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ABSTRACT

Large Language Models (LLMs) demonstrate their reasoning ability through
chain-of-thought (CoT) generation. However, LLM’s autoregressive decoding
may limit the ability to revisit and refine earlier tokens in a holistic manner, which
can also lead to inefficient exploration for diverse solutions. In this paper, we
propose LaDiR (Latent Diffusion Reasoner), a novel reasoning framework that
unifies the expressiveness of continuous latent representation with the iterative re-
finement capabilities of latent diffusion models for an existing LLM. We first con-
struct a structured latent reasoning space using a Variational Autoencoder (VAE)
that encodes text reasoning steps into blocks of thought tokens, preserving seman-
tic information and interpretability while offering compact but expressive repre-
sentations. Subsequently, we utilize a latent diffusion model that learns to denoise
a block of latent thought tokens with a blockwise bidirectional attention mask,
enabling longer horizon and iterative refinement with adaptive test-time compute.
This design, combined with explicit diversity guidance during diffusion inference,
enables the generation of multiple diverse reasoning trajectories that explore dis-
tinct regions of the latent space, rather than producing repetitive solutions as often
occurs in standard autoregressive sampling. We conduct evaluations on a suite
of mathematical reasoning and planning benchmarks. Empirical results show that
LaDiR consistently improves accuracy, diversity, and interpretability over exist-
ing autoregressive, diffusion-based, and latent reasoning methods, revealing a new
paradigm for text reasoning with latent diffusion.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable reasoning abilities through extensive
pretraining on human languages, yet the inherent limitations of the autoregressive (AR) paradigm
are becoming increasingly difficult to overlook (Zhou et al., 2024b; Bachmann & Nagarajan, 2025).
As shown in Fig. 1 (top left), their sequential nature prevents revising earlier tokens, making self-
refinement inefficient and difficult (Chen et al., 2024; Huang et al., 2024). Moreover, AR models
with discrete CoT generate a linear chain of thought (CoT) (Dziri et al., 2023; Wei et al., 2023),
which limits reasoning diversity and restricts exploration of multiple valid solutions (Naik et al.,
2024; Yu et al., 2024).

Diffusion models (Ho et al., 2020), originally introduced for generation in continuous domains like
images, have recently gained attention in text generation for their ability to maintain global coher-
ence and enable iterative refinement (Ye et al., 2024b; Nie et al., 2025; Lou et al., 2023; Yu et al.,
2025c; Weligalle, 2025; Sahoo et al., 2024; Gulrajani & Hashimoto, 2023). Moreover, prior works
have explored continuous or latent diffusion for language generation (Li et al., 2022; Lovelace et al.,
2024; Zhang et al., 2023; Lovelace et al.; Cetin et al., 2025), operating diffusion in latent spaces
obtained from text autoencoders or token-embedding spaces. Existing works largely emphasize the
parallelization properties of diffusion models (Israel et al., 2025; Nie et al., 2025; Weligalle, 2025)
or evaluate fluency in text generation (Li et al., 2022; Lovelace et al., 2024; Zhang et al., 2023;
Lovelace et al.). Arguably, a more important direction is to ask: How can these approaches enhance
the reasoning capabilities of LLMs? We focus on one particularly promising capability: the ability
to self-correct and refine reasoning chains at semantic levels in latent space. As shown in Fig. 1 (top
right), such self-refinement cannot be achieved by discrete diffusion language models that merely
transit into masked tokens.
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Figure 1: Comparison of reasoning paradigms: autoregressive CoT and latent CoT generate discrete
or continuous tokens sequentially; diffusion LMs iteratively refine masked tokens into text in par-
allel; and our proposed method LaDiR reasons via latent diffusion over thought tokens, enabling
iterative refinement at semantic level and diverse solution exploration.

To address this limitation, we introduce LaDiR (Latent Diffusion Reasoner), a flexible reasoning
framework that encodes high-level semantic representations of reasoning steps into continuous latent
tokens via a Variational Autoencoder (VAE) as latent thought tokens, and trains a latent diffusion
model over them to perform reasoning. This bridges the gap between surface-level token refinement
and deeper semantic reasoning. After the reasoning process, the model generates final answer tokens
conditioned on the generated latent thought tokens. Unlike prior latent diffusion works for text
generation (Li et al., 2022; Lovelace et al., 2024; Zhang et al., 2023), which focus on fluent text
generation, our framework is explicitly designed for latent reasoning: it learns causal dependencies
across reasoning steps through blockwise diffusion, propagates answer correctness signals back to
latent tokens.

Our proposed paradigm establishes a new reasoning framework as a post-training method, bring-
ing several distinctive advantages. First, the iterative refinement ability of diffusion enables a better
trade-off between accuracy and test-time compute, as additional denoising steps can be flexibly allo-
cated to improve performance. Second, our framework introduces a diversity-guidance mechanism
that applies repulsive forces during diffusion inference, pushing latent trajectories apart within a
batch to explore multiple diverse reasoning paths, where as AR models tend to collapse to similar
trajectories. Finally, leveraging a VAE-based latent space enhances interpretability over continuous
diffusion models, making the reasoning process more transparent and readable.

Experimentally, we demonstrate that diffusion-based latent reasoning is not only more accurate
but also qualitatively different from prior approaches. On math reasoning benchmarks, including
GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021), where Coconut (Hao et al., 2024)
fails to surpass AR CoT supervised finetuning (SFT), LaDiR consistently outperforms it on aver-
age across 7 benchmarks with the LLaMA 3.1 8B model (Dubey et al., 2024). This suggests that
modeling reasoning at the semantic level, rather than at the token level, may lead to more faithful
intermediate steps that accumulate into stronger final answers. Moreover, on the Countdown plan-
ning task, LaDiR shows over 30% absolute improvement in both Pass@1 and Pass@100, indicating
that latent thought tokens potentially enhance global planning ability, while parallel diversity explo-
ration enables the model to generate diverse reasoning paths. Together, these findings suggest that
diffusion-based latent reasoning provides a principled way to balance accuracy and diversity—key
ingredients for advancing beyond sequential autoregressive reasoning.

2 PRELIMINARIES

This section introduces key concepts and notations in VAE and latent diffusion models (Rombach
et al., 2022). Detailed formulations and background information are provided in Appendix B.

2.1 VARIATIONAL AUTOENCODER

A Variational Autoencoder (VAE) (Kingma & Welling, 2013) learns a latent representation of data
by balancing reconstruction accuracy and prior regularization. Let x ∈ RL×dx denote a sequence
of token embeddings with length L and embedding dimension dx, and z ∈ RM×dz denote latent
representations with M latent tokens of dimension dz . We adopt the β-VAE (Higgins et al., 2017),
where a scaling factor β controls this trade-off:

Lβ-VAE = Eqϕ(z|x)[− log pθ(x|z)] + βKL
(
qϕ(z|x) ∥ p(z)

)
. (1)
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Here, qϕ(z|x) is the encoder distribution parameterized by ϕ, pθ(x|z) is the decoder likelihood
parameterized by θ, and p(z) = N (0, I) is the prior distribution over latents.

Larger β values encourage disentangled and structured latent spaces, at the cost of reconstruction
fidelity. During inference, the encoder of VAE produces a mean/variance pair {(µ, σ)}, and a latent
token z is sampled as z = µ+ σ ⊙ ϵ, ϵ ∼ N (0, I).

