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ABSTRACT

In long-context multimodal reasoning, models often begin to ”burn out”—not be-
cause of architectural flaws, but because one or more input modalities gradually
lose their expressiveness. Is this merely an attention failure? Or is the modal-
ity itself fatigued? We propose a new perspective on this degradation: Modality
Fatigue, a phenomenon where the model’s activation and responsiveness to cer-
tain modalities decay over time, manifesting as attention attenuation, fusion drift,
semantic shift, and loss of task sensitivity. Unlike prior approaches that focus
on modeling inter-modal attention patterns or equationment graphs, we shift the
lens to the evolving internal state of each modality. We conceptualize modality
fatigue as a dynamic decline in each modality’s “vital sign,” modeled through its
activation signal trajectory. Concretely, we introduce the Modality Activation
Decay Detector (MAD) detector to monitor each modality’s instantaneous acti-
vation αm(t) and its change rate δm(t), while dynamically computing a fatigue-
triggering threshold τm(t) from historical trends. Once fatigue is detected, the
Modality Alternation & Compensation Controller (MAC) adaptively adjusts
the fusion path and recall compensation. It controls the integration of current
perception and retrieved memory via a learnable gate λm(t), thereby restoring
under-utilized modality signals. Our method sidesteps the need for full attention
matrices or inter-modal graph modeling. Instead, it decomposes modality state
tracking into independent one-dimensional activation curves, enabling lightweight
monitoring and fine-grained control with high interpretability. Across various
long-context benchmarks, our framework demonstrates encouraging capabilities
in preserving modality balance, enhancing fusion robustness, and mitigating in-
formation drift and omission. By uncovering and addressing modality fatigue
through transparent, signal-based modeling, we take a step toward building multi-
modal systems that can perceive their own internal states and adapt accordingly.

1 INTRODUCTION

Do multimodal models ”burn out” over time? Despite recent progress in multimodal large language
models (MLLMs), we observe a puzzling phenomenon: as input length increases and reasoning
deepens, models begin to lose touch with certain modalities, even when those modalities remain
present and relevant. For instance, in visual question answering, models may rely heavily on the
question text while progressively ignoring the image; in audio-captioning, linguistic outputs may re-
main fluent despite audio cues fading from memory. We term this phenomenon modality fatigue: a
gradual and systematic decline in modality-specific activation over long-context reasoning. As illus-
trated in Figure 1, modality traces exhibit diminishing signal strength, causing the model to converge
toward default or biased behaviors (e.g., language dominance). Crucially, this is not due to corrupted
inputs or noisy supervision-all modalities are available and properly equationed. The problem may
lie in how the model manages internal attention, fusion, and memory usage over time. Unlike ex-
isting studies that focus on input-level modality balancing or static fusion, we take a process-centric
view: modality degradation is an evolving state, not a static mismatch. If models fail to sense when
a modality fades, they cannot recover its influence or adapt their reasoning accordingly. Addressing
this subtle yet pervasive fatigue requires a new perspective—one that moves beyond attention scores
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Figure 1: Modality fatigue in long-context reasoning. As multimodal models process longer
sequences, individual modalities (e.g., vision, audio, Text, Image) exhibit activation decay, gradually
losing their content and influence on the final prediction. Our proposed framework tracks these
signals over time and compensates for fading paths.

and toward dynamic signals of modal activation, as explored in dynamic fusion frameworks that
adapt to instance-wise modality relevance Xue & Marculescu (2023), condition-aware reliability
estimation Brödermann et al. (2024), and continuous modality-domain attention for degrading or
missing modalities Fan et al. (2024).

Why do current multimodal models fail to notice this fatigue? A closer inspection reveals that most
existing architectures are not designed to monitor the evolving “health” of each modality throughout
the reasoning process. While attention mechanisms allow modalities to interact at each step, they
offer no explicit signal for how a modality’s contribution changes over time. Once initial attention
weights are set: often biased toward text and there is no feedback loop to detect whether other
modalities are fading, weakening, or becoming sidelined. Importantly, modality fatigue is not a
problem of corrupted input, low-resolution signals, or insufficient equationment at the fusion layer.
Even when all inputs are intact and semantically relevant, the model may still progressively abandon
useful modalities simply because it lacks introspective awareness of how modal activations evolve.
This disconnect leads to over-reliance on dominant modalities and a loss of grounding, especially
in tasks requiring cross-modal integration or temporal continuity. We argue that true robustness in
MLLMs requires more than static fusion or per-layer attention balancing. It demands a new level
of internal observability: the ability to track fine-grained signals of modality engagement—what we
call the modality’s “vital signs.” These signals should capture both the strength and dynamics of
activation across steps, enabling the model to sense early signs of fatigue and proactively intervene.

To address modality fatigue as a process of gradual degradation rather than explicit failure, we adopt
a micro-level perspective that tracks each modality’s evolving contribution through lightweight and
interpretable activation signals. For each modality m at time step t, we define three signals: (1)
Activation Level αm(t), which measures the aggregated magnitude of its feature tokens and re-
flects the overall contribution of modality m; (2) Activation Change δm(t), which captures the
rate at which the modality’s activation increases or decreases, indicating the onset of fatigue; and
(3) a dynamic Fatigue Threshold τm(t), which is derived from the recent trajectory of δm(t) and
identifies statistically significant drops in engagement. These signals provide a fine-grained, real-
time view of modality health that conventional attention maps often fail to capture. In addition to
per-modality monitoring, we compute global descriptors such as the mean and variance of αm(t)
across all modalities, which serve as system-level indicators of activation imbalance. These sum-
maries help contextualize the decline of individual modalities within the broader system dynamics,
offering insights into interaction asymmetries, modality overreliance, or unstable fusion behavior.
Importantly, this formulation is modality-agnostic and does not require any architecture-specific
modification, allowing straightforward application across vision, language, and audio modalities.

To operationalize modality fatigue detection and response, we introduce the Modality Activation
Decay Detector (MAD) and Modality Alternation & Compensation Controller (MAC): a two-
stage self-regulation framework for real-time fatigue awareness and correction. MAD continuously
tracks the vital signs defined in the previous section. When a modality’s activation declines below
its adaptive threshold (i.e., δm(t) < −τm(t)), MAD flags it as entering a fatigue state and raises an
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(a) Modality Activation Trajectories. Temporal
curves of αm(t) across four modalities during infer-
ence. Fatigue manifests as gradual declines in activa-
tion.

(b) System-Level Snapshot of αm(t). Scatter plots
comparing modality distributions in healthy vs. fa-
tigued states.

