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Abstract

Large language models (LLMs) are designed001
to perform a wide range of tasks. To improve002
their ability to solve complex problems requir-003
ing multi-step reasoning, recent research lever-004
ages process reward modeling to provide fine-005
grained feedback at each step of the reason-006
ing process for reinforcement learning (RL),007
but it predominantly focuses on English. In008
this paper, we tackle the critical challenge of009
extending process reward models (PRMs) to010
multilingual settings. To achieve this, we train011
multilingual PRMs on a dataset spanning seven012
languages, which is translated from English.013
Through comprehensive evaluations on two014
widely used reasoning benchmarks across 11015
languages, we demonstrate that multilingual016
PRMs not only improve average accuracy but017
also reduce early-stage reasoning errors. Fur-018
thermore, our results highlight the sensitivity019
of multilingual PRMs to both the number of020
training languages and the volume of English021
data, while also uncovering the benefits arising022
from more candidate responses and trainable023
parameters. This work opens promising av-024
enues for robust multilingual applications in025
complex, multi-step reasoning tasks.026

1 Introduction027

Aligning large language models (LLMs) with hu-028

man preferences can significantly improve the029

model performance across various downstream030

tasks (Christiano et al., 2017; Ziegler et al., 2019).031

This requires a reward model that is trained on hu-032

man preference data (Ziegler et al., 2019; Stiennon033

et al., 2020; Shen et al., 2021; Ouyang et al., 2022).034

Typically, reward models are trained based on the035

final outcome of the LLMs’ response, and we refer036

to these as outcome reward models (ORMs) (Cobbe037

et al., 2021a; Uesato et al., 2022; Yu et al., 2023a).038

However, most of recent work demonstrates that039

ORMs fall short on complex multi-step reasoning040

tasks (Uesato et al., 2022; Shao et al., 2024). To041

overcome this limitation, process reward models 042

(PRMs) are introduced, providing fine-grained re- 043

wards at each step of the LLMs’ chain-of-thought 044

(Lightman et al., 2024; Li et al., 2023; Wang et al., 045

2024b; Ma et al., 2023). Previous research has 046

shown that LLMs supervised by PRMs can effec- 047

tively produce better responses (Wang et al., 2024b; 048

Shao et al., 2024). 049

Despite these significant advances, recent re- 050

search on ORMs and PRMs has predominantly 051

focused on monolingual settings, particularly En- 052

glish (Lightman et al., 2024; Wang et al., 2024a,b). 053

However, the exploration of multilingual PRMs re- 054

mains relatively limited. Therefore, with the advent 055

of multilingual LLMs, a natural research question 056

arises: How can we effectively train multilingual 057

PRMs for complex, multi-step reasoning tasks? 058

To address this research question, we translate 059

the existing PRM datasets, PRM800K (Lightman 060

et al., 2024) and Math-Shepherd (Wang et al., 061

2024b), from English into six additional languages, 062

resulting in a total of seven seen languages for 063

training. We then train multilingual PRMs using 064

the collection of these translated datasets. We 065

define three PRM setups: PRM-MONO, PRM- 066

CROSS, and PRM-MULTI. The PRM-MONO setup 067

is trained and evaluated solely on a single language, 068

the PRM-CROSS setup is trained on one language 069

but evaluated on all test languages, and the PRM- 070

MULTI setup is trained on seven seen languages and 071

evaluated on all test languages. Finally, we conduct 072

a comprehensive evaluation on two popular reason- 073

ing tasks (MATH500 and MGSM) across 11 languages 074

(seven seen languages and four unseen languages) 075

using three LLMs (METAMATH-MISTRAL-7B, 076

LLAMA-3.1-8B-MATH, and DEEPSEEKMATH- 077

7B-INSTRUCT). 078

In this work, our main takeaways can be summa- 079

rized as follows: 080

• Multilingual PRM consistently outper- 081

forms monolingual and cross-lingual PRMs 082
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across all three LLMs. Our results demon-083

