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Abstract

We study offline Reinforcement Learning in large infinite-horizon discounted
Markov Decision Processes (MDPs) when the reward and transition models are
linearly realizable under a known feature map. Starting from the classic linear-
program formulation of the optimal control problem in MDPs, we develop a new
algorithm that performs a form of gradient ascent in the space of feature occupan-
cies, defined as the expected feature vectors that can potentially be generated by
executing policies in the environment. We show that the resulting simple algorithm
satisfies strong computational and sample complexity guarantees, achieved under
the least restrictive data coverage assumptions known in the literature. In particu-
lar, we show that the sample complexity of our method scales optimally with the
desired accuracy level and depends on a weak notion of coverage that only requires
the empirical feature covariance matrix to cover a single direction in the feature
space (as opposed to covering a full subspace). Additionally, our method is easy
to implement and requires no prior knowledge of the coverage ratio (or even an
upper bound on it), which altogether make it the strongest known algorithm for
this setting to date.

1 Introduction

We study Offline Reinforcement Learning (ORL) in sequential decision making problems whereby
a learner aims to find a near-optimal policy with sole access to a static dataset of interactions with
the underlying environment [Levine et al., 2020]. This line of work is naturally relevant to real-
world tasks for which learning an accurate simulator of the environment is potentially intractable
or impossible, trial-and-error learning could have grave consequences, yet logged interaction data
is readily available. For example, in a high-stake application such as autonomous driving, building
a sufficiently accurate simulator for the vehicle and its environment would require modelling very
complex systems, which can be intractable both statistically and computationally. At the same time,
running experiments in the real world could endanger the lives of other road users or result in damages
to the vehicle. Yet, with the advent of tools for efficient sensory-data collection and processing, large
volumes of logged data from human drivers are readily available.

An efficient ORL method is one which finds a near-optimal policy after a tractable number of
elementary computations and samples from the dataset. It is well-known in this setting that the quality
of the solution has to heavily depend on the quality of the data, and in particular one cannot hope
to find a near-optimal policy if the data covers the space of states and actions poorly. To formalize
this intuition, many notions of data coverage have been proposed in the offline RL literature, ranging
from a very restrictive uniform coverage assumption that requires the data-generating policy to cover
the entire state-action space [Munos and Szepesvári, 2008] to a variety of partial coverage conditions
whereby this exploratory condition is only required for state-action pairs that are of interest to the
optimal policy [Liu et al., 2020, Rashidinejad et al., 2021, Uehara and Sun, 2021, Zhan et al., 2022,
Rashidinejad et al., 2022, Li et al., 2024]. In the present work, we study the setting of linear Markov
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Decision Processes (MDPs) [Jin et al., 2020, Yang and Wang, 2019] where the reward and transition
matrix admit a low rank structure in terms of a known feature map, and data-coverage assumptions
can be defined in the space of features. As shown by [Zanette et al., 2021], in this setting it is possible
to obtain strong guarantees if the offline data is well-aligned with the expectation of the feature vector
generated by the optimal policy (as opposed to requiring alignment with the entire distribution of
features as required by other common offline RL methods [Jin et al., 2021, Xie et al., 2021, Uehara
and Sun, 2021, Zhang et al., 2022]). In the present paper, we propose a simple and efficient algorithm
that yields the best known sample complexity guarantees for this problem setting, all while only
requiring the weakest known data-coverage assumptions of Zanette et al. [2021].

Our approach is based on the LP formulation of optimal control in infinite-horizon discounted MDPs
due to Manne [1960], and more specifically on its low-dimensional saddle-point reparametrization
for linear MDPs proposed by Gabbianelli et al. [2024] (which itself builds on earlier work by Neu
and Okolo, 2023 and Bas-Serrano et al., 2021). Primal variables of this saddle-point objective
correspond to expectations of feature vectors under the state-action distribution of each policy (called
feature occupancies), and dual variables correspond to parameters of linear approximations of action-
value functions. We design an algorithm based on the idea of optimizing the unconstrained primal
function that is derived from the saddle-point objective by eliminating the dual variables via a classic
dualization trick. More precisely, we design a sample-based estimator of the primal function and
optimize it via a variant of gradient ascent in the space of feature occupancies.

This approach is to be contrasted with the method of Gabbianelli et al. [2024], which instead optimized
the original saddle-point objective via stochastic primal-dual methods. Their algorithm interleaved a
sequence of “policy improvement” steps with an inner loop performing “policy evaluation”, which
resulted in a suboptimal use of sample transitions due to the costly inner loop. This issue was
addressed in the very recent work of Hong and Tewari [2024] who, instead of relying on stochastic
optimization, built an estimator of the saddle-point objective and optimized it via a deterministic
primal-dual method. Our approach is directly inspired by their idea of estimating the saddle-point
objective, but our algorithm design is significantly simpler: instead of directly optimizing the
primal function in terms of feature occupancies, Hong and Tewari [2024] relied on a sophisticated
reparametrization of the primal variables, and used a computationally involved procedure to update
the dual variables. Both of these steps required prior knowledge of a tight bound on the feature-
coverage ratio of the optimal policy, which is typically not available in problems of practical interest.
Such knowledge is not required by our algorithm, thanks to the incorporation of a recently proposed
stabilization trick that we make use of in our algorithm [Jacobsen and Cutkosky, 2023, Neu and
Okolo, 2024]. We provide a more detailed discussion of these closely related works in Section 5.