Figure 2: Side-by-side comparison of modality activation dynamics.

alert to reconfigure the fusion behavior. This step ensures early and precise detection, preventing
long-term modality collapse. MAC then takes over to re-route and stabilize the fusion path. If a
modality is fatigued, MAC dynamically retrieves salient past signals from memory to restore its
representation, rather than discarding or freezing it. Conversely, if the modality remains healthy,
MAC amplifies its current signal to maintain clarity. The result is a context-aware fusion flow that
adapts to modality health over time. This modular design enables a powerful “detect–adapt–restore”
pipeline. For example, in a multimodal dialogue task, if the visual stream fades due to occlusion or
temporal decay, MAD identifies the drop, and MAC recalls earlier vision features equationed with
the current query, blending them with present cues via a soft compensation gate. This allows the
model to maintain visual grounding, even when raw inputs weaken. Together, MAD and MAC act as
a lightweight, plug-and-play module that enables multimodal models to self-monitor their reasoning
health, react adaptively, and maintain stable, modality-aware fusion paths.

Extensive experiments on long-context multimodal tasks demonstrate that our framework improves
robustness, maintains semantic fidelity, and enhances reasoning stability, without introducing ar-
chitectural burden or requiring external supervision. In summary, this work takes a step toward
understanding and mitigating modality fatigue: a previously underexplored phenomenon in long-
context multimodal reasoning. Rather than relying on attention-based fusion graphs or architectural
overhauls, we advocate a micro-level control perspective based on per-modality signal tracking. Our
contributions are three folds:

• We propose a novel formulation of modality fatigue, modeled as the temporal decay of
per-modality activation trajectories. We define interpretable real-time indicators, including
activation level αm(t), its derivative δm(t), and the adaptive threshold τm(t), to identify
and track fatigue states at the signal level.

• We design a unified control mechanism combining the Modality Activation Decay De-
tector (MAD) and the Modality Alternation & Compensation Controller (MAC). This
two-stage process enables online fatigue diagnosis and dynamic fusion reconfiguration by:
(i) detecting early-stage modality degradation; and (ii) recalling historical signals and adap-
tively adjusting fusion weights, ensuring reasoning resilience even under degraded inputs.

• Our modules are plug-and-play architecture that require no additional supervision, and
integrates seamlessly with existing MLLMs. They generalizes across diverse long-context
multimodal tasks, offering a practical solution for fatigue-aware reasoning at scale.
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Figure 3: Signal Extraction, Fatigue Detection, and Fusion Compensation. The system extracts
token-level signals to compute activation αm(t). The MAD module detects fatigue (sm(t)), and the
MAC controller compensates via gated recall from memory using λm(t).

2 WHAT IS MODALITY FATIGUE? MODELING WITH MODALITY ACTIVATION
SCORE

Multimodal reasoning relies on integrating diverse inputs: language, vision, and more. Yet, in long
or complex tasks, this coordination often degrades unevenly. We define this as modality fatigue: a
progressive decline in a model’s responsiveness to specific modalities during multi-step inference.

Key Symptoms. Modality fatigue reflects deeper internal imbalances, not just performance loss. It
manifests through: (1) Attention Attenuation — declining focus on modality-specific features; (2)
Fusion Instability — inconsistent gating and weighting; (3) Semantic Drift — output diverging
from modality input; (4) Task Insensitivity — failure to detect modality relevance for the task.

Modeling Fatigue. We track fatigue using the Modality Activation Score αm(t) and its dynamics:

• αm(t): Current activation level of modality m;

• δm(t): Temporal change in activation;

• τm(t): Fatigue threshold;

• sm(t): Trigger signal when decline exceeds threshold.

As shown in Figure 2a, all modalities exhibit declining αm(t), especially image and video, indicat-
ing susceptibility to temporal fatigue. Thresholds τm(t) help identify when intervention is needed.

Global Activation Landscape. Beyond per-modality trends, we analyze the distribution of αm(t)
to capture system-wide reasoning states. As shown in Figure 2b, fatigued states exhibit both lower
mean activation and reduced variance, indicating two failure modes: (1) Low Mean — overall
inattentiveness; (2) Low Variance — loss of modality distinction.

Together, the temporal evolution and cross-modal dynamics of αm(t) provide an interpretable and
actionable lens to characterize modality fatigue.

3 DIAGNOSING AND HEALING MODALITY FATIGUE

We introduce a unified diagnostic and healing framework that dynamically detects fatigued modal-
ities and restores multimodal equilibrium through adaptive intervention. Figure 4 presents an
overview of our proposed pipeline.

3.1 DIAGNOSING FATIGUE VIA MODALITY ACTIVATION DECAY DETECTOR (MAD)

To diagnose modality fatigue at a fine-grained level, we introduce Modality Activation Decay De-
tector (MADD), a lightweight signal tracking module that continuously monitors the dynamic usage
and degradation of each modality during reasoning. As shown in Figure 4 (step 2) and detailed in
Figure 3, MADD computes a per-step fatigue signal by tracing the activation status of each modality
over time.
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Figure 4: Workflow of Diagnosing and Healing Modality Fatigue. Our method proceeds in three
stages: (1) Degradation Detection based on output collapse or weakened modality cues; (2) MAD
Module computes per-modality activation αm(t) and decay δm(t), triggering fatigue signal sm(t)
via thresholding with τm(t); (3) MAC Controller compensates fatigued modalities via memory recall
and gated fusion to produce fatigue-aware outputs. Arrows and equations (e.g., αm(t)← αm(t) ·γ)
are symbolic representations of key updates.

Modality Activation Signal. We define αm(t) as the attention-weighted L2 activation mean of
modality m at timestep t. This formulation captures not only the representational strength of each
token but also the model’s focus on them, offering a faithful measure of actual modality usage:

αm(t) =

Nm∑
i=1

a
(m,t)
i ∥h(m,t)

i ∥2 (1)

Here, a(m,t)
i is the attention weight and h

(m,t)
i is the hidden representation of the i-th token in

modality m. αm(t) thereby serves as a micro-level vital sign for each modality, enabling localized
tracking across time and context.

This signal departs from global heuristics like average attention or representation norm—those may
miss subtle per-modality variations. In contrast, αm(t) enables more precise and explainable rea-
soning by focusing on actual signal strength and usage per modality.

