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Abstract

Multi-agent reinforcement learning (MARL) presents unique challenges as agents
learn strategies through trial and error. Gradient-based methods are often sen-
sitive to hyperparameter selection and initial random seed variations. Recently,
progress has been made in solving problems modeled by Variational Inequalities
(VIs)—which include equilibrium-finding problems—particularly in addressing
the non-converging rotational dynamics that impede convergence of traditional
gradient-based optimization methods. This paper explores the potential of lever-
aging VI-based techniques to improve MARL training. Specifically, we study the
performance of VI methods—namely, Nested-Lookahead VI (nLA-VI) and Extra-
gradient (EG)—in enhancing the multi-agent deep deterministic policy gradient
(MADDPG) algorithm. We present a VI reformulation of the actor-critic algorithm
for both single- and multi-agent settings. We introduce three algorithms that use
nLA-VI, EG, and a combination of both, named LA-MADDPG, EG-MADDPG,
and LA-EG-MADDPG, respectively. Our empirical results demonstrate that these
VI-based approaches yield significant performance improvements in benchmark
environments, such as the zero-sum games: rock-paper-scissors and matching
pennies, where equilibrium strategies can be quantitatively assessed, and the MPE
Predator-prey environment [Lowe et al., 2017], where VI-based methods also foster
more balanced participation among agents on the same team.

1 Introduction

We focus on multi-agent reinforcement learning (MARL) where multiple agents interact and learn
simultaneously. MARL is often used to address complex, multi-agent problems across diverse do-
mains, such as coordinating multi-robot and multi-drone systems for tasks like search and warehouse
automation, optimizing traffic flow and vehicle platooning in autonomous driving, managing energy
distribution in smart grids, simulating financial markets and automated trading, improving patient
management and drug discovery in healthcare, enhancing network performance in telecommunica-
tions, training intelligent agents in games [e.g., Omidshafiei et al., 2017, Vinyals et al., 2017, Spica
et al., 2018, Zhou et al., 2021, Bertsekas, 2021], among others. In MARL, agents aim to optimize a
shared objective while acting on their own policies based on their observation of the environment.
The interactions among agents can be competitive, cooperative, or a mix of both, leading to complex
learning dynamics that differ significantly from single-agent reinforcement learning.

A significant challenge in single-agent reinforcement learning is the high sensitivity to hyperparameter
selection and variations in initial random seeds. These methods require careful hyperparameter
tuning, and performance can vary drastically with different random seeds used for sampling and
model initialization [Wang et al., 2022, Eimer et al., 2023]. Consequently, the results are often not
reproducible [Henderson et al., 2019], complicating research efforts and the deployment of these
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algorithms. This issue propagates to multi-agent reinforcement learning (MARL) when single-agent
methods are extended to the MARL framework. The work of Gorsane et al. [2022] highlights how a
small change in the choice of hyperparameter values can lead to a significant difference in algorithm
results. The same work also addresses that the results obtained from different seeds in popular MARL
benchmarks like StarCraft multi-agent challenge [Samvelyan et al., 2019] exhibit a high variance.
Furthermore, iterative gradient-based approaches for MARL have difficulty in exploring joint policy
spaces of the multiple agents [Li et al., 2023, Christianos et al., 2021] which may lead to sub-optimal
solutions. Moreover, inherent cycling effects[Zheng et al., 2021] of some MARL structures is an
added challenge for those approaches.

A concurrent line of works focuses on the Variational Inequality (VI) problem, a general class
of problems that encompasses both equilibria and optima. VIs generalize standard constrained
minimization problems, where F is a gradient field F ≡ ∇f , and, by allowing F to be a general
vector field, they also include problems such as finding equilibria in zero-sum and general-sum
games [Cottle and Dantzig, 1968, Rockafellar, 1970]. It has been observed that standard optimization
methods that perform well in minimization tasks of the form minz f(z)—where f : Rd → R is
a real-valued loss function—often fail to solve simple problem instances of VIs. This failure is
primarily due to the rotational component inherent in the gradient dynamics of these settings, which
leads to non-convergence [Mescheder et al., 2018, Balduzzi et al., 2018]. More precisely, the Jacobian
of the associated vector field (see def. in Section 3) can be decomposed into a symmetric and
antisymmetric component [Balduzzi et al., 2018], where each behaves as a potential [Monderer and
Shapley, 1996] and a Hamiltonian game, resp. For instance, the gradient descent method for the
simple minz1∈Rd1 maxz2∈Rd2 z1 · z2 game, which simultaneously updates z1, z1 rotates around
the solution for infinitesimally small learning rates, and diverges away from it for practical choices of
its value. As a result, all variation methods based on gradient descent, such as Adam [Kingma and
Ba, 2015] have no hope of converging for a more general problem class. This problematic behavior
is particularly pronounced when the separate sets of parameters are neural networks, as in generative
adversarial networks [GANs, Goodfellow et al., 2014]. As a result, when GANs were first introduced,
substantial computational resources were required to fine-tune hyperparameters [Radford et al., 2016].
In addition, even for highly tuned hyperparameters, training often diverges away [Chavdarova et al.,
2021], unlike in standard minimization. Since practical GAN implementations are often not zero-sum,
VIs allow for their modeling. The above training difficulties inspired numerous recent research efforts
to develop numerical methods to approximately solve variational inequalities (VIs) and to study how
VI optimization differs from minimization. Various algorithms have been proposed and studied;
reviewed in Sections 2 and 3 and Appendix A.1.1.

In this paper, we pose the following question:

Do MARL algorithms gain advantages from using VI optimization methods?

