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Abstract: Autonomous agents increasingly rely on learned components to
streamline safe and reliable decision making. However, data dissimilar to that
seen in training, deemed to be Out-of-Distribution (OOD), creates undefined
behavior in the output of our learned-components, which can have detrimen-
tal consequences in a safety critical setting such as autonomous satellite ren-
dezvous. In the wild, we typically are exposed to a mix of in-and-out of dis-
tribution data where OOD inputs correspond to uncommon and unfamiliar data
when a nominally competent system encounters a new situation. In this pa-
per, we propose an architecture that detects the presence of OOD inputs in an
online stream of data. The architecture then uses these OOD inputs to recog-
nize domain invariant features between the original training and OOD domain
to improve model inference. We demonstrate that our algorithm more than dou-
bles model accuracy on the OOD domain with sparse, unlabeled OOD examples
compared to a naive model without such data on shifted MNIST domains. Im-
portantly, we also demonstrate our algorithm maintains strong accuracy on the
original training domain, generalizing the model to a mix of in-and-out of dis-
tribution examples seen at deployment. Code for our experiment is available at:
https://github.com/StanfordASL/CoRL_OODWorkshop_DANN-DL
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1 Introduction

Motivation: Learning-based components are imperative in a well-developed robot autonomy stack
to recognize patterns in high-dimensional data gathered from the environment. However, the perfor-
mance of these learned models is sensitive to the distribution from which a particular input is drawn.
Commonly, a supervised learning procedure assumes the training and test data are independent and
identically distributed (i.i.d). Examples from a distinct distribution compared to the training data are
deemed Out-of-Distribution (OOD). These uncommon OOD examples violate our i.i.d assumption
and precipitate a performance loss in safety critical components. As an example, suppose we wish
to develop a vision system to predict the position and orientation of a satellite in order to facilitate
the autonomous interaction with and removal of non-cooperative resident space objects. We will
train the model on labeled images as in Fig. 1a. That is, our training dataset consists of satellite
images where only outer space is in the background. Then, while deploying this model to predict a
satellite’s pose, our vision system can encounter images as in Fig. 1b, which are unfamiliar due the
presence of Earth in the image’s background. Without a strategy to handle these OOD observations,
the vision system will likely fail to make a reasonable prediction, which could result in an collision
between satellites. In general, we cannot reasonably expect an agent to perfectly generalize to OOD

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.

https://github.com/StanfordASL/CoRL_OODWorkshop_DANN-DL


data without prior context. But, we could potentially store and process OOD data that we encounter
in deployment to improve our performance on a novel distribution through repeated exposure.

(a) In-distribution: space background

(b) OOD: Earth background

Figure 1: Distribution shift present in
the SPEED dataset [1].

Related Work: Traditional domain adaptation [2] [3] is
insufficient for this application since it assumes the dis-
tribution sampled at deployment is 1) static and 2) unique
from the training distribution. Though, in reality, a de-
ployment distribution can shift over time and will include
a mix of in-and-out of distribution data where OOD data
is markedly less frequent than the familiar in-distribution
data. We would like to develop a system that is competent
in both domains. Unfortunately, existing solutions in this
space are expensive. Existing methods include flagging
OOD inputs to be labeled by a human oracle and sub-
sequently retraining the model, which quickly becomes
expensive and time-consuming with high-dimensional,
large scale datasets. Another potential solution is to re-
quest oracle labels on a small but diverse subset of OOD
data and subsequently retrain the model [4]. But, the cost
associated with oracle labels may be prohibitively large
such that we cannot guarantee access to an oracle in all
settings. Even further, under this approach, we may be
disposing of potentially useful information in the unla-
beled OOD images which we do not request a label on.
For a more detailed discussion on current literature to
address model generalization in the presence of domain
shift, please see the Appendix section 5.1. For broad ap-
plicability in robotics, we desire a method to cope with OOD data that does not require an oracle for
labels and learns over multiple episodes. Specifically, this project addresses how to use unlabeled,
OOD examples collected over multiple episodes to improve classification on a novel target distribu-
tion without access to oracle labels. We aim to accomplish this task with sparse target examples and
maintain strong classification accuracy on the source domain.