Notation. We use boldface lowercase lettersm to denote vectors and and bold uppercaseM for
matrices. We define the Euclidean ball in Rd of radius D by Bd(D) = {x ∈ Rd| ∥x∥2 ≤ D} and
the A-simplex over a finite set A of cardinality A as ∆A = {p ∈ RA

+| ∥p∥1 = 1}.

2 Preliminaries

We consider infinite-horizon Discounted Markov Decision Processes (DMDPs) [Puterman, 1994]
of the form (X ,A, r,P , γ) where X denotes a finite (yet large) set of X states and A is a finite
action space of cardinality A = |A|. We refer to r ∈ [0, 1]XA as the reward vector, P ∈ RXA×X

+
the transition matrix and γ ∈ (0, 1) the discount factor. For a state-action pair (x, a) ∈ X × A
we also use the notation r (x, a) = r[(x, a)] to denote the reward of taking action a in state x and
p (x′|x, a) = P [(x, a) , x′] as the probability of ending up in state x′ afterwards.

The MDP models a sequential decision making process where an agent interacts with its environment
as follows. For each step k = 0, 1, 2, · · · ,, the agent observes the current state Xk of the environment
and then goes on to select its action Ak. Based on this action in the current state, it receives a reward
r (Xk, Ak), transits to a new state Xk+1 ∼ p (·|Xk, Ak) and the process continues. The objective of
the agent is to find a decision-making rule that maximizes its total discounted reward when the initial
state X0 is sampled according to a fixed initial-state distribution distribution ν0 ∈ ∆X . Without loss
of generality, we assume that the initial state is fixed almost surely as X0 = x0, and use ν0 to refer to
the corresponding delta distribution. It is known that this objective can be achieved by executing a
stationary stochastic policy π : X → ∆A, with π(a|x) denoting the probability of the agent selecting
action Ak = a in state Xk = x for all k. We will use Π to denote the set of all such behavior rules

2



and will often simply call them policies. We define the normalized discounted return of each policy π
as

ρ (π) = (1− γ)Eν0,π

[ ∞∑
k=0

γkr (xk, ak)

]
,

where the role of the discount factor γ ∈ (0, 1) is to emphasize the importance of earlier rewards, and
the notation Eν0,π [·] highlights that the initial state is sampled from ν0 and all actions are sampled
according to the policy π. We will use π∗ to denote any policy that maximizes the return.

We will consider the offline RL setting where we are given access to a data set of n sample transitions
Dn = {(Xi, Ai, Ri, X

′
i)}ni=1, where X ′

i ∼ p(·|Xi, Ai) is sampled independently for each i and Ri =
r(Xi, Ai). Otherwise, no assumption is made about the state-action pairs (Xi, Ai), and in particular
we do not require these to be generated by a fixed behavior policy or to be independent of each other.

For describing the approach we take towards solving this problem, we need to introduce some
further standard notations. The value function and action-value function associated with policy π are
respectively defined as

vπ (x) = Ea∼π(·|x) [q
π (x, a)] , qπ (x, a) = Eπ

[ ∞∑
k=0

γkr (xk, ak)

∣∣∣∣∣x0 = x, a0 = a

]
,

and the state-occupancy and state-action-occupancy measures under π as

νπ (x) =
∑
a

µπ (x, a) , µπ (x, a) = (1− γ)Eν0,π

[ ∞∑
k=0

γkI{xk,ak}

]
.

The value functions and occupancy measures adhere to the following recursive equations, respectively
termed the Bellman equation and Bellman flow condition [Bellman, 1966]:

qπ = r + γPvπ, µπ = π ◦ [(1− γ)ν0 + γP Tµπ].

Here, the composition operation ◦ is defined so that for any policy π and state distribution ν ∈ RX ,
we have (π ◦ ν) (x, a) = π (a|x) ν (x). Notice that we can express the return of π in terms of value
functions and occupancy measures as ρ (π) = (1− γ) ⟨ν0,vπ⟩ = ⟨µπ, r⟩. On this note, for a given
target accuracy ε > 0, we say policy π is ε-optimal if it satisfies

〈
µπ∗ − µπ, r

〉
≤ ε.

In the present work, we well make use of the linear MDP assumption due to Jin et al. [2020], Yang
and Wang [2019], which is defined formally as follows:
Definition 2.1 (Linear MDP). An MDP is called linear if both the transition and reward functions
can be expressed as a linear function of a given feature map φ : X ×A → Rd. That is, there exist
ψ : X → Rd and ω ∈ Rd such that, for every x, x′ ∈ X and a ∈ A:

r(x, a) = ⟨φ(x, a),ω⟩, p (x′|x, a) = ⟨φ(x, a),ψ(x′)⟩.

