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Abstract

The reasoning ability of large language models (LLMs) can be unleashed with
reinforcement learning (RL) [OpenAI, 2024, DeepSeek-AI et al., 2025a, Zeng et al.,
2025]. The success of existing RL attempts in LLMs usually relies on high-quality
samples of thousands or beyond. In this paper, we challenge fundamental assump-
tions about data requirements in RL for LLMs by demonstrating the remarkable
effectiveness of one-shot learning. Specifically, we introduce polymath learning, a
framework for designing one training sample that elicits multidisciplinary impact.
We present three key findings: (1) A single, strategically selected math reason-
ing sample can produce significant performance improvements across multiple
domains, including physics, chemistry, and biology with RL; (2) The math skills
salient to reasoning suggest the characteristics of the optimal polymath sample; and
(3) An engineered synthetic sample that integrates elements from multiple subjects
outperforms training with individual samples that naturally occur. Our approach
achieves superior performance to training with larger datasets across various reason-
ing benchmarks, demonstrating that sample quality and design, rather than quantity,
may be the key to unlock enhanced reasoning capabilities in language models. Our
results suggest a shift, dubbed as sample engineering, toward precision engineering
of training samples rather than simply increasing data volume.

1 Introduction

Recent advances in Large Language Models (LLMs) have demonstrated the remarkable effective-
ness of reinforcement learning (RL) in enhancing complex reasoning capabilities. Models like o1
[OpenAI, 2024], Deepseek R1 [DeepSeek-AI et al., 2025a], and Kimi1.5 [Team et al., 2025a] have
shown that RL training is able to naturally induce sophisticated reasoning behaviors, including self-
verification [Weng et al., 2023], reflection [Shinn et al., 2023], and extended chains of thought. While
these advances typically rely on large-scale training data, recent work has begun to challenge this
paradigm. Li et al. [2025a] demonstrated with their LIMR approach that a strategically selected subset
of just 1,389 samples can outperform the full 8k sample MATH dataset [Hendrycks et al., 2021].
More recently, Wang et al. [2025a] made the surprising observation that even one single sample can
produce meaningful improvements in math reasoning through RL, and Wang et al. [2025b] achieved
similar gains by distilling high-quality reasoning paths from strong commercial models. However,
this finding remains preliminary and math-specific, and leaves the critical questions of cross-domain
generalization with internal abilities of LLMs unanswered: whether reasoning improvements beyond
math can be achieved in similar manner? Whether a strategy exists in directing the optimal sample?
Whether such sample can be synthesized to enhance the sample quality?
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In this paper, we build upon these emerging insights to systematically investigate the phenomenon
of one-shot reinforcement learning in broad reasoning tasks termed as polymath learning. Our
central finding is that a single, carefully selected math reasoning sample is able to produce significant
performance gains not only in mathematics but across diverse domains including physics, chemistry,
biology, as well as more general reasoning domains. This cross-domain generalization suggests that
RL may enhance fundamental reasoning mechanisms rather than merely domain-specific knowledge
without saturated domain-specific training. Specifically, our work addresses three research questions:

Cross-Domain Generalization: Does a single mathematical reasoning sample yield improvements
across diverse knowledge domains through polymath learning? We investigate the transfer mecha-
nisms that allow fundamental reasoning patterns to transcend domain boundaries and observe that
one single math sample selected on the math categories elicits greater reasoning gains of LLM than
comprehensive datasets with thousands of samples, and the reasoning gains even extend to less
quantitative subjects and domains that are distant from math.

Optimal Sample Selection: What characteristics define the ideal training sample for maximal impact
in general reasoning domains? Although the optimal polymath sample varies across domains, we find
that their efficacy correlates with the salient math skills critical to reasoning, particularly the skills in
algebra and precalculus.

Synthetic Sample Construction: How can we engineer a hybrid “meta-sample" beyond naturally
ocurred ones that integrates multiple reasoning skills? We propose a synthesis technique based on
salient skill identification to construct the sample with comprehensive skills and multidisciplinary
context. The results illustrate that the multidisciplinary background supports the comprehensiveness
of the salient skills, and therefore benefits the cross-domain reasoning ability greater than the naturally-
occurred samples that mainly possess math skills in limited categories and volumns. It shows the
power of a single sample amplified by properly integrating multidisciplinary knowledge.

By demonstrating that a single sample can trigger broad reasoning improvements, our findings adjust
the understanding of data requirements in RL, suggesting that the field may benefit from a shift
toward “sample engineering”: the deliberate selection, and synthesis of training samples to unlock
reasoning capabilities more efficiently, rather than simply scaling data volume and potentially induce
generalization degration [Yang et al., 2024b].

2 Related Work

Reinforcement Learning in Language Models Reinforcement learning has been applied to
aligning language models with human intents [Christiano et al., 2017] or instructions [Ouyang et al.,
2022] through learning from human feedback. Later, it is extended to strengthen the long-form
reasoning ability of models without relying on imitation of high-quality reasoning data, specifically by
employing Reinforcement Learning with Verifierable Reward (RLVR) where the model outcomes can
be verified and rewarded by verification functions with the advancement in RL algorithms [Schulman
et al., 2017, Lambert et al., 2025, Hu et al., 2025a]. However, training reliable outcome-based
reward models [Cobbe et al., 2021] is challenging, and the rule-based reward function demonstrates
effectiveness by simplifying the implementation of critic models and mitigating reward hacking [Shao
et al., 2024]. In this work, we extend the reasoning ability to broader reasoning domains by learning
rewards from the mathematical problems.

Data Efficiency in Reinforcement Learning Xu et al. [2025] selects variance-based subset re-
sponses for GRPO training. Zhang et al. [2025a] employs the most recent reward information for
filtering prompts, which is beneficial to GRPO training Yu et al. [2025b]. Other than focusing on
the response quality in RL training, Li et al. [2025a] highlights the significance of prompt quality by
demonstrating the effectiveness of carefully selected training subset. Further, Shrestha et al. [2025]
demonstrates cross-domain reasoning ability with less than 100 samples but requires a pre-warmup
distillation stage, and Wang et al. [2025a] utilizes only one training sample and achieves a notable
improvement in mathematical reasoning. And Zhao et al. [2025a] requires no human-expert data but
still relies on an external executor to generate valid answers to synthetic coding problems. However,
these studies still focusing on the mathematical reasoning domain where the training data originates
and neglect its broader impacts on multiple disciplines where the reasoning ability essences.
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Transfer Learning and Cross-Domain Generalization Afzal et al. [2024] demonstrates that small
LLMs can catch up with larger counterparts in domain adaptation with few examples. And Chen
et al. [2024] adapts models to new domain by extracting domain-invariant features in existing domain.
For reasoning problems, Zhao et al. [2025a] unleashes an improvement in mathematical reasoning
soly based on training on programming data, and Huan et al. [2025] demonstrates that RL achieves
better generalization from math to other domains than supervised fine-tuning, without a deep dive
into data efficiency. Li et al. [2025b] investigates the cross-domain impact in math reasoning, but
only limits the study within logical-intensive domains like code and puzzle. In polymath learning, we
enlarge the reasoning scope to various subjects and investigate the learning impact from one labeled
mathematical sample.

