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ABSTRACT

As large language models increasingly rely on external data sources, fairly com-
pensating data contributors has become a central concern. In this paper, we revisit
the design of data markets through a game-theoretic lens, where data owners face
private, heterogeneous costs for data sharing. We show that commonly used valu-
ation methods—such as Leave-One-Out and Data Shapley—fail to ensure truthful
reporting of these costs, leading to inefficient market outcomes. To address this,
we adapt well-established payment rules from mechanism design, namely Myer-
son and Vickrey-Clarke-Groves (VCG), to the data market setting. We demon-
strate that the Myerson payment is the minimal truthful payment mechanism, op-
timal from the buyer’s perspective, and that VCG and Myerson payments coincide
in unconstrained allocation settings. Our findings highlight the importance of in-
corporating incentive compatibility into data valuation, paving the way for more
robust and efficient data markets.

1 INTRODUCTION

The emergence of large language models (LLMs) has placed data at the heart of technological and
societal advancement. As concerns mount that the availability of data may not keep pace with the
rapid growth of model sizes (Villalobos et al., [2024), the ability to source high-quality data has
become a critical factor for the success of LLM companies. Currently, web-scale data crawling is
conducted with little regard for data provenance (Longpre et al., [2023), often leading to copyright
infringement that impacts content owners. This has resulted in a growing number of copyright
lawsuits, such as those documented by [New York Times v. OpenAll (2023)); |Concord Music Group
v. Anthropic| (2023). Increasingly, content creators are choosing to opt out of contributing their
work for Al training (Longpre et al.,|2024). To encourage participation from data owners, there is
a rising need to design an efficient data-trading market. Data owners should be fairly compensated
for the use of their data, taking into account factors like the cost of data creation, potential privacy
risks, and more. Achieving fair compensation will require the development of reliable methods for
data valuation.

Existing data valuation methods for
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true costs, resulting in inefficient data market collaboration. Even in the simplest mean estimation
market, rational data owners are incentivized to misreport their costs, leading to suboptimal market
efficiency, as illustrated in Figure

To address the challenge of untruthful reporting, we draw on well-established payment mecha-
nisms from game theory—specifically, the Myerson payment rule (Myerson, |1981) and the Vick-
rey—Clarke—Groves (VCG) mechanism (Vickrey, 1961} |Clarkel (1971} |Groves, [1973)—and adapt
them to our data trading framework. Our analysis shows that: (1) the Myerson payment rule yields
the minimum possible payment, making it optimal from the buyer’s standpoint; and (2) when al-
locations are made to maximize overall market welfare in an unconstrained setting, the VCG and
Myerson payments coincide. Additionally, we demonstrate that when buyers’ utility functions are
subadditive, total payments can be distributed across buyers while maintaining individual rationality
for all participants. These findings highlight the crucial role of game-theoretic principles in design-
ing data market payment schemes.

2 RELATED WORK

Data Valuation Methods. Data valuation has gained growing popularity in machine learning ap-
plications, mainly for the purposes of explainability and addressing algorithmic fairness (Pruthi
et al.|2020; Liang et al., [2022), guiding high-quality data selection (Chhabra et al.,|2024; [Yu et al.,
2024). Among them there are two primary categories methods — Shapley value based and Leave-
One-Out (LOO) based. Shapley value based methods include Data Shapley (Ghorbani & Zoul [2019)
and computationally feasible variations (Jia et al.| [2020; [Wang et al.| [2024). LOO-based methods
often encompass model retraining with one sample left out (Koh & Liang, [2020). In reality, rational
participants in a market setting are likely to act strategically to maximize their profits. As a result,
applying these pricing methods can lead to misreporting and inefficiencies within data markets.

Auction Theory and Mechanism Design. Starting from the Arrow—Debreu model (Arrow & De-
breu, [1954), a central question of market design is to set prices such that the net welfare of all
participants is maximized. Such a market is said to be efficient. Auction theory (Krishna, 2003)), and
in general mechanism design, investigates how to how to design prices which preserve efficiency
even if some information is unknown i.e. private. In the context of data markets, this implies that
we want to design prices such that all participants truthfully report their true costs of data sharing
and benefits received from said data, so that we can maximize social welfare.

