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Abstract

Communication efficiency is a major challenge in federated learning. In client-
server schemes, the server constitutes a bottleneck, and while decentralized setups
spread communications, they do not reduce them. We propose a communication-
efficient algorithm for semi-decentralized vertical federate learning dealing with
feature-distributed data. Our multi-token method can be seen as a parallel Markov
chain (block) coordinate descent algorithm. In this work, we formalize the multi-
token semi-decentralized scheme, which subsumes the client-server and decen-
tralized setups, and design a feature-distributed learning algorithm for this setup.
Numerical results show the improved communication efficiency of our algorithm.

1 Introduction

Federated Learning (FL) is a machine learning paradigm where data is distributed across a set of
clients who collaborate to learn a model without sharing local data [23]. Most FL literature considers
data distributed by samples (horizontal FL), where each client holds all the features of a subset of the
samples, yet recently there has been a growing interest on feature-distributed setups (vertical FL),
where each client holds a subset of the features for all samples [1, 5, 7, 13].

FL often deals with the client-server setup with a star-shaped topology. However, such schemes
have a single point of failure and suffer from a communication bottleneck on the server [19]. On the
other hand, there is extensive literature on decentralized optimization—from earlier work motivated
by applications such as wireless sensor networks and multiagent control [9, 25, 28], to recent work
motivated by FL [17, 18]. Yet, these algorithms converge slowly in sparse and large networks [26]
and, although they spread the communication load across the network, they tend to have a poor
communication efficiency [37].

When concerned with the communications between clients, the use of a token method [3, 14, 16,
22, 24, 29], where a model-describing token follows a random walk over a communication graph
(undergoing local updates), allows for better communication efficiency [14] than the more common
consensus-based methods [9, 17, 25, 28], where asymptotic agreement is reached through successive
local averaging. Yet, the convergence rate of token methods degrades even faster for larger and
sparser networks, due to a lack of parallel communications. Multi-token methods [6, 14, 34] mitigate
this problem by running multiple tokens simultaneously and combining them.

Motivated by the above observations, we propose a Semi-Decentralized FL (SDFL) multi-token
algorithm for vertical FL. By using both client-server and client-client communications, we reduce
the communications at the server while mitigating the slow convergence of decentralized algorithms
in sparse and large networks. Our algorithm might be of particular interest for applications, for
example, using time series data measured by personal devices to learn a model of some “cross-client”
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phenomenon of interest (e.g. meteorological). Here, each sample would correspond to the data
collected across the devices at a given timestamp.

Our main contributions are as follows.

• We formalize the multi-token semi-decentralized federated learning scheme, which is robust
to server failures and flexible in the degree of dependence on the server, recovering both
client-server and decentralized FL as particular cases.

• We further design a Multi-Token Coordinate Descent (MTCD) algorithm for vertical FL
with improved communication efficiency over state-of-the-art methods.

• Numerical experiments are performed on both synthetic and real data for a variety of
communication setups, showing the improved communication efficiency of MTCD as well
as the effectiveness of resorting to multiple tokens.

Related works. Recently, SDFL approaches have been proposed to lower communication costs
and deal with data heterogeneity [11, 20] and to handle intermittent connections, latency, and
stragglers [4, 35]. Some SDFL works deal with (multi-layered) hierarchical networks [15, 36].

Coordinate Descent (CD) methods [33], where (blocks of) coordinates are updated sequentially,
rather than simultaneously, are natural candidates for optimization in feature-distributed learning. The
block selection is most often cyclic [2] or independent and identically distributed random [27, 30]. In
contrast, [32] considers block selection following a Markov chain. Several extensions to CD have
been proposed, such as acceleration and parallelization [10] and distributed CD methods [6, 21].

2 Single-token coordinate descent (STCD)

We now introduce a simple, particular case of our algorithm, closely related to [32] and the application
mentioned therein, taken from [22]. Yet, we work in the primal domain and on a feature-distributed
setting. In this section, we use the terms client and agent interchangeably.

2.1 Problem statement

Model. Our goal is to minimize the following regularized generalized linear model:

f(θ) ,
N∑
n=1

`
(
x>n θ

)
+ r(θ), (1)

where θ is a parameter of interest and we have N samples xn, n ∈ {1, . . . , N}. Our loss function `
is a (possibly nonconvex) smooth and block smooth loss function with a nonempty set of minimizers
and r is a separable (possibly nonsmooth) closed proper function, r(θ) =

∑K
k=1 rk(θk), which we

assume to have a simple proximal mapping.