Sample Selection Strategies The effectiveness of finetuning large language models heavily relies
on the quality of data selection [Xie et al., 2023]. And well selected data samples can elicit powerful
fine-tuning performance compared to data volume of magnitudes larger [Wang et al., 2023, Zhou et al.,
2023]. Xia et al. [2024] relies on the gradient information for data selection, while Liu et al. [2024b]
formulates data selection as an optimal transportation problem. The effectiveness of data selection
also extends to reasoning problems [Qin et al., 2024, Ye et al., 2025]. Liu et al. [2024a], Li et al.
[2025c] apply LLM-based scores, justification, solve ratios [Havrilla et al., 2025] and LLM-based
role-play [Luo et al., 2025] to estimate sample diversity for data selection. Here we select polymath
samples based on the alignment with reinforcement learning dynamics to elicit the reasoning ability
in multiple disciplines. And we employ the salient-skill set to for selecting the synthesized data.

3 GRPO Basics

Given a dataset D = {(x, ŷ)} where x and ŷ stand for the prompt and golden answer, RLVR relies
on a policy model πθ(·|x) to generate correct reasoning trajectories without relying on trajectories
generated by human-expert or teacher models [Zhao et al., 2025a]. In GRPO [Shao et al., 2024], the
advantage value is estimated within a group of responses G responses {y1, y2, ..., yG} to substitute
the critic model in PPO while remaining effectiveness. Specifically,

LGRPO = E[x∼D,{yi}∼πθold (·|x)][
1

G

G∑
i=1

1

|yi|

|yi|∑
t=1

min(r̃i,tAi, clip(r̃i,t, 1− ϵ, 1 + ϵ)Ai)− βKL(πθ||πref )]

Ai =
ri − mean(r1, r2, ...rG)

std(r1, r2, ...rG)
, r̃i,t =

πθ(yi,t|x, yi,<t)

πθold(yi,t|x, yi,<t)

Here ri is computed by applying the reward function on the response and the golden answer ri =
reward(yi, ŷi). πθ(yi,t|x, yi,<t) identifies the likelihood of the t-th token in i-th response from the
policy model. Unlike previous efforts that assembles D with a comprehensive set of samples, in
polymath learning, the dasataset consists of one valid sample and Dpolymath = (x1, ŷ1).

4 Polymath Learning

OpenAI et al. [2024] unlocks complex reasoning ability of LLM through reinforcement learning,
and DeepSeek-AI et al. [2025b,a] further demonstrates that such advanced reasoning ability can be
elicited directly from pretrained base models using rule-based rewards, without relying on imitation
from high-quality supervised reasoning trajectories. Existing explorations mainly focus on math or
synthetic logic [Zeng et al., 2025, Pan et al., 2025, Xie et al., 2025] where large volumes of questions
with rule-based verifiable answers are accessible. Beyond the success of comprehensive learning:
training models with thousands of comprehensive high-quality problems and beyond, Wang et al.
[2025a] shows that the reasoning ability can also be boosted by one single math sample with RL.
Following this inquiry, we investigate polymath learning: training with one sample that plays a
polymath role and extends the model reasoning power across domains. Similar to Wang et al. [2025a],
we conduct polymath learning from math reasoning problems.

Polymath Learning with One Natural Sample LIMR [Li et al., 2025a] displays the potential
of improving training efficiency in reinforcement learning by selecting a subset of samples from
MATH that closely align with the training dynamics of RL. A preliminary model is trained in LIMR
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to record the reward trajectories during optimization. The sample learnability is then computed by
comparing its outcome reward with the dataset-wise average of outcome rewards. Higher LIMR
scores indicate greater alignment between the model behavior on individual sample and the entire
dataset during RL training. However, learning from samples with excessively high LIMR scores
risks over-specialization in math reasoning at the expense of the broader reasoning capabilities
in other disciplines. Therefore, we select LIMR samples with the lowest scores (0.6) in different
math categories as polymath candidates to maintain the same learnability according to preliminary
experiments. One polymath sample is displayed in Table 1 and others are included in Appendix E.

Polymath Sample in Algebra

[Question] A 100-gon P1 is drawn in the Cartesian plane. The sum of the x-coordinates of the 100
vertices equals 2009. The midpoints of the sides of P1 form a second 100-gon, P2. Finally, the
midpoints of the sides of P2 form a third 100-gon, P3. Find the sum of the x-coordinates of the vertices
of P3.

[Answer] 2009

Table 1: Polymath sample in algebra.

Polymath Learning with One Synthetic Sample Synthesizing reasoning trajectories have been
shown beneficial in boosting the reasoning ability in LLM in the pretraining [Ishibashi et al., 2025]
and supervised-finetuning stage [Singh et al., 2024, Yuan et al., 2024]. Careful problem synthesis
also scales up the mathematical reasoning ability of models by reinforcement learning [Setlur
et al., 2024]. Since solving multidisciplinary problems and purely mathematical problems are not
require on the same base of expertise, existing problem synthesis approaches based on problem
imitation [Toshniwal et al., 2025], mutation [Havrilla et al., 2025] or creation based on seed concept
or problem bank [Huang et al., 2025, Liang et al., 2025, Zhao et al., 2025b, Liu et al., 2025] do not
directly apply. In practice, we find it challenging to organically integrate and align information from
problems in diverse disciplines. Therefore, unlike Setlur et al. [2024] and Wang et al. [2025b], we
synthesize the polymath sample based on instruction without relying on existing problems or models
finetuned with question-generation [Ding et al., 2025, Wu et al., 2025b]. Our final problem synthesis
pipeline includes two stages,

• Candidate problem generation We employ strong models like OpenAI-O3 [OpenAI,
2025a], Gemini2.5-Pro [Google, 2025] and DeepSeek-R1 to include multidisciplinary
knowledge from physics, chemistry, and biology. The golden answers are collected from the
joint success in problem solving of these models.

• Specialized problem selection After massive collection of candidate problems, we employ
Qwen2.5-72B-instruct to identify the salient math skills related in solving the problem given
the problem text. The abundance of skills in different math categories is employed to reflect
the complexities and qualities of problems. We then select the problems with the most
specialized skills as the synthesized polymath samples.

We find this instruction-based approach unleashes the creativity of LLMs in producing complex
multidisciplinary problems. Specifically, we select the synthesized polymath sample with the most
comprehensive skill spectrum (Synthetic Prime, shown in Table 2). Solving the Synthetic Prime
requires a complex set of knowledge, including the strand sequence (biology), chemical bonds and
energy to break bonds (chemistry), accumulating energy by collecting photons and estimating photon
energy based on its wavelength (physics). The synthesis prompt is shown in Appendix A.

5 Experimental Setup

We choose Qwen2.5-7b-base [Qwen et al., 2025] as the primary model, while Qwen2.5-math
models [Yang et al., 2024a] demonstrate inferior performance on non-math benchmarks in preliminary
experiments and are therefore not considered. Similar to Wang et al. [2025a], we employ GRPO [Shao
et al., 2024] for RL training and augment the polymath sample into the batch of 128, and sample
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Polymath Sample (Synthetic Prime)

[Question] A double-stranded DNA fragment of exactly 11 base pairs has the upper strand sequence
5 ’G C G C G C G C A T A 3’.

Each adenine–thymine (A·T) base pair is held together by **2** hydrogen bonds, and each gua-
nine–cytosine (G·C) base pair by **3** hydrogen bonds.
The DNA molecule is irradiated with monochromatic light of wavelength λ = 400nm. Assume that
**100%** of every photon’s energy is used exclusively to break hydrogen bonds between the two
strands.
Use the exact data below (treat every value as exact):
* Enthalpy of one hydrogen bond ∆H = 20kJ · mol−1

* Planck constant h = 6.626× 10−34J · s
* Speed of light c = 3.00× 108m· s−1

* Avogadro constant Na = 6.022× 1023mol−1

**Fill in the blank:** What is the minimum number of 400 nm photons required to supply exactly
enough energy to dissociate *all* hydrogen bonds in **one** molecule of this DNA fragment?
(Answer with a single positive integer.)