We denote by Φ ∈ R|X×A|×d the feature matrix with rows given by φ(x, a)T and Ψ ∈ Rd×|X| as the
weight matrix with columns ψ(x). Further, we will assume that ∥ω∥2 ≤

√
d, that ∥Ψv∥2 ≤ B

√
d

holds for all v ∈ [−B,B], and that all feature vectors satisfy ∥φ(x, a)∥2 ≤ R for some R ≥ 1.

An immediate consequence of this assumption is that the action-value function of any policy π can
be written as a linear function of the features as qπ = Φθπ, with θπ = ω + γΨvπ ∈ Rd. For the
rest of the paper we explicitly assume that the feature matrix Φ is full rank – which is enough to
ensure uniqueness of θπ. It is common to assume that the feature dimension d ≪ X such that the
transition operator is low-rank. As common in this setting, we will suppose throughout the paper that
the feature map Φ is known.

Our algorithm design will be based on the linear programming formulation of MDPs, first proposed
in a number of papers in the 1960’s [Manne, 1960, de Ghellinck, 1960, d’Epenoux, 1963, Denardo,
1970]. This formulation frames the problem of finding an optimal control policy as the following pair
of primal and dual linear programs:

maximize ⟨µ, r⟩
subject to ETµ = (1− γ)ν0 + γP Tµ

µ ≥ 0,

(1)
minimize (1− γ)⟨ν0,v⟩
subject to Ev ≥ r + γPv. (2)
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Here, the operator E ∈ RXA×X is defined such that for each x, a and vectors µ ∈ RXA,v ∈ RX ,

(ETµ) (x) =
∑
a∈A

µ (x, a) , (Ev) (x, a) = v (x) .

It is known that the occupancy measure of an optimal policy µπ∗
is an optimal solution of the primal

LP (1). In fact, the feasible set of the primal is precisely the space of valid state-action occupancy
measures that can be induced by stationary policies. Therefore, given any feasible solution µ, we can
extract the inducing policy as πµ (a|x) = µ (x, a) /

∑
a′ µ (x, a′) when

∑
a µ (x, a) ̸= 0. Likewise,

the state value function of the optimal policy π∗ is an optimal solution to the dual LP. That said, since
the LP features XA variables and constraints, it cannot be solved directly in large MDPs.

In view of the above limitations, we consider the following reduced version of the above intractable
LPs due to Gabbianelli et al. [2024] (see also Neu and Okolo, 2023, Bas-Serrano et al., 2021):

maximize ⟨λ,ω⟩
subject to ETµ = (1− γ)ν0 + γΨTλ

λ = ΦTµ

µ ≥ 0,

(3)

minimize (1− γ)⟨ν0,v⟩
subject to Ev ≥ Φθ

θ = ω + γΨv.
(4)

In view of the second constraint of the primal LP (3), λ should be thought of as expectations of feature
vectors under occupancy measures, and we thus refer to them as feature occupancy vectors. Similarly,
the second constraint of the dual LP (4) suggests that θ should be thought of as parameters of the
approximate action-value function qθ = Φθ = Φ (ω + γΨv) = r+γPv. We use λπ∗

= ΦTµπ∗
to

denote the feature occupancy associated with the optimal policy π∗ and θπ
∗

to denote the parameter-
vector of the optimal action-value function qπ

∗
. The Lagrangian corresponding to the LPs is given as

L(λ,µ;v,θ) = (1− γ)⟨ν0,v⟩+ ⟨λ,ω + γΨv − θ⟩+ ⟨µ,Φθ −Ev⟩
= ⟨λ,ω⟩+ ⟨v, (1− γ)ν0 + γΨTλ−ETµ⟩+ ⟨θ,ΦTµ− λ⟩. (5)

It is easy to verify that by the linear MDP property, the feasible sets of the above LPs coincide
with those of the original LPs in an appropriate sense, and their optimal solutions correspond to
the optimal state-action occupancy measure and state-value function respectively (see Appendix A).

In order to further reduce the complexity of the LPs above, we introduce a policy π and parametrize
the remaining high-dimensional variables v and µ as

vθ,π(s) =
∑
a

π(a|s) ⟨θ,φ(x, a)⟩ , µλ,π(x, a) = π(a|x)
[
(1− γ)ν0(x) + γ⟨ψ(x),λ⟩

]
. (6)

Plugging this choice back into the Lagrangian, we obtain the objective

f(λ, π;θ) = L(λ,µλ,π;vθ,π,θ)

= (1− γ)⟨ν0,vθ,π⟩+ ⟨λ,ω + γΨvθ,π − θ⟩ (7)
= ⟨λ,ω⟩+ ⟨θ,ΦTµλ,π − λ⟩.