2.2 LATENT DIFFUSION AND FLOW MATCHING

Latent diffusion models (Ho et al., 2020; Rombach et al., 2022) generate data by denoising latent
variables from Gaussian noise in the latent space of a VAE, which preserves high-level semantic
structure. Diffusion can also be viewed as a continuous-time generative flow trained via flow match-
ing (Lipman et al., 2022), which we adopt as our primary framework for its superior performance
(see Appendix C). The training and inference processes are as follows:

Training Let {zt}t∈[0,1] denote a path interpolating between clean data z0 ∼ pdata and noise
ϵ ∼ N (0, I) : zt = (1 − t)z0 + tϵ. This path is controlled by an ordinary differential equation
(ODE) u⋆(zt, t) = dzt

dt = ϵ− z0, where u⋆ is the target velocity field. A neural network uθ(zt, t) is
trained to approximate u⋆ by minimizing the flow matching loss:

LFM = Et∼U(0,1), z0∼pdata, z1∼N (0,I)

[
∥uθ(zt, t)− u⋆(zt, t)∥2

]
. (2)

Inference. At generation time, the process begins from Gaussian noise z1 ∼ N (0, I). The learned
velocity field uθ(zt, t) is then integrated backward in time using an ODE solver as follows: zt−∆t =
zt − ∆t uθ(zt, t), with steps from t = 1 to t = 0. The final state z0 corresponds to a clean
latent representation. This procedure naturally supports iterative refinement, as each integration step
progressively transforms noise into a coherent latent z.

2.3 BLOCK DIFFUSION

To support flexible and variable-length sequence generation, we employ a block diffusion
scheme (Arriola et al., 2025) that integrates autoregressive modeling with diffusion. Instead of
applying diffusion to individual latent tokens or full sequence, the sequence is divided into contigu-
ous blocks, and diffusion is performed at the block level. This hybrid design retains the open-ended
generation of autoregressive models while introducing global coherence within each block. See
Appendix B.4 for details.

3 METHODOLOGY

Our approach separates reasoning from answering. A variational autoencoder (VAE) constructs a
latent space of intermediate reasoning steps, encoding each step as a block of thought tokens. We
further utilize a reasoning model that predicts and refines thought tokens via latent diffusion, and
then generates the final answer tokens conditioned on the denoised latent tokens.

3.1 ARCHITECTURE

We employ a VAE to construct the latent space of intermediate reasoning steps, and a reasoning
model that predicts latent tokens via diffusion and generates the final text answer.

Blockization. We separate the chain-of-thought (CoT) reasoning and the final answer in the
dataset using the prefix ‘‘The answer is’’. The text preceding the prefix is treated as CoT c,
while the text following is treated as the final answer y. We then split c into individual sentences,
each treated as a block of latent tokens with block size Lb:

Z(b) = {z(b)1 , . . . , z
(b)
Lb

}, b = 1, . . . , N.

This one-sentence-per-block design ensures that each reasoning step is localized in latent space.

VAE architecture. As shown in Figure 2 (left), our VAE encoder is initialized from a pretrained
LLM and fine-tuned with all parameters, along with Lb learnable embeddings. The encoder’s last
hidden state is passed through two linear projections to obtain the mean µ and variance σ2, from
which we sample Z(b) ∼ N (µ, σ2). The decoder is a frozen pretrained LLM that conditions on
the sampled Z(b) to reconstruct the corresponding block of text. This design enables the encoder to
compress each reasoning step into a structured latent representation aligned with the semantic space
of the language model.
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Figure 2: Illustration of our block-wise latent reasoning framework. A question Q is first input
as condition to generate latent blocks, each delimited by <BOT> and <EOT>. For each block, the
model iteratively denoises latent tokens Ẑ(b) across timesteps, with bidirectional attention inside a
block and causal attention across blocks. The reasoning process terminates when the model emits
the <SOA> token, after which the model generates the answer text autoregressively.

Reasoning model architecture. We utilize an existing LLM as our reasoning model. As illus-
trated in Fig. 2, consider the prediction of the second latent block. After the input question Q, we
insert a special token <BOT> to mark the start of a block, followed by the first block tokens Z(1),
and a token <EOT> to mark its end. For the second block, since it is being predicted, we add a
timestep embedding between <BOT> and z(2)1 to encode the timestep information. Once the latent
reasoning process is complete, we switch to text generation mode by appending a <SOA> token to
indicate the start of the answer, which is then generated autoregressively. To balance lookahead and
variable-length generation, we adopt a hybrid attention mask M (Fig. 2, top right). Within each
block, tokens attend bidirectionally, enabling the model to internally reason over a horizon defined
by the block size and capture richer local dependencies. Across blocks, attention is strictly causal,
so later steps depend on earlier ones in an autoregressive manner.

3.2 TRAINING

We train the two components separately: the VAE is first trained to learn latent representations
of thought tokens, after which the reasoning model is trained to predict these thought tokens. We
describe each stage in turn, beginning with VAE training and followed by reasoning model training.

3.2.1 VAE TRAINING

We build on the standard β-VAE training and inference framework described in Section 2.1, with
the following adaptations tailored to our task.

Robustness augmentations. To improve generalization and make the latent space resilient to
noise and input variability, we introduce two augmentation strategies during training:

• Latent Gaussian noise. For each latent token z(b)i , we inject isotropic Gaussian perturbations:

z′
(b)
i = z

(b)
i + ηi, ηi ∼ N (0, k2I)

where we find k = 3 achieve the best downstream performance. This enhances robustness by
smoothing the latent space and mitigating sensitivity to small semantic variations.

• Input token substitution. For the encoder input sequence, with probability p = 0.3 we replace a
token with another randomly chosen token (sampled uniformly from the LLM vocabulary). This
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forces the encoder to learn invariances to paraphrasing, typos, or minor corruptions in input text,
ensuring that latent representations capture semantic content rather than exact lexical form.

Together, these augmentations encourage the VAE to build a smoother latent space that is both
robust to perturbations and expressive enough to encode thought-level reasoning steps. A more
detailed diagram of the VAE can be seen in Appendix F.

3.3 REASONING MODEL TRAINING

After constructing a latent reasoning space with the VAE, we train a latent diffusion model fψ from
the same pretrained LLM as in our VAE model to denoise latent blocks, gradually transforming
noisy latent representations to coherent reasoning blocks. Empirically, we observe that training with
the flow-matching objective yields the best performance (see Appendix C), and therefore adopt it as
our default training objective in the paper.

Answer Token Loss. While fψ learns to predict latent reasoning trajectories, to avoid explicitly
decoding these steps through the VAE decoder for efficiency during inference, we use the same
transformer backbone ψ with a LM head to autoregressively predict answer text tokens conditioned
on the latent reasoning blocks. To this end, given the question q, the reasoning blocks Z(≤B),
and the past answer tokens y<w, the model predicts the next answer token yw with distribution
pψ(yw | q,Z(≤B), y<w). The training objective for those answer tokens is the cross-entropy loss:

LAns = −
W∑
w=1

log pψ(yt | q,Z(≤B), y<w). (3)

Special Token Loss. To explicitly control the number of latent blocks, we introduce a special
binary classification head on top of the same LLM transformer backbone ψ. It predicts whether
the next block begins with a <SOA> (start-of-answer) or <BOT> (begin-of-thought) token when-
ever an <EOT> (end-of-thought) token is generated. Formally, let τ index positions of <EOT>
tokens in the output. For each τ , the model produces a distribution pψ(sτ | q,Z(≤B), y≤τ ), sτ ∈
{<SOA>,<BOT>}, and we minimize the corresponding classification loss, which supervises the
model to predict special tokens given the question q and latent reasoning blocks up to position τ :

LSpec = −
∑
τ∈TEOT

log pψ(sτ | q,Z(≤B)). (4)

3.3.1 STAGE 1: TEACHER-FORCING TRAINING

In the first stage, the model is trained under a teacher-forcing regime, where it has access to oracle
latent blocks produced by the VAE encoder, denoted as Z(1:B). At every step, these oracle latents
are concatenated between special tokens <BOT> and <EOT> and provided as context to the flow-
matching model fψ . The overall training objective jointly optimizes flow matching on latent blocks
and cross-entropy supervision on both final answers and special tokens:

L = λFM LFM + λAns LAns + λSpec LSpec, (5)

where LFM is defined in Eq. 2.

