6,1 = 6; — nd, where
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7 is the current step size and d is the computed update direction. Considering a first-order Taylor
expansion £;(0;11) — £;(0;) = —ng,;' d, they interpret g;' d as the utility of task i at the current step,
thus taking loss-level information into account.

In this paper, we also consider g,/ d as the utility of task 4 at the current step. However, unlike
Nash-MTL (Navon et al., [2022), which aims to maximize the sum of the log-utilities, inspired by
utility balancing and risk aversion principles in game theory (Prattl 1978} |Chen & Hookerl 2021)),
we propose to minimize the mean of the inverse utilities for each task:

k

1 1
arg mdin T Zzzl m s.t. g;rd > 0, Vi. 2)

This approach emphasizes tasks with lower utilities, thereby preventing tasks with high utilities from
dominating the optimization process. In fact, from another perspective, g;' d, as an approximation
of the change in loss, can be viewed as the current optimization speed of task i, while 1/g," d can be
interpreted as the number of steps required for unit improvement. The objective in Eq. [2|essentially
minimizes the average number of steps needed for unit optimization across tasks.

3.2 PERFORMANCE-INFORMED WEIGHTING STRATEGY

To mitigate the task imbalance issue mentioned in Sec. [I] we propose incorporating performance-
level information Am = (Amy, Ams,--- ,Amy) T to account for the varying difficulties across
tasks. Specifically, for each task ¢, following previous works (Sener & Koltun, 2018; [Navon et al.,
2022} [Liu et al.,[2024)), we define the performance drop Am; as:

Am; = (—=1)% (M, ; — My;) /My x 100, (3)

where M, ; is the value of metric M; obtained by the STL baseline and M,,, ; denotes the value from
the compared MTL method. §; = 1 if a higher value is better for the metric M; and 0 otherwise.
This ratio quantifies the relative degradation of performance when tasks are optimized jointly.

Moreover, Am = % Zle Am; is a metric reflecting the overall performance of the MTL method
across tasks. While reducing the average performance drop Am is the goal of all MTL methods, we
utilize the performance variance Var[Am;] among tasks as a fairness indicator and consider it as a
potential optimization target for ensuring fairness. Note that Am; is not a random variable and we
just use Var]-] as a formal notation to represent the variance of performance drop.

Since Am represents actual performance and lacks gradients for backpropagation, it cannot be di-
rectly optimized for variance reduction without further assumptions. Thus, we introduce dynamic
weights w = (wy,ws,...,wr) € R¥ as regularizers to guide the optimization process indirectly.
Specifically, we rewrite the original objective as:

k
1 i ‘
arg mgn T ;:1 g?'}—d s.t. gde > 0, V. 4)

In Eq.[4] the choice of w is crucial. We aim for w to reflect the current performance-level information
of each task and to promote reducing Var[Am;| during optimization. To this end, w should satisfy
the following properties:

Property 1. w; should be positively correlated with Am,;.

The objective in Eq. 2| minimizes the average number of steps required for unit optimization across
tasks. However, as previously discussed, different tasks have varying difficulties, and more difficult
tasks may require more steps at the same optimization step size. Without considering task difficulty,
the objective in Eq. 2| might result in over-optimization of some tasks while others remain under-
optimized, thus maintaining task imbalance. By modifying the weights w; to be positively correlated
with Am;, the objective becomes aware of task difficulty. Eq. @ can still be seen as minimizing the
average number of steps across tasks, but for tasks with a larger Am; (i.e., less optimized tasks), we
expect w; > 1 to encourage more aggressive optimization. Conversely, for tasks with smaller Am;,
we expect w; < 1 to slow down the optimization for that task. This dynamic adjustment ensures a
more balanced performance across tasks and helps mitigate excessive variance.



Under review as a conference paper at ICLR 2025

Property 2. 1w = k.

This ensures ahgnment with the 0r1g1nal objective in Eq. 2] without the weight. In the unweighted
case, w = (1,1,...,1) T satisfies 1 Tw = k. Our weighting strategy dynamically adjusts this & from
a fixed mean to a more flexible distribution, and adds correlation to the weights of different tasks.

Property 3. w is bounded, i.e., w; € [w,@).

This constraint ensures that the weight does not become too extreme, for instance, preventing one
task with poor performance from consuming all resources (especially during early training when
Var[Am;] might be large). In practice, we typically choose w € [0.5,0.8] and @ € [1.2,2].

Property [2]is essentially a special case of normalization, making the commonly used softmax func-
tion a natural choice. Applying softmax to Am also ensures the positive correlation required
by Property [l However, we observe that direct normalization makes it challenging to enforce
w; € |w,w]. To address this, a simple yet effective idea is to adopt a variant of softmax with a
temperature parameter, as follows:

k- exp(Am;/T) 5)

W; = &
22 j—1exp(Am;/T)

where 7 is the temperature parameter controlling the smoothness of the softmax output. We assert
that by choosing an appropriate 7, Property [3|can also be satisfied.

Proposition 1. Let Am™* be the maximum value of Am, and Am™" be the minimum value.

Define s = min ( ) Then, for T > W, Propertyis satisfied.

The proof can be found in the Appendix. We also demonstrate that the fairness indicator and poten-
tial optimization target, Var[Am;], can be approximated by the norm of w, specifically w " w.

Proposition 2. For w satisfying the three properties above, we have the following approximation:

72
Var[Am;] = szw — 72

This implies Var[Am;] & w'w. The detailed 200 RLW @
proof can be found in the Appendix. The result .. s
in Fig. (1| shows that PIVRG outperforms other ap- 5 pwA
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ance, indicating the capability of our method. Fur-
thermore, the experimental results in Appendix
demonstrate that both w " w and Var[Am;] decrease
progressively throughout the optimization process,
further confirming the effectiveness of our dynamic
. . . . ke PIVRG

weights which serve as regularizers. After refining 363 o 2 s
the definition of w, the problem reduces to solving MTL Performance Drop Variance Var{Am] |
for the optimal d in Eq.

@ PCGrad
CAGrad @ ®wcDA
uw

—
N
v

—
o
o

® IMTL-G o5

MTL Performance Drop
~
w

®ramo0  ©  ®Nash-MTL
FairGrad Better

[
o

Figure 1: Experiment results about Am and

Var[Am; the QM9 dataset.
3.3 DERIVING THE OPTIMAL UPDATE VECTOR d ar[Am;] on the QM9 datase

Given an MTL optimization problem and parameters 6, we search for the update vector d in the ball
of radius e centered around zero, B.. First, we show that both the objective function and constraints
are convex:

where gTd > (, as the functlon = is convex for x > 0 and w; > O

Convexity of the Constraints: The constraint g, Td > 0is linear in d, and the norm constraint
ld]] < eis also convex.

Since Eq.[]is a convex optimization problem we define the Lagrangian for this problem as follows:

k
i=1
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where A > 0 and p; > 0 are Lagrange multipliers associated with the constraints. The multiplier
A enforces the norm constraint, and y; enforces the positivity of the inner products g;'d > 0. The
following Karush-Kuhn-Tucker (KKT) conditions provide the necessary conditions for optimality:

1) Primal Feasibility: g;'d > 0, ||d|| < ¢, Vi. This ensures that the inner products are positive and
the norm of d does not exceed e.

2) Dual Feasibility: ;; > 0, A > 0. This condition guarantees that the multipliers are non-negative,
maintaining the validity of the constraints.