strate that PRM-MULTI significantly im-084

proves model performance, boosting average085

accuracy by up to +1.2 and +1.5 points com-086

pared to PRM-CROSS and PRM-MONO, re-087

spectively (see Section 5.1).088

• Multilingual PRM is sensitive to both the089

number of languages and the amount of En-090

glish training data. Our experiment shows091

that training an optimal multilingual PRM re-092

quires careful consideration of how many lan-093

guages to include (see Section 5.2) and how094

much English data to use (see Section 5.3).095

• Multilingual PRM produces fewer errors096

in the early steps. We identify the first occur-097

rences of wrong predictions made by PRMs098

and observe that PRM-MULTI produces fewer099

errors in the early steps compared to PRM-100

MONO and PRM-CROSS (see Section 6.1).101

• Multilingual PRM can benefit even more102

from more candidate responses and train-103

able parameters. Our analysis demonstrates104

that PRM-MULTI becomes even more advan-105

tageous when there is a larger number of can-106

didate responses (see Section 6.2) and when107

more trainable parameters are introduced (see108

Section 6.3).109

2 Related Work110

Reward Model in Mathematical Reasoning To111

advance the accuracy of mathematical reasoning,112

reward models (RMs) have emerged as powerful113

tools for evaluating and guiding solution generation.114

In particular, two principal RM paradigms have gar-115

nered significant attention: the Outcome Reward116

Models (ORMs) (Cobbe et al., 2021a; Yu et al.,117

2023a) and the Process Reward Models (PRMs)118

(Uesato et al., 2022; Lightman et al., 2024; Li et al.,119

2023; Ma et al., 2023; Wang et al., 2024b; Luo120

et al., 2024; Gao et al., 2024; Wang et al., 2024a).121

ORMs assign a single score to an entire solution122

and thereby focuses on final correctness, whereas123

PRMs score each individual step of the reason-124

ing process, offering more finer-grained evalua-125

tions. As a result, PRMs provide more detailed126

guidance and have demonstrated greater potential127

in enhancing reasoning capabilities compared to128

ORMs (Lightman et al., 2024; Wu et al., 2023).129

Multilingual Reward Model Beyond English-130

language tasks, the integration of RMs into mul-131

tilingual scenarios is still under-explored. Rein-132

Figure 1: Framework of PRM.

forcement learning approaches often rely on RMs 133

predominantly trained on English data (Shao et al., 134

2024; Yang et al., 2024a). This over-representation 135

introduces biases, as these RMs may overfit to 136

English-specific syntactic and semantic patterns, 137

limiting their effectiveness in cross-lingual tasks 138

and motivating the development of multilingual 139

RMs (Hong et al., 2024). While there is growing 140

evidence that cross-lingual transfer is feasible (Wu 141

et al., 2024a; Hong et al., 2024), existing research 142

often overlooks the unique challenges of multilin- 143

gual reasoning. After the release of the OpenAI-o1 144

model (OpenAI, 2024), PRMs, with their capabil- 145

ity for fine-grained feedback, have attracted even 146

greater interest. Yet, the performance of multilin- 147

gual PRMs in diverse linguistic contexts remains 148

insufficiently investigated (Yang et al., 2024b). To 149

bridge this gap, we investigate how multilingual 150

PRMs contribute to solving mathematical tasks 151

across different languages, aiming to provide in- 152

sights into how fine-grained process supervision 153

can enhance reasoning capabilities beyond English, 154

thereby contributing to the development of more 155

universally applicable reasoning models. 156

3 Process Reward Modeling 157

3.1 PRM Training 158

Given a question p and its solution s, the ORM 159

assigns a single value to s to indicate whether s 160

is correct. We stack a binary classifier on top of 161

the LLM and train the ORM with the binary cross- 162

entropy loss: 163

LORM =

− (ys log(rs) + (1− ys) log(1− rs))
(1) 164

where ys is the ground truth label for the solution s 165

(ys = 1 if s is correct, otherwise ys = 0), and rs is 166

the probability score that s is correct. 167

In contrast, the PRM evaluates each reasoning 168

step of the solution s. The PRM is trained using 169
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the following loss function:170