[Answer] 2

Table 2: The synthetic prime polymath sample that incorporates multidisciplinary knowledge.

16 responses per prompt with temperature of 1.0. The prompt template follows the design of Hu
et al. [2025b]. Following Huan et al. [2025], the model is trained for 140 steps since the reasoning
ability saturates. We only employ a 0-1 outcome reward with rule-based matching of the final answer
according to previous studies [Shao et al., 2024, Yu et al., 2025b], and exclude the format reward
and the KL term as they demonstrate inferior performance [Wang et al., 2025a, Yu et al., 2025b].
In skill identification, we employ Algebra to include salient skills from Prealgebra, Algebra and
Intermediate Algebra to eliminate their large overlaps.

Our evaluation covers both math and non-math domains. Specifically, we select MATH500, AIME
in 2024 and 2025, MinervaMath [Lewkowycz et al., 2022], GPQA-Diamond [Rein et al., 2024],
Scibench [Wang et al., 2024a], MMLU-Pro [Wang et al., 2024b] with randomly select 100 problems
for each subject and SuperGPQA [Team et al., 2025b] with 1500 random problems as the evaluation
set. The full spectrum of subjects is listed in Appendix C. The model responses are generated with
greedy decoding in single attempt, except for AIME, where the results are averaged from 32 attempts
with temperature being 0.4 (additional configurations are included in Appendix A).

6 Results

6.1 Cross-Domain Generalization of Learning on Single Polymath Sample

Table 3 reports the reasoning performance aggregated by subject domains (e.g. Math includes all
math problems from MATH500, AIME, MinervaMath and other benchmarks). Models trained with
various natural and synthetic polymath samples are compared against the base model. In addition to
the Synthetic Prime sample, we construct several synthetic specialist samples across different math
categories by selecting instances containing the highest number of salient skills identified in those
categories. Here, we make several observations. Firstly, the base model exhibits imbalanced reasoning
abilities: performing strongLy in math but weakly in other domains. Secondly, polymath learning
delivers substantial improvements over in-context learning across different subject domains. Thirdly,
although comprehensive learning enhances the math reasoning ability of the base model, especially
with effective data selection strategies like LIMR, most natural polymath samples demonstrate
comparable performance to comprehensive learning on the math domain, and surpass it on non-math
domains, underscoring the potential of single high-quality sample in unlocking reasoning ability.
Notably, polymath samples in prealgebra and precalculus stand out, exhibiting superior performance
due to their wide coverage of salient math skills (Sec 6.2). Lastly, synthetic polymath samples
further elevate the reasoning ability. Most specialist samples outperform their natural polymath
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Table 3: The performance of employing different sample strategies on different subject domains. The
best performance on each subject domain is bolded. Most natural polymath samples outperforms
in-context learning and comprehensive learning with LIMR selection. Most synthetic specialist
samples outperforms the corresponding natural sample, and the Synthetic Prime sample demonstrates
the best performance. The dataset-wise results is included in Appendix B.

Polymath Subject Math Physics Chemistry Biology Science Engineering Computer Science Others Avg
N=64 Sampling (0-shot)

- 20.4 4.4 4.4 5.1 0.0 3.7 3.3 9.6 6.4
In-context Learning (1-shot)

Natural Sample
Geometry 24.5 8.0 7.2 24.4 4.3 6.0 29.0 11.6 14.4

Prealgebra 22.3 11.2 9.4 40.3 6.8 10.2 35.0 20.3 19.4

Algebra 21.4 10.9 9.8 38.7 8.3 10.4 35.0 20.6 19.4

Intermediate Algebra 22.7 8.0 7.0 21.8 4.5 9.5 32.0 15.5 15.1

Number Theory 21.7 10.9 8.7 31.9 5.4 6.6 28.0 15.8 16.1

Precalculus 21.6 8.3 5.9 20.2 5.2 6.8 26.0 11.9 13.2

Probability 22.4 9.7 7.2 24.4 5.6 7.7 22.0 13.2 14.0
Synthetic Sample

Prime 18.6 4.6 4.6 8.4 2.2 4.6 11.0 7.7 7.7
Comprehensive Learning (> 1k shots)

Natural Sample
MATH 37.2 12.8 10.0 31.4 6.5 8.6 25.8 23.4 19.5

LIMR 38.0 11.6 11.8 48.3 10.0 13.4 35.1 31.5 25.0
Polymath Learning (1-shot) - Ours

Natural Sample
Geometry 15.5 9.9 10.0 55.1 11.2 16.7 37.1 35.0 23.8

Prealgebra 38.0 17.4 12.2 51.7 15.1 16.5 49.5 33.5 29.2

Algebra 37.3 17.4 13.7 51.7 12.1 15.6 43.3 30.9 27.7

Intermediate Algebra 36.3 19.1 13.1 50.0 13.9 17.5 42.3 31.1 27.9

Number Theory 37.7 16.9 12.4 49.2 13.4 17.8 42.3 32.2 27.7

Precalculus 38.0 18.4 13.7 50.0 16.0 19.7 43.3 31.0 28.8

Probability 38.8 19.9 11.5 46.6 14.7 16.4 41.2 31.4 27.6
Synthetic Sample

Geometry 35.4 15.0 11.5 31.1 36.1 52.5 13.2 11.0 25.7

Algebra 37.3 16.9 12.6 31.5 41.2 52.5 18.6 13.9 28.1

Number Theory 38.4 18.2 12.0 32.1 36.1 47.5 18.6 13.8 27.1

Precalculus 37.1 20.3 15.3 32.9 44.3 48.3 20.8 16.5 29.4

Probability 37.1 16.7 13.9 30.1 46.4 50.0 19.7 10.8 28.1

Prime 38.3 20.6 15.7 54.2 15.6 20.8 48.5 32.4 30.8

sample counterparts and demonstrate domain-specific advantages: geometry and algebra samples
excel in engineering; number theory sample in math and probability sample in science. Furthermore,
the Synthetic Prime sample achieves the strongest overall performance and demonstrates particular
strength in physics and chemistry, suggesting that the reasoning potential of individual samples
can be amplified through well-incorporation of multidisciplinary knowledge. Therefore we select
the Synthetic Prime sample as the primary synthetic sample for subsequent experiments. Unlike
data collection approaches that are based on widely crawled sources [Wu et al., 2025a, He et al.,
2025, Zhang et al., 2025b], our polymath samples do not rely on seed data to construct or displaying
evidence of data contamination. The specialist samples are included in Appendix E.

The breakdown performance of N sampling (0-shot pass rate@64), polymath learning and compre-
hensive learning by subjects is visualized in Figure 1, with subjects ordered by their similarities
to math. The similarity is measured by computing the subject embedding distance between the
mean of embeddings of all problems in each subject and the mean of problems in MATH500. We
employ Text-Embedding-3-Small [OpenAI, 2025b] with the dimension of 1024 to generate problem
representations. The best performance of polymath learning and in-context learning of polymath
samples are displayed with triangles and stars respectively. We include our major findings as below,

Strong mathematical but skewed reasoning of the base model Due to the massive mathematical
and coding data participated in pretraining [Qwen et al., 2025, Wu et al., 2025a], the Qwen2.5-7b-base
model achieves pass rate@64 > 0.5 in MATH500, higher than all other subjects with significant
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Figure 1: The subject-level performance of different learning strategies. OE stands for subjects with
open-ended problems. The subjects are sorted by subject embedding distance to math (the grey dotted
line), from low to high. The blue line represents pass ratio from 64 independent attempts of the
base model. The stars and triangles represent best performance of in-context learning and polymath
learning. Note that we only display the best polymath learning and in-context polymath learning
results for demonstration.

margins. However, the strength in MATH500 does not naturally extend to other subjects. For example,
the base model performs poorly on physics, chemistry and biology, but demonstrates relative strength
(pass rate@64 close to 0.2) in education, medicine, sociology and management, which does not
possess similar proportion of quantitative components as math does.

