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Abstract
Imitation Learning (IL) is an important paradigm within the broader reinforcement learning (RL)
methodology. Unlike most of RL, it does not assume availability of reward-feedback. Classi-
cal methods such as behavioral cloning and inverse reinforcement learning are highly sensitive
to estimation errors, especially in continuous state space problems. Meanwhile, state-of-the-art
(SOTA) IL algorithms often require additional online interaction data to be effective. In this pa-
per, we consider the problem of imitation learning in continuous state space environments based
solely on observed behavior, without access to transition dynamics information, reward structure,
or, most importantly, any additional interactions with the environment. Our approach is based on
the Markov balance equation and introduces a novel conditional kernel density estimation-based
imitation learning framework. It uses conditional kernel density estimators for transition dynamics
and seeks to satisfy a balance equation for the environment. We establish that our estimators satisfy
asymptotic consistency and present associated sample complexity analysis. Through a series of
numerical experiments on continuous state benchmark environments, we show consistently supe-
rior empirical performance over many SOTA IL algorithms. The full paper with the appendix is
available at: https://github.com/rishabh-1086/CKIL.
Keywords: Imitation Learning, Reinforcement Learning, Offline learning.

1. Introduction

Reinforcement Learning (RL) has produced a series of breakthroughs over the last decade from
exceeding human proficiency at playing simple games such as in the Atari suite (Mnih et al., 2015)
to Go (Silver et al., 2016) and StarCraft (Vinyals et al., 2019), and to protein structure prediction
systems (Jumper et al., 2021), etc. A fundamental premise that the ‘reward is enough’ (Silver et al.,
2021) underlies all of such RL methodology. And yet, in most problems, a natural reward function
is not available. Nor may it be possible to engineer one from intuition. Thus, a lot of effort is spent
on reward shaping (Ng et al., 1999) to make RL algorithms work, often without success.

This problem is particularly acute with humans in the loop, either as demonstrators, or as eval-
uators. Often, demonstration data comes from human experts and it is impossible to infer precisely
what reward function human experts really have in mind while taking actions. To be fair, sev-
eral inverse RL (IRL) algorithms such as MaxEntropy-IRL (Ziebart et al., 2008) use a methodology
wherein a reward function is first inferred from the demonstration data, and then used in conjunction
with RL algorithms to design near-optimal policies. This has two lacunae. First, the performance of
the RL algorithms can be very sensitive to errors in the reward function estimate. And second, the
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expert may not be using a policy that is optimal with respect to any reward objective at all! There is
thus a need to develop imitation learning (IL) algorithms that do not depend on reward inference as
a first step (Arora and Doshi, 2021).

Behavioral Cloning (BC) is a straightforward approach to imitation learning (Pomerleau, 1988),
using supervised learning to map states to actions. In fact, it largely ignores the inherent sequential
nature of reinforcement learning problems. Unfortunately, it suffers from severe covariate shift
issues as it fails to generalize to less-visited parts of the state space and ignores the sequential
decision-making aspect. This results in propagation of errors in the agent’s performance (Ross and
Bagnell, 2010) resulting in a limited practical ability to generalize effectively.

To address the issue of compounding errors that afflicts methods like BC, IRL algorithms
(Abbeel and Ng, 2004; Ng and Russell, 2000; Syed and Schapire, 2007; Ziebart et al., 2008; Levine
et al., 2011) first learn a reward function, and then use reinforcement learning to find a policy, which
makes them expensive to run, and sensitive to reward function estimation errors.

Adversarial Imitation Learning (AIL) on the other hand, is based on distribution matching
through adversarial learning (Ho and Ermon, 2016; Fu et al., 2018; Ke et al., 2021) between the
target state-action distribution and that generated by the behavioral policy during its interaction
with the environment. Unfortunately, this is also its drawback: it needs new samples from the be-
havioral policy in every iteration, and is thus not suitable when only offline data is available. It is
also challenging for continuous control problems since each visited state is visited at most once.
There is broader IL literature (Ross et al., 2011) that also assumes access to a generative model to
generate more data on the fly.

In this paper, we propose an imitation learning algorithm designed to address several key chal-
lenges. Our approach does not require reward feedback, avoids distribution matching through on-
policy samples, and moves beyond behavioral cloning by leveraging the Markovian structure of the
dynamics. It does not rely on access to a generative model, supports continuous state spaces, and
enables batch processing of offline datasets. This formulation is particularly relevant for real-world
decision-making applications, such as healthcare, robotics, and autonomous vehicles (Le Mero
et al., 2022), where experimentation is costly or unsafe.

We present a novel framework grounded in the premise that demonstration trajectory data sat-
isfies the balance equation linking the demonstration policy, the Markov decision process (MDP)
transition density, and the induced Markov chain. We then estimate the MDP and Markov chain
transition densities using conditional kernel density estimators. Starting with the discrete state and
action setting, we extend the framework to continuous state spaces, proving estimators’ asymp-
totic consistency and analyzing their sample complexities. Validation on continuous state problems
demonstrates strong numerical performance. The novel combination of these two ideas together
enables its excellent numerical performance. While extending to continuous action spaces is con-
ceptually straightforward, additional effort is needed for numerical robustness.

Other Related Work. As already mentioned, BC often has poor performance due to failure to
account for Markovian dynamics and discarding distributional insights from the demonstrations
(Ross and Bagnell, 2010; Piot et al., 2014). This is sought to be addressed (Ross et al., 2011; Piot
et al., 2016) by either further online interactions with the environment, or the demonstrator, or using
insights into model dynamics or the sparsity of rewards, all of which are in general impractical.
Recent work (Xu et al., 2022) aims to overcome these by using additional data from non-expert
policies without needing additional online interactions but such offline data may not be available.
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The EDM approach (Jarrett et al., 2020a) captures the expert’s state occupancy measure by training
an explicit energy-based model but has many limitations as discussed in (Swamy et al., 2021).

There also have been efforts to further develop IRL approaches to overcome the limitations of
earlier algorithms. (Klein et al., 2011, 2012) introduce LSTD-µ, a temporal difference technique that
shares the weaknesses of least squares estimators, and is highly sensitive to basis feature selection
and training data distribution. (Lee et al., 2019b) propose DSFN which uses a transition-regularized
imitation network that produces an initial policy close to expert behavior and an efficient feature
representation but assumes complete knowledge about reward features which is unrealistic (Arora
and Doshi, 2021).

(Piot et al., 2014) introduced RCAL, a non-parametric algorithm that employs a boosting method
to minimize a large margin objective augmented with a regularization term taking into account the
MDP structure, avoids feature selection steps and can help tackle some of the above issues. (Chan
and van der Schaar, 2021b) propose AVRIL, which jointly learns an approximate posterior distri-
bution over reward and policy. (Garg et al., 2021a) introduce IQ-Learn, an off-policy IRL method
that implicitly represents reward and policy using a learned soft Q-function. Unfortunately, both
suffer from significant covariate shift problems, and thus encounter significant reward extrapolation
errors, leading to misguided outcomes in novel environments. To address this, the CLARE (Yue
et al., 2023) model-based offline Inverse Reinforcement Learning (IRL) approach introduces con-
servatism to its estimated reward but assumes access to an additional diverse dataset. It employs an
IRL algorithm within an estimated dynamics model to learn the reward. However, it has been shown
(Zeng et al., 2023) to have poor performance when there are predominantly low-quality transition
samples from a behavior policy.

