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Figure 1: Invertible Consistency Distillation (iCD) enables both accurate image inversion and strong
generation performance in a few model evaluations.

Abstract

Diffusion distillation represents a highly promising direction for achieving faith-
ful text-to-image generation in a few sampling steps. However, despite recent
successes, existing distilled models still do not provide the full spectrum of dif-
fusion abilities, such as real image inversion, which enables many precise image
manipulation methods. This work aims to enrich distilled text-to-image diffusion
models with the ability to effectively encode real images into their latent space.
To this end, we introduce invertible Consistency Distillation (iCD), a generalized
consistency distillation framework that facilitates both high-quality image synthesis
and accurate image encoding in only 3−4 inference steps. Though the inversion
problem for text-to-image diffusion models gets exacerbated by high classifier-free
guidance scales, we notice that dynamic guidance significantly reduces recon-
struction errors without noticeable degradation in generation performance. As a
result, we demonstrate that iCD equipped with dynamic guidance may serve as a
highly effective tool for zero-shot text-guided image editing, competing with more
expensive state-of-the-art alternatives.
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1 Introduction

Recently, text-to-image diffusion models [1, 2, 3, 4, 5, 6] have become a dominant paradigm in image
generation based on user-provided textual prompts. The exceptional quality of these models makes
them a valuable tool for graphics editors, especially for various image manipulation tasks [7, 8, 9].
In practice, however, the applicability of diffusion models is often hindered by their slow inference,
which stems from a sequential sampling procedure, gradually recovering images from pure noise.

To speed-up the inference, many recent works aim to reduce the number of diffusion steps via
diffusion distillation [10, 11, 12, 13, 14, 15, 16] that has provided significant progress in high-quality
generation in 1−4 steps and has already been successfully scaled to the state-of-the-art text-to-image
diffusion models [17, 18, 19, 20, 21, 22, 23]. Though the existing distillation approaches still often
trade either mode coverage or image quality for few-step inference, the proposed models can already
be feasible for practical applications, such as text-driven image editing [24, 25, 26].

The most effective diffusion-based editing methods typically require encoding real images into the
latent space of a diffusion model. For “undistilled” models, this encoding is possible by virtue
of the connection of diffusion modeling [27] with denoising score matching [28] through SDE
and probability flow ODE (PF ODE) [29]. The ODE perspective of diffusion models reveals their
reversibility, i.e., the ability to encode a real image into the model latent space and closely reconstruct
it with minimal changes. This ability is successfully exploited in various applications, such as
text-driven image editing [30, 31, 32], domain translation [33, 9], style transfer [34].

Nevertheless, it remains unclear if distilled models can be enriched with such reversibility since
existing diffusion distillation methods primarily focus on achieving efficient generation. This work
positively answers this question by proposing invertible Consistency Distillation (iCD), a generalized
consistency modeling framework [10, 12, 13] enabling both high-quality image generation and
accurate inversion in a few sampling steps.

In practice, text-to-image models leverage classifier-free guidance (CFG) [35], which is crucial
for high-fidelity text-to-image generation [1, 3] and text-guided editing [31, 32]. However, the
guided diffusion processes yield significant challenges for inversion-based editing methods [31].
Previous approaches [31, 36, 37, 38, 39, 40, 41, 26, 24, 25, 42, 43] have extensively addressed
these challenges but often necessitate high computational budget to achieve both strong image
manipulations and faithful content preservation. While some of these techniques are applicable to
the distilled models [24, 25, 26], they still dilute the primary advantage of distilled diffusion models:
efficient inference.

One of the main ingredients of the iCD framework is how it operates with guided diffusion processes.
Recently, dynamic guidance has been proposed to improve distribution diversity without noticeable
loss in image quality [44, 45]. The key idea is to deactivate CFG for high diffusion noise levels
to stimulate exploration at earlier sampling steps. In this work, we notice that dynamic CFG can
facilitate image inversion while preserving the editability of the text-to-image diffusion models.
Notably, dynamic CFG yields no computational overhead, entirely leveraging the efficiency gains
from diffusion distillation. In our experiments, we demonstrate that invertible distilled models
equipped with dynamic guidance are a highly effective inversion-based image editing tool.

To sum up, our contributions can be formulated as follows:

• We propose a generalized consistency distillation framework, invertible Consistency Dis-
tillation (iCD), enabling both high-fidelity text-to-image generation and accurate image
encoding in around 3−4 sampling steps.