Data Markets. Due to unknown data sharing costs incurred by the data sellers, designing an ef-
ficient mechanism can be challenging. Diitting et al.| (2021) show that with one data sample from
the seller’s distribution, truthful mechanisms can be achieved with approximate market efficiency,
assuming unit supply sellers. |Rasouli & Jordarn| (2021) design a truthful mechanism where data
quality can be exchanged with monetary payments. However, they do not analyze its social effi-
ciency. [Agarwal et al.|(2024) study truthful mechanism design when buyers’ externalities due to
competition are known, aiming at maximizing social welfare or revenue. We refer to a recent sur-
vey (Zhang et al.| 2024)) for a more detailed overview of the area. We note that most of these works
often assume known simple structured valuation functions and combinatorial allocations, not suit-
able for machine learning worlds where the information sharing can happen in continuous space and
the buyers’ valuations are directly connected to model performances, which is our focus.

3 PROBLEM DEFINITION

3.1 MODELING FRAMEWORK

We consider a data market with disjoint sets of data buyers B and data sellers S. BnS = ¢J. Buyers
and seller interact through W e RIBIXISI| where wj, ; denotes the information exchange between
buyer 7 and seller 5. Depending on the use case, W can live in different domains, which we will
make it explicit in the use cases below.

Buyer’s Performance: Each buyer has its performance (e.g. accuracy) function v;(W;.) :

Lyt

RISl — R-(. The performance measures how buyer i’s model gets improved utilizing the data



Published as a paper at 2nd DATA-FM workshop @ ICLR 2025, Singapore.

from the sellers. In the machine learning realm, v; is usually defined as the drop in validation loss
after data is acquired, that is v; = [;(0) —I;(W;, .), where /;(0) denotes the standalone loss for buyer

1. In game theory literature, such a performance function can as well be called buyer’s valuation.

Seller’s Cost: The data sharing cost for seller j is defined as ¢; f;(W. ;) : RIBl — R, which is
determined by how much information it has shared (i.e. |wy ], .., |wgy ;]). ¢; is the seller-specific
cost factor and f; quantifies the data sharing magnitude. For example, owners with expert-curated
scientific data can have a higher c; than owners with synthetic data. f; is non-decreasing in the
norm'|of W. ;. The notion of data sharing cost can encompass data generation costs, costs due to
privacy leakage, and etc. Using game theory terminology, the seller’s valuation is —c; f;.

Assumption 1. All v; and f; are differentiable with respect to W.

Mechanism: A mechanism is defined as M = (W, p), where W is the allocation. W determines
the information exchange between buyers and sellers. p specifies the payment each player receives
or contributes. We assume such a payment rule is specified at the beginning of the game, that is,
no re-distribution of payment is possible after the decision process. Further, P;_, denotes the price
demanded from buyer 7 € B and P_,; denotes the payment made to a seller j € S.

Use Cases: We list use cases where both buyers’ performance function and sellers’ data sharing
costs can be modeled by W.

i) Acquiring Data from Multiple Domains: When conducting pre-training runs for LLMs,
it is usually needed to decide on the data mixtures from different domains/sellers. With
a larger w; ;, buyer i benefits from more data from seller j, and for seller j, the costs for
collecting and preparing the data also increase. W € {W : w; ; > 0 and ZjES w; ; = 1}

ii) Model Sharing Markets: When sharing models, seller j can (depedning on the price)
choose to share an earlier checkpoint, or a smaller version of the model (e.g. 7B parameter
version instead of the 70B version). The better seller j’s model is trained or larger is the
model which is shared, the greater the data leakage is. W e {W : w; ; € [0, 1]}

iii) Differential Private Model Sharing: When sharing models, seller j shares a noisy version

of local model (8; + €;;) with buyer i, where €;; ~ —=—N(0,1). As w?; increases, less

™ Twigl
noise is added to the model shared by seller j, resulting in a higher degree of privacy
leakage for seller j. W e RV*)

3.2 DEFINITIONS

We first give the following definitions, which are essential to guarantee the feasibility of the mecha-
nism.