Adversarial Imitation Learning (AIL) approaches (Ho and Ermon, 2016) were a breakthrough
when they were introduced a few years ago (Blondé and Kalousis, 2019; Kostrikov et al., 2019a).
However, these approaches require online interactions with the environment, and thus are not appli-
cable when we must work only with offline data. (Kostrikov et al., 2019b) introduces ValueDICE
that employs a distribution matching strategy between the imitator and expert policies, and un-
dertakes a complex alternating maximization-minimization optimization procedure. Still, it has
difficulties in estimating the expectation of an exponential that introduces bias when approximating
gradients using mini-batches (Jarrett et al., 2020a). The algorithm we present is quite distinct from
the above, and demonstrates promising preliminary empirical results.

2. Preliminaries

The Imitation Learning Problem. An infinite horizon discounted Markov decision process (MDP)
M is defined by the tuple (S,A, T, r, γ) with states s ∈ S, actions a ∈ A and successor states
s′ ∈ S drawn from the transition function T (s′|s, a). The reward function r : S × A → R maps
state-action pairs to scalar rewards, and γ is the discount factor. Policy π is a probability distribution
over actions conditioned on state and is given by π(at|st) = Pπ(At = at|St = st), where at ∈ A,
st ∈ S, ∀t = 0, 1, 2, · · · . The induced occupancy measure of a policy is given as ρπ(s, a) :=
Eπ[
∑∞

t=0 γ
t 1st=s,at=a], where the expectation is taken over at ∼ π(·|st), st+1 ∼ T (·|st, at) for

all t, and the initial state s0. The corresponding state-only occupancy measure is given as ρπ(s) =∑
a ρπ(s, a). In the offline imitation learning (IL) framework, the agent is provided with trajectories

generated by a demonstration policy πD, collected as D = {(s0, a0), (s1, a1), (s2, a2), ...}; and is
not allowed any further interaction with the environment. The data D does not include any reward
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rt at each time step. Indeed, rather than long-term reward maximization, the IL objective is to learn
a policy π⋆ that is close to πD in the following sense (Yue and Le, 2018):

π⋆ ∈ argmin
π∈Π

Es∼ρπ [L(π(·|s), πD(·|s))], (1)

where Π is the set of all randomized (Markovian) stationary policies, and L is a chosen loss function.
In practice, (1) can only be solved approximately since πD is unknown and only transitions are
observed in the dataset D.
Conditional Kernel Density Estimation (CKDE). The imitation learning approach we introduce
depends on transition density estimation. Though statistical theory exists for it, conditional density
estimation is a difficult problem due to a lack of clarity on what parametric families of density
functions are good candidates. Thus, we adopt kernel density estimation (KDE), a nonparametric
framework for the estimation of general continuous distributions (Wand and Jones, 1994).

We next outline the method for two continuous random variables, X and Y for the sake of sim-
plicity. Let f and g denote the joint density of (X,Y ) and the marginal density of X , respectively.
The conditional distribution of Y , given X , is denoted as hY |X(y|x) = fX,Y (x, y)/gX(x). Select-
ing a pair of kernel functions K : R → R and K ′ : R → R with respective scalar bandwidth
parameters h > 0 and h′ > 0 and given a set of n samples {(xi, yi)}ni=1, the KDE approximations
f̂ and ĝ for the joint and marginal distributions, respectively, are obtained as follows:

f̂X,Y (x, y) =
1

n

n∑
i=1

1

h
K

(
x− xi

h

)
1

h′
K ′
(
y − yi
h′

)
, ĝX(x) =

1

n

n∑
i=1

1

h
K

(
x− xi

h

)
. (2)

Using the approximations in (2), the approximate conditional density ĥY |X can be computed as

ĥY |X(y|x) =
f̂X,Y (x, y)

ĝX(x)
. (3)

In more general cases involving random vectors, analogous estimates to those in (2) and (3) may
be obtained using kernel functions defined according to

KH(x) = |H|−
1
2K(H− 1

2x), (4)

where H is a symmetric positive definite bandwidth matrix of appropriate dimension, m, with
determinant |H|, and K is a real-valued function satisfying

∫
Rm K(x)dx = 1. For example, the

KDE estimate for the marginal distribution of random vector X is defined as

ĝX(x;H) =
1

n

n∑
i=1

KH

(
x− xi

)
. (5)

An example of such a multivariate kernel function is the standard m-variate normal density function

K(x) := (2π)−
m
2 exp

(
−xTx

2

)
.

We note that conditional density estimation is quite difficult numerically, and conditional kernel
density estimation (CKDE), the adaptation of KDE to conditional density estimation, is amongst
the most effective methods available (see (Chacón and Duong, 2018) for more details).
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3. Conditional Kernel Imitation Learning

We next describe our imitation learning algorithm. A key premise of our algorithm is that the
demonstration trajectories from an expert must satisfy the Markov balance equation under the
demonstrator’s policy πD, and thus we must use that to guide the agent’s learning. The use of
the balance equation then requires estimation of certain transition (conditional probability) density
functions which we obtain via conditional kernel density estimation methods. Then, the problem
reduces to identifying policies that best fit the balance equation. We elucidate this procedure in
Algorithm 1, prove its theoretical properties and then present numerical evidence of its efficacy on
a number of benchmark environments.
The Markov Balance Equation. Consider a demonstration policy πD that is used to take actions
starting from an initial state s0. Let T (s′|s, a) denote the transition density function of the MDP.
Note that πD(a|s) is a randomized Markovian, stationary policy that denotes the probability of
taking action a in state s. This will induce a Markov chain on the state space S. Let its transition
density be denoted P (s′|s). Then, the Markov balance equation is given by

P (s′|s) =
∑
a

πD(a|s)T (s′|s, a).

Unfortunately, this involves a sum, and hence is difficult to use. Therefore, we use the following
alternate form which is a transition density of the induced Markov chain on the state-action space,

PπD(s
′, a′|s, a) = πD(a

′|s′)T (s′|s, a). (6)

The above balance equation is the basis of our IL approach. If we can estimate PπD and T

in (6) (estimates denoted by P̂ and T̂ respectively), we can then infer a policy πD that satisfies it.
Unfortunately, the problem is ill-conditioned, and we will need to impose additional criterion such
as a regularization term.

We consider a class of policies parametrized by θ and formulate the following optimization
problem:

min
θ∈Θ

∫
(s′,a′)

∫
(s,a)

[
P̂ (s′, a′|s, a)− πθ(a

′|s′)T̂ (s′|s, a)
]2

dµ(s, a) dµ(s′, a′)

−λ

∫
s′
H(πθ(·|s′)) dν(s′).

(7)

In (7), the squared loss first term ensures that the balance equation is satisfied approximately. It
is a simple but novel loss function rarely used in imitation learning in conjunction with a balance
equation. The second term, H(πθ(·|s′)) is the entropy of the probability distribution πθ(·|s′) on
actions when the state is s′. It penalizes less randomized policies in favor of more randomized poli-
cies. λ ≥ 0 is a regularization parameter. Here, µ and ν denote reference probability measures on
state-action pairs and states respectively. For example, they can be the counting measures obtained
from the dataset. Θ is a given parameter set, e.g., possible The parameters could be weights of a
neural network, for example.
Transition Density Estimation. We now discuss how to use kernel density estimation methods
for estimating the two conditional densities PπD and T , first for the discrete state and action space
setting, where the form of estimates is intuitive, and then for the continuous setting.
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Discrete Spaces. When both the state and action spaces are discrete, the estimates P̂ and T̂ can be
calculated as:

T̂ (s′|s, a) := η(s, a, s′)

η(s, a)
, and P̂ (s′, a′|s, a) := η(s, a, s′, a′)

η(s, a)
(8)

where η represents the counting measure, i.e., the frequency of a tuple or sequence in dataset D. If
the denominator is zero, the conditional density is assumed uniform.
Continuous Spaces. Estimation of transition densities in this setting is more challenging since no
visited state would appear twice, and most of the states would never be visited in any given dataset.
This, thus calls for conditional density estimation using more sophisticated methods.