Comprehensive learning provides mathematical dominance, but not multidisciplinary Com-
prehensive learning with MATH or LIMR sets demonstrate strong performance in MATH500, and
remain competitive with the strongest polymath sample in other math subjects (math, minerva).
However, their performance on most non-math subjects lags behind by a large margin from the best
polymath results. Their reasoning strengths gained from math-specific training only generalizes
to a limited number of subjects, like economics, health, psychology, education, and history where
more than fourfold performance improvement over zero-shot sampling is observed. Nonetheless,
quality-driven data selection stays beneficial in comprehensive learning, with LIMR consistently
outperforming MATH in most subjects.

The effectiveness of in-context learning of polymath samples The best in-context polymath
learning sample outperforms 0-shot pass rate@64 baseline in most subjects, highlighting the efficacy
of polymath samples even under gradient-free learning. Moreover, we observe that the specifc
polymath samples (e.g. prealgebra or algebra) are able to achieve performance on par with, or
superior to, at least one model trained via comprehensive learning in over 50% of subjects, with
details included in Appendix F.

Better generalization of polymath learning on math-distant subjects Even though the best
polymath sample outperforms comprehensive learning in LIMR on math-intensive domains like math
and engineering, its advantage is more pronounced on subjects that are semantically distant from
math. For example, it demonstrates around 10 points gains in agronomy, literature and sociology.
On average, polymath learning with the best natural samples yields a 14.5 points improvement
over comprehensive learning on the full MATH set on the 50% subjects farthest from MATH500,
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compared to a 7.7 points gain on the 50% subjects closest to MATH500. This pattern suggests that
polymath learning promotes stronger reasoning generalization in less math-intensive subjects.

6.2 Characteristics of Optimal Polymath Sample

Data diversity is beneficial in training more capable reasoning LLMs [Zhang et al., 2025b], serving
both regularization to the neural network [Ba et al., 2025] and a mean to mitigate performance
saturation especially when leveraging synthetic data sources [Jung et al., 2025]. In polymath learning,
we extend beyond the diversity at the level of problem or trajectory [Yu et al., 2025a]and instead
examine the composition of salient mathematical skills within individual polymath samples. The
result in Figure 2 illustrates the key supporting role of algebra and precalculus skills in cross-domain
reasoning. Polymath samples demonstrate stronger performance tend to exhibit high prevalences
of these skills. Furthermore, synthetic specialist samples with multidisciplinary backgrounds span
a broader range of skills than math-specialized samples of the same speciality, which accounts for
their superior performance. Notably, the Synthetic Prime sample exhibits the highest concentration of
salient skills, suggesting that solving such problems requires a complex interplay of knowledge and
thus provides rich learning signals for training LLMs.
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Probability Number Theory

Precal.5101520

Prealgebra
Algebra

Geo.

Probability Number Theory

Precal.5101520

Algebra
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Geo.
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Figure 2: Skill spectrum between natural and synthetic polymath samples. The polygon represents
number of salient skills identified in each math domain (Geo. and Precal. represents Geometry and
Precalculus respectively). The real and dashed areas represent the natural and synthetic specialist
samples except the last one, which represents the Synthetic Prime sample, and the synthetic samples
include more comprehensive salient skill sets than the natural polymath samples.

The distribution of salient skills across subject domains further highlights the central roles of algebra
and precalculus. Skill abundance also reflects the degree of domain specialization. For instance, in
engineering, the most frequent algebraic and geometric skills are unit conversion and trigonometry.
Figure 3 shows that algebra and precalculus consistently dominate in skill popularity, underscoring
their foundational importance for quantitative reasoning (e.g., unit conversion and arithmetic oper-
ations). Moreover, domains with integrative knowledge, such as science and engineering, demand
more comprehensive combinations of salient skills compared to discipline-focused domains such as
math, physics, chemistry, or biology. An example of skill identification is provided in Appendix H.

7 Generalization of Self-Verification

The verification mechanism act as a signal for models to reconsider and refine their initial
solutions [DeepSeek-AI et al., 2025a]. Verification feedback can further enhance decision-
making [Madaan et al., 2023, Shinn et al., 2023]. To analyze such behavior, several signature
words have been proposed for monitoring self-verification patterns [Xie et al., 2025]. Following
this, we collect pattern statistics across polymath learning samples, adding the ‘code’ category to
capture python-based program verification and excluding ‘reevaluate’ for its rare appearance. We
find that polymath learning in general demonstrates more frequent self-verification behavior than
comprehensive learning. Moreover, the polymath sample in ‘number theory’ and ‘intermediate
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Figure 3: Average number of mathematical skills employed per problem in different subject domains.
Algebra and Precalculus skills have the highest pupoluarities in all subject domains.

algebra’ exhibit strong tendencies in eliciting the self-checking (‘re-evaluate’) behavior and pro-
gramming assistance (‘code’) respectively. Moreover, different polymath samples display distinct
self-verification preferences depending on the subject domain, with details in Appendix D.

Similar to Shao et al. [2025], we observe frequent use of program verification in the polymath sample
of ‘intermediate algebra’. However, the role of programs varies across domains: the programs in
math are primarily used as part of the final answer generation process, including pseudo-execution
errors like ‘Timed out’; in physics and chemistry, by contrast, the programs are employed more for
result validation. Importantly, without the access of external executor, the integration of program
does not necessarily yield reasoning gains. Illustrative examples are provided in Appendix G.
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Figure 4: Self-verification patterns under different comprehensive and polymath samples across all
subjects. Verification patterns like ‘re-evaluate’ and ‘recheck’ appear most frequently in polymath
learning with the ‘number theory’ sample, and the ‘intermediate algebra’ sample elicits the most code
blocks in reasoning.

8 Limitations and Future Work

In polymath learning, we focus our study in the effectiveness of one single training sample in lifting
interdisciplinary reasoning ability with reinforcement learning. Due to resource constraints, our study
only covers a small set of samples without larger-scale experiments in 1-shot polymath learning.
And the sample selection based on salient skills does not extend to scaled skill-based problem
synthesis like Havrilla et al. [2025]. Although we observe different verification pattern preferences by
choosing polymath samples, we do not observe direct connection between the self-verification and the
improvement in reasoning abilities. Besides, the polymath learning experiments are only conducted

9



in open-ended format, while previous studies has demonstrated the benefits of incorporating diverse
question-answer formats [Akter et al., 2025], especially for benchmarks that are in multiple-choice
formats. Moreover, our study is limited in polymath samples from math and does not extend to other
domains where reliable rewards are accessible.

9 Conclusion

While math reasoning ability has been considered the primary metric to mark the progress of the
reasoning of LLMs, the broader multidisciplinary reasoning abilities remain relatively underexplored.
Inspired by the success of boosting math reasoning ability using one single training sample, we
introduce polymath learning and show that training LLMs with one selected math sample can rival
or even surpass datasets by orders of magnitude in eliciting reasoning across diverse domains. Our
findings show that polymath learning yields stronger cross-domain reasoning ability than learning with
the comprehensive math dataset, and sample synthesis further elevates the performance. Crucially,
we trace this multidisciplinary reasoning potency of polymath samples to the abundance of salient
math skills within the reasoning structures of problems. Moreover, the synthesized samples with
comprehensive salient skills tend to confer greater multidisciplinary reasoning strength, highlighting
the promise of careful sample engineering as an alternative to indiscriminate data scaling.
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A Configurations
We employ a learning rate of 1e-6 during training. And the maximum generation length is 2048. The
configuration to collect zero-shot sampling for base model is listed in Table 4. The prompt used is
displayed in Table 5, and the prompt to synthesize polymath samples is shown in Table 6. Around
500 candidate problems are synthesized on the candidate problem generation stage. The prompt
employed for math skill identification is displayed in Table 7.