Definition 1 (Social Welfare and Social Cost). Social welfare (SW) is the sum of all players’ valua-
tions (buyers’ performance minus sellers’ costs)

SW =Y vi(Wi.) = >, i fi(W.;)

€S JjEB
Correspondingly, we can define social cost (SC), minimizing which is equivalent to maximizing the

social welfare.

SC =Y Li(Wi.)+ Y, ¢ f;i(W.;)

€S jeB

Definition 2 (Social Efficiency). Collaboration denoted by W e W is socially efficient (SE) if it
minimizes the social cost or maximizes the social welfare.
Definition 3 (Individual Rationality). Let P;_, be the price for the buyer i € B and P_,; be the
payment made to a seller j € S. Then, we satisfy individual Rationality (IR) if

v, — P, =0, P_>j*ijj<0

Intuitively, IR requires that the participants be better off participating in our mechanism than not.

!can be any norm depending on the choice of data sellers
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Definition 4 (Incentive Compatibility or Truthful). A mechanism M is considered incentive-
compatible (IC) if each participant achieves their best outcome by truthfully reporting their private
values, regardless of what others report. We also refer to an IC mechanism as a truthful mechanism.

Definition 5 (Budget Balance). A mechanism is called strong budget-balanced (SBB) if
Yiies Pies = 2jes P j and weak budget-balanced (WBB) if 3,5 Pies > 3 ;c5 P

4 DATA TRADING WITH KNOWN BUYER PERFORMANCE FUNCTION

In this section, we assume that only the seller side has private types, that are their cost factor c;,
while the buyers’ performance functions v; are publicly known. We demonstrate that even in this
simplified one-sided market, standard data valuation methods can incentivize sellers to misreport
their information. To address this, we analyze existing truthful payment rules and characterize them
in a data market scenario.

4.1 PROBLEM SETUP

Let ¢ = (¢1, ..., ¢s|) be the reported costs from the sellers, we have allocation decided by the market
platform dependent on the reported costs:

W (é) = arg maxz v (W) — Z ¢ifi(W)
ieB JjES

Due to this specific assignment function, it is clear that as long as sellers report their true costs c;,
we have social efficiency achieved. We abuse the notation a bit, by letting W both represent the
allocation rule and the allocation itself.

Claim 1. f;(W (c;, ¢é_;)) monotonically non-increasing in c;.

Proof can be seen in Appendix Claim|[T]essentially states that seller j’s allocation gets smaller
with a larger reported cost. At the same time, the total allocation to other sellers than j (denoted by
D ke S\ fx) can increase or decrease in ¢;, as W* can have both positive and negative entries. We

show this empirically in Figure 2]

4.2 STANDARD DATA VALUATION METHODS

We begin by reviewing two conventional data valuation methods: Leave-One-Out valuation (Weis-
berg & Cook| |1982; [Koh & Liang} |2020) and Data Shapley (Ghorbani & Zoul [2019). When seller
compensation is based on these methods, we demonstrate that sellers are consistently incentivized
to misreport their private types, as compensation depends on their self-reported information.

4.2.1 LEAVE-ONE-OUT PAYMENT RULE

Leave-one-out method (LOO) has been a standard approach to estimate influence in statistics (Weis-
berg & Cook, [1982; |[Koh & Liang, 2020). LOO valuation quantifies a data point’s contribution by
assessing the change in model performance when the point is removed. This method inherently
requires retraining the model on the reduced dataset. In our context, it corresponds to the following
equation, representing the difference in buyers’ performance function with and without the presence
of data seller j.

PLYO = 0i(W(é5,6-)) — vi(W (o0, é_;)) (1)
eB
Claim 2. Using LOO valuation as the payment rule leads sellers to mis-report their true costs.