• We investigate dynamic classifier-free guidance in the context of image inversion and text-
guided editing. We demonstrate that it preserves editability of the text-to-image diffusion
models while significantly increasing the inversion quality for free.

• We apply iCD to large-scale text-to-image models such Stable Diffusion 1.5 [4] and XL [1]
and extensively evaluate them for image editing problems. According to automated and
human studies, we confirm that iCD unlocks faithful text-guided image editing for 6−8
steps and is comparable to state-of-the-art text-driven image manipulation methods while
being multiple times faster.
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2 Background

Diffusion probabilistic models DPMs [28, 27, 46] are a class of generative models producing
samples from a simple, typically standard normal, distribution by solving the underlying Probability
Flow ODE [29, 47], involving iterative score function estimation. DPMs are trained to approximate
the score function and employ dedicated diffusion ODE solvers [48, 49, 47] for sampling. DDIM [48]
is a simple yet effective solver, widely used in text-to-image models and operating in around 50 steps.
A single DDIM step from xt to xs can be formulated as follows:

xw
s = DDIM(xt, t, s, c, w) =

√
αs

αt
xt + ϵwθ (xt, t, c)

(√
1− αs −

√
αs

αt

√
1− αt

)
, (1)

where αs, αt are defined according to the diffusion schedule [46], and ϵwθ (xt, t, c) = ϵθ(xt, t,⊘) +
w(ϵθ(xt, t, c)− ϵθ(xt, t,⊘)) is a linear combination of conditional and unconditional noise predic-
tions called as Classifier-Free Guidance (CFG) [50], used to improve the image quality and context
alignment in conditional generation. In the following, we omit the condition c for simplicity.

Due to reversibility, the PF ODE can be solved in both directions: encoding data into the noise space
and decoding it back without additional optimization procedures. We refer to this process as inver-
sion [31] where encoding and decoding correspond to forward and reverse processes, respectively.

Consistency Distillation CD [10, 12, 13] is the recent state-of-the-art diffusion distillation approach
for few-step image generation, which learns to integrate the PF ODE induced with a pretrained
diffusion model. In more detail, the model fθ is trained to satisfy the self-consistency property:

LCD(θ) = E
[
d(fθ(x

w
tn−1

, tn−1),fθ(xtn , tn))
]
→ min

θ
, (2)

where tn ∈ {t0, ..., tN} is a discrete time step, d(·, ·) denotes a distance function and xw
tn−1

is
obtained with a single step of the DDIM solver from tn to tn−1 using the teacher diffusion model.
The optimum of (2) is defined by the boundary condition, fθ(xt0 , t0) = xt0 . Therefore, consistency
models (CMs) learn the transition from any trajectory point to the starting one: fθ(xtn , tn) =
xt0 ,∀ tn ∈ {t0, ..., tN}. Consequently, CMs imply a single step generation. However, approximating
the entire trajectory using only one step remains highly challenging, leading to unsatisfactory results
in practice. To address this, [10] proposes stochastic multistep consistency sampling that iteratively
predicts xt0 using fθ and goes back to the intermediate points using the forward diffusion process.

The competitive performance of consistency models has stimulated their rapid adoption for text-to-
image generation [51, 17, 52]. Nevertheless, we believe that CMs have not yet fully realized their
potential in downstream applications, where DPMs excel. One of the reasons is that, unlike DPMs,
CMs do not support the inversion process. This work aims to unlock this ability for CMs.

w(t)
w

1.0

w(t)

tτ1 τ2

w

1.0

tNt0

(a) CADS dynamic (b) [45] dynamic
tτ1 τ2 tNt0

Figure 2: Dynamic CFG strategies.

Dynamic guidance State-of-the-art text-to-
image models employ large CFG scales to
achieve high image quality and textual align-
ment. However, it often leads to the reduced
diversity of generated images. To address this,
dynamic classifier-free guidance [44, 45, 53] has
recently been proposed to improve distribution
diversity without noticeable loss in generative
performance. CADS [44] gradually increases
the guidance scale from zero to the initial high
value over the sampling process, Figure 2a. Al-
ternatively, [45] proposes deactivating the guid-
ance for low and high noise levels and using it
only on the middle time step interval, Figure 2b. Both strategies suggest that the unguided process
at high noise levels is responsible for better distribution diversity without compromising sampling
quality. In addition, the authors [45] demonstrate that guidance at low noise levels has a minor effect
on the performance and can be omitted to avoid extra model evaluations for guidance calculation.
Both dynamic techniques are controlled by two hyperparameters: τ1 and τ2, which are responsible
for the value of dynamic CFG w(t). In our work, we focus on the CADS formulation.
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3 Method

/ − CD  / fCD   boundary points

 − ODE trajectory  

(a) 1 − boundary CD  / fCD   

(b) 2 − boundary CD  / fCD   

t0 tN

t0 tN
tn

m m 

m m 
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Figure 3: The proposed invertible Consistency Dis-
tillation framework consists of two models: the
forward m-boundary model, fCDm, and the re-
verse model, CDm. (a) For m = 1, the reverse
model corresponds to CD. More boundary points
unlock the deterministic multistep inversion, e.g.,
(b) shows the case for m = 2.