Contributions: This paper introduces a novel algorithm to meet the desiderata above that more
than doubles target classification accuracy without target label access or drop in source accuracy
relative to a naive model. Specifically, this algorithm uses an OOD detector to segment in-and-out
of distribution data from an online stream of inputs. Then, this architecture learns to recognize
domain invariant features between the source and target data to extend classification accuracy to
both domains.

2 Approach

Problem Formulation: In this work, we consider extending a model’s classification accuracy to
an OOD target distribution experienced at deployment over a series of episodes. We consider the
case where the source and target distribution are distinct due to covariate shift. At deployment, our
model experiences a stream of unlabeled images from a mix of the source and target distribution with
a heavy bias towards source representation. From this stream, we can store select inputs onboard and
use them to update the model offline between deployments without access to an oracle for labeling.
This formulation is motivated by applications in robotics where we deploy our robot in the wild and
it experiences some uncommon and unfamiliar observations dissimilar to the training set. Ideally,
after a sufficient number of episodes, the robot can begin to cope with these previously unfamiliar
experiences. Through deployment, we aim to 1) improve classification accuracy on images from the
target domain, 2) maintain classification accuracy on images from the source domain relative to a
naive model and 3) learn with sparse OOD examples.
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Table 1: DANN-DL learns with little data & no labels

Method Best Target Acc. Best Source Acc. Target labels? Target data size
Oracle CNN 0.94 0.98 YES 11,000

CNN (source only) 0.24 0.98 NO 0
DANN 0.73 0.95 NO 60,000

DANN-DL w/o SCOD 0.60 0.99 NO 150
DANN-DL + SCOD 0.67 0.99 NO ∼ 150

Proposed Solution: We propose a novel algorithm, Domain Adversarial Neural Networks in the
Data Lifecycle (DANN-DL), to extend classification accuracy to a previously unknown target dis-
tribution sampled at deployment. We demonstrate this algorithm’s ability to increase classification
accuracy in the target distribution, maintain classification accuracy in the source distribution and
learn with a sparsity of target data relative to source data. This algorithm utilizes Sketching Curva-
ture of OoD Detection (SCOD) [5] to distinguish and acquire OOD data over multiple deployments.
Specifically, SCOD allows this algorithm to isolate the uncommon and unfamiliar inputs among a
stream of predominantly nominal inputs during deployment. Then, at each episode with non-zero
target data, the algorithm utilizes a Domain Adversarial Neural Network (DANN) [6] to recognize
domain invariant features between the original training data and acquired OOD data. A more de-
tailed discussion on the proposed approach is presented in the Appendix section 5.2.

3 Discussion

Experimental Setup: In the following results, we deploy DANN-DL on a source distribution repre-
sented by the MNIST dataset [7]. The target distribution is represented by the MNIST-M dataset [6].
Each episode consists of 75 total images of which 15 belong to the target distribution. The model
begins episode zero with a random sample of 11,000 labeled MNIST source images.

We simulate deployment over a maximum of 10 episodes to ensure the total training time through
deployment remains reasonably low. We train the DANN architecture with a batch size of 64 images
in the source and target domain for 100 epochs with a learning rate that begins at 1e-3 and follows
a cosine annealing schedule. In the Appendix section 5.3 and 5.4, we present additional results to
justify the chosen framework for episodic deployment and explore halving the frequency at which
we update the model at some regular rate.