Per-step Attenuation and Adaptive Threshold. While αm(t) reflects the current activation level,
detecting fatigue requires observing how this activation evolves. We thus compute a per-step decay
rate δm(t) as:

δm(t) =
αm(t)− αm(t− 1)

αm(t− 1) + ε
(2)

This normalized change rate reveals whether a modality is losing vitality across reasoning steps.
However, to avoid transient fluctuations, we introduce an adaptive threshold τm(t) via a sliding
window over recent δm values:

τm(t) = µ
[t−w:t−1]
δm

− σ
[t−w:t−1]
δm

(3)

where w is the window size and µ, σ are the mean and standard deviation. A sharp negative drop
below this threshold indicates fatigue onset.
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Fatigue Signal Trigger. We then define the binary fatigue flag sm(t) that triggers compensation
when a modality’s decay exceeds the adaptive threshold:

sm(t) =

{
1, δm(t) < −τm(t)

0, otherwise
(4)

This signal is lightweight to compute, requires no supervision, and enables online detection of
modality-specific degradation.

3.2 HEALING VIA MODALITY ALTERNATION & COMPENSATION CONTROLLER (MACC)

Upon detecting modality fatigue sm(t) = 1 signal sent by MAD, we activate the Modality Al-
ternation & Compensation Controller (MACC) to restore the degraded modality through two
functional branches: Modal weight adjust and Compensate for history are shown in Workflow 3.

Step 1: Activation Reweighting for Non-Fatigued Modalities. For all modalities, MACC first
quantifies their contextual relevance to the current reasoning query via cosine similarity:

rm(t) = cos (q(t), fm(t)) (5)

which quantifies alignment between the current query q(t) and modality feature fm(t). Based on
this, we update the effective activation:

α̃m(t) = αm(t) + (1− sm(t)) · rm(t)− sm(t)(1− γ)αm(t) (6)

This simultaneously enhances relevant and healthy modalities, while softly decaying fatigued and
irrelevant ones.

Step 2: Memory Compensation for Fatigued Modalities. For fatigued modalities, we attempt to
recover prior memory to reconstruct a trustworthy signal. First, we retrieve memory:

Mm(t) =

t−1∑
i=1

ρ(i)m (t) · fm(i) (7)

where the retrieval weights are defined as:

ρ(i)m (t) =
exp

(
q(t)⊤fm(i)

)∑t−1
j=1 exp (q(t)

⊤fm(j))
(8)

We then compute the semantic discrepancy:

δsim(t) = sim(fm(t),q(t))− sim(Mm(t),q(t)) (9)

This difference determines a confidence gate:

λm(t) =
1

1 + exp (−k · δsim(t))
(10)

Finally, we construct the compensated representation:

f̂m(t) = λm(t) · fm(t) + (1− λm(t)) ·Mm(t) (11)

This ensures that degraded modalities can selectively reactivate prior knowledge while preserving
current input when reliable.

After all modality representations f̂m(t) are updated, we perform the final fatigue-aware fusion.

3.3 FUSION WITH FATIGUE-AWARE MODALITY WEIGHTS

To generate the overall multimodal representation z(t), we perform soft attention over the adjusted
activations:

wm(t) =
exp

(
α
(t)
m · r(t)m /T

)
∑

j exp
(
α
(t)
j · r

(t)
j /T

) (12)
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Table 1: Forgetting Ratio (%) of each task in Order A and Order B. Order A: Flickr30k → Audio-
Caps → MSVD-QA → OK-VQA → Clotho-AQA → MSR-VTT. Order B: Flickr30k → OK-VQA
→ AudioCaps → Clotho-AQA → MSR-VTT → MSVD-QA. 0.00 indicates last-task; negative de-
notes positive transfer. Bold: best, underline: second best.

Order A
Method Flickr30k AudioCaps MSVD-QA OK-VQA Clotho-AQA MSR-VTT Avg Acc ↑ Avg Forget ↓
FT 84.21 70.68 58.57 6.06 9.64 0.00 17.90 38.19
LoRA 71.02 64.15 65.45 4.12 2.23 0.00 24.35 34.50
MOE-LoRA 63.14 57.89 60.83 3.44 5.12 0.00 28.10 31.74
EWC 55.93 50.44 55.69 14.24 10.93 0.00 36.02 31.21
PGP 25.13 43.98 62.17 1.08 3.45 0.00 39.95 22.64
CL-MOE 30.66 58.12 36.58 3.12 0.87 0.00 43.62 21.56
Ours 9.07 25.68 26.44 -7.15 -0.05 0.00 49.05 9.00

Order B
Method Flickr30k OK-VQA AudioCaps Clotho-AQA MSR-VTT MSVD-QA Avg Acc ↑ Avg Forget ↓
FT 95.23 72.35 68.44 51.48 48.12 0.00 16.95 60.57
LoRA 91.02 68.44 68.44 42.05 39.00 0.00 25.35 54.61
MOE-LoRA 78.35 59.18 59.18 29.76 28.00 0.00 31.05 46.46
EWC 92.27 68.87 68.87 36.45 35.00 0.00 37.85 53.85
PGP 53.27 24.35 24.35 13.52 6.12 0.00 45.30 22.58
CL-MOE 38.86 31.63 31.63 11.42 5.50 0.00 51.50 21.42
Ours 14.57 3.12 14.26 2.00 0.00 14.26 49.80 8.64

These weights prioritize healthy, semantically relevant modalities while demoting fatigued or unre-
liable ones. The final representation is:

z(t) =
∑
m

wm(t) · f̂m(t) (13)

This two-branch strategy (adjust + compensate) jointly stabilizes long-horizon multimodal reasoning
by continuously restoring modality fidelity.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate our method on six multimodal reasoning tasks that span static and temporal
modalities across diverse domains: Image Captioning (Flickr30K Young et al. (2014)), Audio Cap-
tioning (AudioCaps Kim et al. (2019)), Video Captioning (MSR-VTT Xu et al. (2016)), Image QA
(OK-VQA Marino et al. (2019)), Audio QA (Clotho-AQA Lipping et al. (2022)), and Video QA
(MSVD-QA Xu et al. (2017)). Each round presents a distinct task in a fixed order (Order A or Order
B). Additional dataset statistics are provided in the Appendix.

Baselines. We compare against six representative baselines: fine-tuning (FT) Howard & Ruder
(2018), LoRA Hu et al. (2021), MoELoRA Luo et al. (2024), Elastic Weight Consolidation
(EWC) Kirkpatrick et al. (2017), Progressive Prompts (PGP) Razdaibiedina et al. (2023), and Con-
tinual Learning MoE (CL-MoE) Huai et al. (2025). All methods use the same frozen multimodal
encoders and language backbone. Our method integrates two additional modules, MAD and MAC,
for detecting and mitigating modality fatigue during inference.

Table 2: Fatigue-Process Metrics across methods (Order
A).