To address this question, we focus on the multi-agent deep deterministic policy gradient (MADDPG)
method [Lowe et al., 2017] and integrate it with the nested-Lookahead-VI (nLA-VI) [Chavdarova
et al., 2021] and Extragradient (EG) [Korpelevich, 1976] methods for solving variational inequalities
(VIs). In summary, our main contributions are as follows:

• We present a VI perspective for multi-agent reinforcement learning (MARL) problems.
• We propose the LA-MADDPG, EG-MADDPG, and LA-EG-MADDPG algorithms, which extend

MADDPG by combining it with nLA-VI, and with EG and a mix of both (respectively) in the
actor-critic parameter optimization for all agents.

• We empirically compare our proposed methods to standard optimization methods in several two-
player games and some MPE [Lowe et al., 2017] benchmarks.

• We provide further insights on using rewards as a metric within the MARL setting.

2 Related Works

Our work draws mainly from two lines of work that we review next.

Multi-Agent Reinforcement Learning (MARL). Various MARL algorithms have been developed,
with some extending existing single-agent reinforcement learning (RL) methods [Rashid et al., 2018,
Son et al., 2019, Yu et al., 2022, Kuba et al., 2022]. Lowe et al. [2017] extend the actor-critic
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algorithm to the MARL setting using the centralized training decentralized execution framework.
In the proposed algorithm, named multi-agent deep deterministic policy gradient (MADDPG), each
agent in the game consists of two components: an actor and a critic. The actor is a policy network
that has access only to the local observations of the corresponding agent and is trained to output
appropriate actions. The critic is a value network that receives additional information about the
policies of other agents and learns to output the Q-value; see Section 3. After a phase of experience
collection, a batch is sampled from a replay buffer and used for training the agents. To our knowledge,
all deep MARL implementations rely on either stochastic gradient descent or Adam optimizer
[Kingma and Ba, 2015] to train all networks. Game theory and MARL share many foundational
concepts, and several studies explore the relationships between the two fields [Yang and Wang, 2021,
Fan, 2024], with some using game-theoretic approaches to model MARL problems [Zheng et al.,
2021]. This work proposes incorporating game-theoretic techniques into the optimization process of
existing MARL methods to determine if these techniques can enhance MARL optimization.

Variational Inequalities (VIs). VIs were first formulated to understand the equilibrium of a
dynamical system [Stampacchia, 1964]. Since then, they have been studied extensively in mathematics
including operational research and network games [see Facchinei and Pang, 2003a, and references
therein]. More recently, after the shown training difficulties of GANs [Goodfellow et al., 2014]—
which are an instance of VIs—an extensive line of works in machine learning studies the convergence
of iterative gradient-based methods to solve VIs numerically. Since the last and average iterates
can be far apart when solving VIs [see e.g., Chavdarova et al., 2019], these works primarily aimed
at obtaining last-iterate convergence for special cases of VIs that are important in applications,
including bilinear or strongly monotone games [e.g., Tseng, 1995, Malitsky, 2015, Facchinei and
Pang, 2003a, Daskalakis et al., 2018, Liang and Stokes, 2019, Gidel et al., 2019, Azizian et al., 2020,
Thekumparampil et al., 2022], VIs with cocoercive operators [Diakonikolas, 2020], or monotone
operators [Chavdarova et al., 2023, Gorbunov et al., 2022]. Several works (i) exploit continuous-time
analyses [Ryu et al., 2019, Bot et al., 2020, Rosca et al., 2021, Chavdarova et al., 2023, Bot et al.,
2022], (ii) establish lower bounds for some VI classes [e.g., Golowich et al., 2020b,a], and (iii)
study the constrained setting [Daskalakis and Panageas, 2019, Cai et al., 2022, Chavdarova et al.,
2024], among other. Due to the computational complexities involved in training neural networks,
iterative methods that rely solely on first-order derivative computation are the most commonly
used approaches for solving variational inequalities (VIs). However, standard gradient descent
and its momentum-based variants often fail to converge even on simple instances of VIs. As a
result, several alternative methods have been developed to address this issue. Some of the most
popular first-order methods for solving VIs include the extragradient method [Korpelevich, 1976],
optimistic gradient method [Popov, 1980], Halpern method [Diakonikolas, 2020], and (nested)
Lookahead-VI method [Chavdarova et al., 2021]; these are discussed in detail in Section 3 and
Appendix A.1.1. In this work, we primarily focus on the nested Lookahead-VI method, which has
achieved state-of-the-art results on the CIFAR-10 [Krizhevsky, 2009] benchmark for generative
adversarial networks [Goodfellow et al., 2014].

3 Preliminaries

Notation. Bold small letters denote vectors, and curly capital letters denote sets. Let Z be a convex
and compact set in the Euclidean space, with inner product ⟨·, ·⟩.

Setting: multi-agent deep deterministic policy gradient. Markov Games (MGs) extend Markov
Decision Processes to the multi-agent setting. In a Markov Game, N agents interact within an
environment characterized by a set of states S. Agents receive observations oi, i = 1, . . . , N of the
current environment state s ∈ S . Based on their policies πi, each agent i chooses an action ai ∈ Ai

from predefined finite action sets Ai, i = 1, . . . , N . These actions, collectively represented as a, are
then applied to the environment, which transitions to a new state ŝ ∈ S according to a transition
function T : S → S. Each agent receives a reward ri, i = 1 . . . N , and a new observation ôi. In the
MARL setting herein, each agent has its own Q-value that is, how much reward it expects to get from
a state when joint action a is performed.

Multi-agent deep deterministic policy gradient [MADDPG, Lowe et al., 2017], extends Deep
deterministic policy gradient [DDPG, Lillicrap et al., 2019] to multi-agent setting using the framework
of centralized training decentralized execution. Each agent i has (i) a critic network—Qi—which
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acts as a centralized action-value function, (ii) a target critic network Q′
i that is less frequently updated

with the most recent Qi parameters for learning stability, (iii) an actor network µi which represents
the policy to be updated, and (iv) a target actor network µ′

i from which it selects its actions and is
periodically updated with the learned policy µi. Both the Critic and Actor networks are modeled
using feedforward networks, parameterized by w and θ respectively.