HYPERPARAMETER VALUE

temperature 0.5

top k 10

top p 0.8

Table 4: Hyperparameters for computing 0-shot pass rate@k of the base model.

Prompt for Training

A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The
assistant first thinks about the reasoning process in the mind and then provides the user with the answer.
User: You must put your answer inside \\boxed{} and Your final answer will be extracted automatically
by the \\boxed{} tag. For multiple choice questions, the final answer in \\boxed{} should be the option
letter (A, B, C, D, etc.).
[PROBLEM]
Assistant:

Table 5: Training Prompt, where [PROBLEM] is the placeholder for the problem.

Prompt for Synthesizing Polymath Sample

You are a professor proficient in physics, chemistry, and biology, tasked with creating a highly integrated
problem for students that encompasses knowledge from all three disciplines. This problem should be a
fill-in-the-blank question, and the final answer must be a precise integer (a positive integer between
1-1000). The difficulty of this question should be at the high school to university level. Furthermore, it
should not involve any estimation, and complex calculations should be avoided as much as possible to
ensure the robustness of the evaluation.

Table 6: Prompt for synthesizing polymath sample.

Prompt for Skill Identification

Here is a reasoning problem, and your job is to identify the concepts and skills in the scope of
[CATEGORY] that are related to solve the problem.
Please separate the concepts or skills with ;, and if there is no skills or concepts identified, please answer
with None. Please put your answer within <answer></answer>.
For example: compute derivatives is the skill in precalculus.
Question:
[QUESTION]

Table 7: Prompt for skill identification. The [CATEGORY] and [QUESTION] are the placeholder for
math category (e.g. algebra) and problem respectively.

B Results by Datasets

Table 8 includes results by datasets on polymath learning and comprehensive learning, with the
synthetic sample still performing the strongest.
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Table 8: Results on different reasoning benchmarks, where OE refers to benchmarks of open-
ended problems: MATH500, AIME2024, AIME2025, Minerva and Scibench, while MCQ refers
to benchmarks of multiplechoice problems. The best performance is bolded and the best polymath
learning performance is underlined if not optimal.

Polymath Subject MATH500 AIME2024 AIME2025 Minerva GPQA-Diamond SuperGPQA MMLU-Pro SciBench AVG-OE AVG-MCQ AVG-All
N=64 Sampling (0 shot)

- 54.8 9.0 7.1 13.4 13.1 15.7 4.7 9.8 23.6 11.3 15.9
In-context Learning (1 shot)

Natural Sample
Geometry 60.0 8.2 4.7 15.4 9.6 4.5 20.5 6.8 19.0 11.5 16.2
Prealgebra 55.0 9.2 4.5 10.7 16.2 9.2 28.8 6.4 17.2 18.1 17.5
Algebra 48.0 8.2 3.1 15.8 14.6 10.7 25.6 6.7 16.4 17.0 16.6
Intermediate Algebra 59.6 5.1 4.5 12.1 14.1 7.3 20.5 5.7 17.4 14.0 16.1
Number Theory 52.8 8.5 3.9 11.8 16.7 6.3 23.4 5.9 16.6 15.5 16.2
Precalculus 51.8 6.7 3.9 15.8 13.1 4.9 19.0 5.2 16.7 12.3 15.0
Probability 54.2 7.3 4.0 13.6 11.1 6.3 19.7 5.8 17.0 12.4 15.2

Synthetic Sample
Prime 44.2 4.8 2.4 15.1 5.6 2.8 10.6 3.8 14.1 6.3 11.2

Comprehensive Learning (> 1k shots)
Natural Sample

MATH (8k) 73.6 13.0 7.9 30.9 11.7 10.3 22.5 23.1 29.7 14.8 24.1
LIMR (1k) 74.8 12.6 8.9 30.1 13.2 15.8 31.5 22.7 29.8 20.2 26.2

Polymath Learning (1 shot)
Natural Sample

Geometry 26.6 0.0 0.0 19.9 23.9 18.5 33.1 7.9 10.9 25.2 16.2
Prealgebra 71.2 13.3 13.3 30.9 18.3 19.4 35.0 21.4 30.0 24.2 27.9
Algebra 72.0 6.7 0.0 30.9 16.2 17.3 34.9 22.8 26.5 22.8 25.1
Intermediate Algebra 71.2 13.3 0.0 28.7 20.3 18.9 34.5 22.0 27.0 24.6 26.1
Number Theory 69.6 16.7 10.0 30.9 17.8 18.2 35.0 22.3 29.9 23.7 27.6
Precalculus 71.6 10.0 10.0 30.5 18.8 20.9 34.1 22.4 28.9 24.6 27.3
Probability 71.6 13.3 16.7 29.8 14.2 18.9 34.9 22.7 30.8 22.7 27.8

Synthetic Sample
Geometry 71.4 10.2 6.7 27.2 15.7 16.9 30.7 21.4 27.4 21.1 25.0
Algebra 71.6 10.2 6.7 30.9 20.3 19.3 33.6 21.8 28.2 24.4 26.8
Number Theory 73.8 11.7 7.1 29.8 14.2 19.3 34.6 23.1 29.1 22.7 26.7
Precalculus 71.8 11.4 7.7 29.4 19.8 21.5 35.8 22.8 28.6 25.7 27.5
Probability 71.8 11.6 7.2 28.3 16.8 17.5 36.4 22.1 28.2 23.6 26.5

Prime 71.4 10.1 7.2 30.9 21.3 20.5 38.4 22.3 28.4 26.7 27.8

C Full Subject List

The full list of reasoning subjects being evaluated is displayed in Table 9.

SUBJECT DOMAIN SUBJECT SOURCE # SAMPLES

Math AIME AIME2024, AIME2025 60
MATH500 MATH 500
Minerva MinervaMath 272
math Scibench, MMLU-Pro 299

Physics physics GPQA-Diamond, Scibench, MMLU-Pro 413

Chemistry chemistry GPQA-Diamond, Scibench, MMLU-Pro 459

Biology biology GPQA-Diamond, Scibench, MMLU-Pro 118

Science science SuperGPQA 557

Engineering engineering SuperGPQA 447

Computer Science computer science MMLU-Pro 100

Others military science SuperGPQA 12
business MMLU-Pro 100
philosophy MMLU-Pro, SuperGPQA 120
economics MMLU-Pro, SuperGPQA 149
management SuperGPQA 28
health MMLU-Pro 100
psychology MMLU-Pro 100
medicine SuperGPQA 155
education SuperGPQA 27
agronomy SuperGPQA 27
literature and arts SuperGPQA 93
law MMLU-Pro, SuperGPQA 137
history MMLU-Pro, SuperGPQA 138
sociology SuperGPQA 8
other MMLU-Pro 100

Table 9: Evaluation reasoning benchmarks with subjects included.