It is easy to see that for any π and λπ = ΦTµπ, we have f(λπ, π;θ) = ⟨µπ, r⟩ for all θ ∈
Rd. Furthermore, whenever λ ̸= λπ then the θ-player has a winning strategy that can force
minθ f(λ, π;θ) = −∞. This (informally) suggests that an optimal policy can be found by solving the
unconstrained saddle-point optimization problem maxλ∈Rd,π∈Π minθ∈Rd f(λ, π;θ). Furthermore,
since the optimal policy can be written as π∗(a|x) = I{a=argmaxb⟨θπ∗ ,φ(x,b)⟩}, it is sufficient to
consider softmax policies of the form

Π(Dπ) =

{
πθ (a|x) =

e⟨φ(x,a),θ⟩∑
a′ e⟨φ(x,a′),θ⟩

∣∣∣∣∣θ ∈ Bd(Dπ)

}
,

which can approximate π∗ to good precision when the diameter Dπ is set to be large enough. This
parametrization effectively reduces the high-dimensional LP into a low-dimensional saddle-point
optimization problem.
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3 Feature-occupancy gradient ascent for offline RL in linear MDPs

A natural idea for developing RL methods is to build an empirical approximation of the function f
defined in the previous section, and use primal-dual methods to find a saddle-point of the resulting
approximation. For offline RL, this approach has been explored by Gabbianelli et al. [2024] and
Hong and Tewari [2024]. In this work, we develop an alternative approach that seeks to directly
optimize the return by approximately maximizing the unconstrained primal function f∗ : Rd ×Π,
defined for each feature-occupancy vector λ and policy π as

f∗(λ, π) = min
θ∈Bd(Dθ)

f(λ, π;θ),

for an appropriately chosen feasible set Bd(Dθ). Given the discussion in the previous section, maxi-
mizing this function with respect to λ and π is rightly expected to result in an optimal policy (which
intuition will be made formal in our analysis). Notably, the so-called objective f in Equation (7)
depends on the transition weight matrix Ψ which is unknown in general. As we soon show, this
matrix dominates the loss of the θ-player and λ-player. Based on these observations, our approach
consists of building a well-chosen estimator f̂ of f , and then maximizing the associated primal
function f̂∗ defined as

f̂∗(λ, π) = min
θ∈Bd(Dθ)

f̂(λ;θ, π).

The objective f̂ is built via a least-squares estimator inspired by the classic LSTD model estimate
of Bradtke and Barto [1996], Parr et al. [2008], which has been successfully used for analyzing
finite-horizon linear MDPs in a variety of recent works (e.g., Jin et al., 2020, Neu and Pike-Burke,
2020). In particular, we fit an estimator Ψ̂ of the true matrix Ψ using samples from the dataset
Dn = {(Xi, Ai, Ri, X

′
i)}ni=1 as follows. Let φi = φ(Xi, Ai) denote the feature vector of (Xi, Ai)

and Λn = βIn + 1
n

∑n
i=1φiφ

T
i the empirical feature covariance matrix. We define the regularized

least squares estimate of Ψ at x ∈ X as

ψ̂ (x) = arg min
ψ(x)∈Rd

1

n

n∑
i=1

(
⟨φi,ψ (x)⟩ − I{x=X′

i}
)2

+ β ∥ψ (x)∥22 ,

so that the estimate can be written as

Ψ̂ =
∑
x∈X

ψ̂(x)eT

x =
1

n
Λ−1

n

n∑
i=1

φie
T

X′
i
. (8)

With this matrix at hand, we define f̂ as

f̂(λ, π;θ) = (1− γ)⟨ν0,vθ,π⟩+ ⟨λ,ω + γΨ̂vθ,π − θ⟩ = ⟨λ,ω⟩+ ⟨θ,ΦTµ̂λ,π − λ⟩,

where µ̂λ,π(x, a) = π(a|x)
[
(1− γ)ν0(x) + γ⟨ψ̂(x),λ⟩

]
is a sample-based approximation of µλ,π .

For the purpose of optimization, we will employ appropriately chosen versions of mirror as-
cent [Nemirovski and Yudin, 1983, Beck and Teboulle, 2003] to iteratively optimize the pri-
mal variables. Denoting the iterates for each t = 1, 2, . . . , T by λt and πt, and defining θt =

arg minθ∈Bd(Dθ)
f̂(λt, πt;θ), the updates are defined as follows. Using gλ(t) = ∇λt

f̂∗(λt, πt) to

denote the gradient of f̂∗ with respect to the feature occupancies, the first set of variables is updated as

λt+1 = arg max
λ∈Rd

{
⟨λ, gλ(t)⟩ −

1

2η
∥λ− λt∥2Λ−1

n
− ϱ

2
∥λ∥2Λ−1

n

}
, (9)

where the first regularization term acts as proximal regularization (necessary for mirror-ascent-style
methods), and the second one has a stabilization effect whose role will be made clear later in the
analysis. The resulting update can be written in closed form, and is equivalent to a preconditioned
gradient-ascent step on f̂∗. The policies are updated in each state-action pair x, a as

πt+1(a|x) =
πt(a|x)eα⟨φ(x,a),θt⟩∑
a′ πt(a′|x)eα⟨φ(x,a′),θt⟩

=
π1(a|x)eα⟨φ(x,a),

∑t
k=1 θk⟩∑

a′ π1(a′|x)eα⟨φ(x,a′),
∑t

k=1 θk⟩
,
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Algorithm 1 Feature-Occupancy Gradient Ascent (FOGAS)
Input: Learning rates α, ϱ, η, initial points λ1 ∈ Rd, π1 ∈ Π(Dπ) , θ̄0 = 0, and dataset Dn.
for t = 1 to T do