These include a range of techniques such as parametric approaches like mixture density network
(Bishop, 1994), normalizing flows (Trippe and Turner, 2018); non-parametric methods like Gaus-
sian process conditional density estimation (Dutordoir et al., 2018), CKDE (Li and Racine, 2006);
and semi-parametric methods like least squares conditional density estimation (Sugiyama et al.,
2010). In this study, we opt for using CKDE since it is a closed-form, non-parametric method that
can be easily implemented and adapted to different data types. Further, CKDE provides a consistent
estimator under appropriate conditions (Chacón and Duong, 2018).

As described in Section 2, the kernel functions use a difference between two samples/values
(e.g., x − xi) as their argument (5). This difference can be alternatively replaced by a suitable
distance metric, as indicated in prior work (Haasdonk and Bahlmann, 2004). We define three distinct
distance metrics: one to assess the dissimilarity between (next state, next action) pairs, another for
(state, action) pairs, and a final one for next states. These metrics are denoted as d1 : (S × A) ×
(S × A) → R+, d2 : (S × A) × (S × A) → R+, and d3 : S × S → R+ respectively. Similarly,
we define H1, H2, and H3 as bandwidth matrices for the kernels KH1 , KH2 , and KH3 , respectively.
H1, H2, and H3 are square matrices with dimensions matching those of the (s′, a′) pair, (s, a) pair,
and s′, respectively. The CKDE approximations P̂ and T̂ are then computed as

P̂ (s′, a′|s, a) := f̂1(s
′, a′, s, a)

f̂3(s, a)
=

∑n
l=1KH1

(
d1((s

′, a′), (s′l, a
′
l))
)
KH2

(
d2((s, a), (sl, al))

)∑n
l=1KH2

(
d2((s, a), (sl, al))

) ,

and T̂ (s′|s, a) := f̂2(s
′, s, a)

f̂3(s, a)
=

∑n
l=1KH3

(
d3(s

′, s′l)
)
KH2

(
d2((s, a), (sl, al))

)∑n
l=1KH2

(
d2((s, a), (sl, al))

) , (9)

where f̂1, f̂2, and f̂3 are joint and marginal kernel density estimates, as explained in Section 2.
We combine the transition estimation procedures of (8) and (9) with the balance equation based
optimization problem in (7) in our conditional kernel imitation learning (CKIL) algorithm whose
pseudo-code is presented in Algorithm 1.
Remarks. 1. Aside from the regularization parameter λ in (11), the only other hyperparameters
in our algorithm are the three kernel bandwidth parameters, which are not particularly sensitive.
2. While scalability can be a concern, conditional density estimation is a difficult problem, and
kernel methods are among the best for them in terms of numerical performance while also coming
with theoretical consistency guarantees which we provide next. 3. CKIL allows for batch learning,
wherein it uses only Nbatch (the batch size) tuples at each gradient step, thus allowing it to scale
since it does not need to grow with the dataset size.
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Theoretical Guarantees. Given standard assumptions, we demonstrate that as the training dataset
size n approaches infinity, the CKDE estimates in (9) converge in probability to the true conditional
distributions in Theorem 1. We then provide sample complexity bounds in Theorem 2 for the
component joint and marginal densities to describe how fast these CKDE estimates concentrate
around the true distributions in Theorem 1. While direct sample complexity analysis for ratios of
estimates is difficult in the continuous state space setting, given accurate estimates for the joint and
marginal densities in (9), we expect to obtain good estimates for the conditional distributions. We
prove Theorems 1 and 2 and outline the assumptions made therein in the Appendix A.

Theorem 1 Let P̂n and T̂n be the CKDE estimates constructed using (9) and a buffer B with n
tuples. Then, under appropriate conditions, for each (s, a, s′, a′), as n → ∞,

P̂n(s
′, a′|s, a) P−−−→PπD(s

′, a′|s, a), and T̂n(s
′|s, a) P−−−→T (s′|s, a). (10)

Theorem 2 Let f̂1(s′, a′, s, a), f̂2(s′, s, a), and f̂3(s, a) be the joint density estimates defined in
(9), with corresponding true densities f1(s

′, a′, s, a), f2(s
′, s, a), and f3(s, a), respectively. Let

Σ(β, L) denote the Hölder Class with parameters β and L. Under appropriate conditions, for each
(s, a, s′, a′), the following holds:

1. For n > C1 log(2/δ)

h
m1
1 h

m2
2

(
ϵ−c1(h2

1+h2
2)

β
2

)2 , supf1∈Σ(β,L) P(|f̂1(s′, a′, s, a)−f1(s
′, a′, s, a)| > ϵ) < δ.

2. For n > C2 log(2/δ)

h
m3
3 h

m2
2

(
ϵ−c2(h2

3+h2
2)

β
2

)2 , supf2∈Σ(β,L) P(|f̂2(s′, s, a)− f2(s
′, s, a)| > ϵ) < δ.

3. For n > C3log(2/δ)

h
m2
2

(
ϵ−c3h

β
2

)2 , supf3∈Σ(β,L) P(|f̂3(s, a)− f3(s, a)| > ϵ) < δ,

where mi is the order of diagonal matrix Hi, hi gives the corresponding bandwidths, and Ci and ci
are constants ∀i ∈ {1, 2, 3}.

4. Experimental Results

Experimental Setup. We evaluate our algorithm’s performance by assessing its effectiveness across
diverse benchmark environments sourced from OpenAI Gym (Brockman et al., 2016). These envi-
ronments represent a wide spectrum of complexities commonly encountered in reinforcement learn-
ing. These include the MountainCar environment (Moore, 1990), CartPole (Barto et al., 1983), Ac-
robot (Sutton, 1995), and LunarLander (Klimov, 2019). To generate demonstration datasets D, we
leverage pre-trained and hyperparameter-optimized agents available in the RL Baselines Zoo (Raf-
fin, 2020). Specifically, we employ a PPO agent for LunarLander-v2, a DQN agent for CartPole-v1,
and an A2C agent for Acrobot-v1.
Baseline Algorithms. We compare the performance of our CKIL algorithm (Algorithm 1), with
a range of offline IRL/IL/AIL baselines, including several recent SOTA algorithms. These include
Behavioral Cloning (BC), ValueDICE (VDICE) (Kostrikov et al., 2019b), reward-regularized clas-
sification (RCAL) (Piot et al., 2014), Energy-based Distribution Matching (EDM) (Jarrett et al.,
2020a), AVRIL (Chan and van der Schaar, 2021b), and Deep Successor Feature Network (DSFN)
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Algorithm 1 Conditional Kernel Imitation Learning (CKIL)
Input: Expert dataset of trajectories D = {(si, ai)}ni=1

Output: θ∗

1: Initialize policy parameter θ
2: Transform dataset D into (s, a, s′, a′) tuples, then store them in buffer B.
3: for iter = 0, 1, . . . do
4: Sample a batch biter of (s, a, s′, a′) tuples from B
5: Obtain P̂ , T̂ in (9) via CKDE on biter
6: Calculate empirical estimate of the objective function in (7) using all (s, a, s′, a′) ∈ biter as:∑