LPRM =

−
K∑
i=1

ysi log(rsi) + (1− ysi) log(1− rsi)
(2)171

where si is the i-th step of the solution s, ysi is the172

ground truth label for step si, rsi is the score as-173

signed to si by the PRM, and K is the total number174

of reasoning steps in the solution s. Compared to175

ORM, PRM provides more detailed and reliable176

feedback by evaluating individual steps.177

3.2 Ranking for Verification178

Following Wu et al. (2024b); Lightman et al.179

(2024); Wang et al. (2024b), we evaluate the per-180

formance of PRM using the best-of-N selection181

evaluation paradigm (Charniak and Johnson, 2005;182

Cobbe et al., 2021b). Specifically, given a question,183

multiple solutions are sampled from an LLM (re-184

ferred to as the generator) and re-ranked using a185

reward model (referred to as the verifier). For each186

solution, as shown in Figure 1, PRM assesses the187

correctness of each reasoning step. The scores for188

all steps are averaged to compute an overall score189

for the solution. The highest-scoring solution is190

then selected as the final output. This approach en-191

hances the likelihood of selecting solutions contain-192

ing correct answers, thereby improving the success193

rate of solving mathematical problems with LLMs.194

3.3 Reinforcement Learning with Process195

Supervision196

Using the trained PRM, we fine-tune LLMs with197

Policy Optimization (PPO) (Schulman et al., 2017)198

in a step-by-step manner. This method differs from199

the conventional strategy that uses PPO with an200

ORM, that only gives a reward at the end of the201

response. Conversely, our step-by-step PPO offers202

rewards at the end of each reasoning step.203

While we analyse PRM both intrinsically (us-204

ing best-of-N), and extrinsically (using PPO), we205

focus on best-of-N for a clean testbed without con-206

founders from reinforcement learning.207

4 Experimental Setups208

Training Datasets We combine the PRM800K209

(Lightman et al., 2024) and Math-Shepherd (Wang210

et al., 2024b) as training data to finetune PRMs,211

and translate the combined dataset from English212

(en) to six languages: German (de), Spanish (es),213

French (fr), Russian (ru), Swahili (sw), and Chi- 214

nese (zh) with using NLLB 3.3B (Costa-jussà et al., 215

2022). The reasoning step statistics are presented 216

in Table 4 (Appendix A), and the parallel examples 217

across seven languages have the same number of 218

reasoning steps. 219

Test Dataset We evaluate the performance of 220

LLMs using two widely used math reasoning 221

datasets, MGSM (Shi et al., 2022) and MATH500 222

(Wang et al., 2024b). For the MATH500 datset, we 223

translate it from English to ten languages: Ben- 224

gali (bn), German (de), Spanish (es), French (fr), 225

Japanese (ja), Russian (ru), Swahili (sw), Telugu 226

(te), Thai (th), and Chinese (zh) with Google Trans- 227

late, which is consistent with the languages in- 228

cluded in the MGSM dataset. Furthermore, we also 229

categorize the languages involved in the down- 230

stream tasks into two groups based on the training 231

data of PRM: seen languages (en, de, es, fr, ru, sw, 232

and zh) and unseen languages (bn, ja, te, and th). 233

Multilingual PRM Setups To better understand 234

PRMs in the context of multilingual research, we 235

define three setups: PRM-MONO, PRM-CROSS, 236

and PRM-MULTI. The PRM-MONO setup is 237

trained and evaluated on the same single language, 238

serving as the baseline for monolingual PRMs. The 239

PRM-CROSS setup is trained on one language but 240

evaluated on all 11 test languages. Specifically, 241

in this work, we train PRM-CROSS on the En- 242

glish PRM dataset unless otherwise specified. Fi- 243

nally, the PRM-MULTI setup represents the mul- 244

tilingual PRM, which is both trained on all the 245

seen languages and evaluated on all 11 test lan- 246

guages. To enhance the reliability and general- 247

izability of our study, we train our multilingual 248

PRM (verifier) based on the QWEN2.5-MATH- 249

7B-INSTRUCT (Yang et al., 2024a), and leverage 250

three diverse LLMs as the generator: METAMATH- 251

MISTRAL-7B (Yu et al., 2023b), LLAMA-3.1- 252

8B-MATH (fine-tuned with the MetaMath dataset 253

(Dubey et al., 2024)),1 and DEEPSEEKMATH-7B- 254

INSTRUCT (Shao et al., 2024). The details of train- 255

ing these PRMs are presented in Appendix B. 256

5 Recipes for Multilingual PRM Training 257

In this section, we conduct a series of experiments 258

to investigate the performance of multilingual PRM. 259

We examine how PRM-MULTI compares to PRM- 260

1https://huggingface.co/gohsyi/Meta-Llama-3.
1-8B-sft-metamath
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MATH500 µALL µSEEN µUNSEEN en de es fr ru sw zh ja bn te th

METAMATH-MISTRAL-7B

PRM-MONO - 42.5 - 49.0 44.4 45.8 45.6 46.0 25.0 41.8 - - - -
PRM-CROSS 39.4 43.1 39.1 49.0 45.4 45.0 46.8 46.4 25.2 43.8 43.6 31.4 22.0 34.6
PRM-MULTI 39.6 43.1 39.4 50.2 45.6 47.4 45.4 45.2 25.2 42.8 43.6 32.6 21.8 35.2

LLAMA-3.1-8B-MATH

PRM-MONO - 43.3 - 49.0 46.2 45.8 44.2 45.8 26.2 46.2 - - - -
PRM-CROSS 40.9 43.6 36.3 49.0 48.8 46.6 44.8 44.8 26.0 45.2 43.0 36.0 28.2 37.8
PRM-MULTI 41.7 44.8 36.4 51.0 48.8 45.8 46.0 46.2 28.4 47.2 42.0 34.6 30.2 38.6

DEEPSEEKMATH-7B-INSTRUCT

PRM-MONO - 55.1 - 63.0 59.0 60.4 59.0 60.2 29.2 55.0 - - - -
PRM-CROSS 50.2 54.9 41.9 62.4 60.0 59.8 61.4 57.4 29.4 54.0 54.4 38.2 32.4 42.6
PRM-MULTI 51.3 55.6 43.7 63.8 58.6 60.2 60.2 61.4 30.6 54.2 55.8 38.0 35.6 45.4

Table 1: Different PRMs’ best-of-N sampling (N = 64) performance on MATH500 with the generator of METAMATH-
MISTRAL-7B, LLAMA-3.1-8B-MATH, and DEEPSEEKMATH-7B-INSTRUCT. µALL, µSEEN, and µUNSEEN indicate
the macro-average of results across all the languages, the seen languages, and the unseen languages, respectively.