3.3.2 STAGE 2: ROLLOUT TRAINING

After Stage 1, there is a mismatch between training and inference. During inference, the model
must be conditioned on previous self-generated latents without access to oracle latents, suffering
from error accumulation issue. To address this issue, Stage 2 adopts an rollout training. We keep
the same number of blocks B as in the ground truth, but instead of conditioning on oracle latents,
the model generates its own latents Z̃(1:B) from random noise using a fewer denoising steps (i.e.,
50 → 10, following FlowGRPO (Liu et al., 2025)). We keep the gradients on Z̃(1:B) during denois-
ing, allowing answer supervision to backpropagate through the trajectory and directly shape latent
predictions. To avoid latent collapse as in Coconut w/o curriculum learning (Hao et al., 2024), we
keep the flow matching loss. Therefore, the training objective is same as Eq. 5.

3.4 REASONING MODEL INFERENCE

At inference time, the model generates a chain of latent reasoning blocks and subsequently produces
the final answer in text space. The process unfolds in two phases: (i) latent block generation via
iterative denoising, and (ii) answer generation via autoregressive decoding.
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Iterative denoising. Following the inference process of the standard latent diffusion model as in
2.2, for each block, we initialize with a Gaussian noise, and we gradually transforms the noise into
a semantically coherent latent reasoning block Ẑ(b).

Stopping criterion. Latent block generation continues until the model explicitly predicts the spe-
cial token <SOA> (start of answer). This token signals that sufficient reasoning has been performed
and the model should transition from block diffusion to final answer generation.

Answer generation. Once reasoning terminates, conditioned on the generated latent reasoning
sequence Ẑ(1:B̂) and the input question x, the model predicts output tokens y = (y1, . . . , yT ) au-
toregressively.

Diversity improvement in parallel. Unlike AR models that generate a single reasoning trajectory
sequentially, our framework can generate multiple diverse reasoning trajectories in parallel within a
batch. To encourage exploration of alternative solutions, we incorporate two complementary mech-
anisms:

1. Increased initial noise. By sampling with an increased variance σ̃2 as initial noise scale, we
broaden the distribution of starting points for latent trajectories. This enables the same input
question to yield diverse reasoning sequences across runs, improving coverage of alternative
solution strategies.

2. Diversity gradient guidance. At each denoising step, we enhance diversity by adding a repul-
sion term to push the latent tokens in a batch apart. First, we compute a bandwidth parame-
ter σ as the median pairwise distance between the latent tokens in a batch at the current step
σ = mediani<j ∥zi − zj∥2.
The repulsion force field for a latent token zi is then defined as

F(zi) =
∑
j ̸=i

2

(
1− ∥zi − zj∥22

σ2

)
exp

(
− ∥zi−zj∥2

2

σ2

)
(zi − zj), ∀j ≤ B, (6)

where zj is any other latent token in the same batch with batch sizeB. We apply strong repulsion
at the beginning of inference and gradually decay its effect over time. Specifically, the time-
dependent scale is defined as γt = γmax

(
t
T

)
, where T is the total number of inference steps, t

decreases from T to 0, γmax is the initial repulsion strength as a hyperparameter.

Finally, the diversity-guided prediction combines the base model output with the repulsion
gradient, in a form analogous to classifier-free guidance (Ho & Salimans, 2022): ẑt−1 =
fψ(xt, t, x) + γtF(z), where fψ(xt, t, x) is the model’s prediction at step t.

Together, these mechanisms enhance the stochasticity and coverage of latent reasoning while pre-
serving convergence to valid solutions.

4 EXPERIMENTS

We evaluate LaDiR across two domains: mathematical reasoning (7 datasets) and puzzle planning
(Countdown), comparing to AR, latent, and diffusion baselines. Our experiments demonstrate its
effectiveness on benchmark datasets, while ablation studies in Section 4.3 and analyses 4.4 provide
further insights into the contributions of individual components. See Appendix E for experimental
details.

4.1 MATHEMATICAL REASONING

We begin by assessing LaDiR on a range of mathematical reasoning benchmarks, covering both
in-domain datasets, where training and test distributions are closely aligned, and out-of-domain
benchmarks that require generalization to unseen problems.

Datasets We fine-tune pretrained LLMs on the DART-MATH dataset (Tong et al., 2024b), a
large-scale dataset synthesized to enhance mathematical reasoning. For evaluation, we adopt two in-
domain benchmarks, Math (Hendrycks et al., 2021) and GSM8K (Cobbe et al., 2021), and five out-
of-domain benchmarks to assess generalization: College-Math (Tang et al., 2024b), DeepMind-
Math (Saxton et al., 2019), OlympiaBench-Math (He et al., 2024), TheoremQA (Chen et al.,
2023), and Fresh-Gaokao-Math-2023 (Tang et al., 2024b). Detailed dataset descriptions are pro-
vided in Appendix E.
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Method In-Domain Out-of-Domain Avg.
MATH GSM8K Gaokao DM-Math College Olympia TheoremQA

Masked Diffusion Methods - LLaDA 8B
Base Model 36.2 77.3 10.2 29.8 30.2 3.0 16.6 29.0
CoT SFT 39.0 82.3 20.1 43.7 38.9 5.9 20.9 35.8

Autoregressive Methods - LLaMA 3.1 8B
Sol-Only SFT 13.3 16.4 0.0 18.2 15.9 4.7 16.9 12.2
CoT SFT 43.1 84.5 30.7 47.8 45.7 10.1 21.2 40.4
iCoT 35.2 61.8 30.0 30.6 37.6 8.3 19.5 31.8
Pause Token 42.1 83.9 28.3 42.4 31.5 3.5 8.3 34.2
Coconut 37.3 68.3 26.8 33.5 40.2 5.8 11.4 31.9
Discrete Latent 43.2 83.9 33.3 44.7 47.1 13.3 20.3 40.8

Latent Diffusion Methods - LLaMA 3.1 8B
LD4LG 32.9 9.1 - - - - - -
PLANNER 18.7 5.7 - - - - - -

LaDiR (ours) 45.2 84.2 33.4 46.3 48.6 11.9 22.9 41.8
–w/o Stage 2 30.7 57.8 24.7 32.0 32.8 5.9 11.9 32.6

Table 1: Results for pass@1 accuracy across in-domain and out-of-domain math benchmarks.