Proof. For seller j, the utility is
uj = PL9O — ¢ f;(W (&5, é_5))

= Y vi(W(é5,é;) —vi(W(0,65)) — ¢; f;(W(e5,é5)) @
ieB
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Assume W lies in an unconstrained domain. As W is chosen by the system to maximize the
reported social welfare, we have

a’U@'(Wi,:) af]( )

J
8wi7j 6wm

=0, Vi, j 3)

Now we check how utility u; changes with respect to ¢;. In order to have optimality (0”] = 0),
seller j will report ¢; # c;. To see this,

&Uj (}Ui Gwi k 6fj 6w1- j
= = = —¢j ~ 4)
aCj ;’;S 6wi,;€ 60- J 2 8wi,j aCj
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- Z(?w-- DYDY e ©
i 9% iEB res\(j) HLER)
. 0 6
= (& —¢) ? + )@ fk )
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We know >, S\ ék% > 0, as the allocation to other buyers will change with ¢;. In order to
J
have optimality, we would have é; # c;. O

4.2.2 PAYMENT VIA SHAPLEY VALUE

Shapley value was first introduced to attribute fair contributions in a cooperative game by |Shapley
(1951). In the Machine Learning world, Data shapley (Ghorbani & Zou| 2019) was proposed to
address data valuation. We adopt data shapley calculation in our scenario, as in (8). The idea is to
calculate the marginal contribution of seller j, averaged over all subsets of sellers. Depending on the
market size, the calculation of Shapley value can be computationally inefficient. In contrast, LOO
payment only considers the marginal contribution to the subset S\{;}.

Pilja _ Z |7T|!(|S||;|!7r_1)![201(BU7TU{j}) _ Zvi(BUﬂ—)]' ®)

< S\{j} ieB ieB
v; (B U ) is calculated from v;(W’) where
W' = argmax Z v (W) — Z ¢ifi(W)

WeRIBIxITl g jem
Remark 1. Piljj is not IC either. As like LOO payment, the utility of seller j is dependent on its
reported ¢, and thus a rational seller j can manipulate ¢; to arrive at a higher utility.

Remark 2. If the performance function is super—additiveﬂ (e.g. when complementary but necessary
data sources are combined to solve a task), LOO payment is greater than Shapley payment. On the
flip side, if the performance function is sub-additive’|(e.g. when the contribution of one user is very
similar to that of another), LOO payment is smaller than Shapley payment.

4.3 EXAMING EXISTING TRUTHFUL PAYMENT RULES

Since popular data valuation strategies can perform arbitrarily poorly with respect to truthfulness, we
turn to established theoretical results that guarantee truthful payments. We show that the Myerson
payment rule yields the minimal payment necessary to ensure truthfulness, making it optimal from
the buyer’s perspective. Moreover, when the choice of allocation rule W is unconstrained, we
demonstrate an equivalence between the VCG and Myerson payment rules.

2, specified by W* are super-additive in the set of data sellers
S0 specified by W™ are sub-additive in the set of data sellers
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4.3.1 MYERSON PAYMENT RULE

Myerson payment is a classical truthful payment rule (Myersonl [1981), which pays sellers the re-
ported cost plus an integral term. Our specific scenario maps to the following equation in (9). It
guarantees truthful reporting as long as f; is monotonically non-increasing in ¢;, which we prove in
Claim[1l

Q0
PMS = &5 (W (&g e) + | (W éy))du ©
&
Claim 3. The Myerson payment rule is IC and IR for all buyers.
Proof. We can write down the utility of seller j
Q0
uj = PS¢ f;(&) = (& —¢)) +ﬁ fi(u)du

u; is maximized at ¢;, and P_,js is always greater than c; f;(c;) since Saj fij(uw)du = 0. O

WV

4.3.2 VCG PAYMENT RULE

Vickrey—Clarke—Groves (VCG) payment (Vickrey, |1961; [Clarke, |1971} |Groves, [1973) is another
classical payment rule, which calculates the externality of a specific seller to the social welfare, as
in . The idea is to calculate the differences between the social welfare of B U S\{j} in seller j’s
absence and the welfare when seller j is present.