Experimental Results: Using the experimental setup described, we simulate 10 independent trials
of DANN-DL. In Table 1, we compare DANN-DL’s best source and target accuracy through deploy-
ment to other relevant methods. The Oracle CNN method represents the unrealistic case where our
model has perfect OOD detection and access to an oracle for labeling. With these jointly labeled
datasets, the model is able to achieve upwards of 94% accuracy on both distributions, which is an
upper bound on performance. If we train without information in the target distribution, we achieve
24% accuracy on OOD examples. Our DANN implementation modeled after [6] trains on the full
MNIST & MNIST-M datasets and achieves 73% accuracy on the target dataset. If we apply our
DANN-DL method without SCOD, naively flagging all images at deployment as OOD, we achieve
60% on the target distribution. Finally, DANN-DL using SCOD for OOD thresholding is able to
achieve 67% accuracy on the target with roughly ∼ 0.25% of the full dataset, and in doing so, sac-
rifice no accuracy in the original source. In the Appendix section 5.4, we demonstrate continued
deployment of DANN-DL beyond a 10 episode limit allows the target accuracy to reach comparable
levels to our DANN implementation in Table 1.

The takeaways from this table are two fold. First, DANN-DL + SCOD is able to learn nearly
identical target accuracy to the DANN implementation, which uses 60,000 images, with only ∼
0.25% of the data. Second, DANN-DL + SCOD’s target accuracy (67%) is more than double that
of a naive CNN (24%), is 7% better than naively accepting all deployment data as OOD, and is
within 30% of the best possible accuracy with oracle labels (94%). This first point is especially
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Figure 2: DANN-DL + SCOD progressively learns target and does not forget source over 10 inde-
pendent trials.

important for the viability of our algorithm in a realistic robotic deployment setting where OOD
data is sparse: DANN-DL is able to quickly build an understanding of the target distribution. If we
have the ability to access even more OOD data, this luxury only accelerates gains in the model’s
accuracy, which is demonstrated in the Appendix section 5.3. The second point demonstrates the
large strides in target accuracy this algorithm achieves by processing unlabeled OOD examples, in a
self-supervised manner, segmented from previous deployments compared to a naive model without
such OOD data. Furthermore, our results show using an OOD detector allows DANN to better
capture domain invariant features between the source and target domains rather than noise in the
source, increasing target accuracy by 7% compared to DANN-DL without SCOD.

In Fig. 2, we present DANN-DL’s average source and target accuracy through the aforementioned
10 independent trials. This figure demonstrates the source accuracy is maintained through the data
lifecycle. Additionally, Fig. 2 demonstrates the average target accuracy improves by 40% relative
to a naive CNN through the data lifecycle, using only roughly 150 OOD images. Lastly, Fig. 2
demonstrates that the maximum and minimum bound on target accuracy performance converges to
the average with continued deployment and data collection.

Therefore, these results demonstrate that DANN-DL improves target accuracy through deployment,
by more than double a naive CNN, and in doing so, maintains source accuracy with a sparsity of
unlabeled OOD examples.

4 Conclusion

In this work, we demonstrate a novel algorithm to leverage sparse, unlabeled OOD data to more than
double target classification accuracy without a drop in source accuracy relative to a naive model. To
capture a more realistic robotic deployment setting, we are currently working to develop this algo-
rithm for satellite pose estimation and warehouse manipulation. Future research directions include
potentially identifying OOD inputs in a task-aware manner. Currently, our measure of whether an
input is OOD uses the functional uncertainty [8] on a naive source-only model. But, we could po-
tentially adopt a task-aware framework that ignores traditionally OOD inputs if misclassification on
the input has little to no impact on the downstream task of the system. This approach could improve
the quality in OOD data collected for the specific purpose of improving downstream system-level
performance.
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5 Appendix

5.1 Detailed Discussion on Current Literature

Current literature to improve model performance on OOD inputs includes, but is not limited to, Do-
main Generalization (DG), Domain Adaptation (DA) and Continual Learning. Common methods in
DG extend classification accuracy to an unknown distribution by learning domain invariant features
among a set of labeled datasets from separate but related distributions [9], [10]. Another poten-
tial approach is in meta-learning [11] where we generalize to an artificial domain shift introduced
through meta-train and meta-test batches downsampled from the original training data. However,
each of these works does not utilize our ability, in most robotics settings, to sample and incorporate
unlabeled data from the deployment distribution into our learning process, which makes generaliza-
tion less efficient.