D Self-verification by Subject Domains

We list the self-verification statistics by different sbuject domains in Figure 5 and Figure 6. Specifi-
cally, we found that ‘verify’ is more preferred in math problems while ‘re-evaluate’ appears more
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frequently in science and engineering. Besides, polymath learning with the ‘intermediate algebra’
sample elicits the most coding verifications among all the natural and synthetic samples.
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Figure 5: The verification patterns identified for ‘wait’, ‘verify’ and ‘yet’ in different subject groups.
The ‘wait’ rates in computer science problems are highly attributed from terms in the question stems.
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Figure 6: The verification patterns identified for ‘re-evaluate’, ‘recheck’ and ‘code’ in different
subject groups.

E Other Polymath Learning Samples

We list the other samples used for polymath learning in Table 15 to Table 21, and synthetic specialist
samples from Table 22 to Table 26.

F Reasoning Breakdown by Subject

Figure 7 illustrates the best polymath sample for different subjects.
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Figure 7: The subject-level performance of different learning strategies. OE stands for subjects with
open-ended problems. The subjects are sorted by subject embedding distance to math (the grey dotted
line), from low to high. The blue line represents pass ratio from 64 independent attempts of the
base model. The stars and triangles represent best performance of in-context learning and polymath
learning. Note that we only display the best polymath learning and in-context polymath learning
results for demonstration, and Synthetic represents the Synthetic Prime sample.

G Self-Verification Examples

Table 10, Table 11 and Table 12 include examples in math, physics, and chemistry problems where
program verification emerges in polymath learning with the polymath sample in ‘intermediate
algebra’.

H Example of Mathematical Skill in the Reasoning Problem

A sample science problem and relevant algebra skills to solve is displayed in Table 14.
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Self Verification - Math

[Question] The intensity of light with wavelength λ traveling through a diffraction grating with N
slits at an angle θ is given by I(θ) = N2 sin2 k/k2, where k = (πNd sin θ)/λ and d is the distance
between adjacent slits. A helium-neon laser with wavelength λ = 632.8× 10−9 m is emitting a narrow
band of light, given by −10−6 < θ < 10−6, through a grating with 10,000 slits spaced 10−4 m apart.

Use the Midpoint Rule with n = 10 to estimate the total light intensity
∫ 10−6

−10−6 I(θ)dθ emerging from
the grating.
[Answer] 59.4

[Intermediate Algebra] To solve this problem, we follow these steps:
1. Define the function I(θ) = N2 sin2

(
πNd sin θ

λ

)
/
(
πNd sin θ

λ

)2.
2. Substitute the given values N = 10000, d = 10−4, and λ = 632.8× 10−9.

3. Use the Midpoint Rule with n = 10 to approximate the integral
∫ 10−6

−10−6 I(θ) dθ. Let’s break it down
into manageable parts and implement it in Python using the sympy library.

import sympy as sp
# Define the variables
theta = sp.symbols(’theta ’)
# Given values
N = 10000
d = 10**-4
lambda_val = 632.8 * 10**-9
# Define the function I(theta)
k = (sp.pi * N * d * sp.sin(theta)) / lambda_val
I_theta = N**2 * sp.sin(k)**2 / k**2
# Define the limits of integration
a = -10**-6
b = 10**-6
n = 10
# Midpoint Rule
delta_theta = (b - a) / n
midpoints = [a + (i + 0.5) * delta_theta for i in range(n)]
integral_approx = sum(I_theta.subs(theta , midpoint) for midpoint in midpoints) *

delta_theta
# Evaluate the integral approximation
integral_approx_evaluated = integral_approx.evalf()
print(integral_approx_evaluated)

Output: TimeoutError: ’Timed Out’ It seems that the computation took too long to complete.
This might be due to the complexity of the function and the large number of terms involved in the
Midpoint Rule. Let’s simplify the problem by breaking it down further and using numerical integration
instead of symbolic integration.
We can use the ‘scipy.integrate.quad‘ function to perform the numerical integration. This function is
designed to handle such integrals efficiently.
Here’s the updated code using numerical integration:

import numpy as np
from scipy.integrate import quad
# Given values
N = 10000
d = 10**-4
lambda_val = 632.8 * 10**-9
# Define the function I(theta)
def I_theta(theta):

k = (np.pi * N * d * np.sin(theta)) / lambda_val
return N**2 * np.sin(k)**2 / k**2

# Define the limits of integration
$a = -10**-6$
$b = 10** -6$
# Perform the numerical integration
integral_approx , error = quad(I_theta , a, b)
# Print the result
print(integral_approx)

Output: 10000000000.0 The numerical integration result for the total light intensity (
∫ 10−6

−10−6 I(θ)dθ)

emerging from the grating is 10000000000.0 .

Table 10
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Self Verification - Physics

[Question] We know that the negative charge on the electron and the positive charge on the proton
are equal. Suppose, however, that these magnitudes differ from each other by 0.00010%. With what
force would two copper coins, placed 1.0 m apart, repel each other? Assume that each coin contains
3× 1022 copper atoms. (Hint: A neutral copper atom contains 29 protons and 29 electrons.)
[Answer] 1.7

[Intermediate Algebra] To solve this problem, we need to follow these steps:
1. Calculate the charge difference between the electron and the proton.
2. Determine the total charge on each copper coin.
3. Use Coulomb’s law to find the force between the two copper coins.

Let’s break it down:
1. **Calculate the charge difference:**
- The charge of an electron is e = −1.602× 10−19 C.
- The charge of a proton is e = 1.602× 10−19 C.
- The difference in charge is ∆e = 0.00010%× 1.602× 10−19 C.
- 0.00010% = 0.000001, so ∆e = 0.000001× 1.602× 10−19 = 1.602× 10−25 C.

2. **Determine the total charge on each copper coin:**
- Each copper atom has 29 protons and 29 electrons, so the net charge of a neutral copper atom is zero.
- Each copper coin contains 3 × 1022 copper atoms, so the total charge on each coin is
3× 1022 × 1.602× 10−25 = 4.806× 10−3 C.

3. **Use Coulomb’s law to find the force between the two copper coins:**
- Coulomb’s law states that the force F between two point charges q1 and q2 separated by a distance r

is given by F = k q1q2
r2

, where k is the Coulomb constant 8.99× 109 N·m2

C2 .
- Here, q1 = q2 = 4.806× 10−3 C and r = 1.0 m.
- So, F = 8.99× 109 × (4.806×10−3)2

1.02
= 8.99× 109 × 2.31× 10−5 = 2.07× 105 N.

Let’s implement this in Python to ensure the accuracy of the result:

# Constants
e = 1.602e-19 # charge of an electron (and proton)
delta_e = 0.00010 / 100 * e # charge difference
num_atoms = 3e22 # number of copper atoms in each coin
charge_per_atom = e # charge of a single copper atom
total_charge_per_coin = num_atoms * charge_per_atom # total charge on each coin
k = 8.99e9 # Coulomb constant
distance = 1.0 # distance between the coins in meters

# Calculate the force using Coulomb ’s law
force = k * (total_charge_per_coin ** 2) / (distance ** 2)
print(force)

output: 206673.0
The force between the two copper coins, each containing 3 × 1022 copper atoms, placed 1.0 meter

apart, with a charge difference of 0.00010% between the electron and the proton, is 2.07× 105 N .