MONO and PRM-CROSS (Section 5.1), the impact261

of the number of training languages (Section 5.2),262

and the effect of varying the proportion of English263

in the training data (Section 5.3).264

5.1 Monolingual, Cross-lingual, or265

Multilingual PRMs?266

Building upon the findings of Wu et al. (2024b),267

who demonstrated that cross-lingual ORMs out-268

perform monolingual ones, we investigate the im-269

pact of multilingualism on PRMs. Specifically, we270

compare PRM-MONO, PRM-CROSS, and PRM-271

MULTI to determine which setup offers best perfor-272

mance across languages.273

Setup We include three setups in this work. The274

PRM-MONO is trained and evaluated on each in-275

dividual language from the set of seen languages.276

The PRM-CROSS is trained exclusively on an En-277

glish dataset and evaluated on all 11 test languages.278

Finally, the PRM-MULTI is trained on all seen lan-279

guages and tested on all 11 test languages.280

Multilingual PRMs perform best, followed by281

cross-lingual PRMs, while monolingual PRMs282

achieve the worst performance, on the seen lan-283

guages. As shown in Table 1, PRM-MULTI con-284

sistently achieves the highest performance across285

multiple language generators on the seen languages,286

surpassing PRM-MONO and PRM-CROSS by +1.5287

and +1.2 with LLAMA-3.1-8B-MATH generator,288

respectively. This indicates that incorporating data289

from multiple languages for PRM training signif-290

icantly enhances the model’s ability across differ-291

ent languages. When comparing PRM-MONO and292

PRM-CROSS, we observe that PRM-CROSS out- 293

performs the PRM-MONO for the English-centric 294

METAMATH-MISTRAL-7B and LLAMA-3.1-8B- 295

MATH generators. We hypothesize that this ad- 296

vantage stems from the pre-training phase: these 297

generators are predominantly trained on English 298

data but have limited exposure to multilingual cor- 299

pora. As a result, fine-tuning on English PRM data 300

enhances the reasoning capabilities of PRMs, facil- 301

itating greater cross-lingual transfer. More mono- 302

lingual results are in Appendix C. 303

Multilingual PRMs generalize better on the un- 304

seen languages. Both PRM-CROSS and PRM- 305

MULTI are evaluated on four additional unseen lan- 306

guages. As shown in Table 1, PRM-MULTI demon- 307

strates superior overall performance on the unseen 308

languages in terms of µUNSEEN. These results sug- 309

gest that training PRMs on multilingual datasets 310

can effectively enhance model generalization to the 311

unseen languages. 312

In conclusion, these findings demonstrate that 313

training a single multilingual PRM is an effective 314

strategy for broad cross-lingual coverage, outper- 315

forming models trained either on a target language 316

or on English alone. This outcome supports that 317

PRM-MULTI is particularly advantageous for ex- 318

panding the capabilities of PRMs in multilingual 319

settings. More results on MGSM are in Appendix D. 320

5.2 Does More Languages Lead to Better 321

Multilingual PRMs? 322

While multilingual PRMs have demonstrated sig- 323

nificant improvements, the question of how many 324

languages are needed to achieve the best perfor- 325
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Figure 2: Best-of-N Performance on MGSM of PRMs
trained using various subsets of English, German, Span-
ish, French, Russian, Swahili, and Chinese, with the gen-
erator of LLAMA-3.1-8B-MATH. The averages scores
across all 11 languages.

mance remains an open research problem. In this326

section, we address this research question by ex-327

ploring the relationship between the number of328

training languages and the resulting performance.329

Setup We conduct experiments by training PRMs330

on datasets ranging from a single language up to all331

seven languages. In this section, the number of total332

training examples of all PRMs are fixed. When333

the number of languages exceeds one, the total334

training examples are evenly distributed across all335

the selected languages. For evaluation, we test all336

PRMs on 11 different languages. The evaluation337

scores are averaged for each test language across all338

PRMs trained with the same number of languages.339

More languages do not result in better multi-340

lingual PRMs. As shown in Figure 2, the over-341

all performance (AVG) improves as the number of342

training languages increases up to five languages.343

Beyond this point, adding more languages does not344

lead to further gains. Additionally, results from345

five individual languages (four seen languages and346

one unseen language) demonstrate that, although347

the optimal number of training languages varies348

across these languages, increasing the number of349

languages never leads to better performance. These350

findings suggest that increasing the number of train-351

ing languages does not necessarily enhance mul-352

tilingual PRMs. A key reason for this is the fixed353

amount of training data: as the number of lan-354

guages grows, the training examples per language355

decrease. This reduction hinders sufficient training356

for seen languages and negatively impacts cross-357

lingual transfer to unseen languages.358

01 10 30 50 70 100
34
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ra
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Figure 3: Best-of-N sampling performance of LLAMA-
3.1-8B-MATH with PRMs finetuned on a training set
where P% of the data is in English and (100 - P)% is uni-
formly distributed across six other languages. Each tick
on the X-axis represents a specific tuning set configura-
tion. The dash lines in blue, red, and green, indicate the
average scores of all the languages, the seen languages,
and the unseen languages, respectively.