Baselines We compare our approach against a diverse set of reasoning methods spanning both
autoregressive and diffusion-based paradigms. For autoregressive models, we include Sol-Only,
trained only on question–solution pairs without intermediate reasoning steps, and CoT, trained with
full chain-of-thought supervision. We further evaluate several latent reasoning methods: Implicit
CoT (iCoT) (Deng et al., 2023), which gradually removes explicit CoT tokens through curriculum
learning; Pause Token (Goyal et al., 2023), which introduces a learnable pause token to provide
additional computation before answering; Coconut (Hao et al., 2024), which leverages hidden states
as latent reasoning tokens through curriculum learning; and Discrete Latent (Su et al., 2025), which
compresses a span of text (e.g., 16 tokens) into discrete latent codes via VQ-VAE for reasoning. For
diffusion-based language models, we compare with the open-sourced LLaDA 8B (Nie et al., 2025),
evaluated both with and without SFT. To directly compare with prior latent diffusion methods for
language generation, we also evaluate LD4LG (Lovelace et al., 2024) and PLANNER (Zhang et al.,
2023). For fair comparison, we use FLAN-T5 as the encoder and LLaMA-3.1-8B as the decoder,
and train them on the same reasoning datasets. We utilize LLaMA-3.1 8B (Dubey et al., 2024) as
the backbone model for our framework as well as for the AR baselines for fair comparison.
Results As shown in Table 1, our method achieves the strongest overall performance on average,
improving the average pass@1 accuracy by 2% over the best prior latent approach. Also, LaDiR
achieves higher Pass@100 across all benchmarks, with a 6.1% absolute gain over AR CoT SFT on
average (see Table 8 in Appendix). Compared to text-based CoT baselines, our latent reasoning
consistently yields more robust solutions, particularly on harder benchmarks such as DM-Math and
College-level datasets, where direct text reasoning often struggles with long-horizon consistency.
This suggests that reasoning in a latent space at semantic level learns more abstract reasoning pat-
terns. Compared to prior latent approaches (e.g., Coconut), the latent diffusion objective provides a
more principled objective for modeling continuous trajectories, leading to stronger generalization to
out-of-domain settings such as TheoremQA. Also, incorporating the stage 2 rollout training notably
improves performance across all benchmarks, showing its effectiveness in mitigating error accu-
mulation. Moreover, prior latent diffusion methods of LD4LG and PLANNER perform poorly on
reasoning tasks, indicating that effective latent reasoning requires more than architectural changes,
such as blockwise variable-length diffusion and rollout training for answer alignment. Taken to-
gether, these results indicate that LaDiR combines the interpretability benefits of CoT-style rea-
soning (see Appendix D) and expressiveness of continuous latent space, producing generalizable
reasoning traces.
4.2 PUZZLE PLANNING – COUNTDOWN

We evaluate the planning ability of our method using Countdown, a combinatorial arithmetic game.
Given a set of input numbers, the goal is to reach a target in [10, 100] by applying basic operations
{+,−,×,÷}. Solving a problem thus demands decomposing the target into intermediate subgoals
and chaining them correctly. For example, given input numbers {97, 38, 3, 17} and target 14, one
valid solution is: 97 − 38 = 59, 59 − 17 = 42, 42 ÷ 3 = 14. Following Gandhi et al. (2024),
we construct a dataset of 500k examples, holding out 10% of target numbers for out-of-distribution
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Model CD-4 P@1 CD-4 P@100 CD-4 Div. CD-5 P@1 CD-5 P@100 CD-5 Div.

Dream 7B Base∗ 16.0 24.7 4.1 4.2 10.3 5.6
MGDM† 91.5 95.2 3.2 46.6 70.4 4.9
LLaDA 8B SFT 51.2 75.2 5.4 34.4 45.2 6.2
LLaMA 8B SFT 46.7 65.3 3.0 8.9 15.4 3.5

LaDiR 76.6 96.4 7.3 38.5 75.2 8.9

Table 2: Results on Countdown tasks. We report Pass@1, Pass@100, and Diversity (Div.). Best
results are in bold, and second-best are underlined. ∗Dream 7B Base refers to the open-sourced
base model without finetuning on this task.†MGDM is a task-specific small discrete diffusion model
rather than a general-purpose language model.

evaluation as test set. We study two settings of growing complexity: CD-4 and CD-5, which use
four and five input numbers, respectively.

Figure 3: Results for pass@k per-
formance on Countdown-4 with k ∈
{1, 10, 25, 50, 100}.

Baselines We compare our method against both autore-
gressive and diffusion-based approaches. For the autore-
gressive setting, we include (1) LLaMA 8B SFT, which
shares the same base model as ours and is finetuned on
the same dataset. For diffusion-based baselines, we con-
sider (2) LLaDA 8B SFT (Nie et al., 2025) and (3) Dream
7B Base (Ye et al., 2025b), two diffusion-based general-
purpose language models (the latter evaluated without
finetuning), as well as (4) MGDM (Ye et al., 2024a), a
small task-specific multinomial-guided diffusion model
trained for Countdown.

Metrics. We report Pass@1 and Pass@100 accuracy,
using an exact string match between the generated arith-
metic equations and the ground-truth solution. Pass@k
reflects the accuracy that at least one valid solution is found among k samples. In addition, we
report Diversity, measured as the number of unique valid solutions discovered among 100 samples.
All models are evaluated with a decoding temperature of 1.0.

Implementation Details In this setting, we deliberately disable the answer generation and restrict
the reasoning process to a single latent block, which is compressed into a fixed-size representation (4
tokens). The model is trained under a teacher-forcing regime and evaluated on decoded text tokens
from our VAE, thereby isolating the latent diffusion model’s capacity to capture planning dynamics
without autoregressive supervision. During inference, we set the initial noise scale to 2 and the
maximum diversity guidance scale to 0.8.

Results On the Countdown tasks, as shown in Table 2, our method outperforms autoregressive
baselines and remains competitive with specialized diffusion models. In CD-4, it improves Pass@1
by more than 25 points over LLaMA 8B SFT and over 20 points over LLaDA SFT, demonstrat-
ing stronger planning ability beyond token-by-token generation, while also delivering the best
Pass@100 and over two points higher diversity than any baseline. On the more challenging CD-
5 task, our model surpasses AR baselines by nearly 30 points in Pass@1 and over 30 points in
Pass@100, again with the highest diversity. In addition, as shown in Figure 3, our pass@k curve
rises steeply with k, surpassing MGDM at larger k. This high pass@k reflects both diverse trajectory
exploration and strong potential for reinforcement learning for post-training (Yue et al., 2025).

4.3 ABLATION STUDY

Diversity Scale and Initial Noise We study how inference-time stochasticity and diversity guid-
ance affect solution diversity and accuracy by varying (i) the initial noise scale, which controls the
variance of Gaussian initialization, and (ii) the maximum diversity scale γmax, which regulates the
repulsion strength among latent tokens (see Sec. 3.4). We evaluate both the average number of
unique solutions and best-of-100 accuracy. Table 4 shows that increasing noise from 1 to 2 im-
proves both diversity and accuracy, but excessive noise (scale 3) harms convergence despite higher
diversity. For diversity guidance, removing repulsion (γmax = 0) yields the lowest diversity, while
moderate values (0.3–0.5) strike the best trade-off. Stronger repulsion (γmax ≥ 1.0) further boosts
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(a) Effect of Initial Noise Scale σ̃2 (γmax = 0.8). (b) Effect of Max Diversity Scale γmax(σ̃2 = 2).

Figure 4: Ablation study on the hyperparameters for diversity during inference on Countdown-4.

diversity but causes accuracy to drop, suggesting that over-dispersing latents destabilizes reasoning.
See Appendix C for additional ablation studies.

4.4 ANALYSIS

Input 43, 9, 54, 25, 81
GT Answer 43+9=52, 54-25=29, 52+29=81

Decode(Ẑt=1) “I .. ex1 ...” (random noise)
Decode(Ẑt=0.8) 43+8=51, 54-24=30, 51+30=81
Decode(Ẑt=0.7) 43+10=53, 54-25=28, 53+28=81
Decode(Ẑt=0.6) 43+9=52, 54-27=27, 52+27=79
Decode(Ẑt=0.5) 43+9=52, 54-25=29, 52+28=80
Decode(Ẑt=0.4) 43+9=52, 54-25=29, 52+30=82
Decode(Ẑt=0.25) 43+9=52, 54-25=29, 52+29=81

Decode(Ẑt=0) 43+9=52, 54-25=29, 52+29=81

Table 3: Examples of iterative self-refinement
of decoded text from the VAE decoder on the
Countdown-4 dataset across different denoising
timesteps (t).