(s′,a′)

∑
(s,a)

[
P̂ (s′, a′|s, a)− πθ(a

′|s′)T̂ (s′|s, a)
]2

+ λ
∑
s′

∑
a′

πθ(a
′|s′)log(πθ(a′|s′)) (11)

7: Update the policy parameter θ using gradient update to minimize the calculated empirical
estimate of the objective function

8: end for
9: return θ∗

(Lee et al., 2019b). Furthermore, we also compare against IQ-Learn (Garg et al., 2021a), a state-
of-the-art model-free offline IRL algorithm. Please note that recent offline IRL/IL methods, like
CLARE (Yue et al., 2023), have emerged in the literature. Some of these methods require addi-
tional diverse data alongside expert data, while others permit interaction with the environment, with
”offline” meaning that these methods cannot query the expert. However, our work strictly assumes
access to only expert data without further interactions or access to additional diverse data. Hence,
we exclude these algorithms from comparison to maintain fairness. More detailed discussion can
be found in Appendix C.
Implementation. The policy πθ in (11) is embodied by a neural network (NN) architecture. This
NN comprises two hidden layers featuring the Rectified Linear Unit (ReLU) activation function.
The final layer employs a softmax function to produce a probability distribution over actions when
given a state as an input. To facilitate comparison, all benchmarks adopt a common neural network
architecture consisting of two hidden layers comprising 64 units each, with Exponential Linear Unit
(ELU) activation functions. Training is carried out using the Adam optimizer (Kingma and Ba,
2015) with individually tuned learning rates. The implementation details, including hyperparame-
ters of CKIL and benchmark algorithms, can be found in Appendix B and Appendix C, respectively.
Choice of Kernel. We use the Gaussian kernel due to its ability to uniformly approximate any con-
tinuous target function on a compact subset (Micchelli et al., 2006) which is particularly helpful in
density estimation. We consider a Euclidean distance metric for d1, d2, and d3 and utilize a diag-
onal bandwidth matrix with the same values across its diagonal elements. These matrices can then
be denoted as Hi = hiImi , where mi is the corresponding appropriate dimension for i = 1, 2, 3.
Each hi was tuned slightly but the conclusions of our experimental results are not very sensitive to
this choice. We would like to emphasize that in prior research (Mammen et al., 2011; Schölkopf
and Smola, 2002; Silverman, 1986; Ahmad and Ran, 2004), approaches for systematic selection
of bandwidth parameters, which should decrease as the dataset size grows, have been developed.
These methods can be applied to more intricate problems where manual tuning is impractical. Spe-
cific values of hi employed for various experiments are detailed in Appendix B.
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Figure 1: Plots for CKIL agent in a discretized MountainCar environment for a varying number
of trajectories (a) Empirical KL divergence (lower values indicate better performance) (b) Average
rewards attained (higher values indicate better performance).

Results

Discrete States and Actions. While our focus is primarily on continuous state-space settings re-
quiring conditional density estimation, we first illustrate the effectiveness of our general approach
in a discrete state-space problem. We compare CKIL’s performance against Behavior Cloning and a
random action agent using the discretized MountainCar environment. The 2-dimensional state space
is discretized into a 15 × 15 grid, and P̂ and T̂ are estimated using equation (8). The dataset D is
generated with an ϵ-perturbation of the policy in (Xiao, 2019), with ϵ = 0.05. Starting with one tra-
jectory in D and increasing to 15, Figure 1 summarizes the results. The KL-divergence plot shows
increasing alignment between agent and expert policies as dataset size grows. With 15 trajectories,
CKIL achieves expert-level proficiency, consistently outperforming Behavioral Cloning.
Continuous States. We next address our main goal, namely imitation learning for continuous state
environments. When provided ample demonstration data, all benchmarks exhibit the capability to
attain performance comparable to the optimized demonstration agents in each environment. Thus,
we evaluate the algorithms’ capacity to manage sample complexity in scenarios with limited data. In
particular, we assess the change in performance of each algorithm as the size of the expert dataset D
ranges from a single trajectory to a collection of 15 trajectories. This setup mirrors the configuration
described in (Jarrett et al., 2020a). The average trajectory lengths in the expert data are 80 for
Acrobot, 500 for CartPole, and 300 for LunarLander. The algorithms were trained to convergence
on datasets of 1, 3, 7, 10, or 15 trajectories, each uniformly drawn from 1000 expert trajectories. The
trained policies were deployed in each environment, and average scores over 300 episodes, serving
as standard benchmarks for IL comparisons, were recorded for each algorithm. This process was
repeated 10 times with diverse initialization and observed trajectories in each iteration.

Figure 2 compares the average rewards achieved by all algorithms as the demonstration dataset
size increased in the Acrobot, CartPole, and LunarLander environments. Across all tasks, the re-
sults showcase CKIL’s capability to learn effective policies, manifesting robust and consistently
superior performance compared to the baselines considered, especially when data is scarce. We
observe that CKIL attains expert-level performance in three environments of increasing difficulty,
the CartPole, the Acrobot, and the LunarLander, within use of three trajectories. Remarkably, it is
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BC VDICE RCAL EDM AVRIL DSFN CKIL IQ-Learn

(a) Acrobot (b) CartPole (c) LunarLander

Figure 2: Average rewards of benchmark IRL/IL/AIL and CKIL policies during real-time deploy-
ment, plotted against the number of trajectories in dataset D (higher values indicate better perfor-
mance). Expert and random agents are represented as and , respectively.

able to approach expert-level performance on the CartPole environment by use of a single trajectory.
Also note that CKIL’s performance is almost uniformly better than that of the various baseline algo-
rithms across the three environments. Among these baselines, the IQ-Learn algorithm demonstrates
performance nearly comparable to that of CKIL. However, IQ-Learn, being an IRL algorithm, has
significantly higher computational overhead than CKIL. Moreover, instabilities of the IQ-Learn ap-
proach is discussed in (Al-Hafez et al., 2023). It is notable that the off-policy adaptations of online
algorithms (VDICE, DSFN) do not exhibit the same degree of consistent performance as their in-
herently offline counterparts. This highlights the inadequacy of solely adopting online algorithms
in offline scenarios. The challenges in estimating the expectation of an exponential distribution may
contribute to VDICE’s underperformance. Moreover, ablation study is done in Appendix D.

The results suggest that combining a loss function based on the Markov balance equation, con-
ditional kernel density estimation, and an entropy regularizer enables effective imitation learning in
continuous state problems. Additionally, CKIL’s design requires minimal hyperparameter tuning,
unlike other model-based IL methods. CKIL also demonstrates superior computational efficiency,
with training times significantly lower than other baselines. For example, CKIL converges in just a
couple of minutes, while EDM and IQ-Learn require about half an hour.

5. Conclusions

In this paper, we introduced Conditional Kernel Imitation Learning (CKIL), a simple yet novel ap-
proach to imitation learning for continuous state-space problems. CKIL avoids reward modeling
by leveraging the Markov balance equation and conditional kernel density estimators for transi-
tion densities of both the MDP and induced Markov chain. The algorithm is supported by theo-
retical consistency and sample complexity analysis, demonstrating strong empirical performance
compared to SOTA offline IL, IRL, and AIL methods. Unlike some imitation learning algorithms,
CKIL does not require access to a generative model or additional datasets. While imitation learning
with limited training data often faces distribution shift challenges, our results suggest CKIL handles
this issue more effectively than other strictly batch IL algorithms. Further details on this can be
found in Appendix E. Future work may explore using scalable density estimation techniques, such
as normalizing flows.
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Appendix A. Technical details for Theorems 1 and 2

We state the following technical lemma for convergence in probability of kernel density estimators
from i.i.d samples which we used for Theorem 1.