Table 11
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Self Verification - Chemistry

[Question] Assume all gases are perfect unless stated otherwise. Note that 1 atm = 1.013 25 bar.
Unless otherwise stated, thermochemical data are for 298.15 K. Concerns over the harmful effects of
chlorofluorocarbons on stratospheric ozone have motivated a search for new refrigerants. One such
alternative is 2,2-dichloro-1,1,1-trifluoroethane (refrigerant 123). Younglove and McLinden published a
compendium of thermophysical properties of this substance (J. Phys. Chem. Ref. Data 23, 7 (1994)),
from which properties such as the Joule-Thomson coefficient µ can be computed. Compute µ at 1.00 bar
and 50◦C given that (∂H/∂p)T = −3.29× 103 JMPa−1 mol−1 and Cp, m = 110.0 J K−1 mol−1.
[Answer] 29.9

[Intermediate Algebra] To compute the Joule-Thomson coefficient µ at 1.00 bar and 50◦C, we can
use the following formula:

µ =

(
∂T

∂p

)
H

The Joule-Thomson coefficient can also be expressed in terms of the enthalpy and temperature deriva-
tives as follows:

µ =
1

Cp,m

(
∂H

∂p

)
T

Given: (
∂H

∂p

)
T

= −3.29× 103 JMPa−1 mol−1

Cp,m = 110.0 JK−1 mol−1

We can substitute these values into the formula to find µ:

µ =
1

110.0
× (−3.29× 103)KMPa−1

Let’s calculate this using Python to ensure accuracy.

# Given values
dH_dp_T = -3.29e3 # J MPa$ ^{-1}$ mol$ ^{-1}$
Cp_m = 110.0 # J K$^{-1}$ mol$ ^{-1}$

# Calculate the Joule -Thomson coefficient
mu = dH_dp_T / Cp_m # K MPa$ ^{-1}$
print(mu)

Output: -29.90909090909091

The Joule-Thomson coefficient µ at 1.00 bar and 50◦C is:

−29.91KMPa−1

Table 12: Chemistry example of self-verification in polymath learning.

25



Self Verification - Engineering

[Question] Transonic airfoil flow is to be initially analyzed using a water tunnel test through air-water
analogy. To simulate an airflow with M∞=1.1,a water depth of 50mm is chosen for the water tunnel
test. The water depth at the stagnation point (ζ + h) is (). Options are: (A): 0.1057m
(B): 0.0803m
(C): 0.0704m
(D): 0.1451m
(E): 0.1158m
(F): 0.0906m
(G): 0.0605m
(H): 0.1259m
(I): 0.1552m
(J): 0.1350m
[Answer] B

[Intermediate Algebra] To solve this problem, we need to use the air-water analogy for transonic
airfoil flow. The key relationship we will use is the Mach number similarity criterion, which states that
the ratio of the water depth at the stagnation point to the water depth in the tunnel should be equal to the
ratio of the Mach number of the air flow to the Mach number of the water flow.
Given: - The Mach number of the air flow, M∞ = 1.1 - The water depth in the tunnel, h = 50 mm =
0.05 m
We need to find the water depth at the stagnation point, ζ + h.
The Mach number of water, Mw, is typically taken as 1 (since water is incompressible and its Mach
number is considered to be 1 for practical purposes in this context).
Using the Mach number similarity criterion:

ζ + h

h
=

M∞

Mw

Substitute the given values:
ζ + 0.05

0.05
=

1.1

1
Simplify the equation:

ζ + 0.05

0.05
= 1.1

Multiply both sides by 0.05 to solve for ζ + 0.05:

ζ + 0.05 = 1.1× 0.05

Calculate the right-hand side:
ζ + 0.05 = 0.055

Subtract 0.05 from both sides to find ζ:

ζ = 0.055− 0.05

ζ = 0.005 m
Now, add the water depth h to find the total water depth at the stagnation point:

ζ + h = 0.005 + 0.05

ζ + h = 0.055 m
Convert this to millimeters for comparison with the given options:

0.055 m = 55 mm

However, the options provided are in meters. Therefore, we need to convert 55 mm back to meters:

55 mm = 0.055 m

None of the given options match 0.055 m exactly. Let’s
the problem to ensure there are no calculation errors. The correct approach should be:

ζ + h = 0.055 m

Given the options, the closest match is: 0.0803 m

Thus, the correct option is: B

Table 13: Engineering example of self-verification in polymath learning.26



Skill Extraction - Science

[Question] A particle of mass 1 kg is moving in the x − y plane and its potential energy U in joule
obeys the law U = 6x+ 8y, where (x, y) are the coordinates of the particle in meter. If the particle
starts from rest at (9,3) at time t = 0, then
(A): The speed of the particle when it crosses the y axis is 5

√
3m/s

(B): The speed of the particle when it crosses y axes is 7
√
3m/s

(C): Magnitude of acceleration of particle is 10m/s2

(D): The speed of the particle when it crosses y axes is 11
√
3m/s

(E): Acceleration of particle is zero
(F): The speed of the particle when it crosses y axes is 8

√
3m/s

(G): The speed of the particle when it crosses y axes is 9
√
3m/s

(H): The speed of the particle when it crosses y axes is 12
√
3m/s

(I): The speed of the particle when it crosses y axes is 10
√
3m/s

[Skills in Algebra]
Interpreting physical laws in mathematical form
Understanding the relationship between potential energy and force
Using the gradient to find force components
Applying the work-energy theorem
Solving for velocity using energy conservation
Understanding the relationship between force and acceleration
Solving for acceleration using newton’s second law
Analyzing motion in two dimensions
Solving for the time when a particle crosses a specific axis
Evaluating expressions involving square roots

Table 14: Skills extracted from a sample science problem. Other math categories do not contribute
relevant math skills.

Polymath Sample in Geometry

[Question] A white cylindrical silo has a diameter of 30 feet and a height of 80 feet. A red stripe with a
horizontal width of 3 feet is painted on the silo, as shown, making two complete revolutions around it.
What is the area of the stripe in square feet?

[asy]
size(250);defaultpen(linewidth(0.8));
draw(ellipse(origin, 3, 1));
fill((3,0)–(3,2)–(-3,2)–(-3,0)–cycle, white);
draw((3,0)–(3,16)h-3,0)–(-3,16));
draw((0, 15)–(3, 12)h0, 16)–(3, 13));
filldraw(ellipse((0, 16), 3, 1), white, black);
draw((-3,11)–(3, 5)h-3,10)–(3, 4));
draw((-3,2)–(0,-1)h-3,1)–(-1,-0.89));
draw((0,-1)–(0,15), dashed);
draw((3,-2)–(3,-4)h-3,-2)–(-3,-4));
draw((-7,0)–(-5,0)h-7,16)–(-5,16));
draw((3,-3)–(-3,-3), Arrows(6));
draw((-6,0)–(-6,16), Arrows(6));
draw((-2,9)–(-1,9), Arrows(3));
label("3", (-1.375,9.05), dir(260), UnFill);
label("A", (0,15), N);
label("B", (0,-1), NE);
label("30", (0, -3), S);
label("80", (-6, 8), W);
[/asy]

[Answer] 240

Table 15: Polymath sample in geometry.
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Polymath Sample (Counting & Probability)

Bicycle license plates in Flatville each contain three letters. The first is chosen from the set
{C,H,L, P,R}, the second from {A, I,O}, and the third from {D,M,N, T}.
When Flatville needed more license plates, they added two new letters. The new letters may both be
added to one set or one letter may be added to one set and one to another set. What is the largest
possible number of ADDITIONAL license plates that can be made by adding two letters?
Answer: 40

Table 16: Polymath sample in counting and probability.

Polymath Sample in Algebra

[Question] A 100-gon P1 is drawn in the Cartesian plane. The sum of the x-coordinates of the 100
vertices equals 2009. The midpoints of the sides of P1 form a second 100-gon, P2. Finally, the
midpoints of the sides of P2 form a third 100-gon, P3. Find the sum of the x-coordinates of the vertices
of P3.

[Answer] 2009

Table 17: Polymath sample in algebra.