The VI framework. Broadly speaking, VIs formalize equilibrium-seeking problems. The goal is
to find an equilibrium z⋆ from the domain of continuous strategies Z , such that:

⟨z − z⋆, F (z⋆)⟩ ≥ 0, ∀z ∈ Z , (VI)

where the so-called operator F : Z → Rn is continuous, and Z is a subset of the Euclidean
d-dimensional space Rd. Thus, VIs are defined by the tuple F,Z , denoted herein as VI(F , Z).
This problem is equivalent to standard minimization, when F ≡ ∇f , where f is a real-valued
function f : Rd → R. We refer the reader to [Facchinei and Pang, 2003b] for an introduction and
examples. To illustrate the relevance of VIs to multi-agent problems, consider the following example.
Suppose we have N agents, each with a strategy zi ∈ Rdi , and let us denote the joint strategy with
z ≡ [z⊺

1 , . . . ,z
⊺
N ]⊺ ∈ Rd, d =

∑N
i=1 di. Each agent aims to optimize its objective fi : Rd → R.

Then, finding an equilibrium in this game is equivalent to solving a VI where F corresponds to:
F (z) ≡ [∇z1f1(z), . . . ,∇zN

fN (z)]
⊺
.

Algorithm 1 Procedure Pseudocode for nLA-VI, called from Algorithm 2.
1: procedure NESTEDLOOKAHEAD:
2: Input: Number of agents N , current episode e, current actor weights and snapshots

{(θi,θi,s,θi,ss, )}Ni=1, current critic weights and snapshots {(wi,wi,s,wi,ss)}Ni=1, lookahead
hyperparameters ks, kss (where kss can be ∅) and αθ, αw

3: Result: Updated actor and critic weights and snapshots for all agents
4: if e%ks == 0 then
5: for all agent i ∈ 1, . . . , N do
6: wi ← wi,s + αw(wi −wi,s) Apply lookahead (1st level)
7: θi ← θi,s + αθ(θi − θi,s)
8: (θi,s,wi,s)← (θi,wi) Update snapshots (1st level)
9: end for

10: end if
11: if kss is not ∅ and e%kss == 0 then
12: for all agent i ∈ 1, . . . , N do
13: wi ← wi,ss + αw(wi −wi,ss) Apply lookahead (2nd level)
14: θi ← θi,ss + αθ(θi − θi,ss)
15: (θi,s,θi,ss,wi,s,wi,ss)← (θi,θi,wi,wi) Update snapshots (1st & 2nd level)
16: end for
17: end if
18: end procedure

Methods for solving VIs. The gradient descent method naturally extends for the VI problem as
follows:

zt+1 = zt − ηF (zt) , (GD)
where t denotes the iteration count, and η ∈ (0, 1) the step size or learning rate. The nested-
Lookahead-VI algorithm for VI problems [Chavdarova et al., 2021], originally proposed for mini-
mization by Zhang et al. [2019], is a general wrapper of a “base” optimizer where, at every step t:
(i) a copy of the current iterate z̃t is made: z̃t ← zt, (ii) z̃t is updated k ≥ 1 times, yielding ω̃t+k,
and finally (iii) the actual update zt+1 is obtained as a point that lies on a line between the current zt
iterate and the predicted one z̃t+k:

zt+1 ← zt + α(z̃t+k − zt), α ∈ [0, 1] . ((nested)LA-VI)

Notice that we can apply this idea recursively, and when the base optimizer is (nested)LA-VI (at
some level), then we have nested LA-VI, as proposed in Algorithm 3 in [Chavdarova et al., 2021].

Extragradient [Korpelevich, 1976] uses a “prediction” step to obtain an extrapolated point zt+ 1
2

using GD: zt+ 1
2
=zt − ηF (zt), and the gradients at the extrapolated point are then applied to the
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current iterate zt as follows:

zt+1=zt − ηF
(
zt − ηF (zt)

)
, (EG)

where η > 0 is a learning rate (step size). Unlike gradient descent, EG converges on some simple
game instances, such as in games linear in both players [Korpelevich, 1976].

4 A VI Perspective & Optimization Methods for MARL

Herein, we describe our proposed approach, which utilizes VI methods in combination with a MARL
algorithm. Specifically, we delve into MADDPG, give a VI perspective of it, and describe its
combination with extragradient [Korpelevich, 1976] and nested Lookahead [Chavdarova et al., 2021].

4.1 A VI Perspective of MADDPG

Recall that for each i = 1, . . . , N agent, we have:

1. Q–Network, Qµ
i (x, a1, . . . , aN ;wi): central critic network for agent i;

2. Policy network, µi(oi;θi): policy network for agent i;

3. Target Q–network, Qµ′

i (x, a1, . . . , aN ;w′
i);

4. Target policy network, µ′
i(oi;θ

′
i).

These networks (maps) are parametrized by wi,θi,w
′
i,θ

′
i, respectively; with wi,w

′
i ∈ RdQ

i and
θi,θ

′
i ∈ Rdµ

i . The latter two—w′
i,θ

′
i for agent i—are running averages computed as:

θ′
i ← τθi + (1− τ)θ′

i

w′
i ← τwi + (1− τ)w′

i

. (Target-Nets)

Given a batch of experiences (xj ,aj , rj , x̂j)—sampled from a replay buffer (D)—the goal is to find
an equilibrium by solving the VI problem with the operator F defined as:

FMADDPG

(
...
wi

θi
...

)
≡



...

∇wi

1
S

∑
j

(
rji + γQµ′

i (x̂j , a′1, . . . , a
′
N ;w′

i)
∣∣
a′
k=µ′

k(o
j
k)
−Qµ

i (x
j ,aj ;wi)

)2

1
S

∑
j ∇θi

µi(o
j
i ;θi)∇ai

Qµ
i (x

j , aj1, . . . , ai, . . . , a
j
N ;wi)

∣∣∣
ai=µi(o

j
i )

...