// Value-parameter update
Compute
ΦTµ̂λt,πt = (1− γ)

∑
a πt(a|x0)φ(x0, a) + γ 1

n

∑n
i=1

∑
a πt(a|X ′

i)φ(X
′
i, a)

〈
φi,Λ

−1
n λt

〉
θt = arg minθ∈Bd(Dθ)

⟨θ,ΦTµ̂λt,πt
− λt⟩

// Policy update
Update θ̄t = θ̄t−1 + θt
πt+1 = σ

(
αΦθ̄t

)
// Feature-occupancy update
Compute Ψ̂vθt,πt

= 1
nΛ

−1
n

∑n
i=1φivθt,πt

(X ′
i)

Compute gλ(t) = ω + γΨ̂vθt,πt
− θt

λt+1 = 1
1+ϱη (λt + ηΛngλ(t))

end for
return πJ with J ∼ U(1, · · · , T ).

corresponding to performing an entropy-regularized mirror ascent step in each state x (cf. Neu et al.,
2017). We use the shorthand notation πt+1 = σ

(
αΦ
∑t

k=1 θk
)

to denote the resulting softmax
policy, and note that it is fully specified by a d-dimensional vector that can be stored compactly.
After the final iterate is computed, the algorithm picks the index J uniformly at random and outputs
the policy πJ . We refer to the resulting algorithm as Feature-Occupancy Gradient AScent (FOGAS),
and present its detailed pseudocode featuring the explicit expressions of λt and θt as Algorithm 1.

The following theorem states our main result regarding the performance of FOGAS.

Theorem 3.1. Let π1 be the uniform policy and λ1 = 0. Also set Dθ =
√
d/ (1− γ), Dπ = αTDθ

and δ > 0. Suppose that we run FOGAS for T ≥ 2R2n logA
log(1/δ) rounds with parameters β = R2/dT as

well as

α =

√
2 (1− γ)

2
logA

R2dT
, ϱ = γ

√
320d2 log (2T/δ)

(1− γ)
2
n

, η =

√
(1− γ)

2

27R2d2T
.

Then, with probability at least 1− δ, the following bound is satisfied for any comparator policy π∗

and the associated feature-occupancy vector λπ∗
= ΦTµπ∗

:

EJ

[〈
µπ∗

− µπJ , r
〉]

= O

∥∥λπ∗∥∥2
Λ−1

n
+ 1

1− γ
·
√

d2 log (2T/δ)

n

 ,

with the expectation taken with respect to the random index J .

The most important factor in the bound of Theorem 3.1 is ∥λ∗∥2Λ−1
n

, which measures the extent
to which the data Dn covers the comparator policy π∗ in feature space. We accordingly refer to
this quantity as the feature coverage ratio between the policy π∗ and the data set Dn, and we
discuss its relationship with other notions of data coverage in Section 5. Notably, the bound holds
simultaneously for all comparator policies π∗, and thus it can be restated in an oracle-inequality form.
On the same note, FOGAS does not need any prior upper bounds on the comparator norm ∥λ∗∥2Λ−1

n
,

and in particular it does not project the iterates λt to a bounded set. These nontrivial properties are
enabled by a recently proposed stabilization trick due to Jacobsen and Cutkosky [2023] and Neu and
Okolo [2024], which amounts to augmenting the standard mirror-ascent update of Equation (9) with
the regularization term ϱ

2 ∥λ∥
2
Λ−1

n
. Without this additional regularization, the bounds would feature

an additional factor of the order 1
T

∑T
t=1 ∥λt∥2Λ−1

n
, which cannot be controlled without projecting the

iterates and in any case make it impossible to prove a comparator-adaptive bound. We defer further
discussion of the result to Section 5.
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4 Analysis

This section is dedicated to proving our main result, Theorem 3.1. While we have defined FOGAS as a
“primal-only” algorithm above, its analysis will be most convenient if we regard it as a primal-dual
algorithm with implicitly defined dual updates. In particular, we will view the updates of FOGAS
as a sequence of steps in a zero sum game between two teams of players: the max players that
control λt and πt, and the min player that picks θt. The min player uses the simple best-response
strategy of picking θt = arg minθ∈Bd(Dθ)

f̂(λ, πt), and the other two players perform their updates
via appropriate versions mirror ascent on their respective objectives. Importantly, the updates of the
λ-player are based on the gradients of f̂∗, which satisfy

gλ(t) = ∇λt f̂
∗(λt, πt) = ∇λt

(
min

θ∈Bd(Dθ)
f̂(λt, πt;θ)

)
= ∇λt f̂(λt, πt;θt),

where the last equality follows from an application of Danskin’s theorem. This property enables
a major conceptual simplification that allows the interpretation of the updates as optimizing the
unconstrained primal f̂∗ directly. We refer the interested reader to Chapter 6 of Bertsekas [1997] for
more context on such use of primal-dual analysis.