Polymath Sample in Intermediate Algebra

[Question] Let a, b, c be nonzero real numbers such that

a

b
+

b

c
+

c

a
= 7 and

b

a
+

c

b
+

a

c
= 9.

Find
a3

b3
+

b3

c3
+

c3

a3
.

[Answer] 157

Table 18: Polymath sample in intermediate algebra.

Polymath Sample in Precalculus

[Question] For a certain value of k, the system

x+ ky + 3z = 0,

3x+ ky − 2z = 0,

2x+ 4y − 3z = 0

has a solution where x, y, and z are all nonzero. Find xz
y2 .

[Answer] 10

Table 19: Polymath sample in precalculus.
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Polymath Sample in Number Theory

[Question] The American Mathematics College is holding its orientation for incoming freshmen. The
incoming freshman class contains fewer than 500 people. When the freshmen are told to line up in
columns of 23, 22 people are in the last column. When the freshmen are told to line up in columns of
21, 14 people are in the last column. How many people are in the incoming freshman class?

[Answer] 413

Table 20: Polymath Sample in Number Theory.

Polymath Sample in Prealgebra

[Question] A region is bounded by semicircular arcs constructed on the side of a square whose sides
measure 2/π, as shown. What is the perimeter of this region?

[asy]
path a=(10,0)..(5,5)–(5,-5)..cycle;
path b=(0,10)..(5,5)–(-5,5)..cycle;
path c=(-10,0)..(-5,5)–(-5,-5)..cycle;
path d=(0,-10)..(-5,-5)–(5,-5)..cycle;
path e=(5,5)–(5,-5)–(-5,-5)–(-5,5)–cycle;
fill(e,gray(0.6));
fill(a,gray(0.8));
fill(b,gray(0.8));
fill(c,gray(0.8));
fill(d,gray(0.8));
draw(a,linewidth(0.7));
draw(b,linewidth(0.7));
draw(c,linewidth(0.7));
draw(d,linewidth(0.7));
draw(e,linewidth(0.7));
[/asy]

[Answer] 4

Table 21: Polymath sample in prealgebra.

Synthetic Specialist Sample in Precalculus

[Question] A chemical factory discharges waste into a river at a rate of 500 cubic meters per day.
The waste has an untreated pollutant concentration of 100 mg/L. The river has a flow rate of 24,500
cubic meters per day, and the waste mixes completely and instantly with the river flow. The pollutant
degrades following first-order kinetics with a half-life of 5 days. The time for water to travel from the
discharge point to a critical fish habitat is 5 days. To protect an endangered fish species (reflecting
ethical considerations of intrinsic value in philosophy), the pollutant concentration at the habitat must
not exceed 0.1 mg/L. If the concentration exceeds this limit, the probability of harm to the fish is 0.05
per mg/L of excess concentration. Due to legal regulations (incorporating law), if harm occurs, the
factory is fined $10,000 per day. The factory can treat the waste to reduce the pollutant concentration
before discharge. The treatment cost is $0.005 per cubic meter per mg/L reduction in concentration
(incorporating economics and chemistry). Calculate the optimal initial concentration of pollutant in
the treated waste (in mg/L) that minimizes the total daily cost (treatment cost plus expected fine),
considering the interdisciplinary aspects of physics (degradation kinetics and flow), biology (fish
protection), and mathematics (optimization).

[Answer] 10

Table 22: Synthetic Specialist Sample in Precalculus.
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Synthetic Specialist Sample in Number Theory

[Question] A pharmaceutical company develops a new drug for treating a specific condition. The
drug has a biological half-life of 4 hours in the human body and a volume of distribution of 50 liters.
Clinical trials determine that the minimum therapeutic concentration required for efficacy is 10 mg/L.
The drug is administered as a single intravenous bolus dose at the beginning of each day to maintain
concentrations at or above the therapeutic level for exactly 8 hours.
The manufacturing cost analysis shows that each 500 mg vial of the drug costs $2.50 to produce, and the
entire vial must be used if opened. Regulatory requirements (reflecting legal and ethical considerations)
mandate that the drug concentration must not drop below the therapeutic level during the 8-hour
treatment period.
Considering the exponential decay of the drug concentration, calculate the required dose in milligrams.
Then, determine the daily cost in dollars for administering this dose, providing the cost to one decimal
place.

[Answer] 10

Table 23: Synthetic Specialist Sample in Number Theory.

Synthetic Specialist Sample in Geometry

[Question] A model cell membrane is represented by a cube-shaped vesicle with a side length of 10.0
nm. The membrane is a phospholipid bilayer made of two leaflets. Each phospholipid occupies exactly
1.50 nm2 of surface area within a single leaflet. Assuming both leaflets cover the entire outer surface of
the cube and ignoring membrane thickness and edge effects, how many phospholipid molecules are
present in the bilayer?

[Answer] 800

Table 24: Synthetic Specialist Sample in Geometry.

Synthetic Specialist Sample in Probability

[Question] A molecular-biology lab purifies a circular plasmid that is exactly 3000 base pairs (bp) long.
• Each base pair contains two deoxyribonucleotides, and every nucleotide carries one phosphate
(PO3−

4 ) group.
• While the cells were growing, the medium contained the β-emitter 32P, so every phosphate in the
plasmid is 32P-labelled.
• The radioactive isotope 32P has a half-life of 14.0 days.

Immediately after purification, a tube that contains precisely 100 identical plasmid molecules shows an
activity of 1024 disintegrations per minute (dpm). The tube is stored in a freezer, and—after an integral
number of whole half-lives—the activity is measured again and found to be exactly 4 dpm.

To cross-check the number of phosphate groups, the plasmid DNA is then completely hydrolysed and
the liberated phosphate is quantitatively precipitated as calcium phosphate according to

3Ca2+ + 2PO3−
4 → Ca3(PO4)2 ↓

The precipitation requires exactly 5.0 × 10−7 mol of Ca2+ ions, confirming the amount of DNA
present (the stoichiometry is consistent and needs no further calculation here).

What is the number of 32P half-lives that have elapsed between the two activity measurements?

[Answer] 8

Table 25: Synthetic Specialist Sample in Probability.
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Synthetic Specialist Sample in Algebra

[Question] A plant that is heterozygous for two independent genes, G and H (genotype GgHh), is
self-pollinated. Exactly 640 seeds are obtained.

Biology: Only seeds that are homozygous recessive for both genes (gghh) can synthesize the enzyme
“Catalase-X”.
Chemistry: Every gghh seed is placed in its own vial containing 0.0800 mol of hydrogen peroxide.
Catalase-X instantly and completely decomposes the peroxide according to

2 H2O2 → 2 H2O+O2(g).

Thus each qualifying vial releases pure O2 gas.
Physics: The O2 is dried, transferred to a 1.00 L rigid cylinder at 298 K, and all molecules are singly
ionised (O2 → O+

2 + e−). The ions are accelerated so that each has speed v that makes its circular
path radius exactly 0.0400 m in a uniform magnetic field B = 1.00 T perpendicular to their velocity
(m(O2) = 32 u, 1 u = 1.66 × 10−27 kg, q = 1.60 × 10−19 C). Immediately after acceleration an
electronic gate allows only the very first O+

2 ion to continue; all later ions are blocked. That single ion
has a 50% chance of striking a narrow slit that leads to a detector; otherwise nothing is recorded.

A vial is counted as a “success” if its lone transmitted ion hits the detector. All vials operate
independently.

What is the expected number of “successes” after all 640 seeds have been processed?

[Answer] 20

Table 26: Synthetic Specialist Sample in Algebra.
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