Method FTR ↓ Fusion-Bias ↓ Entropy ∆ ↓ Avg Forget ↓
FT 0.33 0.25 0.36 38.19
LoRA 0.29 0.23 0.34 34.50
MOE-LoRA 0.27 0.21 0.32 31.74
EWC 0.28 0.22 0.31 31.21
PGP 0.22 0.16 0.26 22.64
CL-MOE 0.20 0.17 0.24 21.56
Ours 0.11 0.08 0.12 9.00

Evaluation Metrics. For task perfor-
mance, we use CIDEr Vedantam et al.
(2015) for captioning and answer ac-
curacy for QA tasks, following prior
work Panagopoulou et al. (2023). To
assess fatigue and recovery behavior,
we adopt a two-level evaluation: (1)
degradation signals, including Fusion
Bias, Entropy Change, Faithfulness,
and Average Forgetting; (2) control be-
havior metrics, including Fatigue Trig-
ger Rate (FTR), Recovery Gain, and Compensation Usage Rate. Full metric definitions are available
in Appendix.
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4.2 TASK-LEVEL FATIGUE AND END PERFORMANCE

We begin by investigating whether modality fatigue leads to task-level degradation across long-
context sequences, and whether our controller (MAD and MAC) improves final performance. We
consider two task orders that alternate modalities and gradually increase cognitive load:

• Order A: Image Captioning → Audio Captioning → Video QA → Image QA → Audio
QA→ Video Captioning

• Order B: Image Captioning → Image QA → Audio Captioning → Audio QA → Video
Captioning→ Video QA

Overall Fatigue Trend. Table 1 reports the forgetting ratio for each task. Higher values reflect
stronger degradation from early to later rounds. Baselines such as FT, LoRA, and EWC show
substantial forgetting, especially on early tasks like Flickr30k and AudioCaps. For instance,
FT forgets 84.21% on Flickr30k in Order A and 95.23% in Order B.

Table 3: Trigger–Recovery Trace on Image-Captioning
(Order A). Trigger condition: Himg > 2.30 and forget
≥ 15%. MAC window K = 2.

Round Avg Forget ↓ Himg Fusion-Bias Trigger MAC
Start (0) 0.00 1.28 0.02 0 Off
Pre-Trig (11) 6.20 1.94 0.15 0 Off
Trigger (12) 15.10 2.48 0.24 1 On
+1 (13) 10.30 1.72 0.08 0 On
Final (30) 9.00 1.78 0.09 0 Off

Our Method’s Improvement. Our
method yields the lowest average forget-
ting: 9.00% in Order A and 8.64% in Or-
der B, clearly outperforming the strongest
baseline CL-MOE (25.68%, 21.42%). In
some cases, our controller even improves
performance over time, such as −7.15%
forgetting on OK-VQA in Order A, sug-
gesting effective transfer across modali-
ties.

Summary. These findings confirm that
modality fatigue arises even in semantically coherent sequences. Simple fine-tuning fails to retain
early-task competence, while our controller adaptively regulates attention and memory to preserve
performance throughout. Full metric breakdowns are available in Appendix.

4.2.1 CONTROLLER EFFECTIVENESS: DO MAC AND MAD ENABLE FATIGUE RECOVERY?

We assess the effectiveness of our controller modules MAD and MAC in detecting and mitigat-
ing modality fatigue. As shown in Table 2, in a 30-round Image Captioning trace (Order A),
MAC is triggered at round 12 when image entropy exceeds 2.30 and forgetting surpasses 15%.

Table 4: Ablation study showing the effect of re-
moving MAC or MAD. Removing MAC results
in no recovery gain, validating its central role.

Variant Avg Forget ↓ FTR ↓ Recovery
Gain ↑

Comp
Usage ↑

Full 9.0 0.11 0.14 0.22
w/o MAD 19.8 0.28 0.06 0.00
w/o MAC 15.9 0.11 0.00 0.00

Forgetting drops to 10.30% in the next round
and stabilizes at 9.00%, with concurrent reduc-
tions in entropy and fusion bias indicating im-
proved modality balance. our method achieves
the lowest forgetting (9.00%) and FTR (0.11),
along with minimal fusion bias (0.08) and en-
tropy shift (0.12). It is also the only method
that shows a positive recovery gain (+0.14) and
nonzero compensation usage (0.007), reflecting
effective regulation. Ablation results (Table. 4)
show that removing MAD raises forgetting to
19.8% and FTR to 0.28, while removing MAC removes recovery gain entirely. Compensation usage
drops to zero in both cases, confirming that MAD enables early detection and MAC is essential for
correction. Together, these results demonstrate that the two modules form a reliable and interpretable
controller for managing fatigue in multimodal reasoning.

4.2.2 COMPENSATION ANALYSIS: HOW DOES THE CONTROLLER REACT AND ADAPT?

To better understand fatigue dynamics, we visualize two aspects: (1) the temporal evolution of fa-
tigue indicators, and (2) modality transition patterns before and after fatigue. These reveal how our
controller detects fatigue and initiates compensation. Figure 5(left) shows forgetting and image en-
tropy across 30 dialogue rounds. At Round 12, both metrics peak, triggering the MAC controller.
Post-intervention, forgetting and entropy drop, indicating recovery. Figure 5(right) tracks fusion
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Figure 5: Fatigue Trigger and Recovery Dynamics. Forgetting rate (red), image entropy Himg
(blue), and fusion bias (purple) over 30 rounds. A trigger at Round 12 (dashed line) activates the
controller (green area), leading to recovery in performance and modality balance.

Figure 6: Modality Transition Structure. Heatmaps of dominant modality transitions before
(Rounds 0–11) and after (Rounds 12–30) fatigue. Post-fatigue, shifts toward the text modality reveal
modality escape under stress.

bias, which rises before fatigue due to growing modality imbalance and decreases after intervention,
showing restored fusion stability. Figure 6 presents modality transition heatmaps. Before Round 12,
dominant modalities show stable self-loops. After fatigue, transitions shift toward text dominance,
reducing visual and audio persistence. The differential map confirms a clear flow toward text, re-
flecting “modality escape.” Our controller detects this shift and compensates accordingly. Together,
these visualizations validate the behavioral logic of fatigue detection and recovery. The combined
signals of forgetting, entropy, and bias serve as effective triggers, enabling interpretable and adaptive
fatigue mitigation.

5 CONCLUSION

We introduce modality fatigue as a progressive decline in modality-specific activation that under-
mines long-context multimodal reasoning. To detect and mitigate this subtle yet widespread issue,
we propose a lightweight and interpretable control framework consisting of MAD for real-time
signal monitoring and MAC for adaptive fusion reconfiguration. Our approach models each modal-
ity’s activation trajectory as a dynamic vital sign, enabling timely diagnosis and targeted recovery.
Through extensive experiments across six benchmarks and two task orders, our method consistently
achieves the lowest forgetting rates, restores degraded modalities, and improves semantic and fusion
stability. These results underscore the value of internal signal awareness in building more resilient,
adaptive, and self-regulating multimodal systems.

