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Abstract

Modern clinical decisions increasingly depend on large language models (LLMs).
Yet, these models are built on static training data that end long before deployment.
This temporal gap between training and use, commonly described as a knowledge
cutoff, creates a hidden yet critical failure mode. A model may be capable and
aligned, yet still apply outdated medical guidance with perfect fluency. To test
how much data freshness alone affects clinical accuracy, this study isolates the
cutoff variable across two model families with different release patterns: OpenAl’s
closed-weight GPT models and Meta’s open-weight LLaMA series. Using two
dated versions of the Infectious Diseases Society of America (IDSA) COVID-19
Treatment and Management Guidelines (v5.0.0, August 25, 2021; v11.0.0, June 26
2023), we extracted recommendation-level differences and automatically generated
363 multiple-choice questions representing genuine shifts in therapeutic advice.
Each model answered the same items under identical prompts and deterministic
settings. Accuracy rose sharply only when the model’s presumed training window
included the newer guideline. GPT-3.5-Turbo and LLaMA-2-13B, whose cutoffs
pre-date June 2023, significantly lagged behind models whose knowledge cutoffs
post-dated v11.0.0. GPT-40, GPT-5, and LLaMA-3.3-70B, trained on fresher data,
converged at over 90%. The consistency of this pattern across closed and open
systems indicates that temporal coverage, not mere parameter count, drives gains
in applied medical reasoning. These findings argue that model recency must be
treated as a safety-critical attribute on par with alignment or interpretability.

1 Introduction

Language models have become a central component of modern clinical and biomedical research.
They assist with summarizing evidence, generating differential diagnoses, and supporting patient
communication. These systems are increasingly integrated into search platforms, clinical documenta-
tion tools, and medical education resources. Their rapid adoption reflects the promise of scalable
decision-support, yet it also introduces a new form of technical debt: models are built on static data
that freeze the medical record at a single point in time. Once deployed, they cannot automatically
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absorb updates to scientific consensus or treatment guidelines. In clinical contexts, this limitation
carries direct implications for safety and reliability.

Medical knowledge changes faster than most general-purpose data sources. Therapeutic standards
often evolve within months, as new trials or meta-analyses revise earlier recommendations. The
COVID-19 pandemic demonstrated how rapidly these changes can occur. Between early 2023 and
mid-2023, updates to the Infectious Diseases Society of America (IDSA) COVID-19 guidelines
substantially altered recommendations for corticosteroid use, antiviral eligibility, and monoclonal
antibody therapy. A language model trained before those updates would likely reproduce advice that
had already been withdrawn from practice. Because model outputs are phrased with confidence and
fluency, clinicians and patients may overestimate their validity even when the information is outdated.

This phenomenon highlights a central challenge in evaluating medical language models: temporal
reliability. Most existing benchmarks emphasize reasoning quality, factual precision, or bias mitiga-
tion, while the temporal dimension of knowledge—how current or obsolete a model’s information
is—receives less attention. The training cutoff, often briefly noted in technical documentation,
represents a boundary between what a model can know and what it cannot. Yet the practical ef-
fect of this boundary on medical performance has not been systematically quantified. If a model’s
knowledge decays as guidelines change, its apparent reasoning ability may mask clinically significant
obsolescence.

Understanding this relationship is essential for responsible deployment. Health institutions, regulators,
and developers must be able to anticipate when a model’s information base becomes stale enough
to warrant retraining or replacement. Without such analysis, performance metrics can give a false
impression of safety. Temporal coverage should therefore be treated as a measurable, reportable
property of model design, comparable in importance to bias, interpretability, or parameter scale.

This paper examines how knowledge cutoffs influence clinical accuracy. Using successive versions
of the IDSA COVID-19 guidelines as a controlled benchmark, we measure how model performance
shifts across systems released at different times. By isolating data recency from other confounding
variables such as architecture and alignment, we show that the freshness of training data is a key
determinant of a model’s ability to reflect current medical standards. The results contribute to a
broader understanding of temporal validity in clinical language models and underscore the need for
continual monitoring of information currency in safety-critical domains.