3) Complementary Slackness: 1;(—g;'d) = 0, A(||d||? — €2) = 0. Since g;' d > 0, it follows that
i = 0 for all 7.

4) Stationarity The gradient of the Lagrangian with respect to d must be zero at the optimum:
Vol = —1 ZZ 1 T d 59; + 2Ad = 0. This equation describes the balance between the gradient
contributions from each task and the regularization term from the norm constraint.

Given that p; = 0, the stationarity condition simplifies to:

k

————¢g; = 2k)\d. (7
— ( Td>2

Following previous works :

(Navon ot all 2022: Ban & Algorithm 1 PIVRG for MTL
Ji, 2024), we similarly as- 1: Input: Model parameters 6y; Initial Am = 0T; Learning rate
sume that the gradients of {n+}; Train set and Validation set Dy, D,,.

tasks are linearly indepen- 2: fort=1to7T — 1do

dent otherwise it would im- 3:  Compute gradients G(6;) = [g1(6:),- - , gx(6;)] on Dy
ply reaching a Pareto station- ~ 4:  Obtain weights w; by Eq.[5|based on Am
ary point. Hence, d can be 5:  Solve Eq.[§]to obtain o
represented as a linear com- 6:  Compute d; = G(0;)ou
bination of task gradients: 7:  Update the parameters 0,1 = 0; — n.d;
d = Zk L a;gi. Ignoring 8:  Evaluate and update Am on D,
; 9: end for

the parameter 2k in Eq.[7]
which can be adjusted by the step size 7, we obtain a;; = (9?7;)2, ie., (gd)? =

Let G = (1,92, --,9r) € R"*F denote the matrix of task gradients. Then, we can express this in
matrix form as: w
(G'Ga)? = —, (8)

where the square operation is element-wise. Following (Ban & Jil [2024), we treat Eq. [§] as a sim-
ple constrained nonlinear least squares problem, which can be efficiently solved using the scipy
library. Our complete algorithmic procedure is summarized in algorithm [I] Note that for certain
benchmarks lacking a validation set, to ensure consistency with other methods on the dataset, we
use Am from the training set to obtain the w.

3.4 THEORETICAL ANALYSIS

In this section, we present a theoretical analysis of our method about its convergence to a Pareto sta-
tionary point, where a convex combination of task gradients becomes zero. As previously noted, we
assume that task gradients remain linearly independent until the system reaches a Pareto stationary
point. Formally, we adopt the following assumption, similarly used by |[Navon et al.|(2022) and Ban
& Jil (2024).

Assumption 1. For the output sequence {0;}7°, produced by the proposed method, the gradients
of the tasks g1 ¢, g2.¢," - , gkt remain linearly independent as long as the system has not reached a
Fareto stationary point.

In practice, this assumption generally holds during the optimization process, as the number of tasks
k is often much smaller than the dimension n of the shared parameters 8. The following assumption
imposes differentiability and Lipschitz continuity on the loss functions, as also adopted by previous
works (Liu et al.,[2021a; Navon et al.,[2022; Ban & J1, 2024).
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Assumption 2. For each task, the loss function £;(0) is differentiable and L-smooth such that
HV&(Gl) - V&(@Q)H S LH91 — 92||f07‘ any 91 and 92.

Then, we can obtain the following convergence theorem:

Theorem 1. Suppose Assumptionsand h()ld. We set the stepsize 0, = 15’27 % Then, the

sequence {0:}72, has a subsequence that converges to a Pareto stationary point 0*.

The detailed proof can be found in Appendix[A.3] Our main idea is to show that the smallest singular
value of G T G gradually approaches zero as the number of optimization steps ¢ increases, thereby
leading to the eventual convergence to a Pareto stationary point, where the gradients become linearly
dependent.

4 EXPERIMENTS

4.1 PROTOCOLS

We evaluate the proposed PIVRG on a variety of multi-task learning (MTL) problems under both su-
pervised learning and reinforcement learning settings to demonstrate its effectiveness. For multi-task
supervised learning, we validate on the Scene Understanding benchmarks NYUv2 (Silberman et al.,
2012)) and Cityscapes (Cordts et al., [2016])), regression tasks from QM9 (Blum & Reymond, |2009),
and image-level classification with the CelebA (Liu et al.l |2015) dataset. For multi-task reinforce-
ment learning, we conduct experiments on the MT10 environment from the Meta-World benchmark
(Yu et al.l [2020c). Additionally, the ablation study demonstrates performance-level information in
PIVRG can be integrated into existing methods to significantly improve their performance. Note
that for the QM9 and CelebA benchmarks, which already have predefined validation sets, we use
Am from the validation set to update w. For the NYUv2 and Cityscapes benchmarks, which lack
validation sets, we use Am from the training set to update w to maintain consistency with other
methods on the dataset. Moreover, we visualize the optimization process of PIVRG on a 2-task toy
example (Liu et al,[2021a)) in Fig[2]in the appendix.

Baselines: We compare our proposed PIVRG described in Section [3| with the following methods in
our experiments: Single-task learning (STL), Linear Scalarization (LS), Scale-Invariant (SI), Dy-
namic Weight Average (DWA) (Liu et al., 2019), Uncertainty Weighting (UW) (Kendall et al.,
2018al), Multi-Gradient Descent Algorithm (MGDA) (Sener & Koltun,[2018), Random Loss Weight-
ing (RLW) (Lin et al.| 2021a), PCGrad (Yu et al., |2020b), GradDrop (Chen et al., 2020), CAGrad
(L1u et al., [2021a)), IMTL-G (L1u et al.,[2021b)), Nash-MTL (Navon et al., 2022), FAMO (L1u et al.}
2024) and FairGrad (Ban & Ji, [2024)).

Evaluation Metrics: Given that MTL does not inherently have a single objective and that metrics
can vary across tasks, we follow previous works and focus on two overall performance metrics: (1)
Am, the average per-task performance drop of method m relative to the STL baseline, which has
been early defined in Eq. [3| (2) Mean Rank (MR): The average rank of each method across tasks
(lower is better). A method achieves the best MR of 1 if it ranks first in all tasks.

4.2 MULTI-TASK SUPERVISED LEARNING

Scene Understanding. Following previous works (Navon et al., 2022} |Liu et al.| 2024; Ban &
Ji, 2024)), we evaluate PIVRG on the NYUv2 and Cityscapes datasets. NYUv2 (Silberman et al.|
2012)) contains 1449 densely annotated indoor images, with three pixel-level tasks: 13-class seman-
tic segmentation, depth estimation, and surface normal prediction. Cityscapes (Cordsts et al., [2016)
is a similar dataset containing 5000 street-view images with two tasks: semantic segmentation and
depth estimation. These scenarios test the effectiveness of MTL in complex, pixel-level predictions.
We follow the setup in (Navon et al., 2022} |Liu et al., [2024)) using MTAN (Liu et al.| 2021b)), which
adds task-specific attention modules on top of SegNet (Badrinarayanan et al.l|2017). To align with
previous works, the model is trained for 200 epochs with a learning rate of 10~* for the first 100
epochs, decaying by half for the remaining epochs.

The results in Table [I] and Table [2] demonstrate the remarkable performance of our method. On
the NYUvV2 dataset, previous methods typically outperform the STL baseline on segmentation and
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Table 1: Results on NYU-v2 (3-task) dataset. Each experiment is repeated 3 times with different
random seeds and the average is reported. The detailed standard error is reported in the appendix.