5.3 How Much English Data Do We Need for 359

Multilingual PRMs? 360

While multilingual training with equal number 361

of training examples in each language (PRM- 362

MULTI) generally improves performance compared 363

to English-only training (PRM-CROSS), we ob- 364

serve some exceptions on certain languages, as 365

shown in Table 1. This observation prompts us 366

to investigate how varying the number of English 367

examples can affect the multilingual PRMs. 368

Setup To explore this, we create data mixtures 369

with varying percentages of English examples 370

(P%), with the remaining (100− P )% examples 371

evenly distributed among six languages: German, 372

Spanish, French, Russian, Swahili, and Chinese. 373

Each PRM trained on these mixtures is then evalu- 374

ated across all 11 languages. 375

Moderate amount of English data can lead to 376

better multilingual PRMs. As shown in Fig- 377

ure 3, incorporating a small amount of English data 378

into the training mixture can lead to notable per- 379

formance improvements across languages. Specif- 380

ically, even as little as 1% of English examples 381

significantly enhances performance, particularly 382

for unseen languages. Interestingly, the majority of 383

performance gains occur when English data consti- 384

tutes less than 50% of the training mixture. How- 385

ever, when the proportion of English data exceeds 386
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Figure 4: Percentage distribution of the first error posi-
tions corresponding to the step in the reasoning on the
PRM800K testset.

50%, performance begins to decline slightly across387

languages. Furthermore, training on 70% English388

data outperforms training solely on English (100%),389

suggesting that retaining some multilingual data390

introduces valuable variation and enhances the gen-391

eralization capacity of multilingual PRMs. These392

findings indicate that as the proportion of English393

data increases, the PRMs may not be adequately394

trained on other seen languages, and unseen lan-395

guages may benefit less from cross-lingual trans-396

fer. This highlights the importance of maintaining397

diverse and balanced language representation in398

multilingual training for optimal performance.399

6 Analysis400

In this section, we present a comprehensive analy-401

sis of our multilingual PRM, focusing on five criti-402

cal aspects: error positions (Section 6.1), number of403

solutions (Section 6.2), integration of LoRA with404

PRM (Section 6.3), comparative evaluation with405

multilingual ORM (see Section 6.4), and imple-406

ment PPO with multilingual PRM (see Section 6.5).407

6.1 Which Steps Are More Prone to Errors?408

PRMs provide fine-grained feedback on each in-409

termediate step of a model’s chain-of-thought rea-410

soning process. The errors made at intermediate411

steps can propagate through the reasoning chain,412

ultimately affecting the final answer. Therefore, in413

this section, we investigate the earliest errors made414

by PRMs during the reasoning process, following415

Zheng et al. (2024).416

Setup We select a subset of instances from the417

PRM800K Russian test set where the final answers418

made by PRM-MONO, PRM-CROSS, and PRM-419

MULTI are incorrect. For these instances, we iden-420
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Figure 5: Best-of-N sampling performance of LLAMA-
3.1-8B-MATH using different verification strategies
across distinct numbers of solutions on MATH500.

tify the first occurrences of incorrect predictions 421

from these PRMs. We classify the first error posi- 422

tions into three groups: early (steps 1 to 5), middle 423

(steps 6 to 10), and later (steps 11 to 15). 424

Multilingual PRMs produce fewer errors at 425

early steps. The distribution of the earliest error 426

positions, visualized in Figure 4, reveals a clear dis- 427

tinction between the three PRM configurations. In 428

both PRM-MONO and PRM-CROSS, a significant 429

proportion of errors occurs within the early steps. 430

In contrast, PRM-MULTI demonstrates fewer er- 431

rors within this range and exhibits a slightly higher 432

number of errors in later steps. These observa- 433

tions suggest that PRM-MULTI may be less prone 434

to error propagation in the reasoning process, en- 435

abling it to maintain a more reliable reasoning 436

trajectory. Consequently, PRM-MULTI can effec- 437

tively achieve better overall performance. 438

6.2 Do More Candidates Drive Better 439

Performance? 440

Recent research suggests that providing more can- 441

didate solutions can significantly boost the perfor- 442

mance of PRM (Lightman et al., 2024; Wang et al., 443

2024b,a). To investigate whether this trend extends 444

to multilingual settings, we examine the impact of 445

varying the number of candidates on PRM-MONO, 446

PRM-CROSS, and PRM-MULTI. 447

Setup We conduct experiments on the MATH500 448

benchmark using the LLAMA-3.1-8B-MATH gen- 449

erator to compare the performance of multilingual 450

PRM (PRM-MULTI), cross-lingual PRM (PRM- 451

CROSS), and monolingual PRM (PRM-MONO). 452

For each approach, we vary the number of can- 453

didates N from 2 to 64. This allows us to assess 454

how the number of candidate solutions influences 455
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MATH500