2021 2023 ' 2%
| have Covid-19, | am not X
@I DSA @I DSA in critical condition. What ‘((;u a,re categorized
should my level of illness as a\"'r‘]l? non-severe
H ItLness.
Covid patients not in Covid patients not in be classified as?
critical condition critical condition

should be categorized as should be categorized as R

having non-severe having mild to moderate = ' '

illness. illness.
. AN

Figure 1: Example of guideline drift and model obsolescence. IDSA definitions for COVID-19 illness severity
changed from “non-severe” (2021) to “mild to moderate” (2023). A model trained before this update continues to
give outdated terminology in 2024, illustrating how cutoff limitations can produce clinically misleading advice.

2 Related Works

Research on temporal behavior in large language models has developed along three main directions:
documenting model data provenance, identifying factual decay over time, and designing continual
learning strategies to maintain knowledge freshness. Together, these efforts reveal how the temporal
scope of training corpora shapes downstream reliability. Even so, they stop short of fully quantifying
that effect in safety-critical contexts such as medicine.

Efforts to document and trace training data have underscored the opacity of current model pipelines.
Studies of web-scale corpora such as CCNet and RefinedWeb show that language coverage and
timestamp distribution vary widely even within a single crawl (Wenzek et al. [2020], Penedo et al.



[2023]). Follow-up analyses demonstrated that later iterations of these datasets contain substantial
drift in domain balance and topic prevalence, suggesting that “recency” is neither uniform nor
easily verified. Time-aware corpora such as TimeLMs and the temporal modeling framework of
Dhingra et al. [2022] illustrate the potential for explicitly encoding temporal change, though these
methods remain limited to open datasets. Broader transparency efforts, including Datasheets for
Datasets and Model Cards for Model Reporting [Gebru et al., 2021, Mitchell et al., 2019], emphasize
documentation standards but rarely include explicit temporal metadata.

Parallel work examines temporal drift and factual obsolescence in model outputs. Benchmarks
such as FreshQA and TempLAMA evaluate how performance declines when reference facts are
updated—an issue closely related to temporal decay in factual consistency (Guo et al. [2017], Desai
and Durrett [2020]). These studies show that models maintain internal consistency even when their
answers contradict new evidence, implying that decay operates silently rather than through explicit
uncertainty.

A third thread explores continual and lifelong learning as structural remedies. Foundational work on
gradient episodic memory and elastic weight consolidation established the theoretical groundwork for
preserving old knowledge while incorporating new data (Lopez-Paz and Ranzato [2017], Kirkpatrick
et al. [2017]). More recent transformer-based approaches adapt these ideas with modular adapters and
efficient fine-tuning methods such as parameter-efficient transfer learning and LoRA (Houlsby et al.
[2019], Hu et al. [2022]). Although effective in controlled settings, these methods presuppose access
to timestamped data streams—conditions rarely met in closed commercial systems. The absence of
such continual adaptation effectively fixes a model’s worldview to a specific moment in time.

In the clinical domain, language models have been evaluated primarily for diagnostic reasoning
and information retrieval. Benchmarks like MedMCQA and MultiMedQA demonstrate that large
models encode substantial medical knowledge (Pal et al. [2022], Singhal et al. [2023]), while domain-
specialized systems such as BioMedLM and GatorTron show that further tuning on biomedical text
yields measurable gains in precision (Bolton et al. [2024], Yang et al. [2022]). Yet these studies
rarely interrogate when the information used by a model was last valid. Time-aware evaluations
like PubMedQA highlight that even high-performing models often reference outdated research,
underscoring that factual recency is as vital as reasoning quality (Jin et al. [2019]).

Taken together, prior work demonstrates that language models can excel at static reasoning while
simultaneously falling behind the evolving state of the world. What remains missing is an explicit
quantification of how much of a model’s accuracy depends on the boundary of its training data. The
present paper addresses that gap by isolating knowledge cutoff as the sole variable and showing
that, even when model architecture and alignment remain constant, temporal coverage alone predicts
clinical reliability.