REFERENCES
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A EXTENDED MODELING OF MODALITY FATIGUE

This section expands upon the fatigue modeling framework in Section 3. We provide deeper analysis
of the four core symptoms of modality fatigue and explain how they emerge from measurable signal
patterns. These symptoms include: attention attenuation, fusion instability, semantic drift, and task
insensitivity. Each reflects a different failure mode in multimodal reasoning, yet all can be tracked
through the evolution of activation signals.

A.1 KEY SYMPTOMS REVISITED: VISUAL TRACES OF FATIGUE

Attention Attenuation. This symptom refers to the model’s declining ability to focus on useful
features within a specific modality. A consistent drop in activation level αm(t), especially when
combined with a sharply negative change rate δm(t), indicates that the modality is being ignored
even when relevant. This often happens in visual or audio channels during long sequences. As
attention weakens, the model compresses semantic diversity, and output quality drops accordingly.

Fusion Instability. Fusion instability occurs when the model starts blending modalities unevenly.
As some modalities degrade, the model shifts weight to others in an unbalanced way. We observe
this in the increasing variance of fusion weights, which correlates with fatigue in weaker streams.
This imbalance disrupts the expected integration behavior. Stabilization typically only occurs when
the MAC controller is triggered to reconfigure the fusion strategy.

Semantic Drift. Semantic drift happens when the model’s output detaches from the intended
modality. In vision-language tasks, for example, a fatigued visual stream leads the model to de-
fault to text-based answers, regardless of the image. This drift is usually preceded by a steep drop in
αvision(t) and a rise in output entropy ∆H , signaling confusion. In Table 1, this pattern aligns with
spikes in forgetting on visual tasks, confirming the behavioral impact.

Task Insensitivity. Task insensitivity describes the model’s failure to shift modality focus as task
demands change. For instance, when switching from an audio captioning task to a visual question-
answering task, the model may continue relying on the audio stream. This rigid behavior is reflected
in low inter-modal variance in αm(t), meaning all modalities are treated similarly despite different
importance. As a result, the model misses key signals and loses contextual precision.

These four symptoms are not isolated issues. They reflect deeper breakdowns in how the model
tracks and integrates modality-specific information. By monitoring αm(t) and δm(t) over time, we
gain interpretable and actionable signals to detect such failures early. Compared to static attention
scores, these activation signals offer a clearer view of how the model is reasoning. They form the
basis of our fatigue-aware control system, which responds to these failures in real time.

A.2 MODELING ACTIVATION DYNAMICS IN COMPLEX TASKS

Modality fatigue does not occur all at once. It is a gradual and task-dependent process, shaped by
how each modality’s activation changes over time and how responsive it remains to the task context.
In this section, we analyze two key signals: the modality attenuation rate δm(t) and the adaptive
threshold τm(t). These signals enable accurate and interpretable detection of fatigue during long or
multi-stage reasoning.

Modality Attenuation Rate δm(t). The signal δm(t) quantifies how quickly a modality’s activa-
tion is increasing or decreasing between steps. While αm(t) tells us how strongly the model is using
modality m at a specific moment, δm(t) shows whether this usage is rising or falling. In a well-
functioning system, healthy modalities show fluctuating but stable or slightly positive δm(t) values,
indicating continued engagement. In contrast, modalities undergoing fatigue exhibit a consistent
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downward trend, where δm(t) remains negative over time. This gradual loss of influence often leads
to performance drops, especially when the affected modality is essential for the task at hand.

Adaptive Threshold τm(t). To prevent reacting to short-term noise, we define a threshold τm(t)
that adapts over time. It is computed using a sliding window of past δm(t) values and serves as a
statistical baseline for identifying abnormal decline. Specifically, we define:

τm(t) = µ
[t−w:t−1]
δm

− σ
[t−w:t−1]
δm

(14)
Here, µδm and σδm represent the mean and standard deviation of recent δm values, and w is the
window size. When δm(t) drops below this threshold, we treat it as a reliable signal of fatigue. This
design helps reduce false alarms that could occur during natural transitions or task switches.

Fatigue Detection in Multi-Stage Tasks. Many real-world tasks require different modalities at
different stages. For instance, visual features may be important during image captioning but less
relevant during an audio question-answering phase. Static fusion strategies often fail to adjust ac-
cordingly, leading to late or missing reactivation of needed modalities. Our system, however, tracks
δm(t) and τm(t) separately for each modality. This allows it to detect local degradation even when
other modalities are stable. As a result, interventions such as memory recall or weight adjustment
can be triggered at the right time for the right stream.

Interpretability and Local Signal Tracking. Unlike attention-based methods that rely on large
matrices or cross-modal maps, our approach models each modality using simple, one-dimensional
signals. This makes the diagnosis process easier to interpret and visualize. Furthermore, since both
δm(t) and τm(t) are computed from recent history without relying on future context, the system can
operate in real-time settings. It does not require full-sequence access or gradient backpropagation,
which makes it lightweight and deployment-friendly.

In conclusion, the interaction between δm(t) and τm(t) offers a precise, adaptive, and interpretable
mechanism for detecting fatigue in each modality. These two signals together form the core of our
MAD module. They support early detection of degradation, minimize unnecessary corrections, and
make the system responsive to evolving task demands.

A.3 GLOBAL ACTIVATION LANDSCAPE: DIAGNOSTIC PATTERNS

Modality fatigue often begins as local degradation, but its most pronounced effects emerge at the
system level. Figure 3 captures this view by comparing the activation distributions {αm(t)} across
modalities in both healthy and fatigued states. In this section, we focus on two simple yet informative
statistics: mean and variance, that help describe the global behavior of the system and provide
diagnostic insight into reasoning failures.

Mean Activation: Overall Responsiveness. The average modality activation at time t, denoted
µα(t), measures how strongly the model is engaging with its available input streams. When the
model is functioning well, µα(t) tends to stay within a moderately high range, indicating that multi-
ple modalities are actively contributing to the reasoning process. However, under fatigue, this mean
value consistently declines. A low mean reflects a global drop in responsiveness, where the model
fails to attend to any modality with sufficient strength. This condition frequently accompanies the
symptom of attention attenuation, as described in Section A.1, where previously active modalities
fade silently from the model’s internal state. When µα(t) remains low even though informative input
is present, the result is often vague or unfocused predictions.