Iterative Refinement Table 3 shows how the
our flow-matching model refines its reasoning
across denoising steps. From pure noise at
T = 1, the model quickly produces structured
equations, though early steps contain arithmetic
errors (e.g., off-by-one mistakes). As denois-
ing progresses, partial results stabilize—such
as 43 + 9 = 52 appearing consistently from
T = 0 onward—and later steps are gradu-
ally corrected. By T = 0.25, the full reason-
ing matches the ground truth and remains sta-
ble through T = 0. This demonstrates that
our method exhibits the same iterative refine-
ment ability as reasoning models (Shao et al.,
2024), progressively correcting previously gen-
erated steps. See Table 10 for an example on
GSM8K.

Figure 5: Effect of number of denoising steps on
downstream reasoning performance on the math
reasoning tasks.

Adaptive Test-Time Compute. As shown in
Figure 5, using more denoising steps consis-
tently improves accuracy across different math
benchmarks. For example, increasing from 5 to
10 steps (a 2× compute increase) yields a large
jump of +11.7 points in accuracy on average of
7 benchmarks. Starting from 10 steps, tripling
the compute to 30 steps provides an additional
+4.8 points on average, while a 5× compute in-
crease to 50 steps brings a total gain of +9.8
points on average. These results demonstrate
that our method can flexibly trade test-time
compute for higher performance as an alterna-
tive paradigm in reasoning for long CoT of ex-
isting reasoning models (Jaech et al., 2024; Muennighoff et al., 2025; Liu et al., 2024a; Li et al.,
2025). This may motivate adaptive policies that dynamically assign more denoising steps to harder
queries, maximizing the overall accuracy–compute trade-off.

Inference Efficiency Table 4 compares inference latency on the MATH dataset using identical
hardware and batch size (8). LaDiR with 10 diffusion steps matches the latency of the AR baseline
while achieving comparable Pass@1 and higher Pass@100. With 30 steps, LaDiR offers a flexible
accuracy-compute trade-off. This efficiency stems from our compact latent representation: each
latent block contains only 4 latent tokens, representing on average 22 text tokens, reducing per-step

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

computation and context length compared to autoregressive decoding over long text sequences. We
provide additional analyses on interpretability and semantic-level reasoning in Appendix D.

5 RELATED WORKS

Method Latency Pass@1 Pass@100

LLaMA CoT SFT 4.7 43.1 89.0
LaDiR (10 steps) 4.9 42.9 90.7
LaDiR (30 steps) 14.8 44.9 92.8

Table 4: Inference latency (seconds/example) compar-
ison on MATH dataset.

Latent Reasoning Latent reasoning
methods address token-level limits of
chain-of-thought by enabling reasoning
in a latent space, yielding more abstract
representations through discrete special
tokens that expand internal computation or
capture unstated steps (Herel & Mikolov,
2024; Pfau et al., 2024; Wang et al., 2024;
Zelikman et al., 2024; Jin et al., 2025).
Prior works show that reasoning in latent
space, rather than discrete tokens, improves performance by allowing LLMs to generate continuous
tokens, either self-generated or provided by an auxiliary model (Cheng & Durme, 2024; Hao et al.,
2024; Liu et al., 2024b; Shen et al., 2025; Tack et al., 2025; Zhu et al., 2025; Butt et al., 2025; Zhang
et al., 2025; Wu et al., 2025). This has been further extended to recurrent or looped architectures
that induce latent reasoning internally, removing the need to represent reasoning steps explicitly as
tokens (Chen et al., 2025c; Geiping et al., 2025; Mohtashami et al., 2025; Saunshi et al., 2025; Yu
et al., 2025b). However, prior latent reasoning approaches lack interpretability, as their continuous
states are opaque and difficult to understand or control. whereas our method structures the latent
space with a VAE, making each step explicit and thus more transparent.
Latent Diffusion for Language Generation Generative text modeling has recently expanded
from autoregressive paradigms to diffusion-based approaches that allow for global iterative refine-
ment. One of the first, Diffusion-LM (Li et al., 2022), frames generation as denoising continuous
word embeddings to enable fine-grained control, a concept Lovelace et al. (2023); Lovelace et al.
extended by performing diffusion in a compressed latent space for improved quality and diverse
generation modes. For sequence-to-sequence tasks, DiffuSeq (Gong et al., 2022) enables parallel
generation with high diversity, while PLANNER (Zhang et al., 2023) addresses long-form text by
combining a latent semantic diffusion planner with an autoregressive decoder to reduce repetition.
Similarly, Cosmos (Meshchaninov et al., 2025) learns a compressed latent space for diffusion, en-
abling parallel text generation with robust semantic grounding. In specialized domains, Diffusion-
Dialog (Xiang et al., 2024) utilizes latent variables to handle open-ended conversations, whereas
CodeFusion (Singh et al., 2023) and TreeDiff (Zeng et al., 2025) apply diffusion to code synthesis.
While prior latent diffusion models focus on text generation, they lack the granularity to model the
multi-step causal dependencies required for reasoning tasks. We address this by introducing block-
wise variable-length diffusion and rollout training, explicitly shifting the objective from generating
fluent text to optimizing reasoning trajectories that lead to correct answers. Due to the page limit,
we discuss further related works in Appendix A.

6 CONCLUSION

We introduced LaDiR, a latent diffusion reasoner that utilizes the iterative refinement capability
of latent diffusion models to perform reasoning at the semantic level, our framework offers three
key benefits: (1) better tradeoff between accuracy and test-time compute through iterative denois-
ing steps with self-refinement, (2) parallel and diverse exploration of reasoning trajectories beyond
the limitations of sequential autoregression, and (3) enhanced interpretability through semantically
meaningful latent representations. Our experiments on mathematical reasoning and planning bench-
marks show that LaDiR consistently outperforms AR and diffusion baselines, achieving both higher
accuracy and greater diversity in reasoning.
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A ADDITIONAL RELATED WORKS

Diffusion Language Models for Text Reasoning Masked diffusion language models attempt to
address some common limitations of autoregressive LLMs—such as rigid left-to-right decoding and
inefficiency—by iteratively denoising masked tokens, enabling parallel and order-agnostic text gen-
eration. Prior studies show that these models achieve better inference efficiency compared to AR
models while maintaining comparable performance on both general tasks (Zheng et al., 2024; Gong
et al., 2025; Nie et al., 2025; Shi et al., 2025a; Song et al., 2025; Ye et al., 2025c;b) and reasoning
benchmarks with chain-of-thought (Gao et al., 2024; Ye et al., 2024b; van Krieken et al., 2025; Ye
et al., 2025a). However, these approaches remain constrained to language space, unable to capture
reasoning at an abstract semantic level or revise previously generated tokens as continuous diffu-
sion models (Ho et al., 2020; Song et al., 2020) do, and they require training on massive datasets
rather than leveraging a well-trained LLM. In contrast, our method overcomes these limitations by
structuring reasoning in an interpretable continuous latent space, producing abstract CoT representa-
tions with self-correction ability for an existing LLM, while keeping diffusion’s strengths in parallel
generation to enhance exploration and diversity.