More concretely, we make use of an analysis technique first developed by Neu and Okolo [2023],
and further refined by Gabbianelli et al. [2024] and Hong and Tewari [2024]. The core idea is to
introduce the dynamic duality gap defined on a sequence of iterates {(λt, πt,θt)}Tt=1 produced by
some iterative method, and a set of well-chosen comparators

(
λ∗, π∗; {θ∗t }Tt=1

)
as

GT

(
λ∗, π∗; {θ∗t }Tt=1

)
=

1

T

T∑
t=1

(f(λ∗, π∗;θt)− f(λt, πt;θ
∗
t )) .

Similar to Lemma 4.1 of Gabbianelli et al. [2024], we show in Lemma 4.1 below that with an
appropriate choice of the comparator points, we can relate the gap to the expected suboptimality of
policy πJ where J ∼ U(1, · · · , T ). We leave the proof in Appendix B.1.1.

Lemma 4.1. Suppose that Dθ =
√
d/(1 − γ). Choose (λ∗, π∗,θ∗t ) =

(
ΦTµπ∗

, π∗,θπt
)

∈
Rd ×Π(Dπ)× Bd(Dθ) for t = 1, · · · , T where µπ∗

is a valid occupancy measure induced by π∗.
Then,

EJ

[〈
µπ∗

− µπJ , r
〉]

= GT

(
ΦTµπ∗

, π∗, {θπt}Tt=1

)
.

We will show below that the dynamic duality gap can be written in terms of the regrets of each player
and an additional term related to the estimation error of f̂ , and then proceed to provide bounds on all
of these quantities. Specifically, the regrets of each player with respect to each of their respective
comparators are defined as

RT (π∗) =

T∑
t=1

∑
x

ν∗(x)
∑
a

(π∗(a|x)− πt(a|x)) qt(x, a),

RT (λ∗) =

T∑
t=1

f̂(λ∗, πt;θt)− f̂(λt, πt;θt) =

T∑
t=1

⟨λ∗ − λt,ω + γΨ̂vθt,πt
− θt⟩,

RT (θ∗1:T ) =

T∑
t=1

f̂(λt, πt;θt)− f̂(λt, πt;θ
∗
t ) =

T∑
t=1

⟨θt − θ∗t ,ΦTµ̂λt,πt
− λt⟩.

where ν∗ = (1− γ)ν0(x) + γ⟨ψ(x),λ∗⟩. Furthermore, we define the gap-estimation error as

errΨ̂ =

T∑
t=1

〈
λ∗,
(
Ψ− Ψ̂

)
vθt,πt

〉
+

T∑
t=1

〈
λt,
(
Ψ̂−Ψ

)
vθ∗

t ,πt

〉
. (10)

The following lemma rewrites the duality gap using the above terms.
Lemma 4.2. The dynamic duality gap satisfies

GT (λ
∗, π∗,θ∗1:T ) =

1

T
RT (π∗) +

1

T
RT (λ∗) +

1

T
RT (θ∗1:T ) +

γ

T
errΨ̂.
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The proof directly follows from a straightforward calculation similar to the proof of Lemma 4.2
of Gabbianelli et al. [2024] and Section E.1 of Hong and Tewari [2024] which is reproduced in
Appendix B.1.2 for completeness. It remains to bound the regret of the players, as well as the
gap-estimation error. An obstacle we need to face in the analysis is that our bound of the latter error
term scale with 1

T

∑T
t=1 ∥λt∥2Λ−1

n
, which is undesirable given our aspiration to achieve bounds that

scale only with the comparator norm ∥λ∗∥2Λ−1
n

without requiring prior upper bounds on this quantity
(that would enable us to project the iterates to a bounded domain). This challenge is addressed by
making use of the stabilization technique of Jacobsen and Cutkosky [2023] and Neu and Okolo
[2024] in the updates for the λ-player, which effectively eliminates these problematic terms. We
briefly outline the remaining parts of the analysis below.

4.1 Regret analysis

The regrets of each player are respectively controlled by the following three lemmas.
Lemma 4.3. Suppose that ν∗ ∈ ∆X . Let π1 be the uniform policy which selects all actions with
equal probability in each state. Under the conditions on the feature map in Definition 2.1, the regret
of the π-player against π∗ satisfies 1

T RT (π∗) ≤ logA
αT +

αR2D2
θ

2 .

The proof is a standard application of the analysis of exponential-weight updates, stated as Lemma E.1.
Lemma 4.4. Let λ1 = 0 and C = 6β

(
d+D2

θ

)
+ 3d (1 +RDθ)

2
+ 3γ2dR2D2

θ. Then, the regret
of the λ-player against any comparator λ∗ ∈ Rd satisfies

1

T
RT (λ∗) ≤

(
1

2ηT
+

ϱ

2

)
∥λ∗∥2Λ−1

n
+

ηC

2
− ϱ

2T

T∑
t=1

∥λt∥2Λ−1
n

.

The proof (provided in Appendix B.2.2) follows from applying the standard analysis of composite-
objective mirror descent due to Duchi et al. [2010] (stated as Lemma C.1 in the Appendix) and the
bound ∥Λngλ(t)∥2Λ−1

n
≤ C on the weighted norm of the gradients for all t provided in Lemma C.2.

Lemma 4.5. Let Dθ =
√
d/ (1− γ). The regret of the θ-player satisfies 1

T RT (θ∗1:T ) ≤ 0.