MISTRAL LLAMA DEEPSEEK

Verifier µALL µSEEN µUNSEEN µALL µSEEN µUNSEEN µALL µSEEN µUNSEEN

BASELINE 22.11 24.34 18.20 22.07 24.34 18.10 26.38 32.48 15.70
SC 29.20 31.80 24.65 30.60 33.31 25.85 44.96 49.29 37.40
ORM 39.54 42.63 34.25 40.49 43.14 35.85 50.96 55.54 42.95
PRM-MULTI 39.55 43.11 33.30 41.71 44.77 36.35 51.25 55.57 43.70

MGSM

MISTRAL LLAMA DEEPSEEK

Verifier µALL µSEEN µUNSEEN µALL µSEEN µUNSEEN µALL µSEEN µUNSEEN

BASELINE 49.63 61.65 28.60 56.18 64.23 42.10 52.95 63.02 35.30
SC 56.51 69.37 34.00 63.13 74.57 43.10 70.76 75.37 62.70
ORM 64.84 76.40 44.60 65.20 77.43 43.80 74.44 79.00 66.45
PRM-MULTI 65.45 77.09 45.10 71.93 82.00 54.30 75.42 80.51 66.50

Table 2: Multilingual PRMs’ best-of-N (N = 64) sampling performance on MATH500 and MGSM with three generators:
METAMATH-MISTRAL-7B, LLAMA-3.1-8B-MATH, and DEEPSEEKMATH-7B-INSTRUCT. We use QWEN2.5-
MATH-7B-INSTRUCT to finetune the ORM and PRM-MULTI. µALL, µSEEN, and µUNSEEN indicate the macro-average
of results across all the languages, the seen languages, and the unseen languages, respectively.

performance across different PRM strategies in a456

multilingual context.457

Multilingual PRMs yield better performance458

with more candidate solutions. Figure 5 illus-459

trates that PRM-MULTI consistently outperforms460

both PRM-CROSS and PRM-MONO, with its ad-461

vantage growing more pronounced as the number462

of candidates (N) increases. This finding under-463

scores the scalability of multilingual PRM in di-464

verse linguistic scenarios. Overall, these obser-465

vations reinforce the conclusion that multilingual466

PRM not only maintains superior performance but467

also scales well as more candidates are introduced.468

6.3 Are Multilingual PRMs Compatible with469

Parameter-Efficient Finetuning?470

Recent research has demonstrated the effectiveness471

of parameter-efficient finetuning (PEFT) across a472

variety of tasks (Houlsby et al., 2019; Li and Liang,473

2021). Therefore, we explore whether the PEFT474

approaches, such as LoRA (Hu et al., 2022), also475

perform well on multilingual PRMs.476

Setup To investigate this question, we employ477

LoRA on the key, query, and value attention matri-478

ces. Specifically, we use a rank of 8 and a dropout479

rate of 0.05 for both multilingual and cross-lingual480

PRMs. We train for three epochs with a batch size481

of 64 and a learning rate of 1e−5.482

LoRA is computationally efficient, but not as483

good as its fully-finetuning counterpart in multi-484

lingual PRMs. Figure 6 demonstrates that fully485
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Figure 6: Comparison between parameter-efficient fine-
tuning (LoRA) PRM and fully fine-tuning (FFT) PRM
with LLAMA-3.1-8B-MATH generator.

fine-tuning (FFT) consistently outperforms LoRA 486

in both cross-lingual and multilingual settings. The 487

performance gap becomes larger on the MATH500 488

dataset, which contains more complex questions 489

compared to MGSM, suggesting that FFT is better 490

suited for tasks requiring deeper reasoning and un- 491

derstanding. These findings align with prior re- 492

search, which indicates that while PEFT methods 493

may fall short of FFT when tasks demand higher 494

complexity or reasoning capabilities (Biderman 495

et al., 2024). Interestingly, although LoRA-based 496

methods generally lag behind FFT, multilingual 497

LoRA achieves stronger results than cross-lingual 498

LoRA. This highlights the benefits of leveraging 499

multilingual data during parameter-efficient fine- 500

tuning, as multilingual data likely provides richer 501

data diversity and linguistic coverage. 502
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6.4 Does PRM Surpass ORM in the503