This section introduces the invertible Consis-
tency Distillation (iCD) framework, which com-
prises forward and reverse consistency models.
First, we formulate the forward CD procedure
that encodes images into latent noise. Then,
we describe multi-boundary generalization of
iCD to enable deterministic multistep inversion.
Finally, we investigate the dynamic guidance
technique from the inversion perspective.

3.1 Forward Consistency Distillation

Forward Consistency Distillation (fCD) works
in the opposite way to CD. That is, it aims to
map any point on the PF ODE trajectory to the
latent noise (the last trajectory point).

The transition from CD to the forward counter-
part is quite straightforward: the only thing that
should be modified is the boundary condition.
Precisely, the forward consistency model is con-
strained to be an identity function for the last tra-
jectory point: fθ(xtN , tN ) = xtN . Thus, fCD
inherits the same consistency distillation loss (2)
without incurring extra training costs. This way,
the distilled model can transform any trajectory point to the last one: fθ(xtn , tn) = xtN ,∀ tn. To
perform inversion, first, fCD encodes an image into noise and then the CD decodes its back. The
comparison between CD and fCD is shown in Figure 3a.

3.2 Multi-boundary Consistency Distillation

In practice, the encoding with fCD faces two challenges. Firstly, like in CD, a single-step prediction
with fCD can be highly inaccurate. However, this cannot be easily addressed since the multistep
consistency sampling [10] is not applicable to fCD. Concretely, intermediate points cannot be obtained
from the latent noise using the forward diffusion process. Secondly, even if fCD is accurate, the
multistep sampling is not suitable for decoding, as its stochastic nature prevents the reconstruction of
real images. So, to improve the prediction accuracy of fCD and reduce the reconstruction error of
CD, it is necessary to formulate a deterministic multistep procedure for both models.

Recent approaches [52, 13] generalize the CD framework to a multistep regime and allow approxi-
mating arbitrary trajectory points in the reverse direction. However, these methods focus solely on
the generation quality, without supporting the inversion. Thus, inspired by these works, we propose a
multi-boundary CD, that unlocks the multistep deterministic inversion with the distilled models and
carries similar training costs as the classical CD methods.

Specifically, we divide the solution interval, {t0, ..., tN}, into m segments and perform the distillation
on each of these segments separately. This way, we obtain a set of single-step consistency models
operating on different intervals and boundary points. This formulation is valid for both CD and fCD
and allows for the deterministic multistep inversion. We provide an illustration of 2-boundary CD and
fCD in Figure 3b. We denote the multi-boundary reverse and forward models as CDm and fCDm.

Formally, we consider CDm and fCDm using the following parametrization, inspired by [52, 13].

xsmt
= fm

θ (xt, t, s
m
t , w) = DDIM(xt, t, s

m
t , w), (3)

where smt is the boundary time step depending on the number of boundaries, m, and the current time
step, t. For instance, let m = 1, then s1t = t0 for CD1 and s1t = tN for fCD1. Note that we learn a
single model, the multistep is achieved by not learning parameter smt . The training objective remains
the same as (2), avoiding additional training costs compared to CD. The only limitation is that the
number of segments and the corresponding boundary time steps must be set before the training.
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3.3 Training fCDm and CDm

We train fCDm and CDm separately from each other but initialize them with the same teacher model.
We use the same loss with a difference only in boundary time steps. However, a notable difference
is the CFG scale, w. For CDm, we preliminarily embed the model on guidance, following [19], to
use various w at sampling and avoid extra model evaluations. For fCDm, we consider the unguided
model with a constant w = 1. The reason is that the guided encoding (w > 1) leads to the out-of-
distribution latent noise [31], which results in incorrect reconstruction. We confirm this intuition
in Section 3.4. Finally, we find that m=3−4 provides good generation and inversion quality for
large-scale text-to-image models [4, 1].