DA is a class of algorithms that leverages labeled training and unlabeled test data to achieve model
generalization. Early work in DA re-weights the representation of training examples in the loss
function such that the covariate distribution on inputs is matched between the training and test do-
main [2], [3]. A more modern approach to DA solves for a linear mapping to align subspaces for the
training and test domain [12] from which a classifier is learned. Unfortunately, these methods trans-
fer classification accuracy to the test distribution at the expense of accuracy on the original training
distribution. Learning-based methods have demonstrated promise in extending classification accu-
racy to both domains by learning to recognize domain invariant features necessary for classification
using a DANN [6]. But this method does demonstrate poor generalization under label shift between
the training and test domains, which limits this method’s application in the wild. In response, [13]
augments the adversarial training pipeline with an alternative optimization to iteratively infer the test
label distribution and correct for class conditional shift between domains. A reasonable estimate of
the test label distribution and an adapted classifier are produced after sufficient iteration.

Even still, domain adaptation research commonly assumes the distribution sampled at test time is 1)
static and 2) unique from the training distribution. However, in a robotics setting, neither of these
assumptions are true. The test distribution is often a blend of in-and-out of distribution inputs. Also,
the test distribution can certainly shift between, or within, multiple episodes of deployment. There-
fore, in robotics, we commonly use an OOD detector to recognize when our learned components are
unreliable, which could potentially be leveraged to segment in-and-out of distribution inputs over
time.
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Existing methods in OOD detection include, but are not limited to, utilizing runtime monitors and
measures of functional uncertainty to recognize OOD examples. Recall, if our learned model oper-
ates OOD then we expect a dramatic drop in performance relative to the in distribution examples.
With this result in mind, we can potentially identify when our model operates OOD by recognizing
when our model has made an incorrect prediction. Specifically, [14] engineers consistency checks
across comparable sensor modalities in a system to identify and diagnose the specific sub-module
at fault. However, this work is incompatible with a single-component system and struggles to guar-
antee fault detection when the number of faults is large relative to the expression in our consistency
checks. We could also use a measure of the model’s own prediction uncertainty to identify OOD
examples. Explicitly, [5] introduces SCOD which perturbs the weights of a trained model for a
particular input and studies the degree to which the output distribution changes. This distribution
change is then represented by a scalar measure of distance that we can compare to a benchmark to
create an in-and-out of distribution segmentation on inputs. In [15], the authors train an ensemble of
models in parallel on the same data and use the entropy of the average output distribution to give a
scalar quantity compared to a benchmark for ODD detection. In each case, these methods are easy
to integrate into an existing autonomy stack and enable our learned components to recognize OOD
inputs that we can potentially use in a self-supervised learning process.

Another approach to achieve model generalization is continual learning. Research in continual
learning iteratively updates a model with new experiences using regularization techniques to en-
sure inferences from past memories, or training data, are not forgotten [16][17]. Continual learning
is different from traditional methods in machine learning because this algorithm class samples data
from the environment over time and uses it to iteratively improve model generalization. In that
way, continual learning aligns with our desire to learn a test distribution through episodic samples
without forgetting classification on the original training distribution. Yet, the need for these meth-
ods to introduce a regularization strategy during parameter updates is motivated by a lack of access
to past memories when onboard storage and compute power may be limited. Additionally, these
methods require labels associated with the test data, which is again incompatible with our desired
solution. Instead, we are interested in a setting where model training and data storage is performed
offline at a central datacenter, which communicates model updates to the autonomous agent between
deployment episodes.