P9 =3 0 (W(eje ) — Y. anfe(W(eje )

icB keS\{5}
(10)
— | D oiW(w,e;) = D afu(W(0,é)))
€B keS\{j}
Claim 4. VCG payment rule is IC and IR for all sellers.
Proof. P”7 is IC by design. To see the IR part, we check the utility for any seller j:
uj = P57 —cjf(c;) =SW(BUS)-SW(BUS\{j}) =0
O

Claim 5. P’/ < 3, zvi(W(cj,c—j)) — vi( W (cj,cj)), where W is W with the jth
column set to zero, and all other entries unchanged.

Proof. For B u S\{j}, we have W (0, c_;) being the maximum of SW(c_;), where c_; =
[Cl, < Cj—1,Cj+41, C\S\] This gives

Zvi(W(wvc—j))* Z ek fr(W (0, c_j)) =

ieB keS\{j}
_j . (11
DWW (e e )= Do anfu(W(cj,cy))
€B keS\{j}
Plugging in gives the claimed inequality. O

4.4 CHARACTERIZATION OF THE TRUTHFUL PAYMENT RULES

Myerson and VCG payment rules are both IC, seller-IR and socially optimal. How do they com-
pare to each other? Theorem [.1]shows that in general, Myerson is the smallest payment rule, thus
optimal from the buyers’ perspective. In certain scenarios, i.e. when W lives in an unconstrained
domain, we further have VCG payment equivalent to Myerson payment, which is proven in Theo-

rem[d.2]
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Theorem 4.1. Myerson payment is the smallest IC and IR (for data sellers) payment rule.

Proof can be checked at Appendix [A.T.2]

Theorem 4.2. Myerson payment is equivalent to the VCG payment when W is chosen to maximize
social welfare and when the domain of W' is unconstrained.

Proof. Keep other sellers’ reported cx (k # j) fixed, we have social welfare as a function of seller
j’ reported c;
SW(E;) = Y vl Wi (é5,6-5)) = D, & f5(W. (¢, é-5)) (12)
eB JjeS
As W is chosen by the system to maximize the reported social welfare, we have

5v¢(m,:) af]( )

= i 1
6wi’j J (’)u}m 07 Vw . ( 3)
We further show that 2 ng =—f;
0SW ov; (W Ofr Ow; i
~ Ck —

acj ZEZBI;S awz k % 1623 8wi,k acj a4

_ Z Z ((F}’Uz & 6fk > (F}’wi’k —f- _ —f-

kesS icB 8wl k 6w, k 563' J J

Thus, we can calculate the integral part of the Myerson payment as

« ©0SW
| s pin= [ -C = swie) - swie) 1s)

Cj c,j

As Myerson payment will incentivizes truthful reporting, we have
Pys =cj fj(W.j(cj,e—j)) + f]( i (u, e—j))du

=c; [i(W.;(cj, c—j) +ZU1 i(cj e—5)) — chfj( J(cjre—j))

i€B JES

) lZ”(m*(w’C—m = e (W) | = Pret

ieB JjES

(16)

O

Discussion. Myerson payment rule provides theoretical guarantees of being buyer-optimal. How-
ever, its computation can be costly since f;(u) requires optimizing SW (u, é_;), the complexity of
which depends on the structure of v; and f;. VCG payment, on the other hand, is more computa-
tionally feasible. Yet, it still requires leave-one-out retraining. Future work should explore more
computationally efficient implementations.

4.5 IR FOR DATA BUYERS?

Until now, we have focused solely on the seller side. But can our mechanism also benefit data
buyers? Interestingly, we can redistribute the payments made to sellers among buyers based on their
marginal contributions. This ensures SBB in the market and guarantees IR for data buyers when the
performance function is subadditive.

Theorem 4.3. Assume v; is subadditive (i.e. has diminishing returns in W ). A payment rule defined
as follows is IR for all buyers.

vi(W(c)) — vi(W(c))

ZkeB v (W (e)) — v, (W—i(c)) ) Pij =nij P (17)

7]ij =
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Proof. As P is the minimal payment rule that fulfills IC and IR for sellers, we must have P*/7 <
P’. Claim [5|indicates

PMS < PYY < Y 0i(Wicj e ;) — vi( W (¢, ¢ ) (18)
EB

Following the choice of 7;;, we have
Pinj < vi(W(eje—j)) —vi( W (ej, e-)) (19)
We can thus bound the payment from buyer ¢ by

subadditive

Pis = Y iiPog < Y 0i(W (@) = 0i(W (@) S 0i(Wie) = 0i0) o)

J

The final inequality is a consequence of the sub-additivity assumption, under which the aggregate
contribution of data sellers is bounded above by the sum of their separate contributions.