Preservation losses The procedure described above already provides decent inversion quality but
still does not match the teacher inversion performance. To reduce the gap between them, we propose
the forward and reverse preservation losses aimed at making CDm and fCDm more consistent with
each other and improve the inversion accuracy. These losses can additionally be turned on during
training. Below, we denote the parameters of CDm, fCDm as θ+,θ−, respectively.

The forward preservation loss modifies only fCDm and is described as follows:

Lf(θ
−,θ+) = E

[
d
(
fm
θ−(fm

θ+(xsmt
)),xsmt

)]
→ min

θ−
, (4)

For simplicity, we omit some notation. In a nutshell, we sample a noisy image xsmt
for a boundary

time step smt , then make a prediction using CDm and force fCDm to predict the same xsmt
. This

approach encourages CDm and fCDm to be consistent with each other.

The reverse preservation loss provides the same intuition but with a difference in the optimized model
(CDm instead of fCDm) and prediction sequence. That is, we first make a prediction using fCDm

and then use CDm. We denote it as Lr(θ
−,θ+). In our experiments, we calculate the preservation

losses only for the unguided reverse process (w = 1).

Putting it all together We present our final pipeline for the case where fCDm and CDm are trained
jointly starting from the pretrained diffusion model. However, it is possible to learn them by one or
take an already pretrained consistency model and learn the rest one. The final objective consists of
two consistency losses with the proposed multi-boundary modification and two preservation losses:

LiCD(θ
+,θ−) = LCD(θ

+) + LCD(θ
−) + λfLf(θ

−,θ+) + λrLr(θ
+,θ−) (5)

In this way, the proposed approach can compete with the state-of-the-art inversion methods using
heavyweight diffusion models. We present technical details about the training in Appendix A.

3.4 Dynamic Classifier-Free Guidance Facilitates Inversion

As previously discussed, dynamic guidance [44, 45] provides promising results for both faithful
and diverse text-to-image generation. In this work, we reveal that dynamic CFG is also an effective
technique for improving inversion accuracy as shown in Figure 4b. Below, we delve into the questions
when and why dynamic guidance might facilitate image inversion while preserving the generative
performance. To answer these questions, we conduct experiments using Stable Diffusion 1.5 with
DDIM solver for 50 steps and maximum CFG scale set to 8.0.

Dynamic guidance for decoding We start with the dynamic CFG analysis at the decoding stage
using the unguided encoding process following the prior work [31]. First, we wonder at which time
steps the guidance has the most significant impact on reconstruction quality. To this end, we evaluate
MSE between real and reconstructed images for different CFG turn-on thresholds T. If t > T, we
set w = 1.0, otherwise, the CFG scale is set to its initial value 8.0. In Figure 4a, we observe an
exponential decrease in reconstruction error, implying that the absence of CFG at higher noise levels
is essential for achieving more accurate inversion. Figure 4b confirms this intuition qualitatively.
These results are consistent with [44, 45], which also suggest turning off the guidance at high noise
levels but motivating this from the perspective of diversity improvement.

Then, we investigate the influence of various τ1, τ2 from the CADS dynamic (Figure 2a) on the
inversion and generation performance. We aim to identify an operating point providing both strong
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Figure 4: (a) Reconstruction error of the decoding process for different CFG turn-on thresholds.
(b) Image inversion examples for different CFG turn-on thresholds T. Guidance at high noise levels
(T = 1.0) drastically degrades the inversion quality.
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Figure 5: (a) Trade-off between generation performance (IR) and reconstruction quality (MSE) pro-
vided by different τ1, τ2. (b) Generation examples for dynamic and constant CFG scales. The points
around τ1 = τ2 = 0.8 provide preferable trade-off between generation and inversion performance.

Enc, No CFG Enc, d.CFG, τ=0.6 Enc, d.CFG, τ=0.8 Enc, CFG

Dec. No CFG 11.0 36.6 63.4 100.5
Dec. d.CFG τ=0.6 11.4 23.5 67.8 102.6
Dec. d.CFG τ=0.8 15.0 14.6 52.2 108.5
Dec. CFG 19.0 19.2 19.0 102.1

Latent NLL, ↓ 1.401 1.409 1.415 1.428

Table 1: FID-5k for SD1.5 starting from the noise latents obtained using different encoding strategies,
and NLL for these latents. Though encoding with dynamic CFG produces consistently more plausible
latents than constant CFG, the unguided encoding remains preferable.