Lemma 3 (Chacón and Duong, 2018) Suppose X1, X2, . . . , Xn are i.i.d vectors with probability
density g. Let ĝ(·;H), as given in Eq. (5), be the kernel density estimator constructed from these
samples using kernel K and bandwidth matrix H = H(n). Suppose the following assumptions
hold.

(C1) Each entry of Hg(·) be piecewise continuous and square integrable, where Hg is the m ×m
Hessian-matrix of g.

(C2) The kernel K, is square integrable, spherically symmetric and with a finite second order mo-
ment; this means that

∫
Rm zK(z)dz = 0 and

∫
Rm zzTK(z)dz = m2(K)Im (where m2(K)

is independent of i, for i ∈ {1, 2, . . .m}). Furthermore,
∫
Rm K(z) = 1.

(C3) The bandwidth matrices H = H(n) form a sequence of positive definite, symmetric ma-
trices such that as n → ∞, vec H(n) → 0, i.e. all entries of H(n) approaches 0 and
n−1|H(n)|−1/2 → 0, where vec is the vectorization operator which acts on a matrix by
stacking its columns on top of one another.

Then, ĝ(x;H) converges in probability to g(x) for each x.

We introduce the kernel functions Ki, i = 1, 2, 3, so that using (4), the kernels KHi for i =
1, 2, 3 appearing in (9) can be expressed as

KHi(x) = |Hi|−
1
2Ki(H

− 1
2x), (12)

where x is of appropriate dimension. We will make the following assumptions (Chacón and Duong,
2018):

(A1) Suppose the buffer B in Algorithm 1 consists of n iid tuples (s, a, s′, a′) generated according
to a probability distribution P (s, a, s′, a′) = µ(s, a)PπD(s

′, a′|s, a), where PπD is the tran-
sition probability density of the induced Markov chain on the state-action space under the
demonstration policy πD (see (6)) and µ is a reference probability measure on (s, a). Further,
P has a density function g that is square-integrable and twice differentiable, with all of its
second-order partial derivatives bounded, continuous and square integrable. Also assume that
the marginals P (s′, s, a) and P (s, a) satisfy these properties.

(A2) The kernels Ki for i ∈ {1, 2, 3} in (12) are square integrable, zero-mean, spherically sym-
metric, and with common finite second-order moment

∫
Rmi zz

TKi(z)dz = σ2Imi .

(A3) For each kernel KHi as defined in (4), the bandwidth matrices Hi(n) (where n is the number
of tuples in B) form a sequence of positive definite, symmetric matrices such that Hi(n) → 0
and n−1/2|Hi(n)|−1/2 → 0 as n → ∞.

With these assumptions, we re-state Theorem 1 as follows:
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Theorem 1 Suppose assumptions (A1)-(A3) are true. Let P̂n and T̂n be the CKDE estimates con-
structed using (9) and a buffer B with n tuples. Then, for each (s, a, s′, a′), as n → ∞,

P̂n(s
′, a′|s, a) P−−−→PπD(s

′, a′|s, a), and T̂n(s
′|s, a) P−−−→T (s′|s, a). (13)

Proof We now adopt Lemma 3 to give a detailed outline of proof for Theorem 1 under assumptions
(A1)-(A3). First of all, we define the following:

f̂(s′, s, a) =
n∑

l=1

KH3

(
d3(s

′, s′l)
)
KH2

(
d2((s, a), (sl, al))

)
,

ĝ(s, a) =
n∑

l=1

KH2

(
d2((s, a), (sl, al))

)
.

(14)

We can then argue as follows:

1. We assume (A1) that P (s, a, s′, a′) has a density function g that is square-integrable and twice
differentiable, with all of its second-order partial derivatives bounded, continuous and square
integrable and so does its marginals P (s′, s, a) and P (s, a). This leads to the satisfaction of
condition (C1).

2. From assumption (A2),
∫
Rmi zKi(z)dz = 0 for i = {2, 3}, where zi is a vector of size mi.

Partition the vector z as z = [z3, z2] and let m = m2+m3 and K(z) = K3(z3)K2(z2). Then
for t ≤ m3, ∫

Rm

ztK(z)dz =

∫
Rm

ztK3(z3)K2(z2)dz

=

∫
Rm2

K2(z2)dz2

∫
Rm3

ztK3(z3)dz3

=

∫
Rm3

ztK3(z3)dz3 = 0,

(15)

which follows from (A2). This can be shown for any t ∈ {1, 2, . . . ,m}. Hence,
∫
Rm zK(z)dz =

0 is satisfied corresponding to condition (C2).

Now, ∫
Rm

zzTK(z)dz

=

∫
Rm

[
z3z

T
3 z3z

T
2

z2z
T
3 z2z

T
2

]
K3(z3)K2(z2)dz3dz2

= σ2

[
Im3 0
0 Im2

]
= σ2Im.

Hence, K(z) = K3(z3)K2(z2) satisfies condition (C2).

3. Consider H(n) to be a block diagonal matrix with H3(n) and H2(n) as the two block di-
agonal entries with H3(n) and H2(n) satisfying assumption (A3). Then the matrices H(n)
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form a sequence of positive definite, symmetric matrices. Using (5) with this H , the ker-
nel estimate for P (s′, s, a) takes the product kernel form as seen for f̂(·) in (14). Now,
|H(n)| = |H3(n)||H2(n)|, this implies that as n → ∞, n−1|H(n)|−1/2 → 0 because
n−1/2|Hi(n)|−1/2 → 0 for i = {2, 3}. Also, vec H(n) → 0 as vec Hi(n) → 0 for i = {2, 3}.
Therefore, condition (C3) is satisfied.

Having satisfied conditions (C1)-(C3), we may apply the argument found in Sections 2.6-2.9 of
(Chacón and Duong, 2018) and conclude that

f̂(s′, s, a)
P−−−→P (s′, s, a),

ĝ(s, a)
P−−−→P (s, a).

Finally, it follows from the Continuous Mapping Theorem (Mann and Wald, 1943) that taking the
ratio of f̂ and ĝ produces a consistent estimator of

P (s′, s, a)

P (s, a)
= T (s′|s, a),

i.e.,

T̂n(s
′|s, a) = f̂(s′, s, a)

ĝ(s, a)

P−−−→T (s′|s, a).

A similar argument can be used to establish the asymptotic convergence in probability for the CKDE
of PπD(s

′, a′|s, a).

Building on the arguments presented in (Wasserman, 2019), we now proceed to prove Theo-
rem 2. We start by defining the Hölder Class.

Definition 4 (Hölder Class) Consider L and β to be positive numbers. We define the Hölder Class
Σ(β, L) as:

Σ(β, L) = {g : |Dsg(x)−Dsg(y)| ≤ L∥x− y∥} , ∀s such that |s| = β − 1, and all x, y} ,

where s = (s1, . . . , sd), |s| = s1 + · · ·+ sd, s! = s1! · · · sd!, xs = xs11 · · ·xsdd and

Ds =
∂s1+···+sd

∂xs11 · · · ∂xsdd
.