Setup. In this section, we do not require the existence of a server. The clients [K] , {1, . . . ,K}
learn the model in a fully decentralized manner, communicating through channels described by a
static, undirected communication graph G = (V, E), where V = [K] is the vertex set and E the edge
set. We assume G is connected and denote the set of neighbors of agent k by Nk , {i : {i, k} ∈ E}.

Our datasetX ∈ RN×d with samples xn ∈ Rd, n ∈ [N ], is distributed by features across the clients.
More precisely, each sample xn is partitioned as xn = (xnk)Kk=1 ∈ Rd, where xnk ∈ Rdk and∑K
k=1 dk = d. Consequently, we can equivalently define the partitioning as X = [X1 . . . XK ],

whereXk ∈ RN×dk . Our parameter θ ∈ Rd is partitioned similarly toxn, that is, θ = (θk)Kk=1 ∈ Rd
with θk ∈ Rdk . The labels y ∈ RN are part of the loss function, which we assume all agents to know.

2.2 Algorithm

We now propose a decentralized token method algorithm to minimize (1). Our token carries z ,
Xθ ∈ RN and performs a random walk over the graph, being updated and communicated by each
agent after performing local computations. We denote by kt the agent holding the token at iteration t.
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Algorithm 1 Single-token Coordinate Descent (STCD)

Initialize θ0 = 0, z0 = 0, arbitrary k0, and choose step-size µ
for t ≥ 0 do

if t mod Q = 0 then
Agent kt sends zt+1 to agent kt+1 ∼ U(Nkt)

else
kt+1 = kt

end if

θt+1
k =

{
proxµrk(θtk − µ∇kL(θt)) if k = kt

θtk if k 6= kt
{zt used when computing ∇ktL(θt)}

zt+1 = zt +Xkt(θ
t+1
kt − θ

t
kt)

end for

The token suffices to compute partial gradients. From the definition of z, we have at iteration t
that zt =

∑K
k=1Xkθ

t
k. Letting L(θ) ,

∑N
n=1 `

(
x>n θ

)
, we see that, given zt, agent k can compute

the gradient of the loss function with respect to (w.r.t.) its local parameter θk:

∇kL(θ) , ∇θk

N∑
n=1

`
(
x>n θ

)
=

N∑
n=1

∇z` (zn)xnk, zn = x>n θ,

allowing agent k to (locally) perform a proximal CD step w.r.t. θk, as long as it also holds θtk:

θt+1
k = proxµrk(θtk − µ∇kL(θt)), proxg(·) , argminu g(u) +

1

2
‖u− ·‖2.

Given that we only update θk at agent k, kt always knows θtkt .

We now describe STCD, summarized in Algorithm 1, where U denotes the uniform distribution.

Initialization. To start STCD at a given client k0, we need to ensure that z0 which, as we saw,
contains all the information needed to do a (proximal) CD step, and θ0 verify z0 = Xθ0. To do this
without requiring any information from the other clients, we must initialize θ0 = 0 and z0 = 0.

Updating and communicating the token. After performing a local (proximal) coordinate descent
step, which gives agent kt the iterate θt+1

kt , we need to update the token to ensure that zt+1 = Xθt+1.
Observing that zt allows for a local update zt+1 = zt +Xkt(θ

t+1
kt − θ

t
kt) whose result can then be

sent to agent kt+1, we see that, by induction, zt can be kept up-to-date throughout our algorithm.
Additionally, this also means that an agent can actually perform Q multiple coordinate descent steps
w.r.t. its local parameters, θk.

In essence, STCD is a technique allowing for Markov Chain Coordinate Descent [32] to be performed
in feature-distributed setups. In terms of the progress made in the parameter space, Algorithm 1
differs from [32] only in that it requires initializing θ0 = 0 and in that we allow for Q > 1.

Let f be a function that is Lg-smooth and block L-smooth for all blocks k, with a nonempty set
of minimizers, and let r be a separable closed proper function. It is shown in [32] that, for Q = 1,
Algorithm 1 converges almost surely to a solution of (1).

2.3 Limitations

The decentralized token algorithm in this section has an appealing simplicity. However, while it
outperforms state-of-the-art feature-distributed learning algorithms in a variety of setups, as we will
see in Section 4, its performance deteriorate faster with network connectivity than these decentralized
consensus-based algorithms. Yet, this simple algorithm acts as a stepping stone to the more general
multi-token algorithm we now present in Section 3, which mitigates this problem.