Figure 3: At episode zero, we have no apriori understanding of the target distribution and train a
naive CNN to govern our agent. We use this naive CNN to form a SCOD object for OOD detec-
tion that is held constant through all episodes. Our algorithm uses SCOD to segment in-and-out
of distribution data from an online stream of inputs. Then, the algorithm learns to recognize do-
main invariant features between the source and target data to extend classification accuracy to both
domains. We continue this iteration until the target dataset is as large as the source dataset.

7



Current literature which operates in the setting above includes work in Diverse Subsampling us-
ing Sketching Curvature for Out-of-Distribution Detection [4]. This algorithm leverages an OOD
detector to downsample likely OOD examples from an episode of inputs. The algorithm then re-
quests oracle labels on a maximally informative subset of these OOD examples for a fixed label
budget. This work is closely aligned with this project by sampling inputs from a mix of in-and-out
of distribution data and by iteratively improving model generalization with the sampled OOD inputs.
However, this pipeline relies on access to an oracle to label OOD inputs, which may be infeasible or
expensive.

5.2 Detailed Discussion on Proposed Approach

The workflow for this algorithm is visually presented in Fig. 3. Across all episodes the algorithm
will experience a batch of N images on which to classify. Some small fraction of these N images
will come from the target distribution while the remaining images belong to the source distribu-
tion. At each episode, our algorithm has access to the original curated source dataset. In the zeroth
episode, we have no a priori understanding of the target distribution. Our target dataset is empty,
and therefore, we train a naive CNN based on our source dataset. We use this naive CNN to create
a SCOD object to distinguish source and OOD images during deployment. In our work, the bench-
mark for SCOD segmentation is the 95th percentile uncertainty on the model’s training data in order
to achieve an expected false positive rate of roughly 5% in the wild. Of note, we hold this SCOD
object constant throughout the rest of deployment.

During episode zero, our CNN classifies on a stream of inputs and we use SCOD to identify OOD
examples. Then, between the first and second episode, we train a DANN architecture offline from
scratch to recognize domain invariant features between the source and newly augmented target
dataset. We deploy the new DANN architecture in epsiode one along side the constant SCOD
object. We repeat the steps described previously with a DANN architecture replacing the CNN and
iterate until the target dataset is as large as the source dataset.

In summary, our task during each episode is two fold: (1) identify a subset of OOD images using our
constant SCOD object and (2) classify on an episode of N images using the current episode’s model
architecture. In our work, we use SCOD to identify a subset of OOD images from each episode,
which are added to the target dataset. We then use a DANN architecture, retrained at each episode,
to generalize classification to the source and target domain. In doing so, we progressively build an
understanding of the target distribution with few examples and maintain classification in the source
distribution.

Figure 4: DANN-DL target accuracy decays with SCOD and Deep Ensembles [15] for OOD detec-
tion.
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5.3 Episode Size and Constant SCOD

This section of the appendix will present justification for the number of images included per episode
and the decision to maintain a constant SCOD wrapper through deployment. In the early stages of
this project, different from the data lifecycle described previously, we exposed DANN-DL to 5,000
images per episode of which 1,000 were OOD target examples. Also, this project created a new
SCOD object at each deployment episode for OOD thresholding. Initial results for this project using
SCOD and Deep Ensembles [15] for OOD detection are presented in Fig. 4, which demonstrates
a decay in the target accuracy through deployment. The target accuracy jumps significantly at the
introduction of the first DANN architecture but continued deployment and data collection causes a
decay in the target accuracy.

That is, the target accuracy saturates after the first few deployment episodes independent of the OOD
detector we use. In the case of Deep Ensembles, the DANN model classifying on episode one has
access to roughly 1,000 target examples from the previous episode and achieves a target accuracy
of 72%, which is practically identical to the DANN implementation’s accuracy introduced in Tab.
1. This result suggests 1,000 target images, at least on the MNIST-M dataset, is a diverse enough
sampling of the distribution to classify well on it.