SEGMENTATION DEPTH SURFACE NORMAL

METHOD o MR| Am(%){

MIoU?T Pix Acct ABSERR] RELERRJ| ANGLE DISTANCE | WITHIN ¢ 7 o0

MEAN  MEDIAN 11.25 225 30

STL 38.30 63.76 0.6754 0.2780 25.01 19.21 30.14  57.20 69.15
LS 39.29 65.33 0.5493 0.2263 28.15  23.96 22.09 47.50 61.08 11.78 5.59
SI 38.45 64.27 0.5354 0.2201 27.60  23.37 22.53 4857 62.32 10.22 4.39
RLW 37.17 63.77 0.5759 0.2410 28.27 24.18 2226 47.05 60.62 14.22 7.78
DWA 39.11 65.31 0.5510 0.2285 27.61 23.18 24.17 50.18 62.39 10.67 3.57
uw 36.87 63.17 0.5446 0.2260 27.04 22.61 23.54 49.05 63.65 10.33 4.05
MGDA 30.47 59.90 0.6070 0.2555 24.88 19.45 29.18 56.88 69.36 8.11 1.38
PCGRAD 38.06 64.64 0.5550 0.2325 27.41 22.80 23.86 49.83 63.14 10.89 3.97
GRADDROP  39.39 65.12 0.5455 0.2279 27.48  22.96 23.38 49.44 62.87 9.89 3.58
CAGRAD 39.79 65.49 0.5486 0.2250 26.31 21.58 25.61 5236 65.58 6.89 0.20
IMTL-G 39.35 65.60 0.5426 0.2256 26.02  21.19 26.20 53.13  66.24 6.11 -0.76
MoCo 40.30 66.07 0.5575 0.2135 26.67 21.83 25.61 51.78 64.85 6.22 0.16
NASH-MTL  40.13 65.93 0.5261 0.2171 25.26  20.08 28.40 55.47 68.15 3.67 -4.04
FAMO 38.88 64.90 0.5474 0.2194 25.06  19.57 29.21 56.61 68.98 5.33 -4.10
FAIRGRAD 39.74 66.01 0.5377 0.2236 24.84  19.60 29.26 56.58 69.16 3.44 -4.66
PIVRG 39.90 65.74 0.5365 0.2243 24.30 18.80 30.95 58.26 70.38 2.33 -6.50

Table 2: Results on Cityscapes (2-task) and CelebA (40-task) datasets. Each experiment is repeated
3 times with different random seeds and the average is reported. The detailed standard error is
reported in the appendix.

CITYSCAPES CELEBA

METHOD SEGMENTATION DEPTH MR | Am(%) L MR Am(%) |
MIoU T Pix AcctT ABSERR] RELERRJ

STL 74.01 93.16 0.0125 27.77
LS 75.18 93.49 0.0155 46.77 8.75 22.60 7.65 4.15
SI 70.95 91.73 0.0161 33.83 11.25 14.11 9.43 7.20
RLW 74.57 93.41 0.0158 47.79 11.25 24.38 6.65 1.46
DWA 75.24 93.52 0.0160 44.37 8.50 21.45 8.32 3.20
uw 72.02 92.85 0.0140 30.13 7.75 5.89 6.95 3.23
MGDA 68.84 91.54 0.0309 33.50 11.75 44.14 12.88 14.85
PCGRAD 75.13 93.48 0.0154 42.07 9.00 18.29 8.03 3.17
GRADDROP  75.27 93.53 0.0157 47.54 8.00 23.73 9.45 3.29
CAGRAD 75.16 93.48 0.0141 37.60 7.75 11.64 7.62 2.48
IMTL-G 75.33 93.49 0.0135 38.41 6.00 11.10 5.88 0.84
NASH-MTL 75.41 93.66 0.0129 35.02 3.50 6.82 6.30 2.84
FAMO 74.54 93.29 0.0145 32.59 8.25 8.13 5.97 1.21
FAIRGRAD 75.72 93.68 0.0134 32.25 2.25 5.18 6.62 0.37
PIVRG 75.82 93.65 0.0126 27.87 1.50 -0.54 3.25 -0.96

depth estimation tasks but fail to surpass STL on the surface normal prediction task, indicating a
task imbalance. In contrast, our method is the only one that consistently outperforms STL across
all 3 tasks and 9 evaluation metrics, and achieves an impressive average rank of 2.33 and the best
performance drop of -6.50%.

In the Cityscapes dataset, prior methods often exhibit better optimization on the segmentation task
while underperforming on the depth estimation task. In contrast, PIVRG achieves more balanced
results and is the first method to achieve a negative Am on this benchmark, which means that for
the first time, an MTL method has surpassed the STL baseline in terms of average performance.
This further highlights both the potential of MTL and the superiority of PIVRG. In Appendix
we also show that our method not only achieves SOTA performance on the NYUv2 and Cityscapes
benchmarks but also produces the lowest performance variance, indicating a fairer optimization.

Image-Level Classification. CelebA (L1u et al.,2015) is a large-scale facial attributes dataset con-
taining over 200K images, annotated with 40 attributes such as smiling, wavy hair, and mustache.
This scenario represents a 40-task MTL classification problem, where each task predicts a binary
attribute. We follow the setup in (Liu et al., 2024) and use a 9-layer convolutional neural network
(CNN) as the backbone, with task-specific linear layers. The method is trained for 15 epochs us-
ing the Adam optimizer with a learning rate of 3 x 10~* and a batch size of 256. The results are
shown in Table E} On this benchmark with as many as 40 tasks, PIVRG also shows state-of-the-art
performance, achieving a negative Am for the first time, validating the superiority of our approach.
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Table 3: Results on QM9 (11-task) dataset. Each experiment is repeated 3 times with different
random seeds and the average is reported. The detailed standard error is reported in the appendix.

METHOD w a emomo ecumo (R?)  ZPVE Uy U H el Co MR,  Am(%) )
MAE |

STL 0.067 0.181 60.57 53.91 0.502 4.53 58.8 64.2 63.8 66.2 0.072

LS 0.106 0.325 73.57 89.67 5.19 14.06 143.4 1442 144.6 140.3 0.128 9.09 177.6

SI 0.309 0.345 149.8 135.7 1.00 4.50 55.3 55.75 55.82 55.27 0.112 5.55 77.8

RLW 0.113 0.340 76.95 92.76 5.86 15.46 156.3 157.1 157.6 153.0 0.137 10.64 203.8

DWA 0.107 0.325 74.06 90.61 5.09 13.99 1423 143.0 1434 1393 0.125 8.82 175.3

uw 0.386 0.425 166.2 155.8 1.06 4.99 66.4 66.78 66.80 66.24 0.122 7.27 108.0

MGDA 0.217 0.368 126.8 104.6 3.22 5.69 88.37 89.4 89.32 88.01 0.120 8.91 120.5

PCGRAD 0.106 0.293 75.85 88.33 3.94 9.15 116.36 116.8 117.2 1145 0.110 7.27 125.7
CAGRAD 0.118 0.321 83.51 94.81 3.21 6.93 113.99 1143 1145 1123 0.116 8.18 112.8
IMTL-G 0.136  0.287 98.31 93.96 1.75 5.69 101.4 102.4 102.0 100.1 0.096 7.18 77.2
NASH-MTL  0.102 0.248 82.95 81.89 2.42 5.38 74.5 75.02  75.10 74.16 0.093 4.36 62.0

FAMO 0.15 0.30 94.0 95.2 1.63 4.95 70.82 71.2 71.2 70.3 0.10 5.73 58.5
FAIRGRAD 0.117 0.253 87.57 84.00 2.15 5.07 70.89 71.17 71.21 70.88 0.095 4.73 57.9
PIVRG 0.125  0.226 94.80 81.98 1.41 3.87 57.79 57.90 58.09 57.86 0.085 3.00 33.6

Multi-Task Regression. QM9 (Blum & Reymond, [2009) is a commonly used benchmark in graph
neural networks, containing over 130K organic molecules represented as graphs. Each task predicts
one of 11 molecular properties, which vary in scale. This setting evaluates the ability of MTL
methods to balance task variations. Predicting molecular properties in the QM9 dataset presents a
major challenge for MTL methods due to the large number of tasks and the substantial variation in
loss scales. In our experiments, we train each method for 300 epochs and employ a learning rate
scheduler to adjust the learning rate, consistent with prior works.