3 Multi-token coordinate descent (MTCD)

In this section, instead of a fully decentralized setup, we deal with SDFL and generalize the algorithm
used in the previous section in a direction allowing us to leverage the existence of a server.
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Figure 1: Semi-decentralized setup with K = 9. Client-server communications are represented by
the dashed blue lines and client-client communications are represented by the unbroken green lines.

3.1 Problem statement

In this section, the set of clients and the data and model partitioning are similar to Section 2. However,
we now consider a server-enhanced setup (that is, SDFL), illustrated in Figure 1, where we also take
into account a central server with links to all the clients. In this section, we do not require the graph
describing the communications between the clients to be connected.

Considering the same model (1) as in the previous section, we now develop an algorithm to leverage
the existence of this server, exploiting it to mitigate the deterioration of the performance of Algorithm 1
in poorly connected networks.

3.2 Algorithm

The algorithm introduced in this section can be seen as having two parts. The roaming part is similar
to the procedure in Algorithm 1, except for the fact that we run multiple tokens in parallel, each with
an associated model. The novelty lies in the averaging part, where we exploit the access to the server
by periodically averaging these tokens there.

More precisely, we use Γ tokens zγ ∈ RN , γ ∈ [Γ], each with an associated model instance θγ and
zγ , Xθγ ∈ RN . Similarly to what we had in Algorithm 1, we initialize θ0

γ = 0 and z0
γ = 0,

γ ∈ [Γ], and for S × Q iterations, each such token undergoes a process similar to the one in
Algorithm 1. The difference lies in the fact that now, every S hops of the tokens, between each of
which each agent performs Q local steps, the Γ tokens are averaged at the server and the Γ models
are averaged locally, at the clients. Crucially, these averaging operations allow us to preserve the
relationship defining Ztγ . (This relationship is also preserved during the roaming part, as explained in
the previous section.)

This method, a parallel Markov Chain Coordinate Descent for feature-distributed SDFL setups, is
summarized in Algorithm 2, where ktγ denotes the agent holding token γ at time t.

Recovering client-server and decentralized setups. If no client-server communications are
available (S →∞) our algorithm is reduced to a decentralized one. In this setting, even if at a lower
rate, our algorithm will still converge, as long as G is connected, being reduced to Γ simultaneous
runs of Algorithm 1. While a decentralized asynchronous token averaging is possible (by exploring
the random intersections of multiple tokens are at the same client), this is significantly less effective
than server averaging in terms of mitigating the effect of poor connectivity. In contrast, if the set of
edges E is empty and we assign a token per agent, we recover the client-server setting.1

Extension to locally nonlinear models. We can generalize our model while keeping an additive
structure w.r.t. {Xk,θk}, capturing nonlinearities betweenXk and θk. Letting hk : R|θk|×dk → RE ,
we would minimize:

f(θ) ,
N∑
n=1

`

(
K∑
k=1

hk(θk,xnk)

)
+ r(θ),

which includes generalized linear models as the particular case hk(θk,xnk) = 〈θk,xnk〉, where
E = 1 and |θk| = |xnk| = dk. However, this would require additional communications, since

1To be precise, we would have to change kt+1
γ ∼ U(Nktγ ) to kt+1

γ ∼ U(N̄ktγ ), where N̄ktγ , Nktγ ∪ {k
t
γ}.
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Algorithm 2 Multi-token Coordinate Descent (MTCD)

Initialize θ0
γ = 0, z0

γ = 0, and arbitrary k0
γ , for γ ∈ [Γ], and choose step-size µ

for t ≥ 0 do
if t mod Q = 0 and bt/Qc mod S = 0 then

clients send ztγ to the server
server computes zt1, . . . ,z

t
Γ = 1

Γ

∑Γ
γ=1 z

t
γ

server sends updated ztγ to the clients
for k ∈ [K] in parallel do
θ1k, . . . ,θΓk = 1

Γ

∑Γ
γ=1 θγk

end for
end if
if t mod Q = 0 then

for γ ∈ [Γ] in parallel do
Agent ktγ sends zt+1

γ to agent kt+1
γ ∼ U(Nktγ )

end for
else
kt+1
γ = ktγ , γ ∈ [Γ]

end if
for γ ∈ [Γ] in parallel do

θt+1
γk =

{
proxµrk(θtγk − µ∇kL(θtγ)) if k = ktγ
θtγk if k 6= ktγ

{ztγ used when computing∇ktγL(θtγ)}

zt+1
γ = ztγ +Xk(θt+1

γk − θtγk), k = ktγ
end for

end for

a separate averaging of θt and zt would no longer preserve their relation, leading to a need to
recompute the tokens, instead of simply updating them in an online manner. This would require all
clients to communicate with the server.