Remark 3. When the performance function v; is super-additive, we currently lack a solution that
guarantees individual rationality (IR) for the buyer. Whether it is possible to design a suitable buyer
payment mechanism remains an open question.

5 CHALLENGES WITH PRIVATE BUYER PERFORMANCE

So far, we have looked into the scenario where buyers’ performance function is assumed to be
known. In practice, such functions are usually private, especially when entering into a new market
with no historical records. Or when sharing the performance functions violates the buyer’s privacy.
In such cases, we show that it is impossible to design any payment rule that simultaneously achieves
IC, IR, WBB, and SE. In fact, the social cost may be arbitrarily far from the efficient solution. This
result is similar in spirit to the celebrated Myerson—Satterthwaite theorem (Myerson & Satterthwaitel,
1983) proving the impossibility of efficient bilateral trade (double auctions). The negative results
open up a new challenge for designing valuation and pricing rules for data markets.

5.1 AN IMPOSSIBILITY RESULT

Theorem 5.1 (cr. Holmstrom| (1979). Assume all participants’ valuation v; € V;. If V = xV; is a
convex domain, then Groves mechanism that is defined by the allocation rule

W* € arg maxz (W)

wew =

and payment rule
pi = hi(=8:) = Y 0;(W)
J#i
is the unique IC mechanism, up to the choice of h;

Theorem 5.2 (Impossibility Result). When buyers and sellers both have their private types to report,
no single mechanism can simultaneously satisfy IR, WBB, IC and SE. Further, any mechanism that
ensures WBB, IR, and IC can result in arbitrarily poor social efficiency.

Proof can be checked at Appendix|A.1.3

6 EXPERIMENTS AND SIMULATIONS

In this section, we illustrate our modeling framework with a simple mean estimation game and
a more realistic data mixture game. We empirically demonstrate that directly applying LOO and
Shapley Value-based valuation as pricing rules results in untruthful reporting.
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6.1 MEAN ESTIMATION MARKETS

In this example, we consider disjoint sets of buyers and sellers B U S. Choose |B| = 1 and |S| = 3.
The buyers try to estimate their local means {g;};cp. Sellers have local estimates from their own
local samples sampled from N (p;, o?), j € S. In order to achieve lower MSE loss, users may seek

trading with each other for their local estimates. We choose f; to be |W. |2, where W is decided
as the minimizer of the reported social cost.

W € argmin | SC :=EZHZwmﬂj —lln'HQ'f‘Zéijij (21)
i€eB je§ jeS  ieB

Due to the unique quadratic structure of the objective, we have a closed-form solution of W in (22).
The proof is provided in Appendix[A.T.4]

W=B(C+V+A)™! (22)
where B = [(p;, pt)]ies.jes, C = [{pi, pi))i jes, V = diag(o7) and A = diag(c;)

6.1.1 COMPARISON OF DIFFERENT TRUTHFUL PAYMENT RULES

We focus on the seller with index j = 0 and analyze its payment and cost while keeping the reported
costs of other sellers fixed. This allows us to easily compute and compare different payment rules
as we vary the true ¢;. In the mean estimation market, W can have negative entries. Thus, Zk oy S
can decrease or increase with ¢;, while f; always decrease with ¢;. This is shown in Figure [2]
where the results of two randomly generated mean estimation markets are presented. Since W lies
in an unconstrained domain, we have VCG payment equivalent to Myerson payment, as shown in
Figure[3a] where the value mismatch is due to numerical issues.