As we show in Appendix B.2.3, the above statement holds trivially thanks to the “best-response”
definition of θt. This concludes our regret analysis.

4.2 Bounding the gap-estimation error

The following statement (proved in Appendix B.3) provides a bound on errΨ̂:

Lemma 4.6. Suppose that ∥φ(x, a)∥2 ≤ R for all (x, a) ∈ X × A, Dθ =
√
d/(1 − γ) and

α =

√
2 (1− γ)

2
logA/R2dT to optimize RT (π∗). Then, for any T ≥ 2R2n logA

log(1/δ) and and ξ ≥ 0,
the following holds with probability at least 1− δ:

errΨ̂ ≤ 1

2ξ

(
∥λ∗∥2Λ−1

n
+

1

T

T∑
t=1

∥λt∥2Λ−1
n

)
+ T 2ξ

(
320d2 log (2T/δ)

n (1− γ)
2

)
.

4.3 The proof of Theorem 3.1

The proof follows from applying Lemmas 4.1 and Lemma 4.2 when (λ∗, π∗,θ∗t ) =(
ΦTµπ∗

, π∗,θπt
)
∈ Rd × Π(Dπ) × Bd(Dθ) for t = 1, · · · , T . Then, adding up the bounds

stated in Lemmas 4.3–4.6 under the respective conditions, yields

EJ

[〈
µπ∗

− µπJ , r
〉]

≤

√
d log (1/δ)

n (1− γ)
2 +

(
1

2ηT
+

ϱ

2
+

γ

2ξT

)∥∥∥λπ∗
∥∥∥2
Λ−1

n

+
ηC

2

+

(
γ

ξT
− ϱ

)
1

2T

T∑
t=1

∥λt∥2Λ−1
n

+ γTξ

(
320d2 log (2T/δ)

n (1− γ)
2

)
.

Then, setting ρ = γ
ξT simplifies the second term and eliminates the third term. The claim then follows

after optimizing the hyperparameters, with the full details provided in Appendix B.4.
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5 Discussion

We discuss various aspects of our results below.

Relation with previous work. As discussed in the introduction, our work draws heavily on previous
contributions of Gabbianelli et al. [2024] and Hong and Tewari [2024]. In particular, our idea of
building a least-squares estimator of the transition function is directly borrowed from the latter of
these works, and our implicit update rule for θt is also inspired by their work to a good extent. Their
approach, however, failed to reach the same degree of efficiency due to a number of suboptimal design
choices. First, they used an alternative parametrization of the feature occupancies which only allowed
them to work under a more restrictive coverage condition, so that their bounds depend on ∥λ∗∥Λ−2

n

which can be much larger than the feature coverage ratio appearing in our bounds. Second, their
algorithm required a prior upper bound on this coverage parameter, with the guarantees scaling with
the bound rather than the actual coverage. Such bounds are typically difficult to obtain in practice.
Third, the implementation of their algorithm required intricate computational steps necessitated by
their feature-occupancy parametrization. Our work has successfully removed these limitations and
reduced the complexity of their method, thanks to a new primal-only analysis style that we hope will
find further uses in reinforcement learning.

Computational and statistical efficiency. As can be inferred from our main result, the sample com-
plexity of finding an ε-optimal policy using our algorithm is of the order d2 ∥λ∗∥2Λ−1

n
/ε2 (1− γ)

2,
which is optimal in terms of scaling with ε. The rate can be improved to scale linearly with the feature
coverage ratio ∥λ∗∥Λ−1

n
, if a tight upper bound is known on it which can be used for hyperparameter

tuning. We find this scenario to be unlikely, and are curious to see if future work can attain this
improved scaling without such prior knowledge. As for computational complexity, we point out
that the cost of each iteration of our method scales linearly with the sample size n, due to having to
compute the matrix-vector products Ψ̂vθt,πt . Indeed, the matrix Ψ̂ is sparse with n non-zero rows,
and as such computing this product takes linear time in n. Since the iteration complexity of FOGAS
scales linearly with the sample size n, this makes for an overall runtime complexity of order n2. This
limitation is of course shared with all methods using the same least-squares transition estimator for
the transition model, including all work that builds on Jin et al. [2020], but we nevertheless wonder if
a substantial improvement is possible on this front.

Data coverage assumptions. The only works we are aware of that scale with the feature-coverage
ratio ∥λ∗∥Λ−1

n
are due to Zanette et al. [2021] and Gabbianelli et al. [2024]. The latter work only

achieves this bound under the assumption that the data is drawn i.i.d. from a fixed behavior policy
with known feature covariance matrix, which is a much more restricted setting that we consider
here. Such assumptions are not needed by Zanette et al. [2021], however their results are restricted
to the simpler finite-horizon MDP setting, and their algorithm is arguably more complex than ours.
Using our notation, their approach can be interpreted as solving a “pessimistic” version of the
the relaxed dual LP (4) that features some additional quadratic constraints. This approach is not
computationally viable for the infinite-horizon discounted case we consider, as it requires solving a
fixed-point equation with respect to the estimated transition operator (cf. Wei et al., 2021).