,

(FMADDPG)
and Z ≡ Rd, where d =

∑N
i=1(d

Q
i + dµi ). Even if N = 1, there is still a game between the actor

and critic—the update of wi depends on θi and vice versa.

4.2 Proposed Methods

To solve the VI problem with the operator as defined in (FMADDPG), we propose the LA-MADDPG,
and EG-MADDPG methods, described in detail in this section.

LA-MADDPG. Algorithm 2 describes the LA-MADDPG method. Critically, the (nested)LA-VI
method is used in the joint strategy space of all players. In this way, the averaging steps address the
rotational component of the associated vector field defined by FMADDPG resulting from the adversarial
nature of the agents’ objectives. In particular, it is necessary not to use an agent whose parameters
have already been averaged at that iteration.

The LA-MADDPG algorithm saves snapshots of the actor and critic networks for all agents, peri-
odically averaging them with the current networks during training. While the MADDPG algorithm
(Algorithm 4) runs normally using a base optimizer (e.g., Adam), at every interval k, a lookahead
averaging step is performed between the current networks (denoted θ,w), and their saved snapshots
θs,ws, as detailed in Algorithm 1. This method updates both the current networks and snapshots with
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the α-averaged values. Multiple nested lookahead levels can be applied, where each additional level
updates its snapshot after a longer interval; see Algorithm 1. We denote lookahead update intervals
(episodes) with k subscripted by s and a larger number of s in subscript implies outer lookahead level,
e.g., ks, kss, ksss for three levels. All agents undergo lookahead updates at the same step, applying
this to both the actor and critic parameters simultaneously. An extended version of the algorithm with
more detailed notations can be found in appendix in algorithm 5.

(LA-)EG-MADDPG. For EG-MADDPG, EG is used for both the actor and critic networks and
for all agents; see Algorithm 6 for details. Algorithm 2 can also be used with EG as the base
optimizer—an option abstracted by B in Algorithm 2—resulting in LA-EG-MADDPG.

Algorithm 2 Pseudocode for LA–MADDPG: MADDPG with (Nested)-Lookahead-VI.
1: Input: Environment E , number of agents N , number of episodes T , action spaces {Ai}Ni=1,

random steps Trand, learning interval Tlearn, actor networks {µi}Ni=1 with weights θ ≡ {θi}Ni=1,
critic networks {Qi}Ni=1 with weights w ≡ {wi}Ni=1, target actor networks {µ′

i}Ni=1 with weights
θ′ ≡ {θ′

i}Ni=1, target critic networks {Q′
i}Ni=1 with weights w′ ≡ {w′

i}Ni=1, learning rates ηθ, ηw,
optimizer B, discount factor γ, lookahead parameters ks, kss, αθ, αw, soft update parameter τ .

2: Initialize:
3: Replay buffer D ← ∅
4: Weights snapshots (θs,θss,ws,wss)← (θ,θ,w,w)
5: for all episode e = 1 to T do
6: Sample initial state x from E
7: step← 1
8: repeat
9: if step ≤ Trand then

10: Randomly select actions for each agent i
11: else
12: Select actions using policy for each agent i
13: end if
14: Execute actions a, observe rewards r and new state x̂
15: Store (x,a, r, x̂) in replay buffer D
16: x← x̂
17: if step%Tlearn == 0 then
18: Sample a batch B from D
19: Use B and update to solve VI(FMADDPG, Rd) using B
20: Update target networks:
21: θ′ ← τθ + (1− τ)θ′

22: w′ ← τw + (1− τ)w′

23: end if
24: step← step+ 1
25: until environment terminates
26: NESTEDLOOKAHEAD(N, e,θ,w, ks, kss, αθ, αw)
27: end for
28: Output: θ, w

5 Experiments

5.1 Setup

We build1 upon the open-source PyTorch implementation of MADDPG [Lowe et al., 2017]2. We use
the same hyperparameter settings as specified in the original paper; detailed in Appendix A.2. For
our experiments, we use two zero-sum games: the Rock-Paper-Scissors (RPS) game and Matching
pennies. We then apply the methods to two of the Multi-agent Particle Environments (MPE) [Lowe
et al., 2017]. We used versions of the games from the PettingZoo [Terry et al., 2021] library. We used

1Code can be found at https://github.com/badil96/VI-maddpg.git.
2Available at https://github.com/Git-123-Hub/maddpg-pettingzoo-pytorch.
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five different random seeds for training for all games and trained for 50000 episodes per seed for
Matching pennies and 60000 for the rest.

2-player game: rock–paper–scissors. Rock–paper–scissors is a widely studied game in multi-agent
settings because, in addition to its analytically computable Nash equilibrium that allows for a precise
performance measure, it demonstrates interesting cyclical behavior [Zhou, 2015, Wang et al., 2014].
The game, with M = 3 actions, has a mixed Nash equilibrium where each action is played with equal
probability. At equilibrium, each agent’s action distribution is ( 13 ,

1
3 ,

1
3 ). This equilibrium allows us

to assess the alignment of learned policies with the optimal strategy. In our experiments version, N
players compete in an M -action game over t steps. At each step, players receive an observation of
their opponent’s last action. Once all players have selected their actions for the current step, rewards
are assigned to each player: as of −1 for a losing, 0 for tie and +1 for winning the game. we used
N = 2 players, M = 3 actions, and a time horizon of t = 25 steps.

2-player game: matching pennies. The game has M = 2 actions, N = 2 players: even and odd
that compete over t steps. At each step, the players must choose between two actions: Heads or
Tails. Even player wins with a reward of +1 if the players chose the same action and loses with a −1
otherwise, and vice versa. We used t = 25 steps. Similar to Rock–paper–scissors, this game also has
mixed Nash equilibrium where each action is played with equal probability. At equilibrium, each
agent’s action distribution is ( 12 ,

1
2 ).