CoT Reasoning Chain-of-thought reasoning refers to methods which elicit LLMs to generate in-
termediate reasoning steps in language prior to outputting a final answer in order to improve perfor-
mance on reasoning tasks. This can be accomplished via prompting methods (Nye et al., 2021; Wei
et al., 2023; Khot et al., 2023; Zhou et al., 2023) or through training LLMs (by SFT, RL, or a combi-
nation of the two) to output the intermediate reasoning steps (Yu et al., 2023; Shao et al., 2024; Yu
et al., 2025a). Works have also extended CoT to allow LLMs to mimic various tree search algorithms
such as BFS or MCTS, which especially improves performance on more complex tasks (Xie et al.,
2023; Yao et al., 2023; Zhang et al., 2024; Bi et al., 2025). Beyond following specific algorithms,
works that implement long chain-of-thought (combining extensive reasoning, exploration, and re-
flection) have also demonstrated improved reasoning performance (Shinn et al., 2023; Gandhi et al.,
2025; Saha et al., 2025; Xie et al., 2025). One overarching limiting factor with these CoT methods is
that they fundamentally work at a next-token-prediction level, constraining the outputs to the token
space and limiting the model’s horizon.

Hybrid AR+Diffusion Model Architecture Other AR-Diffusion hybrid models have shown suc-
cessful results in rivaling their AR and diffusion counterparts, particularly in multimodal generation
and image understanding. The Transfusion (Zhou et al., 2024a) architecture demonstrated that
hybrid models could outperform standard AR models and compete with state-of-the-art diffusion
models in image-generation benchmarks, a phenomenon further reinforced by other studies of hy-
brid models (Fan et al., 2024; Tang et al., 2024a; Xiao et al., 2024). This extends beyond image
generation, with several works demonstrating the effectiveness of hybrid AR-diffusion models in
other domains such as image understanding, video generation, and robot control (Black et al., 2024;
Tong et al., 2024a; Chen et al., 2025a;b). Furthermore–similar to our model architecture–works have
demonstrated successful adaptations of frozen models for these hybrid AR-diffusion archictures in
multimodal domains (Pan et al., 2025; Shi et al., 2025b). Aside from the difference in domain from
these works, many do not use block diffusion for variable-length generations as in LaDiR and we
critically introduce CE loss to guide better latent predictions.

B ADDITIONAL PRELIMINARIES AND BACKGROUND

We provide more details about the background information of VAE and Diffusion models in this
section.

B.1 VARIATIONAL AUTOENCODER AND β-VAE
The Variational Autoencoder (VAE) (Kingma & Welling, 2013) is a latent-variable model that learns
a compressed representation of data x through an encoder–decoder pair. The encoder qϕ(z|x) maps
inputs into a distribution over latent variables z, typically parameterized as a diagonal Gaussian. The
decoder pθ(x|z) reconstructs the input from z, enabling generative sampling. Training maximizes
the evidence lower bound (ELBO):

LVAE = Eqϕ(z|x)[− log pθ(x|z)] + KL
(
qϕ(z|x) ∥ p(z)

)
, (7)

where the first term ensures faithful reconstruction and the second term regularizes the posterior
toward a simple prior p(z), usually N (0, I). The reparameterization trick,

z = µϕ(x) + σϕ(x)⊙ ϵ, ϵ ∼ N (0, I),
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enables low-variance gradient estimates for stochastic optimization.

β-VAE. The β-VAE (Higgins et al., 2017) introduces a hyperparameter β to control the KL weight:

Lβ-VAE = Eqϕ(z|x)[− log pθ(x|z)] + βKL
(
qϕ(z|x) ∥ p(z)

)
. (8)

When β > 1, the model enforces stronger alignment to the prior, which encourages disentangled
and interpretable latent variables at the expense of reconstruction fidelity. This property is desirable
when latent codes are later used as the substrate for generative modeling.

Why VAE for Latent Diffusion. Latent diffusion models (LDMs) (Rombach et al., 2022) operate
not on raw high-dimensional inputs (e.g., images or sequences), but in a compressed latent space
learned by a VAE. This design provides three key advantages:

1. Efficiency. Operating in latent space reduces dimensionality, leading to faster training and
inference while maintaining semantic richness.

2. Semantic abstraction. The VAE learns to discard imperceptible details and retain high-
level structure, making diffusion steps focus on meaningful features rather than pixel-level
noise.

3. Flexibility. The decoder pθ(x|z) ensures that even when denoising occurs in latent space,
the final output remains in the original input domain. This separation enables diffusion to
generalize across modalities with a shared latent backbone.

B.2 LATENT DIFFUSION: TRAINING AND INFERENCE

Latent diffusion operates in the compressed latent space z0 of a pretrained VAE.

Forward process. Noise is added gradually:

q(zt|z0) = N
(
zt;

√
ᾱt z0, (1− ᾱt)I

)
,

with ᾱt =
∏t
s=1(1− βs).

Training objective. The denoiser ϵθ(zt, t) predicts the injected noise:

LLDM = Ez0,ϵ,t
[
∥ϵ− ϵθ(zt, t)∥2

]
.

Inference. Generation starts from zT ∼ N (0, I) and denoises iteratively:

zt−1 =
1

√
αt

(
zt −

βt√
1− ᾱt

ϵθ(zt, t)
)
+ σtϵ.

B.3 COMPARISON OF PARAMETERIZATIONS

Diffusion training can be expressed through different target parameterizations, all of which can be
interpreted as variants of the same continuous-time flow. Below we summarize the most common
forms:

B.3.1 ϵ-PREDICTION

The denoiser directly predicts the added Gaussian noise ϵ:

Lϵ = Ez0,ϵ,t
[
∥ϵ− ϵθ(zt, t)∥2

]
, (9)

where zt =
√
ᾱtz0 +

√
1− ᾱt ϵ. This is the standard DDPM formulation (Ho et al., 2020). It is

stable but sometimes less efficient for long horizons.

B.3.2 x0-PREDICTION (DDIM-x0)
Instead of noise, the model predicts the clean latent z0:

Lx0
= Ez0,t

[
∥z0 − x0,θ(zt, t)∥2

]
. (10)

This corresponds to the DDIM formulation (Song et al., 2020), enabling deterministic sampling and
fewer inference steps, but can overfit to data scale.
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B.3.3 v-PREDICTION

Proposed by Salimans & Ho (2022), v is defined as a linear combination of noise and clean latent:
v =

√
ᾱt ϵ−

√
1− ᾱt z0, (11)

with objective
Lv = Ez0,ϵ,t

[
∥v − vθ(zt, t)∥2

]
. (12)

v-prediction is numerically better conditioned, often improving stability across timesteps.

All four parameterizations can be viewed as different instantiations of the same underlying genera-
tive flow. ϵ-prediction, x0-prediction, and v-prediction specify which quantity the denoiser regresses
on. Flow matching directly learns the continuous velocity field, avoiding discretization artifacts.

B.4 BLOCK DIFFUSION

Suppose we are using ϵ-prediction, and let a sequence be segmented into M blocks {B1, . . . , BM},
where Bm ∈ Rk×d contains k latent tokens of dimension d. The forward noising process for block
Bm is

q(Bm,t | Bm,0) = N
(√
ᾱtBm,0, (1− ᾱt)I

)
, (13)

and the denoiser fθ is trained to predict the noise at the block level:

Lblock = Em,t,ϵ
[∥∥ϵ− fθ(Bm,t, t)

∥∥2]. (14)

Blocks are generated autoregressively, i.e.,

p(Bm | B<m) =

∫
q(Bm,0 | x)

∏
t

pθ(Bm,t−1 | Bm,t, B<m) dBm,0, (15)

so that each block is denoised iteratively while conditioning on all previously generated blocks.