)
<h
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0.0 = T T T T T 0.000 =
> fi 2 fi
Kl =j Kt =j
0.04
0.020
0.02 - 0.015 4
0.00 “— T T T T T 0.010 = T y y T -
0 10 20 30 40 50 0 10 20 30 40 50
¢ ¢
(a) f; and Zk# fr vs. seller j’s reported (b) f; and Z,#j fr vs. seller j’s reported
cost ¢; when W has entries of same signs cost ¢; when W has entries of different signs

Figure 2: How data sharing cost changes with seller j’s reported cost factor ¢; for Mean Estimation
Market.

6.1.2 MIS-REPORTING FOR UNTRUTHFUL PAYMENT RULES

Let true ¢; = 5. We compute the payment values and resulted utility when varying the reported
¢;. Given our choice of W, social cost is always minimized at ¢; = c;. However, with LOO and
Shapley payment rule, the resulted utilities peak at a different value than c;, as shown in Figure m

LOO Payment Rule. To maximize its utility, seller 7 will mis-report ¢; = 9. The resulting
PoA = SW(W (6,c_;))/SW (W (5,c_;)) = 1.02.

Shapley Payment Rule. To maximize its utility, seller j will mis-report ¢; = 8. The resulting
PoA = SW(W (8,c_;))/SW (W (5,¢c_;)) = 1.08
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Figure 3: Comparison of different truthful payment rules with respect to varying true cost c;s

6.2 DATA MIXTURE MARKET

Our framework extends to LLM training as well. For simplicity, we consider a single buyer that is
seeking for purchasing data from different data sellers to arrive at a good pretrained model. From
Ye et al.|(2024)), the relationship between proportions of data mixtures and the validation loss in the
target domain can be modeled via (23)), assuming fixed token budgets. b and k are constant scalars,
and t = [t;] € RIS! captures the how the training data of seller j helps reduce validation loss on the
target domain. w € R!S! denotes the proportion of pertaining data from each seller ;.

L =b+ kexp (Z tjwj> (23)

JjeS

Following our framework, the data mixtures can be determined from minimizing the social cost
objective in (24).

w € arg min L(w) + Z éjwf- (24)

w jeS

In practice, (23)) can be estimated using a small LM on small datasets. To pre-determine the data
mixtures via a smaller LM is a standard practice in LLM pre-training. Here we randomly sample
some values to be (k,b,t). Given that W here are row-stochastic, the rank of truthful payment
methods again confirms our theoretical analysis, as shown in Figure [3b]

7 CONCLUSION

Our work serves as a first step in bridging the gap between theoretical results in incentive compatible
mechanism design and more empirically driven data valuation methods in machine learning. We
demonstrate that standard data valuation methods, such as Leave-One-Out and Data Shapley, fail
to incentivize truthful reporting in a data market with private information. Myerson payment is
buyer-optimal while being incentive-compatible and individual-rational. We also show that when
both buyer and seller information is private, we have unbounded price of anarchy in general.

Our findings open several directions for future work: 1) how to make the existent truthful pay-
ment rule more computationally efficient? 2) in settings where both buyers and sellers have private
valuations, can we impose some structural assumptions on their valuations and costs to establish ap-
proximation guarantees similar in spirit to McAffee’s trade reduction mechanism (McAfee, |1992)?
Taken together, we hope our work initiates an important and fruitful line of research in designing
practical pricing strategies with game-theoretic considerations in realistic data markets.

Acknowledgement. We thank Neel Patel for helpful discussions throughout the project and anony-
mous reviewers for their constructive feedback.
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A APPENDIX

A.1 MISSING PROOFS

A.1.1 PROOF FOR CLAIM[I]

W is chosen to optimize the following function according to our setup

maXZ UZ(W) - Z éij(W)

ieB jes
Suppose for contradiction, there exist two reported costs ¢; < c’j such that:
fi(W(cfe3)) > f;(W(cj,e—))
By optimality of the allocation W, we have that:

Evi(W(% i) =i fi(Wiej,e j))_ECkfk(W(Cj’C*j))

€B k#j

(25)
> Y 0i(W(dje)) = cifi(W(c),e5) = > euf(W(c), ;)
ieB k#j
and similarly,
> wlWeysemp) = I (o)) = 3 enfi(Wi(ceoy))
€B k#j (26)
> Y vi(Wiej, e ) = & fi(Wieje5)) = ) erfu(W ey, e)).
€B k#j

Adding these two inequalities together, we find:
(c; = i) [[;(W (€, e—5)) = f;(W(cj,e—;))] <.