We measured and plotted the squared norm of the learned policy probabilities relative to the equilib-
rium for both rock–paper–scissors and matching pennies.

MPE: Predator-prey— from the Multi-Agent Particle Environments (MPE) benchmark [Lowe et al.,
2017]. It consists of N good agents, L landmarks, and M adversary agents. The good agents
are faster and receive negative rewards if caught by adversaries, while the slower adversary agents
are rewarded for catching a good agent. All agents can observe the positions of other agents, and
adversaries also observe the velocities of the good agents. Additionally, good agents are penalized
for going out of bounds. This environment combines elements of both competition and collaboration.
While all adversaries are rewarded when one of them catches a good agent, their slower speed
typically requires them to collaborate, especially since there are usually more adversaries than good
agents. For our experiments, we set N = 1, M = 2, and L = 2.

MPE: Physical deception, [Lowe et al., 2017]. The game has N good agents, one adversary agent,
and N landmarks, with one designated as the target. The adversary does not observe the target and
must infer which of the N landmarks is the target one, aiming to get as close as possible and receiving
rewards based on its distance from the target. The good agents can observe the target and aim to
deceive the adversary while also staying as close as possible to the target. All good agents share the
same reward, based on a combination of their minimum distance to the target and the adversary’s
distance. This game has no “competitive component” for the adversary: its reward depends solely on
its own policy. In our experiments, we set N = 2.

Methods. We evaluate our proposed methods by comparing them to the baseline, which is the
original MADDPG algorithm using Adam [Kingma and Ba, 2015] as the optimizer for all networks.
Throughout the paper, we will refer to the LA-MADDPG, EG-MADDPG, and LA-EG-MADDPG
methods as LA, EG, and LA-EG, respectively. When referring to nLA-based methods, we will
indicate the k values for each lookahead level in brackets. For example, LA (10, 1000) represents a
two-level lookahead with ks = 10 and kss = 1000. We also use Adam in combination with the VI
methods for consistency with the baseline.

Details on the remaining hyperparameters can be found in Appendix A.2.

5.2 Results

2-player games: rock–paper–scissors and matching pennies. Figures 1a and 1b depict the
average distance of the agents’ learned policies from the equilibrium policy. The baseline method
eventually diverges. In contrast, LA-MADDPG consistently reduces the distance to the optimal policy,
outperforming the baseline. While EG-MADDPG behaves similarly to the baseline, combining it with
Lookahead stabilizes the performances. Additionally, Adam exhibits high variance across different
seeds, while Lookahead significantly reduces variance, providing more stable and reliable results—an
important factor in MARL experiments. We did not achieve full convergence to the Nash equilibrium
with any of the algorithms, as we did not extensively tune the hyperparameters. For LA, we only used
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(a) Rock-paper-scissors
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(b) Matching pennies

Figure 1: Comparison on the rock–paper–scissors game and matching pennies game between the GD-
MADDPG, LA-MADDPG, EG-MADDPG and LA-EG-MADDPG methods, denoted as Baseline, LA, EG,
LA-EG, resp. x-axis: training episodes. y-axis: total distance of agents’ policies to the equilibrium policy,
averaged over 5 seeds. The dotted line depicts the start of the “shifting” (in first-in-first-out order) of the
experiences in the buffer.

0.0 0.2 0.4 0.6 0.8 1.0
Episodes ×102

0.0

0.2

0.4

0.6

0.8

Ad
ve

rs
ar

y 
W

in
 R

at
e

Baseline
LA (40,400,4000) Figure 2: Comparison on the

MPE:Predator-prey game between
the GD-MADDPG and LA-MADDPG,
optimization methods, denoted as
Baseline, LA, resp. x-axis: evaluation
episodes. y-axis: average win rate of
adversary agents, averaged over 5 runs
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α = 0.5 and randomly selected a few k values. Despite minimal tuning, the results provide strong
indications.

MPE: Predator-prey. Figure 2 depicts the win rate of the adversary against the good agents. While
typical training monitors average rewards to indicate convergence, we observed that after training,
one adversary learns to chase the good agent while the other’s policy diverges, causing it to move
away or wander aimlessly. This suggests a convergence issue in the joint policy space, where one
agent’s strategy is affected by the other’s. Our results in Figure 2 demonstrate that using Algorithm 2
improves this behavior, with both adversaries learning to chase the good agent, reflected in a higher
win rate. Full method comparisons are provided in Appendix A.3.3.

MPE: Physical deception. Table 1 lists the mean and standard deviation of the adversary’s win
rate, indicating how often it managed to be closer to the target. Agents reach equilibrium when both
teams win with equal probability across multiple instances. Thus, we used 100 test environments
per method per seed. Given the game’s cooperative nature, the baseline performs relatively well,
with EG-MADDPG showing similar performance. Both LA-MADDPG and LA-EG-MADDPG
outperform their respective base optimizers–baseline and EG-MADDPG.

On the rewards as a metric in MARL. While saturating rewards are commonly used as a perfor-
mance metric in MARL, our experiments suggest otherwise, consistent with observations made in
previous works such as [Bowling, 2004]. In multi-agent games like Rock-paper-scissors, rewards
may converge to a target value even with suboptimal policies, leading to misleading evaluations. For
instance, in Figure 3 (top row), agents repeatedly choose similar actions, resulting in ties that yield the

Method Adversary Win Rate
Baseline 0.45± .16

LA-MADDPG 0.53± .11
EG-MADDPG 0.56± .27

LA-EG-MADDPG 0.51± .14

Table 1: Means and standard deviations (over 5 seeds)
of adversary win rate on last training episode for
MPE: Physical deception, on 100 test environments.
The win rate is the fraction of times the adversary was
closer to the target. Closer to 0.5 is better.
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Figure 3: Saturating rewards (left) versus actions of the learned policies at the end (right) in the rock–
paper–scissors game. Top row: GD-MADDPG; bottom row: LA-MADDPG. In the left column, green and
blue represent actual rewards while red and orange show the running average through a window of 100 episodes.
In the right column, we depict actions from the respective learned policies evaluation after training is completed,
where each row represents what actions players have chosen in one step of the episode.

correct reward but fail to reach equilibrium—leaving them vulnerable to exploitation by a more skilled
opponent. Conversely, LA-MADDPG (bottom row) did not fully converge to the maximum reward,
but agents learned near-optimal policies by alternating their actions, which is the desired behavior.
This underscores the need for stronger evaluation metrics in multi-agent reinforcement learning,
particularly when the true equilibrium remains unknown. Refer to Appendix A.4 for additional
discussion.