3 Methodology

This study evaluates the impact of knowledge cutoffs on clinical accuracy by isolating temporal
coverage as the only independent variable across two large language model families: OpenAl’s closed-
weight GPT series and Meta’s open-weight LLaMA series. The experiment design deliberately holds
model architecture, prompting, and evaluation setup constant to ensure that any observed variation in
performance arises solely from differences in training data recency.

3.1 Guideline Selection and Temporal Framing

To construct a temporally grounded benchmark, two publicly available versions of the Infectious
Diseases Society of America (IDSA) COVID-19 Treatment and Management Guidelines were
selected: Version 5.0.0 (August 25, 2021) and Version 11.0.0 (June 26, 2023). The earlier version
predates the training cutoff of all evaluated models, while the latter postdates only the oldest model in
each family. This configuration enables controlled measurement of temporal validity, seeing whether
or not a model’s internal knowledge reflects updates introduced after its training boundary.



3.2 Difference Extraction and Question Generation

Each pair of guideline versions were programmatically compared to extract clinically meaningful
recommendation-level changes rather than surface-level textual edits. A custom parser identified
sections describing treatment, medication eligibility, and dosage recommendations. For each detected
difference, a multiple-choice question (MCQ) was automatically generated with one correct answer
(the updated recommendation) and three distractors drawn from prior or deprecated statements. This
procedure yielded 363 MCQs that represent genuine shifts in clinical consensus.

All identified differences and corresponding questions underwent a manual verification audit to
confirm that each item was unambiguous, clinically valid, and that all distractors accurately reflected
superseded recommendations.

3.3 Model Families and Evaluation Protocol
Three models were evaluated from each family to capture pre and post-cutoff behavior:

* GPT Family: GPT-3.5-Turbo, GPT-40, and GPT-5

e LLaMA Family: LLaMA-2-13B-hf, Llama-3.3-70B-Instruct, and Llama-4-Scout-17B-16E-
Instruct

For each model, all 363 MCQs were presented under identical deterministic prompting conditions to
ensure reproducibility. Each model evaluated was asked each of the 363 questions. Each response
was then parsed and compared against the reference key.

3.4 Interpretation Procedure

Model performance was quantified using a direct accuracy benchmark derived from the multiple-
choice question set. Each model’s score was defined as the percentage of correctly selected answers
out of all 363 items. No weighting or normalization was applied. Each question contributed equally
to the total accuracy. Scores were then compared within and across the GPT and LLaMA families to
visualize trends associated with each model’s knowledge cutoff. This design isolates the relationship
between data recency and clinical correctness. An abrupt rise in accuracy between pre and post-cutoff
models, followed by convergence in later generations, would confirm that temporal coverage rather
than architectural scale or parameter count primarily drives observed gains in medical reasoning
performance.

3.5 Temporal Validation Hypothesis

The core hypothesis is that models trained before June 2023 will underperform on items derived
from Version 11.0.0, as those recommendations were not part of their training data. Conversely,
models trained after that date should display comparable performance across both guideline versions,
indicating saturation of temporal coverage. Observing this convergence pattern across both closed
and open-weight systems would confirm that data freshness, rather than model capacity or alignment,
is the primary determinant of clinical accuracy in time-sensitive reasoning tasks.

4 Results

Table 1 presents the quantitative performance of all six evaluated models across the 363-question
benchmark derived from the IDSA COVID-19 Treatment and Management Guidelines. Each question
represented a verified update in medical consensus between Version 5.0.0 (August 25, 2021) and
Version 11.0.0 (June 26, 2023), enabling a direct measurement of how each model’s knowledge
recency aligned with modern therapeutic standards. Because all models were tested under identical
deterministic settings, differences in outcome are attributable solely to the temporal boundaries of
their training data.