generation performance and faithful image inversion. Thus, we evaluate generation performance using
the ImageReward [54] (IR) on top of randomly generated samples for 1000 COCO2014 prompts [55].
The inversion accuracy is estimated in terms of MSE between original and reconstructed samples.
Figure 5a presents the results for varying τ1 and τ2. It can be seen that several points for τ1 ≥ 0.7
offer slightly lower text-to-image performance but exhibit significantly better reconstruction quality
compared to the constant CFG scale, 8.0. Moreover, we notice that the settings where τ1 = τ2
perform similarly to those where τ1 < τ2. Consequently, in all our experiments, we consider a single
τ representing the case where τ1 = τ2 and use τ = 0.7 and τ = 0.8. This means that CDm follows
unguided sampling for t > τ and sets the initial CFG scale for t ≤ τ .

Note that the setting with τ=τ1=τ2 corresponds to a step CFG function w(t), which yields a distinct
advantage for distilled models. The linearly changing CFG scales are not applicable to the processes
with large discretization steps, typical for distilled diffusion models. Therefore, such a CFG schedule
needs to be distilled into the model during training, making it less flexible for different generation
and editing settings. In contrast, the step CFG function enables dynamic CFG for already pretrained
distilled models, operating with different constant CFG scales.
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Figure 6: Few examples of text-to-image generation using the iCD-XL model for 4 steps.

Dynamic guidance for encoding Next, we investigate the guidance role in tackling the encoding
problem. In Table 1, we compare noise latents encoded using various guidance strategies. The quality
of the noise latents is estimated by evaluating the generation performance starting from these latents
with a fixed CFG scale of 8.0. As the performance measure, we calculate FID for 5000 image-text
pairs from COCO [55].

We observe that the latents obtained with a consistently high CFG scale exhibit the worst generative
performance, indicating their out-of-domain nature. While dynamic guidance produces significantly
more plausible latents, it still falls short of the unguided encoding in most cases. To further validate
these results, we estimate the negative log-likelihood (NLL) of the encoded latents under different
CFG settings in Table 1 (Bottom). NLL is calculated with respect to the standard normal distribution.
While NLL decreases for dynamic CFG with lower τ , the encoding without guidance (w=1) provides
the highest likelihood value. Therefore, in all our experiments, we maintain w=1 for the encoding
and train the forward distilled models (fCD) on the unguided teacher process.

4 Experiments

In the following experiments, we apply our approach to text-to-image diffusion models of different
scales: SD1.5 [56] and SDXL [1], and denote them iCD-SD1.5 and iCD-XL, respectively. We
provide the training details in Appendix A.

Initially, we illustrate the inversion capability of the proposed framework. Then, we consider the
text-guided image editing problem and demonstrate that our approach outperforms or is comparable
to significantly more expensive baselines.

Before diving into the main experiments, we present a few generated samples using iCD-XL for 4
steps in Figure 6. Additional quantitative and qualitative results are provided in Appendix B. The
results confirm that the distilled model demonstrates strong text-to-image generation performance.

4.1 Inversion quality of iCD

Here, we analyze the reconstruction capabilities of iCD-SD1.5 under various configurations. Specifi-
cally, we explore the contribution of the different pipeline components, such as the number of steps,
preservation losses, and dynamic CFG, to inversion performance. Our forward model is run without

7



Configuration LPIPS ↓ DinoV2 ↑ PSNR ↑
Unguided decoding setting

fDDIM50 | DDIM50 0.167 0.834 22.98

A fCD2 | CD2 0.332 0.632 17.75
B fCD3 | CD3 0.317 0.649 18.42
C fCD4 | CD4 0.276 0.715 19.19

E ���fCD4 + Lf | CD4 0.484 0.554 16.40
F fCD4 + Lf | CD4 0.248 0.728 20.01
G fCD4 + Lf | CD4 + Lr 0.198 0.837 22.27

Guided decoding setting, w = 8

fDDIM50 | DDIM50 0.479 0.534 14.12
fDDIM50 | DDIM50 + d.CFG 0.279 0.726 19.58

H fCD4 | CD4 0.476 0.550 13.87
I fCD4 | CD4 + d.CFG 0.370 0.650 16.72
J fCD4 + Lf | CD4 + d.CFG 0.317 0.698 17.98
K fCD4 + Lf | CD4 + Lr + d.CFG 0.273 0.749 19.66

Table 2: Exploration of iCD-SD1.5 configurations
in terms of image inversion performance.

Figure 7: Influence of the dynamic guidance and
preservation losses on image inversion with iCD.