6 Conclusion

This paper tackles the inherent challenges in multi-agent reinforcement learning (MARL), where
training is notoriously difficult due to high sensitivity to hyperparameters and random seed choices,
making it challenging to reliably compare different methods. We explore whether Variational In-
equality (VI) optimization techniques can improve the convergence and stability of MARL methods.
We introduced the LA-MADDPG, EG-MADDPG and LA-EG-MADDPG algorithms that combine the
multi-agent deep deterministic policy gradient (MADDPG) method with nested Lookahead-VI [Chav-
darova et al., 2021], Extragradient [Korpelevich, 1976], and a combination of both, respectively.
Our experiments on the rock-paper-scissors, matching pennies and two MPE environments [Lowe
et al., 2017] consistently demonstrated the effectiveness of the VI variants of MADDPG in improving
performance and stabilizing training compared to the standard baseline method.

While this work focuses on MADDPG, immediate future directions include investigating VI methods
for other MARL algorithms and exploring additional existing VI techniques. These initial findings
point toward promising opportunities for further development of VI-based methods in MARL,
particularly in leveraging the structure of the optimization landscape.
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A Appendix

A.1 Additional Background

A.1.1 VI methods

In addition to those presented in the main part, we describe the following popular VI method, which
we leave for future work.

Optimistic Gradient Descent (OGD). The update rule of Optimistic Gradient Descent OGD [(OGD)
Popov, 1980] is:

zt+1 = zt − 2ηF (zt) + ηF (zt−1) , (OGD)

where η ∈ (0, 1) is the learning rate.

A.1.2 Pseudocode for Nested Lookahead for a Two-Player Game

For completeness, in Algorithm 3 we give the details of the nested Lookahead-Minmax algorithm
proposed in [Algorithm 6, Chavdarova et al., 2021] with two-levels.

Algorithm 3 Pseudocode of Two-Level Nested Lookahead–Minmax.[Chavdarova et al., 2021]
1: Input: Stopping time T , learning rates ηθ, ηφ, initial weights θ, φ, lookahead hyperparameters

ks, kss and α, losses Lθ , Lφ, update ratio r, real–data distribution pd, noise–data distribution pz .

2: (θs,θss,φs,φss)← (θ,θ,φ,φ) (store copies for slow and super-slow)
3: for t ∈ 1, . . . , T do
4: for i ∈ 1, . . . , r do
5: x ∼ pd, z ∼ pz
6: φ← φ− ηφ∇φLφ(θ,φ,x, z) (update φ r times)
7: end for
8: z ∼ pz
9: θ ← θ − ηθ∇θLθ(θ,φ, z) (update θ once)

10: if t%ks == 0 then
11: φ← φs + αφ(φ−φs) (backtracking on interpolated line φs, φ)
12: θ ← θs + αθ(θ − θs) (backtracking on interpolated line θs, θ)
13: (θs,φs)← (θ,φ) (update slow checkpoints)
14: end if
15: if t%kss == 0 then
16: φ← φss + αφ(φ−φss) (backtracking on interpolated line φss, φ)
17: θ ← θss + αθ(θ − θss) (backtracking on interpolated line θss, θ)
18: (θss,φss)← (θ,φ) (update super-slow checkpoints)
19: (θs,φs)← (θ,φ) (update slow checkpoints)
20: end if
21: end for
22: Output: θss, φss

A.1.3 Details on the MADDPG Algorithm

The MADDPG algorithm is outlined in Algorithm 4. An empty replay buffer D is initialized to
store experiences (line 3). In each episode, the environment is reset and experiences in the form of
(state, action, reward, next state) are saved to D. After a predetermined number of random iterations,
learning begins by sampling batches from D.

The critic of agent i receives the sampled joint actions a of all agents and the state information of
agent i to output the predicted Qi-value of agent i. Deep Q-learning [Mnih et al., 2015] is then
used to update the critic network; lines 21-22. Then, the agents’ policy network is optimized using
policy gradient; refer to 24. Finally, following each learning iteration, the target networks are updated
towards current actor and critic networks using a fraction τ .
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All networks are optimized using the Adam optimizer [Kingma and Ba, 2015]. Once training is
complete, each agent’s actor operates independently during execution. This approach is applicable
across cooperative, competitive, and mixed environments.

Algorithm 4 Pseudocode for MADDPG [Lowe et al., 2017].
1: Input: Environment E , number of agents N , number of episodes T , action spaces {Ai}Ni=1,

number of random steps Trand before learning, learning interval Tlearn, actor networks {µi}Ni=1,
with initial weights θ ≡ {θi}Ni=1, critic networks {Qi}Ni=1 with initial weights w ≡ {wi}Ni=1,
learning rates ηθ, ηw, optimizer B (e.g., Adam), discount factor γ, soft update parameter τ .