The results are presented in Figure [I]and Table 3] PIVRG achieves the best performance in terms
of both MR and Am. On the QM9 benchmark, where task difficulty is highly imbalanced, prior
methods have struggled to optimize all tasks effectively, leading to a large overall Am. By incorpo-
rating performance-level information and employing dynamic weight allocation to control variance,
PIVRG reduces the average Am by over 20%. Meanwhile, the results in Figure [I] also show that
PIVRG achieves the smallest performance variance while obtaining the optimal Am, further vali-
dating the effectiveness of the performance-informed dynamic weight allocation strategy. This also
underscores the potential of MTL approaches and the distinct advantages of PIVRG in addressing
task imbalance and achieving superior optimization across tasks.

4.3 MULTI-TASK REINFORCEMENT LEARNING

We further evaluate our method on the MT10 bench- Tupie 4: Results on MT10 benchmark.
mark, which includes 10 robotic manipulation tasks from
the MetaWorld environment (Yu et al., 2020c), where
the objective is to learn a single policy that generalizes

Average over 10 random seeds.

METHOD SUCCESS RATE

across various tasks such as pick and place, and opening (MEAN #* STDERR)
doors. We f01.10w the methodologies outlined in (Na\./().n STL 0.90 + 0.03
et al., 2022; [Liu et al., |2024) and adopt Soft Actor-Critic
(SAC) (Haarnoja et al., [2018) as the underlying algo- M%i 2‘:2 TE 8‘;2 i 88;
rithm. Our implementation utilizes the MTRL codebase * ’ :

. : . MH SAC 0.61 £ 0.04
used in (Navon et al., 2022} Ban & Ji, [2024) and trains PCGRAD 072+ 0.02
the model for 2 million steps with a batch size of 1280.  cAGrap 0.83 + 0.05
We compare our proposed PIVRG with Multi-task SAC  pMoco 0.75 + 0.05
(MTL SAC) (Yu et al., [2020c)), Multi-task SAC with task ~ NasH-MTL 0.91 £+ 0.03
encoder (MTL SAC + TE) (Yu et al., 2020c), Multi- FAMO 0.83 +£0.05
headed SAC (MH SAC) (Yu et al.| [2020c), PCGrad (Yu  FAIRGRAD 0.84 +0.07
et al., 2020b), CAGrad (L1u et al., 2021a), MoCo (Fer- PIVRG 0.96 + 0.02

nando et al., [2023), Nash-MTL (Navon et al., 2022)),
FAMO (Liu et al.| 2024) and FairGrad (Ban & Ji, [2024).

The results are shown in Table[d] Each method is evaluated every 10,000 steps, and the best average
success rate over 10 random seeds throughout the entire training period is reported. In this context,
we directly utilize the success rate to update w. The results indicate that PITVRG achieves state-of-
the-art performance on the MT10 benchmark, with an access rate approaching 100%.
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Table 5: Results of integrating our performance-informed weighting strategy into existing methods
on the NYU-v2 (3-task) dataset. Each experiment is repeated 3 times with different random seeds
and the average is reported.

SEGMENTATION DEPTH SURFACE NORMAL
METHOD o Am% | VAR[Am] |
MIoU 1t Pix AccT ABSERR] RELERR]| ANGLE DISTANCE | WITHIN & 1
MEAN  MEDIAN 11.25 225 30

LS 39.29 65.33 0.5493 0.2263 28.15 23.96 22.09 47.50 61.08 5.59 259.1
PI-LS 40.59 66.24 0.5330 0.2191 26.66 21.80 25.19 5194 65.05 -0.06 173.2
RLW 37.17 63.77 0.5759 0.2410 28.27  24.18 22.26 47.05 60.62 7.78 205.3
PI-RLW 39.86 64.86 0.5744 0.2410 27.38  22.84 22.75 49.58 63.26 4.52 170.5
DWA 39.11 65.31 0.5510 0.2285 27.61 23.18 24.17 50.18 62.39 3.57 191.9
PI-DWA 40.55 66.31 0.5480 0.2261 26.63  21.97 25.03 51.42 64.67 0.78 158.8
Uw 36.87 63.17 0.5446 0.2260 27.04 22.61 23.54 49.05 63.65 4.05 190.7
PI-UW 40.23 65.84 0.5182 0.2147 26.13  21.14 26.25 53.09 66.09 -1.71 158.7
MGDA 30.47 59.90 0.6070 0.2555 24.88 19.45 29.18 56.88 69.36 1.38 68.6
PI-MGDA 35.45 63.04 0.6025 0.2364 24.32 18.59 31.06 58.73 70.62 -3.45 36.6
NASH-MTL 40.13 65.93 0.5261 0.2171 25.26  20.08 28.40 5547 68.15 -4.04 108.0
PI-NASH-MTL  42.14 66.83 0.5317 0.2259 24.79 19.46 29.46 5693 69.30 -5.77 70.7

4.4 INTEGRATING PERFORMANCE-INFORMED WEIGHTING INTO EXISTING METHODS

Previous loss-based and gradient-based methods have often overlooked performance-level informa-
tion, leading to a lack of clarity regarding task difficulty during the training process. We propose
to integrate our performance-informed weighting strategy into these methods to enhance fairness in
optimization. Specifically, for loss-based approaches, we adjust the initial loss £ = ({1, {a, - , {x)
using weights w to reflect the current optimization progress of different tasks, replacing £ with
L'=wo L.

For gradient-based methods, since the motivation behind the aggregation algorithms varies, it is
necessary to analyze each method individually to incorporate w into the design of the aggregation
process. For instance, Nash-MTL maximizes the sum of log utilities, we thus replace the original
equal summation (1,1,--- ,1) with a weighted sum (wy,wa, - -+ ,wy).

We apply the performance-informed weighting strategy to a series of MTL methods, including LS,
RLW (Lin et al, [2021a), DWA (Liu et al.l 2019), UW (Kendall et al.l 2018al), MGDA (Sener &
Koltun, 2018), and Nash-MTL (Navon et al.,[2022)), and evaluate their performance on the NYUv2
benchmark. Table [5] shows that incorporating performance-level information and integrating dy-
namic weighting can bring significant performance improvements for these methods. Var[Am;] is
also reduced, which indicates a notable alleviation of task imbalance.