Across both model families, a clear temporal inflection was observed. Models trained prior to
June 2023 performed markedly worse on items reflecting later guideline updates, while those trained
afterward demonstrated near-saturated performance. Within the GPT family, GPT-3.5-Turbo—whose



Model Family Model Accuracy (%)
Closed-weight (OpenAI GPT Series)

GPT Series GPT-3.5-Turbo 76.03
GPT-40 97.25
GPT-5 98.07

Open-weight (Meta LLaMA Series)

LLaMA Series LLaMA-2-13B-hf 35.26
LLaMA-3.3-70B-Instruct 94.77
LLaMA-4-Scout-17B-16E-Instruct 91.46

Table 1: Accuracy of GPT and LLaMA model families across 363 automatically generated clinical multiple-
choice questions derived from IDSA guideline updates. Each result reflects deterministic evaluation

training data predated Version 11.0.0—achieved an overall accuracy of 76.03%. In contrast, GPT-40
and GPT-5, which both postdate the 2023 guideline release, scored 97.25% and 98.07%, respectively.
The gain of over twenty percentage points indicates that temporal data inclusion, rather than parameter
scale or minor alignment improvements, accounts for the majority of the performance increase.

The relatively high 76.03% accuracy from GPT-3.5-Turbo can be largely attributed to model inference.
However, in the clinical setting, 76.03% is no where near high enough to be considered effective and
safe. The fact that the major accuracy discrepancy between the models that predate and postdate
the newer version of the guidelines comes from knowledge cutoffs and not other factors, such as
parameters and general model capacity, can be seen with the use of a second post-dating model.
In GPT’s scenario, we use GPT-5, a model smarter and more capable than GPT-40. Despite this,
they score almost exactly the same, while GPT-3.5-Turbo scores significantly worse. This is further
evidence of this discrepancy being a result of LLM knowledge cutoffs, not purely reasoning capability.

The same pattern emerged in the open-weight LLaMA models. LLaMA-2-13B-hf, having a knowl-
edge cutoff well before v11.0.0, achieved only 35.26% accuracy. Subsequent generations trained on
later data, LLaMA-3.3-70B-Instruct and LLaMA-4-Scout-17B-16E-Instruct, reached 94.77% and
91.46%, respectively. This increase of nearly sixty percentage points mirrors the temporal effect
observed in the GPT family, providing strong cross-architecture evidence that clinical reliability
improves as models incorporate newer knowledge.

To ensure robustness, every model was evaluated on the same 363 questions, with responses parsed
automatically to extract the selected choice and matched against the reference key. No stochastic
variation was introduced, so each reported accuracy represents a deterministic outcome reproducible
under identical conditions. Accuracy distributions displayed minimal variance within post-cutoff
models, suggesting that once exposure to the updated medical corpus is achieved, performance
converges regardless of further scale or parameter growth.

Both model families exhibit a similar trajectory: a steep increase in accuracy coinciding with the
inclusion of post-June 2023 training data, followed by a plateau in later iterations. This temporal
transition occurs independently of model size, indicating that training data freshness exerts a more
substantial influence on medical question-answering accuracy than architectural complexity or
alignment refinements.

5 Analysis

The quantitative results in Table 1 reveal a clear medical and clinical trend rather than a purely
computational one. Across 363 IDSA-derived clinical questions, model accuracy improved sharply
once training data included the June 2023 guideline revision. This outcome shows that the models’
ability to reason clinically depends less on scale and more on exposure to current medical evidence.
In practical terms, temporal recency becomes a clinical determinant of reliability, not just a technical
variable.



Within the GPT family, performance climbed from 76.03% in GPT-3.5-Turbo to 97.25% in GPT-40
and 98.07% in GPT-5. The near-identical scores between the two newer models suggest that once
training incorporates updated clinical guidance, further scaling provides little additional benefit.
These systems appear to have reached a ceiling defined by their access to contemporary medical data.
In a healthcare setting, this level of stability implies that periodic data refreshes are more important
for patient safety than increasing model complexity.