2: Initialize:
3: Replay buffer D ← ∅
4: for all episode e ∈ 1, . . . , T do
5: x← Sample(E) (sample from environment E)
6: step← 1
7: repeat
8: if e ≤ Trand then
9: for each agent i, ai ∼ Ai (sample actions randomly)

10: else
11: for each agent i, select action ai = µi(oi) +Nt using current policy and exploration
12: end if
13: (apply actions and record results)
14: Execute actions a = (a1, . . . , aN ), observe rewards r and new state x̂
15: replay buffer D ← (x,a, r, x̂)
16: x← x̂
17: (apply learning step if applicable)
18: if step%Tlearn = 0 then
19: for all agent i ∈ 1, . . . , N do
20: sample batch {(xj ,aj , rj , x̂j)}Bj=1 of size B from D
21: yj ← rji + γQµ′

(x̂j , a′1, . . . , a
′
N ), where a′k = {µ′

k(o
j
k)}

22: Update critic by minimizing the loss (using optimizer B ):

L(θi) = 1
S

∑
j

(
yj −Qµ

i (x
j , aj1, . . . , a

j
N )

)2

23: Update actor policy using policy gradient formula and optimizer B
24: ∇θiJ ≈ 1

S

∑
j ∇θiµi(o

j
i )∇aiQ

µ
i (x

j , aj1, . . . , ai, . . . , a
j
N ), where ai = µi(o

j
i )

25: end for
26: for all agent i ∈ 1, . . . , N do
27: θ′

i ← τθi + (1− τ)θ′
i (update target networks)

28: w′
i ← τwi + (1− τ)w′

i
29: end for
30: end if
31: step← step+ 1
32: until environment terminates
33: end for
34: Output: θ, w

A.1.4 Extended version of LA-MADDPG pseudocode

We include an extended version for the LA-MADDPG algorithm without VI notations in algorithm 5.

A.1.5 Pseudocode for Extragradient

In Algorithm 6 outlines the Extragradient optimizer [Korpelevich, 1976], which we employ in
EG-MADDPG. This method uses a gradient-based optimizer to compute the extrapolation iterate,
then applies the gradient at the extrapolated point to perform an actual update step. The extragradient
optimizer is used to update all agents’ actor and critic networks. In our experiments, we use Adam
for both the extrapolation and update steps, maintaining the same learning intervals and parameters
as in the baseline algorithm.
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Algorithm 5 Pseudocode for LA–MADDPG: MADDPG with (Nested) Lookahead.
1: Input: Environment E , number of agents N , number of episodes T , action spaces {Ai}Ni=1, num-

ber of random steps Trand before learning, learning interval Tlearn, actor networks {µi}Ni=1, with
initial weights θ ≡ {θi}Ni=1, critic networks {Qi}Ni=1 with initial weights w ≡ {wi}Ni=1, learn-
ing rates ηθ, ηw, base optimizer B (e.g., Adam), discount factor γ, lookahead hyperparameters
ks, kss (where kss can be ∅) and αθ, αw, soft update parameter τ .

2: Initialize:
3: Replay buffer D ← ∅
4: for all agent i ∈ 1, . . . , N do
5: (θi,s,θi,ss,wi,s,wi,ss)← (θi,θi,θi,wi,wi,wi)
6: (store snapshots for nLA)
7: end for
8: for all episode e ∈ 1, . . . , T do
9: x← Sample(E) (sample from environment E)

10: step← 1
11: repeat
12: if e ≤ Trand then
13: for each agent i, ai ∼ Ai (sample actions randomly)
14: else
15: for each agent i, select action ai using current policy and exploration
16: end if
17: (apply actions and record results)
18: Execute actions a = (a1, . . . , aN ), observe rewards r and new state x̂
19: replay buffer D ← (x,a, r, x̂)
20: x← x̂
21: (apply learning step if applicable)
22: if step%Tlearn = 0 then
23: for all agents i ∈ 1, . . . , N do
24: sample batch {(xj ,aj , rj , x̂j)}Bj=1 of size B from D
25: yj ← rji + γQµ′

(x̂j , a′1, . . . , a
′
N ), where a′k = {µ′

k(o
j
k)}

26: Update critic by minimizing the loss L(wi) =
1
S

∑
j

(
yj −Qµ

i (x
j , aj1, . . . , a

j
N )

)2

using B
27: Update actor policy using policy gradient formula and B
28: ∇θi

J ≈ 1
S

∑
j ∇θi

µi(o
j
i )∇ai

Qµ
i (x

j , aj1, . . . , ai, . . . , a
j
N ), where ai = µi(o

j
i )

29: end for
30: for all agents i ∈ 1, . . . , N do
31: θ′

i ← τθi + (1− τ)θ′
i (update target networks)

32: w′
i ← τwi + (1− τ)w′

i
33: end for
34: end if
35: step← step+ 1
36: until environment terminates
37: NESTEDLOOKAHEAD(N, e,Θ,W, ks, kss, αθ, αw)
38: where:
39: Θ = {(θi,θi,s,θi,ss}Ni=1 (all actor weights and snapshots)
40: W = {(wi,wi,s,wi,ss)}Ni=1 (all critic weights and snapshots)
41: end for
42: Output: θ, w
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Algorithm 6 Extragradient optimizer; Can be used as B in algorithm 2.

1: Input: learning rate ηφ, initial weights φ, loss Lφ, extrapolation steps t
2: φcopy ← φ (Save current parameters)
3: for i ∈ 1, . . . , t do
4: φ = φ− ηφ∇φLφ(φ) (Compute the extrapolated φ)
5: end for
6: φ = φcopy − ηφ∇φLφ(φ) (update φ)
7: Output: φ

Table 2: Hyperparameters used for LA-MADDPG experiments.

Name Description

Adam lr 0.01
Adam β1 0.9
Adam β2 0.999
Batch-size 1024
Update ratio τ 0.01
Discount factor γ 0.95
Replay Buffer 106

learning step Tlearn 100
Trand 1024
Lookahead α 0.5

A.2 Details On The Implementation

As mentioned earlier, we followed the configurations and hyperparameters from the original MAD-
DPG paper for our implementation. For completeness, these are listed in Table 2.