CFG (w = 1), while for the reverse model, we consider two settings: unguided (w = 1) and guided
(w = 8), both of which are important in practice.

Configuration To evaluate the inversion quality, we consider 5K images and the corresponding
prompts from the MS-COCO dataset [55]. We measure the reconstruction quality using LPIPS [57],
PSNR and cosine distance in the DinoV2 [58] feature space. As for the reference, the teacher
inversion with a disabled CFG scale is considered. For the dynamic guidance, we use τ = 0.7. The
coefficients for the preservation losses are equal to λf = 1.5 and λr = 1.5.

Results The results are presented in Table 2. First, configurations (A-C) evaluate the number of the
forward and inverse models inference steps. We observe that the reconstruction quality improves as
the number of steps increases. In our main experiments, we consider 3 and 4 steps.

Then, (E-G) examine the preservation losses. In (E), we learn the forward model in the encoder [59]
regime using the forward preservation loss only. This experiment reveals that the consistency loss
contributes significantly to inversion performance. (F, G) show that both losses improve the inversion,
with the latter approaching the quality of the teacher model.

Finally, we explore the dynamic CFG and preservation losses under the guided decoding setting
(I-K) and compare them to the setting (H), which does not employ any boosting techniques. From
the configurations (I, J, K), we can see that all techniques provide significant contribution to the
reconstruction quality. In Figure 7, we visualize their influence on inversion. It can be seen that
the dynamic CFG (I) is rather responsible for global object preservation, while the preservation
losses (J,K) rather improve fine-grained details. We note that the final configuration (K) provides
comparable inversion quality to the unguided process while preserving the editing capabilities due to
the activated guidance. More visual examples of inversion and quantitative results are in Appendix C.

4.2 Text-guided image editing

In this section, we apply the proposed iCD to the text-guided image editing problem. For the SD1.5
model, we use the Prompt-to-Prompt (P2P) method [60]. We vary two hyperparameters: the cross-
attention and self-attention steps balancing between editing strength and preservation of the reference
image. For the SDXL model, we follow the ReNoise [24] evaluation setting and just change the
source prompt during decoding according to [61].

Metrics We measure editing performance using both automatic metrics and human-study. The
former uses two metrics: 1) to estimate the preservation of the reference image, we calculate the
cosine distance between images in the DinoV2 feature space; 2) as an editing quality measure, we use
the CLIP score between the edited image and the target prompt. For human evaluation, we employ
professional assessors who successfully completed assessment tasks. We show them the source and
target prompts, reference image and two images produced with the methods under the comparison
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Figure 8: Image editing examples produced by our method (iCD-SD1.5) and the baseline approaches.
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Figure 9: Quantitative comparisons between different editing approaches based on SD1.5: automatic
metrics (left) and human preference study (right).

and ask the question: which of the edited images do you prefer more taking into account the editing
strength and reference preservation?

Benchmarks In our experiments, we consider two benchmarks: PieBench [30] and a manu-
ally created COCO evaluation set based on text-paired images from the MS-COCO dataset [55].
PieBench [30] consists of various types of editing, for example, replacement, addition, or deletion.
We take 420 examples of realistic images, including all types of editing. COCO focuses solely on
the replacement task as one of the most popular among practitioners. This benchmark contains 140
image-text pairs.

4.2.1 Text-guided image editing with iCD-SD1.5

Configuration To provide the editing with the SD1.5 model, we consider iCD using 4 forward and
4 reverse steps trained with both preservation losses (λf = 1.5, λr = 1.5). In Appendix D, we also
present the results for iCD using 3 steps, which is not much worse than the 4 step model. We set the
hyperparameters of the dynamic CFG to τ = 0.8 and maximum CFG scale to 19.0.
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Automatic evaluation
Configuration CLIP score, T ↑ DinoV2 ↑ CLIP score, I ↑

COCO benchmark

Ours, 8 0.267 0.472 0.748
ReNoise Turbo, 44 0.265 0.399 0.705
ReNoise SDXL, 150 0.227 0.431 0.732
ReNoise LCM, 35 0.218 0.350 0.663

PieBench

Ours, 8 0.254 0.707 0.858
ReNoise Turbo, 44 0.254 0.615 0.820
ReNoise SDXL, 150 0.234 0.642 0.835
ReNoise LCM, 35 0.236 0.736 0.865

Human preference, %

COCO benchmark PieBench

Ours, 8 64± 4.9 Ours, 8 63± 5.1
ReNoise Turbo, 44 36± 4.9 ReNoise Turbo, 44 37± 5.1

Ours, 8 91± 2.8 Ours, 8 78± 4.3
ReNoise SDXL, 150 9± 2.8 ReNoise SDXL, 150 22± 4.3

Ours, 8 95± 1.8 Ours, 8 76± 4.2
ReNoise LCM, 35 5± 1.8 ReNoise LCM, 35 24± 4.2

Table 3: Automatic metrics (top) and human evalu-
ation (bottom) for iCD-XL and ReNoise [24]. Figure 10: Editing examples using XL models.