Since by assumption c} > ¢;, it must be the case that:

fj(W(c -i)) < fi(W(cj,e—5)),

contradicting our initial assumption. Therefore, the function f; is monotonically non-increasing in
the seller’s reported cost c;

A.1.2 PROOF FOR THEOREM [4.1]

Proof. From the IC condition, we have

ple;) —¢jfiley) = plc;) — ¢j fi(c)), (27)
p(cj) = ¢ fi(c)) = plej) — ¢ files), (28)
;[ f(es) = f(e))] = p(ej) —p(ch) = ¢[f(ej) — f(cf)] (29)
Let c;- =u,and ¢; = u + h, with h — 0, we have
(uth)f'(u) = p'(u) = uf'(u) (30)
and thus
uf'(u) = p'(u) (31)
We have u
pw = [ )= | ufw
[ (2
=uf(u) + J flw)du+C
Constrained to IR, we have C' = 0. Myerson payment is \;hen C' is chosen as 0. [
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A.1.3 PROOF FOR THEOREM[5.2]

We consider a simple one-buyer-one-seller case, where the reported valuations are
oy = 1(0) = by (w3,), 0 = ~&uf () (33)
where wi, € argminly(0) — y(wf,) — é(wf,). Truthfulness requires Groves payment rule, thus
pp = h(vs) — vs and ps = h(vy) — vp. With truthful reporting, we have social efficiency directly
follows as the coordinator chooses socially optimal W.
Now we check IR and WBB conditions, with IR, we have
vp + vs = max(h(vy), h(vs)) 34)
With WBB, we have
vy + vs < h(vy) + h(vs) (35)
Let vy, — 0, we have v, = max(h(0), h(vs)). This implies vs = h(vs). Analogously, vy = h(vp).

Let 8, = v, — h(vp) and 6, = vy — h(vs), we have &, > 0 and &5 > 0. Plugging in (35), we have
b + 0s + h(vp) + h(vs) < h(vp) + h(vs)

which suggests d, + 95 < 0. It can only be 6, = ds = 0. That is, p, = ps = 0. Both the buyer and
the seller only take their own valuations into account. As the seller’s valuation will be negative as
long as wys > 0, constrained to IR conditions, there will not be trade happening.

Now let’s check the Price of Anarchy (PoA):
15(0)

PoA =
© miny,, lp(wps) + cs f(wess)

(36)

PoA can be arbitrarily large if min,,,, ly(wps) + cs f(wps) — 0, when happens when seller s has
exactly the data buyer b needs, which makes buyer b’s loss goes to 0, and the cost c; is 0.

A.1.4 DERIVATION OF W IN MEAN ESTIMATION MARKET
We offer the proof for the derivation of closed-form W in Section

SC=EY | Y wify —wil® + Y ¢ Y wi; G

€eB  jes jeS  ieB

~ 2 A 2
B Y wijfy — Y wijp + Y wip — pal® + ) éwy;
jeS JES jeS JjeS

= Z wijo’? + (Z wi,juj)T(Z wi jpLy)

jEeS jeS jeS (38)

T T .
—2 Z Wiy i+ i+ Z ey
JES jes

=W,.(V+ AW, + W, .CW,[ —2W, B + p] p;

‘We have
W/ =(V+A+C)'B/

Thus,
W=B(V+A+C)™!
SC=>[uipi—Bi.(V+A+C)"'B]]
ieB
A.2 ADDITIONAL EXPERIMENTAL RESULTS

A.2.1 LOO PAYMENT VS. SHAPLEY PAYMENT

Using LOO or Shapley can lead to over-report or under-report, as illustrated in Figure [4]
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Figure 4: LOO payment and Shapley payment corresponding to the same experiment as in Figure
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