Example 1 If x ∈ Rd, β = 2 and d = 1, the Holder Class Σ(β, L) defined in Definition 4 is given
as: ∣∣g′(x)− g′(y)

∣∣ ≤ L|x− y|, ∀x, y ∈ Rd.

When β = 2, it implies that the functions have bounded second derivatives.

Definition 5 (Taylor-Series Approximation) The Taylor-Series approximation gx,β(u) for a func-
tion g(x) can be defined as:

gx,β(u) =
∑
|s|≤β

(u− x)s

s!
Dsg(x).
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With this Taylor-Series approximation, we deduce that if g ∈ Σ(β, L) then g(x) is close to its
Taylor series approximation:

|g(u)− gx,β(u)| ≤ L∥u− x∥β.

Example 2 Consider a case of β = 2 and g ∈ Σ(β, L), this implies∣∣g(u)− [g(x) + (x− u)T∇g(x)
]∣∣ ≤ L∥x− u∥2

We now state an assumption that is needed to prove Theorem 2, parts of which are taken from
Assumptions (A1-A3).

(A4) Assume that the kernel K has the form K(x) = G (x1) · · ·G (xd) where G has support on
[−1, 1],

∫
G = 1,

∫
|G|p < ∞ for any p ≥ 1,

∫
|t|β|K(t)|dt < ∞ and

∫
tsK(t)dt = 0 for

s ≤ β.

We next provide lemmas that will be useful for proving Theorem 2. We consider a kernel density
estimator ĝX(x;H) as defined in (5) and repeated here:

ĝX(x;H) =
1

n

n∑
i=1

KH

(
x−Xi

)
,

where Xi are iid distributed according to to the true distribution g(x). We start by bounding the
bias and variance of ĝX(x;H). We define gX(x;H) = E[ĝX(x;H)]. The bias for this estimator
ĝX(x;H) is given by gX(x;H) − g(x). Consider the bandwidth matrix H a diagonal matrix with
each diagonal entry having the value h.

Lemma 6 The bias of ĝX(x;H) can be bounded as:

sup
g∈Σ(β,L)

|gX(x;H)− g(x)| ≤ chβ

for some c.

Proof Using the definition of bias, we expand on it as follows:

|gX(x;H)− g(x)| =
∫

1

hd
K(∥u− x∥/h)g(u)du− g(x)

=

∣∣∣∣∫ K(∥v∥)(g(x+ hv)− g(x))dv

∣∣∣∣
≤
∣∣∣∣∫ K(∥v∥) (g(x+ hv)− gx,β(x+ hv)) dv

∣∣∣∣+ ∣∣∣∣∫ K(∥v∥) (gx,β(x+ hv)− g(x)) dv

∣∣∣∣
The first term is bounded by Lhβ

∫
K(s)|s|β since g ∈ Σ(β, L). The second term is 0 from the

properties on K since gx,β(x+ hv)− g(x) is a polynomial of degree β and with no constant term.

We now provide a lemma to bound the variance of the estimator ĝX(x;H).
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Lemma 7 The variance of ĝX(x;H) can be bounded as:

sup
g∈Σ(β,L)

Var (ĝX(x;H)) ≤ c

nhd

for some c > 0.

Proof We write ĝ(x) = n−1
∑n

i=1 Zi where Zi =
1
hdK

(
∥x−Xi∥

h

)
. Then,

Var (Zi) ≤ E
(
Z2
i

)
=

1

h2d

∫
K2

(
∥x− u∥

h

)
g(u)du =

hd

h2d

∫
K2(∥v∥)g(x+ hv)dv

≤ supx g(x)

hd

∫
K2(∥v∥)dv ≤ c

hd

for some c since the densities in Σ(β, L) are uniformly bounded.

We now state Bernstein’s inequality, which will be used in the sample complexity result.

Theorem 8 (Bernstein’s inequality) Suppose that Y1, . . . , Yn are iid with mean µ,Var (Yi) ≤ σ2

and |Yi| ≤ M . Then, for Ȳ =
∑n

i=1 Yi

n , we have

P(|Ȳ − µ| > ϵ) ≤ 2 exp

{
− nϵ2

2σ2 + 2Mϵ/3

}
Now, we derive a result that says how fast ĝ(x;H) concentrates around g(x), thereby providing

the sample complexity result.

Theorem 9 For all small ϵ > 0,

P (|ĝX(x;H)− gX(x;H)| > ϵ) ≤ 2 exp
{
−cnhdϵ2

}
.

Hence, for any δ > 0,

sup
g∈Σ(β,L)

P

(
|ĝX(x;H)− g(x)| >

√
C log(2/δ)

nhd
+ chβ

)
< δ

for some constants C and c.

Proof By the triangle inequality,

|ĝX(x;H)− g(x)| ≤ |ĝX(x;H)− gX(x;H)|+ |gX(x;H)− g(x)| (16)

From Lemma 6, |gX(x;H)− g(x)| ≤ chβ for some c. Now ĝX(x;H) = n−1
∑n

i=1 Zi, where

Zi =
1

hd
K

(
∥x−Xi∥

h

)
.
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We have |Zi| ≤ c1/h
d, where c1 = K(0), and Var (Zi) ≤ c2/h

d from Lemma 7. Hence, by
Bernstein’s inequality,

P (|ĝX(x;H)− gX(x;H)| > ϵ) ≤ 2 exp

{
− nϵ2

2c2h−d + 2c1h−dϵ/3

}
≤ 2 exp

{
−nhdϵ2

4c2

}
,

whenever ϵ ≤ 3c2/c1. From the triangle inequality (16), we have that:

sup
g∈Σ(β,L)

P
(
|ĝX(x;H)− g(x)| > ϵ+ chβ

)
< 2 exp

{
−nhdϵ2

4c2

}
.

Then, letting δ = 2 exp
{
−nhdϵ2

4c2

}
, we have

sup
g∈Σ(β,L)

P

(
|ĝX(x;H)− g(x)| >

√
C log(2/δ)

nhd
+ chβ

)
< δ.

Hence, we have for n > C log(2/δ)
hd(ϵ′−chβ)2

,

sup
g∈Σ(β,L)

P
(
|ĝX(x;H)− g(x)| > ϵ′

)
< δ

for ϵ′ > chβ .

With these results, we now provide the sample complexity analysis for the CKDE estimates
P̂n and T̂n constructed using (9). Then, we operate under the assumption that the Hi are diagonal
matrices with same diagonal entries hi respectively for i ∈ {1, 2, 3}. We rewrite Theorem 2 below.

Theorem 2 Let f̂1(s′, a′, s, a), f̂2(s′, s, a), and f̂3(s, a) be the joint density estimates defined in
(9), with corresponding true densities f1(s

′, a′, s, a), f2(s
′, s, a), and f3(s, a), respectively. Let

Σ(β, L) denote the Hölder Class with parameters β and L. Under appropriate conditions, for each
(s, a, s′, a′), the following holds:

1. For n > C1 log(2/δ)

h
m1
1 h

m2
2

(
ϵ−c1(h2

1+h2
2)

β
2

)2 , supf1∈Σ(β,L) P(|f̂1(s′, a′, s, a)−f1(s
′, a′, s, a)| > ϵ) < δ.

2. For n > C2 log(2/δ)

h
m3
3 h

m2
2

(
ϵ−c2(h2

3+h2
2)

β
2

)2 , supf2∈Σ(β,L) P(|f̂2(s′, s, a)− f2(s
′, s, a)| > ϵ) < δ.