5 CONCLUSION, LIMITATIONS AND FUTURE WORK

In this paper, we propose PIVRG, a novel performance-informed variance reduction gradient aggre-
gation approach. Building on the observation that previous loss-based and gradient-based methods
exhibit common task imbalance across standard benchmarks, we point out the necessity of incorpo-
rating performance-level information to better represent fairness across tasks during the optimization
process. Specifically, we use performance variance across tasks as a fairness indicator and introduce
a dynamic weighting strategy aimed at gradually reducing this variance. Extensive experiments
show that PIVRG achieves state-of-the-art performance across various benchmarks. The experi-
mental results also show that incorporating our dynamic weighting strategy into existing loss-based
and gradient-based methods not only significantly improves overall performance but also reduces
performance variance across tasks, leading to a more balanced optimization process.

Limitations and Future Work. In this work, we regard performance variance across tasks as a
fairness indicator and design a dynamic weighting strategy to progressively reduce this variance.
However, there are numerous ways to incorporate performance-level information, and we would
like to explore more effective fairness indicators in our future work. Additionally, our underlying
optimization objective is not fixed, and future work may explore alternative designs and approaches
to further enhance fairness and efficiency in multi-task learning.

10
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ETHICS STATEMENT

In this research, we are committed to exploring the fairness in multi-task learning, particularly
through the lens of performance-informed variance reduction. The datasets used for our experi-
ments, including NYUv2, Cityscapes, QM9, CelebA, and MT10, are publicly available and widely
used within the research community. We ensure that our use of these datasets adheres to the re-
spective licensing agreements and ethical guidelines established by the dataset creators. We ac-
knowledge the potential implications of our findings on fairness in machine learning systems. Our
proposed methods aim to reduce task imbalance and enhance performance equity across different
tasks, thereby mitigating biases that may arise in multi-task learning frameworks. We are committed
to transparency and responsible dissemination of our results, and we encourage further exploration
of the ethical implications of our methodologies.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have essentially adhered to the experimental setups of
prior methods, as detailed in Section f] where we report specific settings for each experiment. Addi-
tionally, all experimental results presented in the main text are averages obtained from multiple runs
to mitigate the impact of randomness, with standard errors provided in Appendix [B.2] for further
clarity. The source code will be made publicly available soon, along with checkpoint files corre-
sponding to each experiment. These checkpoint files may yield slightly improved results compared
to those reported in the main text, as they represent the best outcomes from multiple runs.

REFERENCES

Idan Achituve, Haggai Maron, and Gal Chechik. Self-supervised learning for domain adaptation
on point clouds. In Proceedings of the IEEE/CVF winter conference on applications of computer
vision, pp. 123-133, 2021.

Idan Achituve, Idit Diamant, Arnon Netzer, Gal Chechik, and Ethan Fetaya. Bayesian uncertainty
for gradient aggregation in multi-task learning. arXiv preprint arXiv:2402.04005, 2024.

Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep convolutional encoder-
decoder architecture for image segmentation. IEEE transactions on pattern analysis and machine
intelligence, 39(12):2481-2495, 2017.

Hao Ban and Kaiyi Ji. Fair resource allocation in multi-task learning.  arXiv preprint
arXiv:2402.15638, 2024.

Jonathan Baxter. A model of inductive bias learning. Journal of artificial intelligence research, 12:
149-198, 2000.

Lorenz C Blum and Jean-Louis Reymond. 970 million druglike small molecules for virtual screening
in the chemical universe database gdb-13. Journal of the American Chemical Society, 131(25):
8732-8733, 2009.

Rich Caruana. Multitask learning. Machine learning, 28:41-75, 1997.

Shijie Chen, Yu Zhang, and Qiang Yang. Multi-task learning in natural language processing: An
overview. ACM Computing Surveys, 56(12):1-32, 2024.

Violet Xinying Chen and JN Hooker. A guide to formulating equity and fairness in an optimization
model. Preprint, pp. 162—174, 2021.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient
normalization for adaptive loss balancing in deep multitask networks. In International conference
on machine learning, pp. 794-803. PMLR, 2018.

Zhao Chen, Jiquan Ngiam, Yanping Huang, Thang Luong, Henrik Kretzschmar, Yuning Chai, and
Dragomir Anguelov. Just pick a sign: Optimizing deep multitask models with gradient sign
dropout. Advances in Neural Information Processing Systems, 33:2039-2050, 2020.

11



Under review as a conference paper at ICLR 2025

Sumanth Chennupati, Ganesh Sistu, Senthil Yogamani, and Samir A Rawashdeh. Multinet++:
Multi-stream feature aggregation and geometric loss strategy for multi-task learning. In Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, pp.

0-0, 2019.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban
scene understanding. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3213-3223, 2016.

Coline Devin, Abhishek Gupta, Trevor Darrell, Pieter Abbeel, and Sergey Levine. Learning mod-
ular neural network policies for multi-task and multi-robot transfer. In 2017 IEEE international
conference on robotics and automation (ICRA), pp. 2169-2176. IEEE, 2017.

Heshan Fernando, Han Shen, Miao Liu, Subhajit Chaudhury, Keerthiram Murugesan, and Tianyi
Chen. Mitigating gradient bias in multi-objective learning: A provably convergent approach.
International Conference on Learning Representations, 2023.

Michelle Guo, Albert Haque, De-An Huang, Serena Yeung, and Li Fei-Fei. Dynamic task priori-
tization for multitask learning. In Proceedings of the European conference on computer vision
(ECCV), pp. 270-287, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861-1870. PMLR, 2018.

Alexandr Katrutsa, Daniil Merkulov, Nurislam Tursynbek, and Ivan Oseledets. Follow the bisector:
a simple method for multi-objective optimization. arXiv preprint arXiv:2007.06937, 2020.

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses
for scene geometry and semantics. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 7482-7491, 2018a.

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses
for scene geometry and semantics. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 7482-7491, 2018b.

Baijiong Lin, Feiyang Ye, and Yu Zhang. A closer look at loss weighting in multi-task learning.
2021a.

Baijiong Lin, Feiyang Ye, Yu Zhang, and Ivor W Tsang. Reasonable effectiveness of random weight-
ing: A litmus test for multi-task learning. arXiv preprint arXiv:2111.10603, 2021b.

Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gradient descent
for multi-task learning. Advances in Neural Information Processing Systems, 34:18878-18890,
2021a.

Bo Liu, Yihao Feng, Peter Stone, and Qiang Liu. Famo: Fast adaptive multitask optimization.
Advances in Neural Information Processing Systems, 36, 2024.

Liyang Liu, Yi Li, Zhanghui Kuang, J Xue, Yimin Chen, Wenming Yang, Qingmin Liao, and Wayne
Zhang. Towards impartial multi-task learning. iclr, 2021b.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. Adversarial multi-task learning for text classifica-
tion. arXiv preprint arXiv:1704.05742, 2017.

Shikun Liu, Edward Johns, and Andrew J Davison. End-to-end multi-task learning with attention.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
1871-1880, 2019.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
In Proceedings of the IEEE international conference on computer vision, pp. 3730-3738, 2015.

12



Under review as a conference paper at ICLR 2025

Keerthiram Murugesan and Jaime Carbonell. Self-paced multitask learning with shared knowledge.
arXiv preprint arXiv:1703.00977, 2017.

Aviv Navon, Idan Achituve, Haggai Maron, Gal Chechik, and Ethan Fetaya. Auxiliary learning by
implicit differentiation. arXiv preprint arXiv:2007.02693, 2020.

Aviv Navon, Aviv Shamsian, Idan Achituve, Haggai Maron, Kenji Kawaguchi, Gal Chechik, and
Ethan Fetaya. Multi-task learning as a bargaining game. arXiv preprint arXiv:2202.01017, 2022.