Variance of Activation: Modality Specialization. The second metric, variance of activation
σ2
α(t), reflects the system’s ability to differentiate between modalities. High variance indicates that

the model is attending selectively, amplifying relevant streams while suppressing less useful ones.
This behavior is desirable in tasks where different modalities matter at different times. In contrast,
a low variance implies that all modalities are treated similarly, regardless of their utility. This uni-
formity often signals a failure to reprioritize modalities and is characteristic of task insensitivity. In
Figure 3, the fatigued state shows collapsed variance, where activation levels converge toward sim-
ilar, low values. This convergence reduces the system’s ability to adjust dynamically and weakens
its overall reasoning capacity.
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Combinations of Mean and Variance: Diagnostic Patterns. By combining µα(t) and σ2
α(t), we

can classify distinct failure modes based on their position in a two-dimensional diagnostic space:

• When both the mean and variance are low, the system is globally disengaged. This indicates
that all modalities are underutilized and indistinguishable in importance. Such a pattern
typically reflects the joint presence of attention attenuation and task insensitivity.

• A low mean combined with high variance suggests that only one modality is still active,
while others have degraded. This imbalance is often linked to semantic drift, especially
when the model defaults to text-based reasoning despite the availability of visual or audi-
tory input.

• A moderate mean with increasing variance may signal fusion instability, where the model
begins to over-rely on one modality to compensate for decline in another. This compensa-
tion leads to asymmetric attention allocation and unstable integration behavior.

These patterns show that simple global statistics can be highly informative. They not only confirm
the presence of fatigue but also help interpret its form and severity.

Real-Time Monitoring Implications. Both µα(t) and σ2
α(t) are lightweight to compute and do

not depend on specific model architectures. This makes them practical for real-time diagnostic use.
When the mean drops suddenly or the variance collapses, the system can flag potential fatigue and
initiate interventions such as memory retrieval or fusion rebalancing. These global signals, when
combined with per-modality traces like δm(t) from Section A.2, offer a complementary view. They
help reveal systemic failures that may be overlooked by local signal analysis alone.

To summarize, the global activation landscape serves as an essential indicator of reasoning health
in multimodal systems. While signals such as αm(t) and δm(t) enable detailed monitoring at the
modality level, the aggregated behavior reflected in µα(t) and σ2

α(t) exposes structural shifts in
attention and integration. These two levels of analysis work together to explain, contextualize, and
ultimately mitigate the behavioral symptoms described in Section A.1. As a result, our method offers
both fine-grained detection and high-level observability, supporting robust control across diverse
multimodal tasks.

B PSEUDOCODE–EQUATION CORRESPONDENCE

B.1 MAPPING ALGORITHM 1 TO FORMAL EQUATIONS

To support transparency and reproducibility, we clarify how the high-level steps in Algorithm 1
correspond to formal equations presented in Section 4. Each operation in the pseudocode is imple-
mented directly using one or more equations that define activation signals, fatigue detection, and
fusion adjustments. Table 5 presents a structured mapping between algorithm lines and their math-
ematical definitions.

Modular Implementation. The pseudocode structure follows a modular control loop. The first
half (lines 1–5) focuses on signal extraction and fatigue diagnosis. These steps correspond to our
MAD module, which monitors the health of each modality. The second half (lines 6–11) activates
the MAC module to adaptively reweight and restore degraded modalities. The gating, recall, and
fusion logic in these steps are directly instantiated by the equations in Section 4.2 and 4.3.

Interpretability and Traceability. This mapping ensures that each symbolic operation in the al-
gorithm has an interpretable and tractable implementation. Reviewers and practitioners can trace
every design decision in the control process to a specific signal formula. As a result, the controller
remains fully transparent, avoids heuristic shortcuts, and supports lightweight integration into exist-
ing multimodal systems.

In summary, Algorithm 1 serves as an abstract controller skeleton, where each step is precisely
defined by a corresponding equation. This structure allows our system to be both formally grounded
and computationally efficient, supporting real-time inference while maintaining interpretability.
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Table 5: Mapping between Algorithm 1 and key equations.

Algorithm 1 Step Corresponding Equation(s)

Compute activation αm(t) Eq. (1): attention-weighted L2 norm of modality to-
kens

Compute attenuation rate δm(t) Eq. (2): normalized activation change
Compute fatigue threshold τm(t) Eq. (3): mean minus standard deviation over window
Determine fatigue flag sm(t) Eq. (4): fatigue if δm(t) < −τm(t)

Attenuate activation for fatigued m Eq. (6): decay αm(t) using (1− γ)

Boost activation for non-fatigued n Eq. (6): enhance αn(t) using relevance score rn(t)

Retrieve memory for fatigued modality Eq. (7)–(8): attention-weighted sum of past features
Compute compensation gate λm(t) Eq. (9)–(10): similarity-based sigmoid function
Fuse memory and current input Eq. (11): weighted average using λm(t)

Normalize weights and compute output z(t) Eq. (12)–(13): softmax fusion over adjusted features

B.2 CONTROL PIPELINE RECAP

To support real-time intervention during modality fatigue, our controller is structured into a two-
stage pipeline. The Modality Activation Decay Detector (MAD) handles signal extraction and
early detection, while the Modality Alternation and Compensation Controller (MAC) adjusts fu-
sion weights and restores weakened streams. Together, they implement a closed-loop control flow
for detecting, responding to, and stabilizing multimodal degradation.

Stage 1: Detecting Fatigue with MAD. The MAD module continuously monitors each modal-
ity’s internal state using activation level αm(t) and change rate δm(t). Fatigue is detected when
δm(t) drops below a dynamic threshold τm(t), triggering a binary fatigue signal sm(t):

sm(t) =

{
1 if δm(t) < −τm(t)

0 otherwise
(15)

This signal flags modality m as fatigued and passes control to the MAC module for corrective
intervention.

Stage 2: Adaptive Fusion with MAC. Upon receiving the fatigue signal, MAC initiates a two-
branch response:

• For fatigued modalities (sm(t) = 1): MAC retrieves past memory vectors Mm(t) using
query-based attention and computes a compensation gate λm(t) based on the similarity
gap between the current and historical features. The corrected representation f̂m(t) is then
formed by blending the current input and memory:

f̂m(t) = λm(t) · fm(t) + (1− λm(t)) ·Mm(t) (16)

• For healthy modalities (sm(t) = 0): MAC reweights their activation scores using a rele-
vance metric rm(t) to preserve semantic clarity.