3. For n > C3log(2/δ)

h
m2
2

(
ϵ−c3h

β
2

)2 , supf3∈Σ(β,L) P(|f̂3(s, a)− f3(s, a)| > ϵ) < δ,

where mi is the order of diagonal matrix Hi, hi gives the corresponding bandwidths, and Ci and ci
are constants ∀i ∈ {1, 2, 3}.

Proof First of all, we defined f̂1(s
′, a′, s, a), f̂2(s′, s, a), and f̂3(s, a) in (9). Now, we analyze their

sample complexities.
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Using Lemma 6, we get that the bias of f̂1(s′, s, a) is upper bounded by c1(h
2
1 + h22)

β
2 . Using

Lemma 7, the variance of f̂(s′, s, a) is upper bounded by d1
nh

m1
1 h

m2
2

, where d1 is a constant. Using
these in Theorem 9, we have,

∀n >
C1 log(2/δ)

hm1
1 hm2

2

(
ϵ− c1(h21 + h22)

β
2

)2 ,
sup

f1∈Σ(β,L)
P
(
|f̂1(s′, s, a)− f1(s

′, s, a)| > ϵ
)
< δ.

Similarly, using Lemma 6, we get that the bias of f̂2(s′, s, a) is upper bounded by c2(h
2
3+h22)

β
2 .

Using Lemma 7, the variance of f̂(s′, s, a) is upper bounded by d2
nh

m3
3 h

m2
2

, where d2 is a constant.
Using these in Theorem 9, we have,

∀n >
C2 log(2/δ)

hm3
3 hm2

2

(
ϵ− c2(h23 + h22)

β
2

)2 ,
sup

f2∈Σ(β,L)
P
(
|f̂2(s′, s, a)− f2(s

′, s, a)| > ϵ
)
< δ

Similarly, using Lemma 6, we get that the bias of f̂3(s, a) is upper bounded by c3(h2)
β and

using Lemma 7, the variance of f̂3(s, a) is upper bounded by d4
nh

m2
2

, where d4 is a constant. Using
these in Lemma 9, we have,

∀n >
C2 log(2/δ)

hm2
2

(
ϵ− c2h

β
2

)2 ,
sup

f3∈Σ(β,L)
P
(
|f̂3(s′, s, a)− f3(s

′, s, a)| > ϵ
)
< δ.

Appendix B. Hyperparameters for CKIL

We report the hyperparameters used for CKIL. For discrete case, since number of states and number
of actions are both finite, instead of using a parameterized policy, we defined a policy for each states
and learnt it via optimizing the objective in (7). We used a learning rate of 0.5 for the same. We set
λ = 0.001.

For continuous case, we adopted a neural network architecture for learning the policy. This neu-
ral network consisted of 2 hidden layers with 64 nodes followed by 32 nodes. Final layer consisted
of a Softmax function to output the policy when a state was provided as an input. We used Adam
optimizer and a learning rate of 0.01. We use the same value for bandwidth parameters h1 and h2.

Let m1 be the dimension of a state s, we then take the value of h3 as h3 = h
m1+1
m1

1 . We report the
values of bandwidth parameter h1 in Table 1. We set λ = 0.001.
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Environment
Trajectories (τ) Acrobot-v1 CartPole-v1 LunarLander-v2

τ = 1 0.1 0.01 0.009

τ = 3 0.05 0.005 0.005

τ = 7 0.01 0.001 0.0005

τ = 10 0.008 0.0008 0.00008

τ = 15 0.005 0.0001 0.00005

Table 1: h1 values used for CKIL on different environments for varying number of trajectories
during training.

Appendix C. Benchmark Algorithms and Hyperparameters

Baseline Algorithms. We compare the performance of our CKIL algorithm (Algorithm 1), with
a range of offline IRL/IL/AIL baselines, including several recent state-of-the-art algorithms. This
comprehensive assessment covers a spectrum of methodologies, including the inherently offline
Behavioral Cloning (BC); ValueDICE (VDICE), a sample-efficient AIL approach designed for of-
fline scenarios by removing replay regularization; reward-regularized classification (RCAL), a large
margin classification approach, which introduces a sparsity-based penalty on inferred rewards to
exploit dynamics information; Energy-based Distribution Matching (EDM), an offline imitation
learning algorithm that captures the expert’s state occupancy patterns through explicit training of
an energy-based model; AVRIL, a recent model-free offline IRL technique employing a variational
approach to simultaneously learn an approximate posterior distribution over rewards and policies;
and Deep Successor Feature Network (DSFN), an offline adaptation of the max-margin IRL algo-
rithm that transcends linear approaches by introducing a deep network architecture and employing
least-squares temporal-difference learning to produce both reward and policy outputs. Furthermore,
we compare against IQ-Learn, a state-of-the-art model-free offline IRL algorithm.

Implementation details. In the case of VDICE, we used the open-sourced code provided at
(Kostrikov et al., 2020). It is worth noting that, for VDICE, offline learning is achieved by config-
uring the “replay regularization” coefficient to zero. Our execution of EDM leveraged the source
code accessible at (Jarrett et al., 2020b). It is essential to highlight that the contrast between BC
and EDM predominantly stems from the introduction of Lρ, an occupancy loss defined in the EDM
work, while deriving the RCAL loss is a straightforward process involving the inversion of the Bell-
man equation. As for AVRIL and DSFN, the applicable source codes are accessible at (Chan and
van der Schaar, 2021a), (Lee et al., 2019a) respectively. Similarly, for IQ-Learn, we utilised the
source code available at (Garg et al., 2021b).

We consider the hyperparameters associated with various benchmarks, as outlined in (Jarrett
et al., 2020a). To ensure comprehensiveness, we present them herein. When feasible, the policies
trained by all imitation algorithms utilize an identical policy network structure, comprising of two
fully connected hidden layers, each containing 64 units with ELU activation function. Across all
environments, we adopt the Adam optimizer with a batch size of 64, conducting 10, 000 iterations,
and employing a learning rate of 1e−3. With the exception of the explicit standardization of policy
networks among imitation algorithms, all comparators are realized using the unaltered publicly

23



AGRAWAL1 DAHLIN2 JAIN1 NAYYAR1

(a) Acrobot (b) CartPole (c) LunarLander

Figure 3: Average rewards achieved by CKIL agent when trained using different λ values during
real-time deployment plotted against the number of trajectories included in demonstration dataset
D (higher values indicate better performance).

accessible source code. When relevant, we employ the optimal hyperparameters as indicated in the
original implementations.

C.1. VDICE

We employ the publicly accessible source code from https://github.com/google-resea
rch/google-research/tree/master/value_dice. To accommodate discrete action
spaces, we incorporate a Gumbel-softmax parameterization for the final layer of the actor network.
Both the actor and discriminator architecture encompass two fully connected hidden layers, each
composed of 64 units activated by ReLU functions. Consistent with the original framework, the
output is merged with the action and propagated through two additional hidden layers, each con-
taining 64 units. In addition, we set the ”replay regularization” coefficient at zero for strict batch
learning. Furthermore, the actor network is subjected to ”orthogonal regularization” with a coeffi-
cient of 1e-4. The actor network’s learning rate is set at 1e-5, while the discriminator operates with
a learning rate of 1e-3.

C.2. RCAL

This introduces an expansion of the policy loss by incorporating an extra sparsity-driven loss con-
cerning the inferred rewards R̂(s, a), defined as fθ(s)[a]− γsoftmaxa′fθ(s

′)[a′], acquired through
the inversion of the Bellman equation. The policy network employed is the fully-connected type
detailed previously. The coefficient for sparsity-based regularization is designated as 1e-2.