Jonathan Pilault, Amine Elhattami, and Christopher Pal. Conditionally adaptive multi-task learn-
ing: Improving transfer learning in nlp using fewer parameters & less data. arXiv preprint
arXiv:2009.09139, 2020.

John W Pratt. Risk aversion in the small and in the large. In Uncertainty in economics, pp. 59-79.
Elsevier, 1978.

S Ruder. An overview of multi-task learning in deep neural networks. arXiv preprint
arXiv:1706.05098, 2017.

Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. Advances in
neural information processing systems, 31, 2018.

Dmitry Senushkin, Nikolay Patakin, Arseny Kuznetsov, and Anton Konushin. Independent compo-
nent alignment for multi-task learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 20083-20093, 2023.

Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation and sup-
port inference from rgbd images. In Computer Vision—ECCV 2012: 12th European Conference
on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part V 12, pp. 746-760.
Springer, 2012.

Trevor Standley, Amir Zamir, Dawn Chen, Leonidas Guibas, Jitendra Malik, and Silvio Savarese.
Which tasks should be learned together in multi-task learning? In International conference on
machine learning, pp. 9120-9132. PMLR, 2020.

Caiming Xiong, SHU Tianmin, and Richard Socher. Hierarchical and interpretable skill acquisition
in multi-task reinforcement learning, January 24 2023. US Patent 11,562,287.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. Advances in Neural Information Processing Systems,
33:5824-5836, 2020a.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. Advances in Neural Information Processing Systems,
33:5824-5836, 2020b.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pp. 1094-1100. PMLR, 2020c.

Yu Zhang and Qiang Yang. A survey on multi-task learning. IEEE transactions on knowledge and
data engineering, 34(12):5586-5609, 2021.

Ce Zheng, Wenhan Wu, Chen Chen, Taojiannan Yang, Sijie Zhu, Ju Shen, Nasser Kehtarnavaz, and
Mubarak Shah. Deep learning-based human pose estimation: A survey. ACM Computing Surveys,
56(1):1-37, 2023.

13



Under review as a conference paper at ICLR 2025

A THEORETICAL ANALYSIS

A.1 PROOF OF PROPOSITION[I]

Proposition 1. Let Am™* be the maximum value of Am, and Am™" be the minimum value.
Define s = min (1 w). Then, for T > AmT—Am™ Propertyis satisfied.

w? log s

Proof. Define wy,;, and w4, as the minimum and maximum value of w respectively, since w; is
positively correlated with Am,;, we have

k - exp(Am™® /1) k- exp(Am™m /1)

wmam -

k 9 Wmin = k .
Zj:l exp(Am;/7) Zj:l exp(Am;/7)
‘We notice that

Wmaz  exp(Am™a /) Am™meT — Am™in o
= ‘ = exp( )=
Wmin  exp(Ammin /1) T

S.

By incorporating property [2] we have

k k k
k= § w; < § Wnaz < E S Wmin = ks Wmin
=1 =1 =1

showing that wy,;n, > 1. In the same way, we have wy,q, < s. Thus by setting s = min(1, @), we
can derive that

w; € [é,s] C [w,@].

Notice that M = log s, then for 7 > W, Propertyis satisfied. In practice, we

pre-define a threshold 7%, and let 7 = max(%, 7*) to further guarantee the smoothness

and contraints. O

A.2 PROOF OF PROPOSITION[2]

Proposition 2. For w satisfying the three properties above, we have the following approximation:
72
Var[Am;] = szw — 72

Proof. Following the notation in the main paper, let Am = %Zle Am,; and Var[Am;] = o2
Define {¢;}%_; such that Am; = Am + ¢;, thus E[¢;] = 0.

k-exp(Am; /T)
i exp(Am;/7)
. A ;
k-exp(Am;/T) =k - exp < + ) =k-exp <m> - exp (6 )
T T T T
A i
zk~exp<m> (1+6—),
T T

since 7 is generally large enough such that < is pretty small. Similarly, for the denominator, we
have

‘We know that w; = . For the numerator,

y r Am €5 Am u €
;exp(Amj/T) A ;exp (7_) (1 + ?) = exp (7’) k+ Z -

%k-exp(Am>.
T
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k(1+% )
Thus, w; ~ % =1+ % Therefore, we can deduce

T
2Ele; E[e?
] | Bi]
T T

E[w?] ~1+

In fact, only E[w?] is approximated, as w always satisfies 1 " w = k, which implies that E[w;] = 1.
On the other hand,

o2 = Var[Am;] = E[Amf] _ (E[Aml])2 _ Zf—l(Al:;n +€)? A

_ kEAmM? + 2Am Zle € + Zle e — Am?2 M

which implies

i=1
Then we can derive that
2 2 Var[Am;]
Varlw;] = Ew?] — (Elwi])? ~14+ 2% —1=2 = :
o] = Efp?] - Eloi)® » 1+ 5 - 1= 5 = 20
From another perspective,
wlw
Varlw;] = Elw]] — (Blwi])® = == -1,

A.3 PROOF OF THEOREM[I]

7&:% w“’_/ai’_” . Then, the
i VWi t it
sequence {0}, has a subsequence that converges to a Pareto stationary point 6*.

Theorem 1. Suppose Assumptionsand hold. We set the stepsize 0, =

Proof. Since g/ d = /% and d = ¥ cigi, we have |2 = 33, cug T d = 3, \Jwia;. Given
that each loss function ¢;(#) is L-smooth, we have
Wit

L L
C(0r41) < 6i(0r) — megilydi + *||77tdt||2 =L;(0) —me o, 577152||dt||2

Z?

k
Ws L
= £i(0:) — a’t gt (D V@7a050)-
j=1
Set the learning rate 1, = 15‘27 % Consider the averaged loss function £(6) = 1 >, 4;(6),
we have o
1 [Gir  Ln? &
E(0t+1) < L(Gt E Z s + % Z wz +Q t)
i=1 b i=1

Ln2 k
= L(0;) — Lm(2~/w 10 t) Tf; VWi i t)
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We can observe that Zz:o LT”i(Zf:l V@ir0r) < L(Bg) — L(6:41). Then, we get

L2 & 1 VWi /i)
S TS o) = g 5 T
i=1 r=0 Zz 1 VWi,rQi,r

r=0

o0

Then, it can be obtained that

k
lim izt (VWir/0in)® )
rreo Zle \/Wi,rai,r

|2 = osTgnn e,

where 01(G, G,) is the smallest singular value of matrix G, G;. Denote 1 = [1,---,1]7 as the
length-k vector whose elements are all 1. Note that we have

Vel -2 /Zr =12

lells = 1Tee < 1] - lexl| = V] ex].

From Eq.[8] we get

Combine the above inequalities, we get

H\/zul > H\/ZH > (GG o] > 7 (G G-

Zv 1 a7 ot 1 T
Z:kia ﬁgk(gt gt) (10)
i=1 it

Then, we have

Furthermore,

Yis o (St )/ 524)? (St )/ 5)?

Ef:l Qi - (Zz 1 t) (Zz 1 ai:) Zl 1\/m+zz 123 1]#10[115\/;
(Zz 1y o)
Ez ey

(1)

For any fixed , it can be concluded from Eq. [9] Eq. [I0] and Eq. [[T] that
. T _
tlggo 0k(G, G1) =0

Since the sequence £(6;) is monotonically decreasing, we know the sequence 6, is in the compact
sublevel set {0|L£(0) < L(0p)}. Then, there exists a subsequence ¢;; that converges to 0* where we

have o (G Ig*) = 0 and G, denotes the matrix of multiple gradients at 8*. Therefore, the gradients
at 0* are linearly dependent, and 6* is Pareto stationary.