C ADDITIONAL ABLATION STUDIES

Objective CD-4 Pass@1 (%)

MSE Loss 46.0
x0 53.0
ϵ 58.0
v 62.0
u (ours) 73.5

Table 5: Ablation study on latent prediction
objectives on the Countdown-4 dataset.

Latent Prediction Objective To assess the im-
pact of different training objectives for latent predic-
tion, we compare several widely used formulations.
The first baseline is MSE loss, which directly min-
imizes the mean-squared error between predicted
and ground-truth latents but yields the weakest re-
sults. We then adopt three DDIM-based (Song et al.,
2020) objectives: predicting the clean latent state
(x0), the added noise vector (ϵ), and the velocity (v).
These diffusion objectives consistently improve ac-
curacy, highlighting the advantage of explicitly mod-
eling the denoising process rather than relying on direct predictions. Moreover, the flow match-
ing (u) objective achieves the strongest gains, suggesting that learning the latent vector field is
more effective for capturing the pattern of reasoning compared to DDIM’s denoising objectives.

Figure 6: Ablation analysis of block size on the
GSM8K benchmark.

Effect of the Block Size. We investigate how
the number of latent tokens per block (Lb) in-
fluences reconstruction quality and downstream
reasoning accuracy on GSM8K. As shown in
Figure 6, too few tokens (i.e., 1 token) limit
the model’s ability to capture necessary informa-
tion, harming reconstruction. Performance im-
proves as the number of tokens increases, reach-
ing near-perfect reconstruction at n = 6. Beyond
this point, however, adding more tokens intro-
duces redundancy, which makes the latent diffu-
sion model harder to predict accurately and leads
to diminished reasoning accuracy. This reveals a
trade-off between compact latent representations
and effective downstream reasoning.
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VAE Robustness Augmentations. When training our VAE, to improve the robustness of the VAE
latent space, we apply two augmentation strategies during VAE training: (1) adding Gaussian noise
to latent representations with standard deviation k, and (2) randomly substituting input tokens with
probability p. Table 6 shows the impact of these augmentations on GSM8K accuracy. Best per-
formance is achieved at k = 3 and p = 0.3. Too little augmentation (k = 0 or p = 0) results in
overfitting to clean inputs, while excessive augmentation (k = 5 or p > 0.5) degrades the latent
space quality.

Latent Gaussian Noise (p=0.3) Token Substitution (k=3)

k (std) GSM8K Acc (%) p (prob.) GSM8K Acc (%)

0 68.3 0.0 70.2
1 73.4 0.1 78.3
3 84.2 0.3 84.2
5 79.4 0.5 64.0
– – 0.7 32.4

Table 6: Ablation study on VAE robustness augmentations on GSM8K.

Blockization Strategy We investigate the sensitivity of the model to different blockization strate-
gies by varying the number of sentences per block. Table 7 shows results for 1, 2, and 3 sentences per
block. Using more sentences per block requires more latent tokens to maintain reconstruction qual-
ity and significantly increases difficulty for the diffusion model. We find that 1 sentence per block
with 4 latent tokens offers the best balance between latent compactness and reasoning accuracy.

# Sentences # Latent Tokens GSM8K MATH

1 4 84.2 45.2
2 8 78.4 39.6
3 12 72.0 36.1

Table 7: Ablation study on blockization strategy (sentences per block).
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Method MATH GSM8K Gaokao DM College Olympia TheoremQA Avg.
DIFFUSION LANGUAGE MODELS — LLADA 8B

Base Model – – – – – – – –
CoT SFT 59.9 92.4 43.0 50.7 58.3 10.2 26.3 48.7

AUTOREGRESSIVE MODELS — LLAMA 3.1 8B
Sol-Only SFT – – – – – – – –
CoT SFT 49.8 89.0 37.9 52.0 54.9 12.9 25.0 45.9
iCoT – – – – – – – –
Pause Token – – – – – – – –
Coconut 39.3 74.3 29.3 36.9 42.9 6.3 14.9 34.8
Discrete Latent 47.3 88.6 39.7 49.5 53.7 17.8 28.5 46.4

LaDiR 63.7 93.7 45.8 54.2 60.3 15.3 30.7 52.0

Table 8: Pass@100 accuracy across in-domain and out-of-domain math benchmarks.

D ADDITIONAL RESULTS AND ANALYSIS

Pass@k Results on Math Reasoning

Intepretability In addition to achieving superior or competitive accuracy across each benchmark,
as shown in Table 9, LaDiR also benefits from being more interpretable by nature compared to
standard diffusion-based methods.

Block Text

Question Billy sells DVDs. He has 8 customers on Tuesday. The first 3 buy one DVD each, the next 2
buy two DVDs each, the last 3 buy none. How many DVDs did Billy sell?

Decode(Z(1)): Billy’s first 3 customers buy one DVD each, so that’s 3 ∗ 1 = ⟨⟨3 ∗ 1 = 3⟩⟩3 DVDs.
Decode(Z(2)): His next 2 customers buy 2 DVDs each, so that’s 2 × 2 = 4 DVDs.
Decode(Z(3)): His last 3 customers don’t buy any DVDs, so that’s 0 DVDs sold.
Decode(Z(4)): Therefore, Billy sold a total of 3 + 4 + 0 = 7 DVDs on Tuesday.
Answer The answer is: 7.

Table 9: Example of interpretable continuous thought tokens: each latent block Zi is able to be de-
coded to human-readable text through the VAE decoder. Each latent block is decoded individually,
so the entire latent thought is represented by the block in isolation. This allows for clear interpretibil-
ity of each latent thought, while still allowing for a model to reason in a latent space.

Reasoning at Semantic Level Table 10 demonstrates that LaDiR refines its reasoning through
semantic information rather than lexical connections. The pink segments trace how the model in-
crementally refines its intermediate reasoning steps—transforming rough or incomplete arithmetic
expressions into logically consistent equations. For example, the model first produces an approxi-
mate relation such as 2 = 1 + 1 and later reconstructs the correct multiplicative form 2 ∗ 1 = 2,
eventually combining these into a complete causal chain that leads to 2 ∗ 4 = 8. Meanwhile, the
green segments serve as stable anchors capturing the essential reasoning cues—phrases like “two
times older than” and “four times as old”—which define the causal dependencies between Suzy,
Ben, and Brandon. In contrast, the yellow segments correspond to non-reasoning or noisy parts
(e.g., “Alice,” “Instagram”) that the model learns to “ignore” during early denoising, prioritizing
semantically coherent and logical grounded reasoning over irrelevant lexical content. In contrast,
the SFT baseline remains syntactically fluent but semantically brittle—producing text that appears
correct on the surface yet fails to capture the true causal logic. These observations indicate that
LaDiR’s denoising process operates on the level of semantics and relational consistency, enabling
reasoning that aligns with human-like conceptual understanding.

Consistency Across Long Reasoning Blocks As shown in Table 11, LaDiR maintains coherent
and semantically consistent reasoning across a long sequence of blocks. Each block builds logically
on the previous one—starting from variable definition (x as silver coins), to constraint formulation
(x + (x + 30) = 110), simplification, and finally the correct numerical conclusion (x = 40, gold
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Question Brandon’s iPhone is four times as old as Ben’s iPhone. Ben’s iPhone is two times
older than Suzy’s iPhone. If Suzy’s iPhone is 1 year old, how old is Brandon’s
iPhone?