4 Experiments

In this section, we compare STCD to Dual Consensus Proximal Algorithm (DCPA) [1], a state-of-
the-art decentralized method used as a baseline, and to MTCD.

Models and datasets. We perform ridge regression on a dataset generated following the same
process as [1],2 where the number of samples and the dimensionality are N = 1000 and d = 2000,
respectively. We have the following objective function, with α = 10:

f(θ) =
1

2
‖Xθ − y‖22 +

α

2
‖θ‖22.

We also perform sparse logistic regression on the Gisette dataset [12], whereN = 6000 and d = 5000.
Letting s(z) , (1 + e−z)−1, we consider the following objective function, with β = 1:

f(θ) = −
N∑
n=1

[
yn log s(x>n θ) + (1− yn) log(1− s(x>n θ))

]
+ β‖θ‖1, yn ∈ {0, 1}.

Metrics. We use CVXPY [8] to obtain f?, and then compute the suboptimality gap f(θt) − f?
throughout our experiments. In the previous sections, we considered each local CD step as an STCD
iteration, to avoid the visual clutter of having a double counter (for hops and local CD updates). In
this section, to allow for a fairer comparison with DCPA, where only communication rounds count
as a round (despite the fact that we need to compute a proximal operator with a gradient descent

2Each entry of X is drawn uniformly at random from {0, 1} and each entry of y is drawn from a standard
normal distribution (in both cases the entries are independent).
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Figure 2: Suboptimality with respect to iterations and communications for a random network with
p = 0.4 (four figures on the left) and a chain network (four figures on the right), both with K = 20.
The top row concerns ridge regression and the bottom row concerns sparse logistic regression. Each
communication is size N : STCD has one communication per iteration and DCPA has 2|E|.

subroutine), we count as an STCD iteration each hop in the network. We use the same definition of
iteration for MTCD.

Comparison with state-of-the-art. For ridge regression, we randomly generate a graph as in [31],
with connectivity ratio p = 0.4, and a chain graph, both with K = 20 nodes and dk = 100 for all k.
For STCD, we use µ = 10−5 and Q = 20. For DCPA, we use µw = 0.01, µy = 0.0003, µx = 0.03.

For sparse logistic regression, we similarly generate a random graph and chain graph, both with
K = 20 nodes (now dk = 250 for all k). For STCD, we use µ = 10−4 and Q = 30. For DCPA, we
use µw = 0.001, µy = 0.00003, µx = 0.003.

In Figure 2, we see that, while STCD does not improve upon DCPA in terms of progress per iteration,
it significantly outperforms it in terms of communication efficiency. Yet, we can also see that STCD
is particularly vulnerable to poorly connected networks, as evidenced by a performance deterioration
when going from a random network to a chain network.
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Figure 3: Suboptimality with respect to iterations for K = 20, 40, 80 chain networks (K increasing
from left to right). All three plots concern the ridge regression model.

Comparing STCD with MTCD. We again deal with the ridge regression problem above and
resort to the same dataset. However, we now focus on chain graphs (for MTCD, complemented by
client-server communications), as they are poorly connected setups where the drawback of STCD is
evident. We use µ = 10−5 and Q = 20 for both STCD and MTCD and use Γ = 10, S = 10 for the
latter throughout all three experiments, varying only the number of nodes K ∈ {20, 40, 80}.
In Figure 3, we see that, while both algorithms see a drop in performance for graphs with a lower
connectivity, MTCD mitigates this effect, consistently outperforming STCD.

5 Conclusions

We formalize the multi-token SDFL scheme and propose a communication-efficient SDFL algorithm
for feature-distributed data. Numerical results show the improved communication efficiency of our
algorithm as well as the power of endowing decentralized methods with periodical client-server
communications. A natural extension to this work is a detailed study of how the number of tokens and
the frequency of their averaging influence the convergence rate, both empirically and analytically.
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