O
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B EXPERIMENTS DETAILS

B.1 Toy EXAMPLE

-20 =15 <10 -5 0 5 Ly -20 -15 -10 -5 0 5 Ly =20 -15 -10 -5 0 5 Ly -20 -15 -10 -5 0 5 Ly -20 -15 -10 -5 0 5 Ly

107 10 107 10 107 10

(a) MGDA (b) PCGrad (c) CAGrad (d) Nash-MTL (e) PIVRG(ours)

Figure 2: Comparison of MTL approaches on a challenging synthetic two-task benchmark
et al} 2021a; [Navon et al.| 2022). We visualize optimization trajectories w.r.t. objectives value (£
and L, top row), and cumulative objective w.r.t. parameters (6, and 62, bottom row). The starting
points are indicated by black dots (e), and the Pareto front (see Definition 1) is represented by thick
gray lines ().

Following[Navon et al.| (2022)); [Senushkin et al.| (2023)), we employ a two-task toy example presented
in (Liu et al.|2021a). The two tasks £1(0) and £5(0) are defined on 6 = (6;,605) " € R?,

L1(0) = f1(0)g1(0) + f2(0)h1(0)
L2(0) = f1(0)g2(0) + f2(0)h2(0),
where the functions are defined as follows:
f1(#) = max(tanh(0.565),0)
f2(0) = max(tanh(—0.562),0)

g1(0) = log(max(|0.5(—91 —7)— tanh(—92)|,0.000005)) +6

hi(0) = ((—61 4+ 7)% +0.1(—6> — 8)%)/10 — 20

(
(
92(8) = log (max(|0.5(—91 +3) — tanh(—6y) + 2|, 0.000005)) +6
(
ha(0) = ((—61 — 7)% + 0.1(—6 — 8)%) /10 — 20.

Following (Navon et all}, 2022} [Liu et al., 2024}; [Ban & Ji,[2024), we use five distinct starting points
{(-8.5,7.5),(0,0), (9.0,9.0), (—7.5,—0.5), (9.0, —1.0) }. The Adam optimizer is employed with
a learning rate of 1 x 1073, The 2D and 3D optimization trajectories are shown in 2| On one
hand, while other MTL methods (Fig.1a to 1d) exhibit oscillations around local minima, leading
to noisy optimization trajectories, our approach can swiftly escape these regions of local minima
through guidance from the performance-informed weighting strategy. On the other hand, approaches
designed to find a Pareto-stationary solution halt upon reaching the Pareto front (e.g. Fig.la and
Fig.1b), but PIVRG continues to transfer along the Pareto front and converges to a more balanced
Pareto-optimal solution.

B.2 EXPERIMENTAL RESULTS WITH STANDARD ERRORS

We followed the experimental setup from Navon et al.| (2022)); [Liu et al.| (2024); Ban & Ji| (2024),

and the results for the baseline methods are taken from their original papers. Below, we present
PIVRG’s results along with standard errors.
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Table 6: Results on NYU-v2 dataset (3 tasks). Each experiment is repeated over 3 random seeds
and the mean and stderr are reported.

Segmentation Depth Surface Normal
: o o
Method mloU+  Pix Acct AbsErr| RelErm | Angle Dist | Within ¢° 1 Am(%) |
Mean Median 11.25 22.5 30
PIVRG (mean) 39.90 65.74 0.5365 0.2243  24.30 18.80 3095 5826 70.38 -6.50
PIVRG (stderr)  40.43 +£0.21  £0.0007 £0.0014 +£0.07  +0.09 +0.12 +0.18 =+0.16 +0.24

Table 7: Results on QM-9 dataset (11 tasks). Each experiment is repeated over 3 random seeds and
the mean and stderr are reported.

Method I Q@  €HOMO  €LUMO (R?) ZPVE Uy U H G cy Am(%) |
MAE |

PIVRG (mean) 0.125 0.226 94.80 81.98 1.41 387 5779 5790 58.09 57.86 0.085 33.6

PIVRG (stderr) 40.0022 £0.0078 +2.829 +£1.349 +0.0301 =+0.0438 +£0.68 +0.72 +£0.70 £0.68 =+0.0005 +2.31

Table 8: Results on CityScapes (2 tasks) and CelebA (40 tasks) datasets. Each experiment is repeated
over 3 random seeds and the mean and stderr are reported.

CityScapes CelebA

Method Segmentation Depth Am(%) L Am(%) |
mloU?t Pix AccT AbsErr] RelErr]

PIVRG (mean) 75.82 93.65 0.0126 27.87 -0.54 -0.96

PIVRG (stderr)  £0.05 +0.04  +0.0002 +0.24 +0.34 +0.34

B.3 ADDITIONAL RESULTS ON PERFORMANCE VARIANCE

In Fig. [3|and Fig. EL we show that both w "w and Var[Am;] decrease progressively throughout the
optimization process, validating the effectiveness of our dynamic weights which serve as regular-
izers. In Table [0} [I0] and [T} we compare the detailed performance drop Am and performance
variance Var[Am;] with existing methods, the results show that PIVRG not only achieves SOTA
performance on various benchmarks but also produces the lowest performance variance, indicating
a fairer optimization.

1.4

2

113

1.2

5
The Squared L2-Norm w”w

Log-Scale Am Variance

11

100 150 200 250 300
Epoch

o
&

4 50 100 150 200 250 300
Epoch

Figure 3: Performance Variance on QM9 dataset. Figure 4: The squared L2 norm of w, i.e. w ' w.
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Table 9: Comparison of Am and performance variance for different methods on the NYUv2 dataset.

method LS SI RLW 2021a DWA 2019 UW 2018a
Am 5.59 4.39 7.78 3.57 4.05

Var[Am;] 259.13 247.77 205.32 191.93 190.73

method MGDA 2018 PCGrad2020a GradDrop 2020 CAGrad2021a IMTL-G[2021b
Am 1.38 3.97 3.58 0.20 -0.76
Var[Am;] 68.65 173.67 204.45 137.94 124.03

method Moco[2023 Nash-MTL 2022 FAMO|2024 FairGrad 2024 PIVRG (Ours)
Am 0.16 -4.04 -4.10 -4.66 -6.50
Var[Am;]  163.07 108.03 74.66 71.59 52.21

Table 10: Comparison of Am and performance variance for different methods on the QM9 dataset.

method LS SI RLW|2021a DWA|2019 UW|2018a
Am 177.6 77.8 203.8 175.3 108.0
Var[Am;] 59317.63 11807.60 77380.19 56660.16 18171.92
method MGDA 2018 PCGrad|2020a CAGrad2021a IMTL-G[2021b Nash-MTL 2022
Am 120.5 125.7 112.8 712 62.0
Var[Am;] 20533.84 31570.73 18343.53 3309.90 10385.12
method FAMO 2024 FairGrad 2024 PIVRG (Ours)
Am 58.5 579 33.6
Var[Am,;] 3963.84 7705.27 3196.32

Table 11: Comparison of Am and performance variance for different methods on the Cityscapes

dataset.
method LS SI RLW 2021a DWA 2019 UW|[2018a
Am 22.60 14.11 2438 21.45 5.89
Var[Am;] 803.24 133.23 879.98 630.71 21.32
method MGDA 2018 PCGrad|2020a GradDrop 2020 CAGrad[2021a IMTL-G2021b
Am 44.14 18.29 23.73 11.64 11.10
Var[Am;] 3588.05 466.50 871.26 220.86 261.86
method MoCo[2023 Nash-MTL[2022| FAMO[2024 FairGrad [2024 PIVRG (Ours)
Am 9.90 6.82 8.13 5.18 -0.54
Var[Am;] 126.75 128.77 73.43 53.26 1.55

C COMPARISON WITH OTHER METHODS

In this section, we present a concise overview of representative loss-based and gradient-based ap-
proaches used in multitask or multiobjective optimization, and provide a brief analysis of the char-
acteristics of each method.
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C.1 LoSS-BASED METHODS

Linear scalarization (LS). LS aims to directly optimize the average of all task losses. The opti-
mization objective for LS is given by

L) = r%in

T =

k
Zé,(a),

where ¢;(0) represents the loss for task i. LS focuses on minimizing the overall average loss, treating
each task equally without considering individual task difficulties or imbalances.