In all Rock-Paper-Scissors experiments, we used a 2-layer MLP with 64 units per layer, while for
MPE: Predator-prey , we used a 2-layer MLP with 128 units per layer. ReLU activation was applied
between layers for both the policy and value networks of all agents.

For the lookahead method, we experimented with different values of k and set α = 0.5. We ran
T = 60000 training episodes, with a maximum of 25 environment steps (s) per episode.

A.3 Additional Results

A.3.1 Rock-Paper-Scissors: Buffer Structure

For the Rock-Paper-Scissors (RPS) game, using a buffer size of 1M wasn’t sufficient to store all
experiences from the 60K training episodes. We observed a change in algorithm behavior around
40K episodes. To explore the impact of buffer configurations, we experimented with different sizes
and structures, as experience storage plays a critical role in multi-agent reinforcement learning.

Full buffer. The buffer is configured to store all experiences from the beginning to the end of training
without any loss.

Buffer clearing. In this setup, a smaller buffer is used, and once full, the buffer is cleared completely,
and new experiences are stored from the start.

Buffer shifting. Similar to the small buffer setup, but once full, old experiences are replaced by new
ones in a first-in-first-out (FIFO) manner.

Results. Figure 4 depicts the results when using different buffer options for the RPS game.

A.3.2 Rock-Paper-Scissors: Scheduled learning rate

We experimented with gradually decreasing the learning rate (LR) during training to see if it would
aid convergence to the optimal policy in RPS. While this approach reduced noise in the results, it
also led to increased variance across all methods except for LA-MADDPG.
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(a) Full buffer
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(b) Clearing buffer (20K)
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(c) Shifting buffer (20K)
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(d) Shifting buffer (40K)

Figure 4: Comparison of different buffer configurations (see Appendix A.3.1) and methods on Rock-paper-
scissors game. x-axis: training episodes. y-axis: 5-seed average norm between the two players’ policies and
equilibrium policy ( 1

3
, 1
3
, 1
3
)2. The dotted line indicates the point at which the buffer begins to change, either

through shifting or clearing.

Figure 5 depicts the average distance to the equilibrium policy over 5 different seeds for each methods,
using periodically decreased step sizes.

1 2 3 4 5 6
Episodes ×104

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Di
st

an
ce

 to
 e

qu
ilib

riu
m

Baseline
LA (40,200)
EG
LA-EG (40,200)

Figure 5: Compares MADDPG with different LA-MADDPG configurations to the baseline MADDPG
with (Adam) in rock–paper–scissors. x-axis: training episodes. y-axis: 5-seed average norm between the two
players’ policies and equilibrium policy ( 1

3
, 1
3
, 1
3
)2. The dotted lines depict the times when the learning rate was

decreased by a factor of 10.

A.3.3 MPE: Predator-prey Full results

While in the main part in Figure 2 we showed only two methods for clarity, Figure 6 depicts all
methods.
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We also evaluated the trained models of all methods on an instance of the environment that runs for
50 steps to compare learned policies. We present snapshots from it in Figure 7. Here, you can clearly
anticipate the difference between the policies from baseline and our optimization methods. As in the
baseline, only one agent will chase at the beginning of episode. Moreover, for the baseline (topmost
row), the agents move further away from the landmarks and the good agent, which is suboptimal.
This can be noticed from the decreasing agents’ size in the figures. While in ours, both adversary
agents engage in chasing the good agent until the end.
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Figure 6: Comparison on the MPE–Predator-prey game between the GD-MADDPG, LA-MADDPG, EG-
MADDPG and LA-EG-MADDPG optimization methods, denoted as Baseline, LA, EG, LA-EG, resp. x-axis:
evaluation episodes. y-axis: mean adversaries win rate, averaged over 5 runs with different seeds.

A.4 On the Rewards as Convergence Metric

Based on our experiments and findings from the multi-agent literature [Bowling, 2004], we observe
that average rewards offer a weaker measure of convergence compared to policy convergence in
multi-agent games. This implies that rewards can reach a target value even when the underlying
policy is suboptimal. For example, in the Rock–paper–scissors game, the Nash equilibrium policy
leads to nearly equal wins for both players, resulting in a total reward of zero. However, this same
reward can also be achieved if one player always wins while the other consistently loses, or if both
players repeatedly select the same action, leading to a tie. As such, relying solely on rewards during
training can be misleading.

Figure 3 (top row) depicts a case with the baseline where, despite rewards converging during training,
the agents ultimately learned to play the same action repeatedly, resulting in ties. Although this
matched the expected reward, it falls far short of equilibrium and leaves the agents vulnerable to
exploitation by more skilled opponents. In contrast, the same figure shows results from LA-MADDPG
under the same experimental conditions. Notably, while the rewards did not fully converge, the agents
learned a near-optimal policy during evaluation, alternating between all three actions as expected.
These results also align with the findings shown in Figure 1a.

We explored the use of gradient norms as a potential metric in these scenarios but found them to be
of limited utility, as they provided no clear indication of convergence for either method. We include
those results in Figure 8, where we compare the gradient norms of Adam and LA across the networks
of different players.

This work highlights the need for more robust evaluation metrics in multi-agent reinforcement
learning, a point also emphasized in [Lanctot et al., 2023], as reward-based metrics alone may be
inadequate, particularly in situations where the true equilibrium is unknown.
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t = 1 t = 10 t = 20 t = 30 t = 40 t = 50

Figure 7: Agents’ trajectories of fully trained models with all considered optimization methods on the
same environment seed of MPE: Predator-prey. Snapshots show the progress of agents as time progresses in
a 50 steps long environment. Each row contains snapshots of one method, from top to bottom: GD-MADDPG,
LA-MADDPG, EG-MADDPG and LA-EG-MADDPG. Big dark circles represent landmarks, small red circles are
adversary agents and green one is the good agent.
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Figure 8: Gradient norms across training in the rock–paper–scissors game.
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