Baselines We compare our approach with four baseline approaches, which provide state-of-the-art
editing performance: Null-text Inversion (NTI), Negative-prompt Inversion (NPI) [31], InfEdit [25]
and Edit-friendly DDPM [42]. All methods except InfEdit are diffusion-based approaches using
more than 100 steps. Moreover, NTI employs the additional high-cost optimization procedure to
improve inversion quality. InfEdit operates with the distilled diffusion model, latent consistency
distillation [17], but utilizing virtual inversion. All methods use P2P and we vary all possible
hyperparameter values to find the configurations that provide the best editing-preservation trade-off.

Results Figure 9 provides quantitative results for both benchmarks. We observe that the proposed
iCD is comparable to the baseline approaches in most cases. Moreover, sometimes it can even
outperform them while being multiple times faster. For instance, according to human preference on
the COCO benchmark, our approach surpasses the InfEdit, NPI, NTI and Edit-friendly DDPM (50
steps). On the PieBench, it outperforms the InfEdit and Edit-friendly DDPM (50 steps). In addition,
we provide qualitative results in Figure 8, which confirm the competitiveness of the proposed method.
Additional visual examples can be found in Appendix D.

Notably, the performance of the proposed method is weaker on the PieBench benchmark compared
to COCO, according to both automatic and human-based metrics. We attribute this to the increased
complexity of editing tasks, which probably require more steps.

4.2.2 Text-guided image editing with iCD-XL

Configuration We consider the configuration using 4 steps, τ = 0.7 and CFG scale equals 8.0.

Baselines We compare our approach to the recently proposed ReNoise [24], accurately following its
guidelines. This method works with both distilled models (LCM-SDXL [17], SDXL-Turbo [18]) and
original diffusion model, SDXL [1]. However, even for the distilled models, a significant number of
steps is required to achieve decent performance.

Results The quantitative and qualitative comparisons are presented in Table 3 and Figure 10,
respectively. According to the human evaluation, iCD-XL outperforms all ReNoise configurations.
Based on the automatic evaluation, our approach provides better reference preservation (DinoV2 and
CLIP score, I) while maintaining strong editing capabilities, as indicated by the CLIP score (T). We
provide more visual examples in Appendix D.

5 Conclusion

The paper proposes a generalized consistency distillation framework that enables both accurate image
inversion and solid generation performance using a few inference steps. Accompanied by the recently
proposed dynamic guidance, the distilled models demonstrate highly efficient and accurate image
manipulations, making a significant step towards real-time text-driven image editing.
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A Training details of iCD
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Figure 11: Training dynamics of iCD-SD1.5 in terms of FID (a) and reconstruction loss (b).

First, following [19], we preliminary distill classifier-free guidance using a conditional embedding
added to the time step embedding. The goal is to use different w and apply dynamic techniques during
inference after consistency distillation. We perform CFG distillation for the following guidance
scales: 1, 8, 12, 16, 20 for SD1.5 and 1, 4, 6, 9, 10, 12, 13, 16, 18, 20 for SDXL. At this stage, the
model successfully approximates the guided teacher without hurting its performance.

Then, we perform multi-boundary consistency distillation using LoRA adapters with a rank of 64
following [51]. We train forward and reverse adapters in parallel starting from the same teacher: CFG
distilled SD1.5 or SDXL. For the SD1.5 model, we use a global batch size of 512, and for the SDXL
128. All models converge relatively fast, requiring about 6K iterations with a learning rate 8e−6.

We find that the forward and reverse models provide promising generation and inversion quality for 3
or 4 steps. The regularization coefficients for the forward and reverse preservation losses are λf=1.5
and λr=1.5, respectively.

The iCD-SD1.5 models are trained for ∼36h and the iCD-XL ones for ∼68h on 8 NVIDIA A100
GPUs. We present the training dynamics in terms of FID and reconstruction MSE for iCD-SD1.5 in
Figure 11.