Scale-Invariant (SI). The SI method aims to optimize the logarithmic mean of all task losses. The
optimization objective for SI is given by

k
1
mjn 1 3 loe(6(0)

where ¢;(0) represents the loss for task i. The advantage of SI is that it is invariant to any scalar
multiplication of task losses, allowing it to handle varying loss scales effectively.

Dynamic Weight Average (DWA) Liu et al.| (2019). It is a heuristic for adjusting task weights
based on rates of loss changes. The optimization objective is a weighted sum of all task losses,
where the weights are \;:

k
m@in; Aili ().

Similar to PIVRG, it also uses a softmax with temperature to determine the weights such that they
sum to k. However, the softmax argument is w; ; = ¢; ;/¢; +—1, which considers the relative change
at the loss-level.

Random Loss Weighting (RLW) Lin et al.| (2021a). The optimization objective of RLW is also a
weighted sum of all task losses, where the weights are \;:

k
min ; Xili(0).

Unlike previous methods, RLW simply samples from a normal distribution and applies softmax to
obtain the weights. The authors found that even this simple modification leads to better performance.
They argue that RLW provides a higher probability of escaping local minima compared to existing
models with fixed task weights, resulting in improved generalization ability.

Fast Adaptive Multitask Optimization (FAMO) [Liu et al. (2024). FAMO aims to decrease all
task losses at an equal rate at each step as much as possible. The optimization objective is:

max min —

big —ligp1 1||d 2
dericlk] Ml 2 1

where 7 is the current step size. By amortizing over time, the authors propose a fast approximation
to the solution, thus achieving highly competitive results while maintaining efficiency.

C.2 GRADIENT-BASED METHODS

Multiple Gradient Descent Algorithm (MGDA) |Sener & Koltun| (2018). The MGDA algorithm
is one of the earliest gradient manipulation methods for multitask learning. In MGDA, the per step
update d, is found by solving

1
max min g; ,d — = ||d||*.
deR™ iglk] ~ 2
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As a result, the solution d* of MGDA optimizes the worst improvement across all tasks or equiva-
lently seeks an equal descent across all task losses as much as possible. However, in practical appli-
cations, MGDA often encounters slow convergence due to the potential for d* to be quite small. For
instance, if one task has a very small loss scale, the advancement of other tasks becomes constrained
by the progress made on this particular task.

Projecting Gradient Descent (PCGrad) |Yu et al.| (2020b). PCGrad initializes vf;c = gi.+, then for
each task 4, PCGrad loops over all task j # 4 (in a random order, which is crucial as mentioned in
Yu et al.| (2020b) and removes the “conflict”
4 R S T
Upe 4= Upc — ngﬁtgjnf if vpe gje <0.

14,41
In the end, PCGrad produces d; = + Ele vhe. Due to the construction, PCGrad will also help im-
prove the “worst improvement” across all tasks since the “conflicts” have been removed. However,
due to the stochastic iterative procedural of this algorithm, it is hard to understand PCGrad from a
first principle approach.

Conflict-averse Gradient Descent (CAGrad) Liu et al.|(2021a). In CAGrad, d; is found by solving

T
Td st ||d= Vi <c|Ve
max mingi,d s | ol < cl[Veloull,

where £y ; = % Zle 4; +. CAGrad aims to determine an update d, that maximizes the “worst im-
provement” while ensuring that the overall average loss decreases. By adjusting the hyperparameter
¢, CAGrad can replicate the behavior of MGDA when ¢ — oo and revert to the standard averaged
gradient descent when ¢ — 0.

Impartial Multi-Task Learning (IMTL-G) Liu et al.|(2021b). IMTL-G finds d, such that it shares
the same cosine similarity with any task gradients:

k

Vi # 4, dtT gi.t :dtT 9irt , and dt:Zwiytgm, for some w; € S;.
llgs.el 5.t —

The constraint that d; = Zle w; 1 g;¢ 18 for preventing the problem from being under-determined.
We can view IMTL-G as the equal angle descent, which is also proposed in Katrutsa et al.| (2020),
where the objective is to find d such that

Vi 7& ja COS(d, gi,t) = COS(da gj,t)-
Nash-MTL Navon et al.[ (2022). Nash-MTL finds d; by solving a bargaining game treating the

local improvement of each task loss as the utility for each task:
k

T

max E log (g, .d:).

de€RM||dy || <e? 4 - ( %t )
1=

Note that the objective of Nash-MTL implicitly assumes that there exists d; such thatV ¢, gf i >0,
otherwise we reach the Pareto front. In our proposed PIVRG, we also adopt this assumption.

a-Fair Resource Allocation (FairGrad) Ban & Ji (2024). FairGrad is inspired by fair resource
allocation in communication networks. They treat the optimization in MTL as a resource allocation
problem and apply the a-fairness framework:

Vi) = | i M ifa>0.a#1
i S log(ui(d) ifa=1

They also consider g,' d as the utility of task i. By introducing the a-fair framework, FairGrad
achieves different types of fairness at the gradient level, yielding surprising results. It is noteworthy
that most existing methods can also be categorized under the a-fair framework. For instance, LS
is a special case when o = 0, Nash-MTL corresponds to a = 1, and MGDA is a special case
as « approaches infinity. Similar to these methods, our basic optimization objective in Eq. [2] can
also be viewed as a special case of a-fairness. However, our derivation is from the perspective of
minimizing the average optimization steps for tasks, and this is not our main contribution.
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C.3 ADVANTAGES OF OUR METHOD

Through the analysis of the aforementioned methods, we found that since loss-based methods cannot
obtain the accurate gradient for each task, they primarily achieve fairness at the loss level through
various scaling and weighted averaging of the loss. A major idea of gradient-based methods is to
alleviate gradient conflict during the optimization process to achieve fairness at the gradient level.
Additionally, some gradient-based methods use the first-order Taylor expansion to design utility
functions, approximating the loss difference with giT d, thereby incorporating loss-level information.

However, only our proposed PIVRG considers performance-level information and uses the vari-
ance of performance drop as a fairness indicator to redefine fairness in the optimization process
of MTL. Extensive experiments demonstrate that PIVRG not only achieves state-of-the-art per-
formance but also realizes further fair optimization, mitigating the common task imbalance phe-
nomenon observed in previous methods. Integrating our dynamically designed weighting strategy
based on performance-level information into existing methods can significantly enhance their perfor-
mance and reduce the variance of performance drop, achieving more equitable results. This further
confirms the potential of our method and its contribution to the MTL community.
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