Final Fusion and Output. Once all modalities are updated, the controller computes a softmax-
normalized attention distribution wm(t) using both the adjusted activation and relevance scores. The
final output z(t) is a weighted sum over all modality representations:

z(t) =
∑
m

wm(t) · f̂m(t) (17)

This formulation ensures that the final prediction incorporates both the preserved strength of healthy
modalities and the restored signals from fatigued ones.
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Summary: Detect–Adapt–Restore Loop. The control pipeline can be summarized as a sequen-
tial decision loop:

Monitor→ Trigger sm(t)→ Recall Mm(t)→ Gate λm(t)→ Fuse z(t)

This loop reflects the controller’s core design principle: track fine-grained changes in modality
engagement and react locally with lightweight compensation. By tightly coupling detection and
fusion, our system enables interpretable and modular correction of fatigue without disrupting the
underlying model structure.

C DATASET SETUP AND TASK ORDER DETAILS

C.1 DATASET STATISTICS AND MODALITIES

We evaluate our method on six multimodal reasoning benchmarks spanning static and temporal
modalities. Table 6 summarizes dataset sizes, splits, and modality types.

Table 6: Statistics of datasets used.

Dataset Modality #Samples Split (Train/Val/Test) Task Type

Flickr30K Image + Text captions 31,783 images, 158,915 captions standard splits Image captioning
AudioCaps Audio + Text captions approx. 46,000 audio clips 49,838 / 495 / 975 Audio captioning
MSR-VTT Video + Text subtitles 10,000 video clips, 200,000 captions 9,000 / — / 1,000 Video captioning
OK-VQA Image + QA (knowledge) approx. 14,000 QA pairs standard split Image QA
Clotho-AQA Audio + QA pairs 1,991 audio clips, 35,838 QA pairs pre-defined split Audio QA
MSVD-QA Video + QA approx. 50,000 QA pairs pre-defined split Video QA

Flickr30K contains 31,783 images and 158,915 human-written captions (five per image). This
dataset is widely used for benchmarking image-to-text captioning.

AudioCaps comprises approximately 46,000 audio clips, each with a single caption. The data is
split into 49,838 training, 495 validation, and 975 test samples.

MSR-VTT includes 10,000 diverse video clips from the web. Each clip is annotated with 20 cap-
tions, totaling 200,000 clip-caption pairs. The standard evaluation split uses 9,000 training and 1,000
test videos.

OK-VQA is a knowledge-intensive image QA benchmark requiring external commonsense knowl-
edge. The dataset contains about 14,000 QA pairs.

Clotho-AQA provides 1,991 audio clips. Each clip has 6 questions, each with 3 answers, resulting
in a total of 35,838 QA pairs.

MSVD-QA is derived from MSVD video clips by generating QA pairs, forming a video-based QA
task of similar scale to MSR-VTT QA.

C.2 TASK ORDER DESIGN AND MOTIVATION

We define two fixed sequences of six tasks (Order A and Order B) designed to emphasize modality
transitions and shifts in cognitive demand. These orders are crafted to increase the complexity of
multimodal reasoning over time. Early tasks involve static and unimodal reasoning, while later tasks
progressively introduce temporal dynamics, memory demand, and cross-modal inference. Frequent
switches between modalities create natural fatigue scenarios.

C.3 EVALUATION PROTOCOL AND SPLITS

All benchmarks follow their official data splits. We use training, validation, and test sets as provided
by dataset authors. For round-wise evaluation of forgetting and recovery, only test splits are used
across all rounds to prevent contamination of performance by overlap. Forgetting is quantified by
re-evaluating prior task performance after new tasks have been introduced.
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C.4 ADDITIONAL SETUP DETAILS

Preprocessing. All image and video frames are resized to 224 × 224 resolution. Audio clips are
resampled to 16 kHz and normalized. Text data (captions and questions) is tokenized using the
tokenizer of the backbone language model.

Modality Features. For visual inputs, we use pretrained image (CLIP-ViT) and video encoders
(TimeSformer). Audio features are derived from log-Mel spectrograms extracted using standard
configurations.

Task-specific Heads. Captioning tasks are evaluated using CIDEr. QA tasks use accuracy as the
main metric. All evaluation protocols follow prior standard benchmarks to enable fair comparison.

D EVALUATION METRIC DEFINITIONS

We supplement our evaluation protocol by defining the fatigue detection and recovery behavior
metrics used in Section 5.2. These metrics are aligned with the lifecycle modeling goals of our
framework.

D.1 FATIGUE DETECTION METRICS

Fatigue Trigger Rate (FTR). We compute the proportion of time steps where the fatigue signal
sm(t) = 1, representing activation-level decline for modality m. This metric reflects how frequently
each modality enters a fatigue state across the evaluation window.

Fusion-Bias. Fusion bias quantifies the discrepancy between the actual fusion weight w(t)
m as-

signed to modality m and its relevance score r
(t)
m with respect to the query. Formally:

FusionBias(t)m =
∣∣∣w(t)

m − r(t)m

∣∣∣ (18)

A high bias score indicates that the model either over-relied on or ignored a modality regardless of
its contextual relevance, suggesting fatigue-induced misalignment.

Entropy Change ∆. We track the change in attention entropy H
(t)
m of modality m to measure

attention dispersion over time. The entropy is defined as:

H(t)
m = −

Nm∑
i=1

a
(t)
i · log

(
a
(t)
i

)
(19)

where a
(t)
i is the attention score of the i-th token in modality m at time t. An increase in H

(t)
m

indicates broader attention dispersion, which may be an early signal of fatigue.

Average Forgetting. To evaluate performance degradation due to fatigue, we compute the average
accuracy drop across task stages compared to the initial stage. This metric captures how well the
model preserves cross-task consistency as modalities become fatigued.

D.2 RECOVERY BEHAVIOR METRICS

Recovery Gain. We define recovery gain as the performance improvement immediately after a
fatigue trigger (sm(t) = 1) compared to the preceding step. This reflects the model’s ability to
utilize the memory path to recover lost modality fidelity.

Compensation Usage. This metric records the frequency at which the memory path is invoked
after a fatigue trigger, indicating how often the model relies on reactivation mechanisms to restore
modality performance.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Supporting Distribution Visualizations. To provide interpretability, we plot the temporal dis-
tribution of sm(t) triggers, fusion weights wm(t), and entropy Hm(t) across modalities. Visual
indicators such as moving averages or sample window overlays are used to facilitate comparisons
between healthy and fatigued states.

D.3 AUXILIARY FAITHFULNESS DIAGNOSTIC (OPTIONAL)

In supplementary analysis, we measure the semantic faithfulness of outputs to the current modality:

Faith(t)
m = sim

(
Answer(t),Modality(t)m

)
(20)

where Answer(t) is the textual output at step t, and Modality(t) refers to the full semantic em-
bedding of the current modality (e.g., CLIP image vector, audio embedding). A low similarity score
implies that the response has drifted from visual/audio grounding, a potential symptom of semantic
hallucination induced by modality fatigue.