C.3. EDM

We utilize the code accessible at https://github.com/vanderschaarlab/mlforhe
althlabpub/tree/main/alg/edm. Particularly for EDM, the hyperparameters for joint
Energy-Based Model (EBM) training are adopted from https://github.com/wgrathwoh
l/JEM. These parameters include a noise coefficient of σ = 0.01, a buffer size of κ = 10000, a
length of ι = 20, and a reinitialization value of δ = 0.05. These predefined configurations align
effectively with the SGLD (Stochastic Gradient Langevin Dynamics) step size of α = 0.01.
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(a) Acrobot (b) CartPole (c) LunarLander

Figure 4: Average rewards achieved by CKIL agent when trained using different learning rates
during real-time deployment plotted against the number of trajectories included in demonstration
dataset D (higher values indicate better performance).

C.4. BC

The sole distinction between Behavior Cloning (BC) and EDM lies in the inclusion of Lρ, which is
omitted in the implementation of BC. The policy network remains consistent with the description
provided earlier.

C.5. AVRIL

We use the code available at https://github.com/XanderJC/scalable-birl. The
policy network remains consistent with the description provided earlier. γ, used while computing
the TD error, equals 1. We used the default parameters provided in their GitHub repository.

C.6. DSFN

We adopt the source code accessible at https://github.com/dtak/batch-apprentic
eship-learning. We utilize a ”warm-start” policy network consisting of two shared layers with
dimensions 128 and 64, employing tanh activation. The hidden layer with a size of 64 serves as the
feature map within the IRL algorithm. Each multitask head within the warm-start policy network
features a hidden layer comprising 128 units and is activated by tanh. The Deep Q-Network (DQN),
utilized for learning the optimal policy based on a set of reward weights, comprises two fully-
connected layers, each containing 64 units. Similarly, the DSFN, employed for estimating feature
expectations, comprises two hidden fully-connected layers, each containing 64 units. Across all
environments, the warm-start policy network undergoes training for 50, 000 steps, employing the
Adam optimizer with a learning rate of 3e-4 and a batch size of 64. The DQN network is trained for
30, 000 steps, using a learning rate of 3e-4 and a batch size of 64 (with the Adam optimizer). Lastly,
the DSFN network is trained for 50, 000 iterations, utilizing a learning rate of 3e-4 and a batch size
of 32 (with the Adam optimizer).

C.7. IQ-LEARN

We use the code available at https://github.com/Div99/IQ-Learn. The policy network
remains consistent with the description provided earlier. As highlighted in their implementation, we
use a batch size of 32 and Q-network learning rate of 1e-4 with entropy coefficient of 0.01.
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(a) Acrobot (b) CartPole (c) LunarLander

Figure 5: Average rewards achieved by CKIL agent when trained using different Neural Network
Architectures during real-time deployment plotted against the number of trajectories included in
demonstration dataset D (higher values indicate better performance).

All experiments involving CKIL and benchmarks were conducted on an M2 MacBook Air ma-
chine equipped with 16 GB of RAM and a 512 GB SSD.

Appendix D. Ablation Study

In this section, we present the evaluation of CKIL’s performance under various ablations.

D.1. Varying λ for entropy regularization

Figure 3 shows the average cumulative reward on the considered gym environments as a function of
different λ values. We observe that when the data is very scarce (eg. 1 trajectory), having a higher
λ value helps as we are less certain about which action is best to take in a given state. Conversely,
we observe that having a higher λ performs poorly in comparison to lower λ values with increased
data.

D.2. Varying learning rate

Figure 4 shows the average cumulative reward on the considered gym environments as a function of
different learning rates (lr) values. We observe that the learning rate of 0.01 does well across tasks
where the variance in performance is low across different episodes for any given environment along
with a similar or better mean performances than other learning rate values.

D.3. Varying Neural Network Size

Figure 5 shows the average cumulative reward on the considered gym environments as a function
of different Neural Network size values. The legend is in the form {a − b} or {a − b − c} where
a indicates the number of hidden layers, followed by number of hidden nodes in each layer, which
are denoted by b and c. For example, {1 − 64} represents a neural network with one hidden layer
containing 64 hidden nodes in it. Similarly, {2 − 64 − 32} represents a neural network with two
hidden layers, with 64 hidden nodes in the first layer followed by 32 hidden nodes in the second
hidden layer.
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Algorithm
Trajectories (τ) EDM IQ-Learn CKIL

τ = 1 −406.37± 340.03 5.12± 190.12 −0.81± 169.56

τ = 3 −299.21± 184.60 159.726± 120.18 202.73± 93.03

τ = 7 −240.38± 202.53 205.96± 99.68 239.78± 62.59

τ = 10 −38.36± 130.54 232.28± 87.66 245.41± 57.85

τ = 15 89.32± 101.45 242.32± 77.59 247.4± 58.82

Table 2: Performance of EDM, IQ-Learn, and CKIL in the presence of initial distribution shift
(higher values indicate better performance)

For all the environments, we observe that having 2 hidden layers provides good performance,
and the performance is not sensitive to the number of hidden nodes in the two hidden layers. Fur-
thermore, with one hidden layer, spread is very high in some cases. Therefore, we selected a neural
network with 2 hidden layers, containing 64 nodes in the first hidden layer and 32 nodes in the
second hidden layer for our gym experiments.

Appendix E. Discussion on Distribution Shift

In this work, we have discussed the task of imitation learning in a strictly batch setting. Specifically,
we assumed that only expert data was available, with no possibility for further interaction with the
environment. Another line of research in imitation learning aims to incentivize the imitating policy
to remain within the distribution of states encountered in expert demonstrations. This research
typically follows two approaches. The first approach assumes access to additional data from a
behavioral policy (which may be sub-optimal) along with the expert data. This additional data is
used to provide coverage, as expert data is generally narrow. Examples of this approach include
methods like CLARE (Yue et al., 2023) and MILO (Chang et al., 2021). The second approach
involves techniques such as assigning a unit reward to all demonstrated actions in demonstrated
states and zero otherwise (Reddy et al., 2019), such as random expert distillation (Wang et al.,
2019). Generally, these methods follow a ”two-step” formula: first, a surrogate reward function
is derived or defined; second, this reward function is optimized through environment interactions,
making these techniques inherently online, rendering it inapplicable in our strictly batch setting (Liu
et al., 2020).

Nevertheless, we investigated the effects of an initial distribution shift in the LunarLander-v2
environment, drawing inspiration from the approach in (Garg et al., 2021a). Typically, the agent
starts in a small area at the center-top of the screen. However, we modified the environment so that
the agent begins near the top-left corner instead. Using expert data from the standard, unmodified
environment, we aimed to determine if the agent could still successfully learn to land the lunar
module despite the shift in its initial conditions during testing. For comparisons, we consider EDM
and IQ-Learn algorithms as these methods don’t rely on additional data or further interactions with
the environment, thus utilizing the same setup as ours. The findings are reported in Table 2. As
anticipated, all algorithms perform poorly when the available data is very scarce. However, as the
amount of data gradually increases, the CKIL agent demonstrates the ability to effectively land the
lunar lander despite the initial distribution shift, even with limited training data (approximately 10
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trajectories). Additionally, CKIL outperforms baseline algorithms like EDM and IQ-Learn under
these conditions. Our experimental results suggest that our algorithm handles the distribution shift
problem more effectively than the other baseline algorithms in the same setup.
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