For SD1.5 distillation, we use a ∼20M subset of LAION 2B, roughly filtered using CLIP score [62].
For SDXL, we collect ∼7M images with resolution ≥ 1024, also curated to avoid poorly aligned
text-image pairs and low quality images.

We set the following time steps for our configurations:

• 4 steps, τ = 0.8: reverse model [259, 519, 779, 999]; forward model [19, 259, 519, 779];
• 4 steps, τ = 0.7: reverse model [259, 519, 699, 999]; forward model [19, 259, 519, 699];
• 3 steps τ = 0.7: reverse model [339, 699, 999]; forward model [19, 339, 699];

B Image generation with iCD

We provide the generation performance of our distilled model in Table 4. The dynamic CFG
(τ = 0.8, τ = 0.7) degrades in terms of ImageReward, while improving FID due to the increased
diversity [44, 45]. The visual examples are presented in Figures 16, 17.

C Image inversion

In Table 5, we provide comparisons between the 3- and 4-step configurations of iCD-SD1.5, which
perform similarly. Figure 14 shows the image inversions provided by our approach, NTI and NPI.
Figure 15 shows the image inversions compared to the ReNoise method.
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Configuration FID CLIP score ImageReward

DDIM50 18.73 0.266 0.201

CD4 18.45 0.259 0.044
CD3 17.96 0.258 −0.009
CD4 + d.CFG, τ = 0.8 16.25 0.254 −0.193
CD4 + d.CFG, τ = 0.7 16.38 0.253 −0.217
CD3 + d.CFG, τ = 0.7 17.66 0.251 −0.351

Table 4: Text-to-image performance of the SD1.5 model in terms of FID-5K, CLIP score and
ImageReward for w = 8 using 5K prompts from the MS-COCO dataset.

(a) (b)

Figure 12: Quantitative (a) and qualitative (b) editing results using 3- and 4-step iCD-SD1.5 configu-
rations on PieBench.

Figure 13: The human evaluation interface for the text-guided image editing problem.
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Configuration LPIPS ↓ DinoV2 ↑ PSNR ↑
Unguided decoding setting

fDDIM50 | DDIM50 0.167 0.834 22.98

E fCD4 + Lf | CD4 + Lr 0.198 0.837 22.27
E fCD3 + Lf | CD3 + Lr 0.192 0.841 22.21

Guided decoding setting, w = 8

fDDIM50 | DDIM50 0.479 0.534 14.12
fDDIM50 | DDIM50 + d.CFG 0.279 0.726 19.58

E fCD4 + Lf | CD4 + Lr + d.CFG 0.273 0.749 19.66
E fCD3 + Lf | CD3 + Lr + d.CFG 0.263 0.770 19.76

Table 5: More image inversion results for 3- and 4-step iCD-SD1.5. Dynamic CFG uses τ = 0.7.

D Text-guided image editing

We present the annotation interface for the assessors in Figure 13. We calculate the confidence
interval using bootstrap methods, splitting the human votes into 1, 000 subsets and then averaging the
results and calculating the standard deviation.

Figure 12 compares two iCD configurations (3 and 4 steps). We observe that both configurations
perform similarly, with a slight preference for the 4-step configuration. We present additional visual
results on image editing using the iCD-SD1.5 model in Figure 18 and the iCD-XL model in Figure 19.

E Limitations

The iCD limitations include the requirement to predetermine boundary time steps before distillation,
which may restrict the model flexibility of the model. Additionally, the extra preservation losses
necessitate increased computational resources during training. Furthermore, the editing method is
susceptible to hyperparameter values, leading to inconsistent performance across different prompts.
Finally, the quality of the current distillation techniques itself requires significant improvement, as it
does not consistently achieve high standards across various scenarios.

F Broader impacts

Our work can significantly enhance tools for artists, designers, and content creators, allowing for
more precise and efficient manipulation of images based on textual inputs. This can democratize
high-quality digital art creation, making it accessible to those without extensive technical skills. On
the other hand, the ability to edit images easily and realistically can be misused to create misleading
information or fake images, which can be particularly harmful and potentially influence public
opinion and elections.
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Figure 14: Inversion examples produced by the SD1.5-based models.
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Figure 15: Inversion examples produced by the SDXL-based models.
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Figure 16: Generation examples using SD1.5, the proposed distilled method using 4 steps and
dynamic CFG.
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Figure 17: Generation examples using SDXL, the proposed distilled method using 4 steps and
dynamic CFG.
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Figure 18: Additional editing examples produced by the SD1.5-based models.
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Figure 19: Additional editing examples using the SDXL-based models.
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