The LLaMA family displayed a far more dramatic contrast. LLaMA-2-13B-hf, trained before the
v11.0.0 guideline, reached only 35.26% accuracy, and manual inspection showed that it defaulted
to option “A” for most questions. This behavior points to deterministic alignment bias rather than
genuine comprehension. When newer guideline data were introduced in later generations, accuracy
surged to 94.77% for LLaMA-3.3-70B and 91.46% for LLaMA-4-Scout-17B-16E. That recovery
represents a clinically meaningful transformation in reasoning fidelity. The models effectively went
from unreliable to near-expert accuracy solely because their training reflected updated medical
consensus.

Across both families, the convergence between 95% and 98% accuracy after temporal alignment con-
firms that knowledge recency dictates clinical reliability. This finding reframes model improvement
as a biomedical maintenance problem: updating corpora is akin to renewing a medical license. Once
a model falls out of sync with guideline evolution, its accuracy degrades as if clinical training had
expired. These results quantify that effect in practical terms, about a 60-point deficit when the cutoff
predates new recommendations. That number should serve as a concrete retraining benchmark for
anyone deploying models in a clinical environment.

5.1 Limitations

Although the experiment isolates temporal effects more directly than previous research, it has two
key limitations. First, the precise cutoff points for model training were inferred from public release
information rather than verified pretraining logs, introducing minor uncertainty about exact exposure
windows. Second, the evaluation focused on a single clinical area: infectious disease management
under IDSA guidelines. This scope was chosen because COVID-19 guidelines evolve rapidly and
reflect real changes in patient care, but findings may vary in slower-changing fields such as cardiology
or oncology. Future validation should apply this framework to other medical specialties to determine
how temporal decay manifests across disciplines with different rates of evidence turnover.

5.2 Ethical Statement

This research uses only publicly available medical text and does not involve human subjects, iden-
tifiable data, or protected health information. None of the findings should be used for clinical
decision-making. The work aims solely to advance scientific understanding of how temporal data
integrity affects the safety and reliability of medical language models.

6 Conclusion

This study demonstrates that temporal data recency, rather than model size or architecture, is the
dominant factor determining clinical reasoning accuracy in large language models. Across 363
medically verified IDSA guideline questions, both the GPT and LLaMA families exhibited the same
temporal inflection: accuracy rose sharply once post-June 2023 data were included, then plateaued
near expert-level performance. The consistency of this finding across closed- and open-weight models
confirms that the determinant of clinical reliability lies not in the model’s design but in the medical
freshness of its training corpus.

From a clinical perspective, these results carry practical consequences. A model trained on outdated
data does not simply perform worse; it becomes unsafe. The 60-point deficit between pre- and
post-cutoff models quantifies how obsolescence translates into real diagnostic risk. Maintaining
alignment with current clinical standards must therefore be treated as a form of biomedical upkeep.
Periodic retraining, ongoing validation against updated guidelines, and systematic temporal audits
should be mandatory steps before any model is integrated into a healthcare workflow.



7 Future Work

Future research should expand this evaluation framework beyond infectious disease and COVID-19
guidance to encompass additional medical domains such as oncology, cardiology, and psychiatry.
Each of these fields evolves at different rates and may reveal domain-specific decay patterns. A
longitudinal study design would also help measure how quickly model reliability deteriorates as
clinical guidelines continue to evolve. In parallel, efforts should explore dynamic updating strategies,
such as continual learning or retrieval, augmented reinforcement—to bridge the gap between static
pretraining and living medical knowledge.

Beyond technical development, collaboration between computational scientists and clinical experts
will be essential. Future benchmarks must not only assess factual accuracy but also measure down-
stream clinical safety and interpretability. Ultimately, the goal is to ensure that medical language
models serve as trustworthy extensions of human judgment rather than outdated archives of past
consensus.

Data and Code Availability

All data, generated questions, and evaluation code used in this study are publicly available at:
huggingface.co/datasets/anonymous—-nsc-author/LLM-Covid-19-Cutoff-Evaluation.

The repository includes the full set of 363 clinical multiple-choice questions generated from the IDSA
guideline differences, along with the parsing and evaluation scripts used for deterministic model
benchmarking.
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