E FULL BREAKDOWN OF TASK-LEVEL METRICS

We provide a detailed breakdown of the metrics reported in Table 1, focusing on two aspects: (1)
task-level forgetting traces under different task orders, and (2) modality-specific degradation pat-
terns across diverse task types. While no additional plots are included, we offer precise textual
descriptions ofW the metric behaviors to guide interpretation and future replication.

E.1 PER-TASK FORGETTING TRACES

We decompose the aggregated Forgetting Ratio (FR) into per-task components across both task
sequences (Order A and Order B). This enables a granular analysis of how different tasks contribute
to the overall forgetting trend.

• Temporal Trends. For each task, we trace the dynamic evolution of the modality activation
αm(t) over multiple rounds. Tasks such as MSVD-QA and OK-VQA exhibit sustained
declines in αm(t) across modalities, with frequent fatigue triggers sm(t) = 1 indicating
accumulating strain.

• Order Sensitivity. When comparing Orders A and B, we find that certain tasks show earlier
onset of fatigue in one order versus the other. For example, Image Captioning demonstrates
more stable retention when presented earlier in Order A, but decays faster in later rounds
of Order B.

• Task Difficulty. Tasks requiring fine-grained multimodal reasoning (e.g., open-ended QA
or cross-modal captioning) tend to show higher per-task FR, confirming their vulnerability
to fatigue-induced forgetting.

E.2 MODALITY-SPECIFIC FORGETTING PATTERNS

Beyond task decomposition, we further examine how different modalities degrade across the six
evaluation tasks, highlighting non-uniform vulnerability.

• Visual modality shows the highest degree of activation decay in tasks like Image Cap-
tioning and OK-VQA, reflecting the cognitive cost of fine-grained image-text alignment.
Fatigue events are clustered near visual reasoning prompts, often following prolonged ex-
posure to static visual scenes.

• Auditory modality demonstrates comparatively slower degradation in Audio Captioning
and Clotho-AQA, though it becomes more fragile under ambiguous or cross-modal refer-
ences (e.g., audio-related reasoning in multi-turn QA).

• Video modality exhibits periodic activation drops in both MSR-VTT and MSVD-QA, con-
sistent with its high temporal processing demands. Memory decay for video is more bursty,
with steep losses following clips containing frequent scene transitions.
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Taken together, these observations confirm that modality fatigue is not uniform: different modalities
decay at different rates depending on the task context, temporal position, and cognitive demand.
This underlines the necessity of adaptive memory regulation and modality-aware scheduling in long-
horizon multimodal systems.

F REPRODUCIBILITY

F.1 HARDWARE AND SOFTWARE ENVIRONMENT

All experiments were conducted on a single NVIDIA RTX A6000 GPU (48 GB memory). We
implemented our methods in the PyTorch framework and rebuilt the multimodal pipeline using the
HuggingFace Transformers interface. During all experiments, both the multimodal encoders and the
language backbone remained frozen; only the inserted modules were optimized to ensure controlled
resource overhead.

F.2 MULTIMODAL MODEL CONFIGURATION

Every method shares the same multimodal encoder structure and language generation backbone. The
language model backbone is LLaMA-3.2B-Instruct, fine-tuned in a lightweight fashion via LoRA,
optimizing only the adapter weights. The image and video encoder is the pretrained EVA-CLIP-
B (ViT-g backbone), and the audio encoder is the pretrained BEATs model; these remain frozen
throughout. Each modality uses its own projection layer: the image modality projection consists
of two MLP layers, while the audio and video modalities employ a lightweight convolutional plus
MLP structure. A unified cross-modal fusion module in the form of cross-attention is integrated,
and all baselines deploy on this common framework. The MAD and MAC methods insert external
control modules for modality fatigue diagnosis and compensation, without altering the backbone
architecture.

F.3 BATCH SIZE AND PRECISION SETTINGS

Training is performed separately for each single-modality task without mixing modalities. The
default batch size is set to 32, with automatic mixed-precision (fp16) enabled to improve memory
efficiency. In memory-constrained scenarios, gradient accumulation with two steps is supported.
During inference, we use a batch size of 16 under torch.no grad() to ensure stable evaluation.

F.4 MAD AND MAC IMPLEMENTATION DETAILS

The MAD (Modality-Aware Drift) module detects task fatigue or distribution shifts in the current
input modality via a gating mechanism that generates corrective vectors. The MAC (Modality Alter-
nation & Compensation) module injects historical fused features to guide compensation decisions
once an anomaly is detected. Both modules are plugged into the cross-modal attention layers before
text generation, without structural changes. Each consists of several shallow linear layers; the total
additional parameters remain under one million, and inference overhead does not exceed 3.5%.

F.5 TRAINING AND RESOURCE CONSUMPTION

All encoder parameters remain frozen, and only MAD and MAC module parameters are optimized.
We use the AdamW optimizer with an initial learning rate of 1×10–4, a linear decay schedule, and
weight decay of 1×10–2. No replay buffers or auxiliary generators are employed. The total training
cost is approximately 120 GPU-hours, substantially lower than full-model fine-tuning, making the
approach well suited for efficient continual-learning deployment.

F.6 EVALUATION SETTINGS

We evaluate on six task–modality combinations covering two task types (Captioning and QA) across
three modalities (Image, Audio, Video). Captioning tasks use Flickr30k for images, AudioCaps for
audio, and MSR-VTT for video; QA tasks use OK-VQA for images, Clotho-AQA for audio, and
MSVD-QA for video. Each evaluation round is conducted on the task’s test set with all parameters
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frozen. Standard metrics (CIDEr for captioning, Accuracy for QA) are reported alongside four fa-
tigue indicators: Forgetting Rate, Fusion Bias, Entropy, and Faithfulness Drop. Results are averaged
over three random seeds, with standard deviations reported for stability.

LLM USAGE DISCLOSURE

In accordance with the ICLR 2026 policy on large language model (LLM) usage, we disclose that
LLM assistance (OpenAI GPT-5 via ChatGPT) was employed during the preparation of this paper.
Specifically, the LLM was used for (i) refining the clarity and readability of text, (ii) restructuring
sections for better logical flow, and (iii) generating illustrative figure captions and LaTeX formatting
templates. All technical content, including problem formulation, theoretical derivations, experi-
mental design, and result interpretation, was conceived, implemented, and validated solely by the
authors. The LLM did not contribute to the novelty of the research ideas, data collection, analysis,
or conclusions.
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