In conjunction with this dramatic increase in target accuracy comes a dramatic drop in model un-
certainty on the target distribution as well. Because SCOD and Deep Ensembles perform OOD
detection using the model’s own prediction uncertainty, OOD detection becomes more difficult as
our understanding of the target distribtution improves. In other words, creating a new SCOD ob-
ject or Deep Ensembles at each deployment episode to perform the task of OOD detection is in

(a) True positive rate peaks with naive CNN

(b) False positive rate relatively constant through deployment.

Figure 5: DANN-DL source and target accuracy through deployment averaged over independent 10
trials.

9



competition with the task to improve classification accuracy on the OOD domain. This result is
demonstrated in Fig. 5a where the true positive rate peaks at the first episode independent of the
detection method and sharply falls in deployments thereafter. In Fig. 5b, the false positive rate
remains mostly constant throughout deployment given our understanding of the source distribution
is unchanged in deployment. Small changes to the false positive rate between deployment episodes
are likely a product of sample bias between the 4,000 images in those episodes.

In response to these results, this project investigated exposing the model to a fewer number of OOD
images per episode and holding the OOD detection object in the first episode constant throughout
deployment. The results presented in the main body of this work are the best example of DANN-
DL progressively learning the target distribution over mutliple episodes. Access to more OOD data
per episode should accelerate growth in the model’s understanding of the target distribution. This
result is verified in Fig. 6 where the DANN architecture is iteratively retrained with oracle detection
experiencing 64 OOD examples in Fig. 6a and 10 OOD examples in Fig. 6b per episode. In
comparison to Fig. 6b, Fig. 6a learns an initially a higher target accuracy and peaks at a higher
target accuracy later in deployment.

5.4 Halving the Training Frequency

This section of the appendix will investigate DANN-DL’s source and target classification perfor-
mance while halving the training frequency through deployment at some regular rate. Reducing the

(a) DANN progressively learns with oracle OOD detection and 64 images per
episode.

(b) DANN progressively learns with oracle OOD detection and 10 images per
episode.

Figure 6: DANN-DL learns higher initial and final target accuracy using more OOD data.
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rate at which we train the model is desirable as our training process can be computationally expen-
sive and unnecessary if the model is already well adapted to both the source and target domains. In
the later stages of deployment, we expect the target accuracy to improve and stabilize in which case
less training may not harm performance. In this study, we choose to half the frequency of training
after every 10 training cycles. That is, after the first 10 episodes, where we retrain a DANN archi-
tecture between each episode, we train a new DANN architecture once every two episodes. After
another 20 episodes have passed, or 10 training cycles, we will then train a new DANN architecture
once every four episodes. This iteration continues until DANN-DL achieves greater than 70% ac-
curacy on the target domain or the sampled target dataset is as large as the labeled source dataset,
whichever comes first. We chose 70% specifically as we deemed this close enough to our DANN
implementation’s target accuracy on the full MNIST-M dataset presented in Tab. 1.

In the following analysis, we plot the source and target accuracy with the training cycle, rather than
with the episode number, to highlight the performance difference between new DANN architectures
in the data lifecycle. In Fig. 7a and Fig. 7b we provide two independent trials of simulating the
DANN-DL algorithm with the modified training strategy described. In each case, we approach a
target accuracy of 70% long before the source and target datasets are comparable sizes. Specifically,
after 15 training cycles under this setup, DANN-DL has seen 300 OOD examples. Of note, we had
to train the DANN architecture for 200 epochs per cycle, else DANN-DL will not reach 70% target
accuracy before the source and target datasets are comparable sizes. These results serve to justify
continued investigation into a potentially modified training schedule as opposed to the constant
schedule presented in the main body of this work. Also, importantly, these results demonstrate that

(a) DANN-DL reaches 70% after 15 training cycles.

(b) DANN-DL reaches 70% after 19 training cycles.

Figure 7: Two DANN-DL trials with variable training frequency.
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continued deployment our of algorithm beyond 10 episodes allows the target accuracy to approach
our DANN implementation’s accuracy in Tab. 1.
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