Multilingual Scenario?504

In this section, we explore whether PRM also out-505

performs Outcome Reward Model (ORM) and self-506

consistency (SC) (Wang et al., 2022) in multilin-507

gual settings.508

Setup Following Lightman et al. (2024); Wang509

et al. (2024b), we evaluate the performance of510

PRM-MULTI by comparing it with other verifier511

methods, including: Direct prediction (BASELINE),512

Self-consistency (majority voting) (SC), and ORM.513

The accuracy of the best-of-N solution is used514

as the evaluation metric. Specifically, we train a515

multilingual ORM using uniform example budgets516

across seven seen languages. Then we assess the517

performance of verifiers on seven seen languages518

as well as on four additional unseen languages.519

Multilingual PRM outperforms SC and ORM520

across all languages and generators. The re-521

sults presented in Table 2 confirm that PRM consis-522

tently achieves higher accuracy on two benchmarks523

across multiple languages. Specifically, when using524

the LLAMA-3.1-8B-MATH as the generator, PRM525

improves average accuracy by +19.64 points on the526

MATH500 dataset and by +15.75 points on the MGSM527

dataset in terms of µALL, compared to the BASE-528

LINE of direct prediction. These substantial gains529

suggest PRM’s potential to enhance reasoning per-530

formance in a multilingual setting. Furthermore,531

PRM also surpasses both SC and ORM. For ex-532

ample, PRM exceeds SC and ORM by margins of533

up to +8.80 and +6.73 points on MGSM, respectively,534

when using LLAMA-3.1-8B-MATH as the genera-535

tor. Additionally, PRM demonstrates performance536

improvements for both seen and unseen languages.537

With the DEEPSEEKMATH-7B-INSTRUCT gener-538

ator on MGSM, PRM achieves respective gains of539

+17.49 and +31.20 for the seen and unseen lan-540

guage sets, compared to the BASELINE.541

6.5 Can Multilingual PRM Enhance LLMs?542

We have previously shown that multilingual PRM543

can bolster model performance under a best-of-N544

selection framework. In this section, we demon-545

strate that the multilingual PRM can be used as546

the reward model for finetuning the LLMs under a547

reinforcement learning paradigm.548

Setup We design experiments to improve549

LLAMA-3.1-8B-MATH using RL where we adopt550

the PPO strategy (Schulman et al., 2017) on the551

BASELINE PPO-ORM PPO-PRM

English 78.40 80.40 82.40
German 68.80 64.00 68.80
Spanish 72.00 71.20 76.00
French 67.60 68.00 71.60
Russian 69.60 68.40 71.20
Swahili 33.60 38.80 41.20
Chinese 59.60 64.00 62.80
Japanese 48.80 46.80 49.20
Bengali 45.20 41.20 40.40
Telugu 17.60 20.40 18.00
Thai 56.80 51.20 56.80

Average 56.18 55.85 58.04

Table 3: Zero-shot evaluation on MGSM for LLAMA-3.1-
8B-MATH improved via PPO with PRM-MULTI.

MetaMathQA training set (Yu et al., 2023b). We 552

then evaluate the resulting policy models on MGSM 553

using top-1 accuracy in a zero-shot setting. Due 554

to the computational constraints, we only generate 555

one response during the fine-tuning process. 556

Reinforcement learning with multilingual PRM 557

further improves the performance of LLMs. 558

The results shown in Table 3 indicate that step-by- 559

step PPO with PRM-MULTI (PPO-PRM) consis- 560

tently outperforms a standard supervised fine-tuned 561

BASELINE and PPO with ORM (PPO-ORM). 562

LLAMA-3.1-8B-MATH with PPO-PRM achieves 563

average boosts of +1.86 and +2.19 across 11 lan- 564

guages, compared to BASELINE and PPO-ORM, 565

respectively. These findings highlight the impor- 566

tance of fine-grained multilingual reward signals. 567

These gains demonstrate that process rewards can 568

refine policy decisions for both reasoning steps and 569

final outputs with reinforcement learning. 570

7 Conclusion 571

Our work demonstrates that multilingual PRMs sig- 572

nificantly enhance the ability to perform complex, 573

multi-step reasoning tasks in various languages, 574

consistently outperforming both monolingual and 575

cross-lingual counterparts. This conclusion is sup- 576

ported by comprehensive evaluations spanning 11 577

languages. Furthermore, our findings highlight 578

that performance is sensitive to the number of lan- 579

guages and the volume of English training data. 580

However, it also benefits substantially from more 581

candidate responses and model parameters. These 582

results underscore the importance of diverse lan- 583

guage training in providing fine-grained rewards 584

and open up promising avenues for multilingual 585

reasoning. 586
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8 Limitations587

While we have demonstrated the effectiveness of588

multilingual PRMs, our study has not comprehen-589

sively explored the wide range of reward optimiza-590

tion methods (Rafailov et al., 2024; Azar et al.,591

2024), some of which may not benefit from cross-592

lingual reward model transfer. Nevertheless, best-593

of-N and PPO, the two techniques leveraged in594

this paper, are highly representative of current prac-595

tices, particularly given the consistently strong per-596

formance of best-of-N (Gao et al., 2023; Rafailov597

et al., 2024; Mudgal et al., 2023). Furthermore,598

while our results show that multilingual PRMs out-599

perform both cross-lingual and monolingual PRMs,600

our experiments are limited to 11 languages. Ex-601

tending this approach to a broader set of languages602

and evaluating its impact across diverse linguistic603

families is an important avenue for future work.604
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#exam. max min mean
PRM800K trainset 404K 56 1 6.39
Math-Shepherd 445K 30 1 6.23
PRM800K testset 5071 53 1 22.11

Table 4: Dataset statistics of the datasets in this work,
including number of examples, maximum, minimum,
and average number of steps in the answers.
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Figure 7: Performance of PRM-MONO trained on seven
seen languages and evaluated on all 11 languages based
on the MATH500 with LLAMA-3.1-8B-MATH generator.