SFT (Baseline) Suzy’s iPhone is 1 year old. Ben’s iPhone would be 1 + 1 = 2 years old.
Since Brandon’s iPhone is four times as old as Ben’s, we compute 4 × 1 = 4.
Therefore, Brandon’s iPhone is 4 years old. The answer is: 4.

LaDiR (Ours) Block 1 Block 2
Decode(Ẑt=1.0) 10 and 10 10.... [garbled tokens] &ˆ*

Decode(Ẑt=0.9) If Alice is 1 year old , then Bob’s age
is 2 years older than Alice, which
means Bob is 2 = 1 + 1 years old .

://@natechandra’s Instagram
is four times as old as Ben’s
Instagram, so Ben’s Instagram is
1 * 4 = 4 years old .

Decode(Ẑt=0.8) If Suzy’s age is 1 year old , then
Ben’s age is two times older than
Suzy’s age, which is
2 * 1 = 2 years old .

If Brandon’s phone is
four times as old as Ben’s
phone , then Brandon’s phone is
2 * 4 = 8 years old .1nbsp;nbsp;nbsp...

Decode(Ẑt≤0.7) If Suzy’s iPhone is 1 year old , then
Ben’s iPhone is two times older than
Suzy’s iPhone, so Ben’s iPhone is
2 * 1 = 2 years old .

If Brandon’s iPhone is
four times as old as Ben’s
iPhone , then Brandon’s iPhone is
2 * 4 = 8 years old .

Answer The answer is: 8.

Table 10: An example of self-refinement during inference on the GSM8k dataset, showing how
reasoning becomes progressively clearer as t decreases. Later denoising steps correct arithmetic
errors while maintaining earlier structure, demonstrating semantic self-refinement. Pink segments
highlight refined reasoning portions, yellow segments indicate non-reasoning or noisy parts that the
model gradually corrects, and green segments denote key reasoning cues essential for correct logic.

= 70). Unlike the SFT baseline, which produces a single-step approximation that conflates interme-
diate relations, LaDiR preserves arithmetic and causal consistency throughout the reasoning chain,
demonstrating stable multi-step inference even with a large number of reasoning blocks.

Question Gretchen has 110 coins. There are 30 more gold coins than silver coins. How many
gold coins does Gretchen have?

SFT (Baseline) Let’s assume Gretchen has 110 coins in total and 30 more gold than silver. Half of
the coins plus 30 should be gold, so 110/2 + 30 = 85 gold coins.

LaDiR (Ours)

Decode(Z(1)) Let’s assume the number of silver coins Gretchen has is x silver coins.
Decode(Z(2)) We also know that there are 30 more gold coins than silver coins, so the number of

silver coins is x+ 30 gold coins.
Decode(Z(3)) The total number of coins Gretchen has is x+ (x+ 30) = 110.
Decode(Z(4)) Combining like terms, we get 2x+ 30 = 110.
Decode(Z(5)) Subtracting 30 from both sides, we get 2x = 80.
Decode(Z(6)) Dividing both sides by 2, we get x = 40.
Decode(Z(7)) Therefore, Gretchen has 30 + 40 = 70 gold coins.
Answer The answer is: 70.

Table 11: An qualitative example in GSM8K illustrating the long reasoning blocks generated by our
method compared to the baseline SFT.
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E EXPERIMENTAL DETAILS

E.1 MATH REASONING

Implementation Details The CoT data is segmented into thought-level blocks, where each block
corresponds to a single sentence and is represented by 6 latent thought tokens. For VAE training,
we set the to β = 10−5, in which the encoder is finetuned from the backbone model while the
decoder remains frozen. The flow-matching model is trained with the objective in Eq. 5, using
λFM = 5, λAns = 1, λSpec = 2. During inference, we initialize the Gaussian noise of scale 2, and
apply diversity guidance with a maximum scale of 0.8.

Datasets We train on only the DART-MATH dataset, holding out all other benchmarks for evalu-
ation only. Table 12 summarizes the datasets. While training is limited to mathematical reasoning
problems, our evaluations also include out-of-domain tasks such as engineering and physics, pro-
viding both in-domain and out-of-domain benchmarks to assess the reasoning and generalization
capabilities of LaDiR and the baselines.

Dataset # Samples Domain / Level Notes
DART-MATH 585k Mixed math (train) Synthesized for reasoning, based on GSM8K/MATH

MATH 500 High school / competition In-domain benchmark
GSM8K 1.3k Grade school arithmetic In-domain benchmark
College-Math 2.8k College-level Linear algebra, differential equations, etc.
DM-Math 1k K–12 curriculum Out-of-domain generalization
OlympiaBench-Math 675 Olympiad-level Advanced competition problems
TheoremQA 800 STEM / theorem-driven Math, physics, engineering
Fresh-Gaokao-Math-2023 30 Gaokao exam Real-world test distribution

Table 12: Summary of datasets used in our experiments. We use DART-MATH (Tong et al., 2024b),
MATH (Hendrycks et al., 2021), GSM8K (Cobbe et al., 2021), College-Math (Tang et al., 2024b),
DeepMind-Math (Saxton et al., 2019), OlympiaBench-Math (He et al., 2024), TheoremQA (Chen
et al., 2023), and Fresh-Gaokao-Math-2023 (Tang et al., 2024b).

E.2 HYPERPARAMETERS

Table 13 provides a complete summary of all hyperparameters used in our experiments, covering
VAE pretraining, Stage-1 teacher-forcing training, Stage-2 rollout training, and inference settings.

Component Hyperparameter Value

VAE Pretraining

Latent dimension (dz) 512
# latent tokens per block 4
KL weight β 1× 10−5

Learning rate 2× 10−5

Batch size 128
# of Epochs 2

Stage-1 Teacher-Forcing

Flow-matching loss weight (λFM) 5
CE loss weight (λAns) 1
Special-token loss weight (λSpec) 1
Learning rate 1× 10−5

Batch size 64
# of Epochs 20

Stage-2 Rollout Training
Learning rate 1× 10−5

Batch size 12
# of Epochs 20

Inference Classifier-free guidance scale 4
Answer token decoding temperature 0.7

Table 13: Complete hyperparameter settings for all training and inference stages.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

F ADDITIONAL MODEL DETAILS

VAE Training Architecture Figure 7 is a more in-depth diagram of the training of the VAE. The
encoder LLM first maps the input sequence of original text embeddings and learnable embeddings
into hidden states. These hidden states are then projected through two linear layers to produce
the mean and variance of the latent distribution, from which we sample the thought tokens via
the reparameterization trick. The sampled latent tokens z̃1, z̃2, . . . , z̃k are passed to the decoder
LLM, which reconstructs the original text tokens under a teacher-forcing setup. This design enables
the model to compress high-dimensional text into a smaller set of semantically meaningful latent
variables, while still maintaining faithful reconstruction of the original reasoning process.

Figure 7: Detailed architecture of the variational autoencoder for latent reasoning. The encoder is
a finetuned LLM that takes both original text embeddings e(wi) and learnable embeddings ez(zi),
producing mean and variance vectors through linear projections of the last hidden state h. Latent
thought tokens z̃i are then sampled from N (µ, σ2). The decoder is a frozen LLM that reconstructs
the original CoT text under teacher forcing, conditioned on both the sampled thought tokens and the
original text embeddings.
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G USE OF LARGE LANGUAGE MODELS (LLMS)
Throughout this project, Large Language Models were utilized as coding tools and as grammar
checkers to support the writing of the paper. They did not play a significant role in research ideation
or writing to the extent of being listed as a contributor. LLMs were used strictly as a general purpose
tool.
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