A Data Statistics829

The dataset statistics are summarized in Table 4.830

These include the total number of examples, as well831

as the maximum, minimum, and average number of832

reasoning steps in the answers across all examples.833

B Training Details834

We train the PRMs by fine-tuning all parame-835

ters of QWEN2.5-MATH-7B-INSTRUCT using the836

AdamW optimizer with a learning rate of 10−5837

and a batch size of 8. This process is conducted838

over two epochs on 4 NVIDIA A100 GPUs (80GB).839

During training, we use a linear learning rate sched-840

ule with a warm-up phase that constitutes 10% of841

the total training steps.842

C Cross-lingual Transfer of PRMs843

Following Wu et al. (2024b), we assess the perfor-844

mance of cross-lingual PRMs to inspect if language845

similarity like the script or mutual intelligibility846

might affect the levels of reasoning verification847

cross-lingual transfer.848

Setup We train PRMs on monolingual versions849

of the data in German, Spanish, French, Russian,850

Swahili, and Chinese, and evaluate their transfer to851

other languages.852

No clear signal indicates that language similar- 853

ity strongly correlates with cross-lingual trans- 854

fer. We present the cross-lingual transfer results 855

in Figure 7 and observe that there is no clear conclu- 856

sion regarding the factors that impact cross-lingual 857

transfer. For instance, the PRM trained on Russian 858

data achieves the highest accuracy when evaluating 859

French, Swahili, Chinese, Telugu, and Thai. No- 860

tably, these languages neither share the same script 861

nor belong to the same language family as Russian. 862

This observation suggests that linguistic similarity, 863

in terms of script or language family, may not be 864

a decisive factor in cross-lingual transfer. These 865

findings underscore the uncertainty in predicting 866

cross-lingual transfer performance based solely on 867

language similarity. In practice, selecting a diverse 868

set of representative languages for training a mul- 869

tilingual PRM may be a more effective strategy to 870

address this uncertainty and improve performance 871

across a wide range of target languages. 872

D Breakdown Results of MGSM for 873

PRM-MONO, PRM-CROSS, and 874

PRM-MULTI 875

We present the breakdown of results for each lan- 876

guage on the MGSM in Table 5. The results indi- 877

cate that the PRM-MULTI consistently outperforms 878

both the PRM-MONO and PRM-CROSS models 879

across languages. This observation aligns with the 880

conclusion drawn in Section 5.1, highlighting the 881

advantages of multilingual training for PRMs. 882
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MGSM µALL µSEEN µUNSEEN en de es fr ru sw zh ja bn te th

METAMATH-MISTRAL-7B

PRM-MONO - 76.0 - 90.8 78.8 81.2 81.6 86.0 36.0 77.6 - - - -
PRM-CROSS 65.2 76.7 45.2 90.8 84.4 85.2 82.4 86.8 27.2 80.0 76.2 43.0 7.6 54.0
PRM-MULTI 65.5 77.1 45.1 89.2 83.2 86.0 82.4 86.4 33.2 79.2 75.6 43.2 8.0 53.6

LLAMA-3.1-8B-MATH

PRM-MONO - 81.7 - 92.4 83.2 88.0 80.4 82.4 62.4 83.2 - - - -
PRM-CROSS 68.8 79.3 50.6 92.4 82.0 88.0 82.0 79.2 50.4 80.8 72.8 39.6 20.8 69.2
PRM-MULTI 71.9 82.0 54.3 90.4 87.6 88.0 83.6 83.2 59.6 81.6 74.0 48.0 23.6 71.6

DEEPSEEKMATH-7B-INSTRUCT

PRM-MONO - 80.5 - 96.4 86.4 90.4 85.2 88.0 32.0 85.0 - - - -
PRM-CROSS 74.0 79.0 65.1 96.4 86.0 91.2 85.6 87.2 18.4 88.4 80.0 57.6 51.6 71.2
PRM-MULTI 75.4 80.5 66.5 95.2 84.0 92.4 86.4 89.2 30.0 86.4 80.8 60.8 52.4 72.0

Table 5: Different PRMs’ best-of-N sampling (N = 64) performance on MGSM with the generator of METAMATH-
MISTRAL-7B, LLAMA-3.1-8B-MATH, and DEEPSEEKMATH-7B-INSTRUCT. µALL, µSEEN, and µUNSEEN indicate
the macro-average of results across all the languages, the seen languages, and the unseen languages, respectively.
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