Possible extensions. Our approach can be extended and generalized in a variety of ways. First,
following Gabbianelli et al. [2024], we believe that it is straightforward to extend our analysis to
undiscounted infinite-horizon MDPs. Second, we similarly believe that an extension to constrained
MDPs is possible without major challenges, following Hong and Tewari [2024]. We did not pursue
these extensions because we believe that they add little additional insight. There are other potential
directions that we did not explore because we found them to be too ambitious for the moment.
These include extending our results beyond linear MDPs to other MDP models with linear function
approximation, including MDPs with low inherent Bellman rank (which may be within reach of
the current theory, c.f. Zanette et al., 2020), linearly Qπ-realizable MDPs (which are known to be
challenging, c.f. Weisz et al., 2022, 2024). Even more ambitiously, one can ask if it is possible to
extend our methods to work under more general notions of function approximation. This looks very
challenging given the central role of feature occupancies in our formalism, which are strictly tied to
linear function approximation. We are nevertheless optimistic that the ideas presented in this work
will find use in other contexts, possibly including nonlinear function approximation in the future.
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Appendix

A Missing proofs of Section 2

A.1 Properties of the relaxed LP

In this section we prove a basic result about the feasible sets of the relaxed linear programs defined in
Equations (3) and (4). We remark that similar results have been previously shown in Proposition 4 of
Bas-Serrano et al. [2021] and Appendix A.1 of Neu and Okolo [2023].
Lemma A.1. Suppose that the MDP satisfies the linear MDP assumption in the sense of Definition 2.1,
consider the relaxed linear programs 3 and 4 and their respective feasible sets:

MP
Φ =

{
(λ,µ) ∈ Rd × RXA

+

∣∣ ETµ = (1− γ)ν0 + γΨTλ, λ = ΦTµ
}
,

MD
Φ =

{
(v,θ) ∈ RX × Rd

∣∣ Ev ≥ Φθ, θ = ω + γΨv
}
.

Then, the following statements hold:

• The set M =
{
µ : (λ,µ) ∈ MP

Φ

}
coincides with the feasible set of the primal LP (1). Fur-

thermore, for all (λ∗,µ∗) ∈ arg max(λ,µ)∈MP
Φ
⟨λ,ω⟩, we have that µ∗ is the occupancy

measure of an optimal policy.

• The set V =
{
v : (v,θ) ∈ MD

Φ

}
coincides with the feasible set of the dual LP (2). Further-

more, the optimal value function vπ
∗

and the parameter vector θπ
∗

satisfying qπ
∗
= Φθπ

∗

satisfy (vπ
∗
,θπ

∗
) ∈ arg min(v,θ)∈MD

Φ
(1− γ) ⟨ν0,v⟩.

Proof. We first show that for any feasible point µ of the LP (1), the tuple (λ,µ) is feasible for the
relaxed LP with λ = ΦTµ. This choice of λ satisfies the second primal constraint by definition, so it
remains to verify that the first constraint is also satisfied. Indeed, this follows from

ETµ− (1− γ)ν0 − γΨTλ = ETµ− (1− γ)ν0 − γΨTΦTµ

= ETµ− (1− γ)ν0 − γP Tµ = 0,

where we have used the linear MDP property to write ΨTΦT = P T in the first step and that µ is a
valid occupancy measure in the last one. Conversely, supposing that (λ,µ) ∈ MP

Φ are feasible for
the relaxed LP, we have that

ETµ− (1− γ)ν0 − γP Tµ = ETµ− (1− γ)ν0 − γΨTΦTµ

= ETµ− (1− γ)ν0 − γΨTλ = 0,

thus verifying that µ is indeed a valid occupancy measure. Optimality of (λ∗,µ∗) follows from the
fact that for any (λ,µ) ∈ MP

Φ, we can write the LP objective as ⟨λ,ω⟩ = ⟨µ, r⟩ by the linear MDP
assumption, and the standard fact that any solution µ∗ to the primal LP 1 is the occupancy measure
of an optimal policy (cf. Theorem 6.9.4 in Puterman, 1994). This concludes the first part of the proof.

For the second part of the proof, let us first consider a feasible solution v for the original dual LP (2).
Then, the choice θ = ω + γΨv satisfies the second dual constraint by definition. The first constraint
can be verified by writing

Ev − Φθ = Ev − r − γPv ≥ 0,

where we used the choice of θ in the first step and the feasibility of v for the original LP in the second
step. Conversely, supposing that (θ,v) ∈ MD

Φ, we note that

Ev − r − γPv = Ev − Φθ ≥ 0,

which implies the feasibility of v in the LP 2. Optimality of v∗ for both LPs follows from the fact
that their objectives are identical, and the standard fact that v∗ is an optimal solution of the dual
LP (2) (cf. Theorem 6.2.2 in Puterman, 1994).
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B Missing proofs of Section 4

In this section, we provide performance guarantees for Algorithm 1 in terms of the expected subopti-
mality of the output policy πJ , and in particular prove the lemmas provided in Section 4 in the main
text. Auxiliary lemmas and technical results for proving some of these are included in Appendix E.

B.1 Properties of the Dynamic Duality Gap

We first prove our claims regarding the dynamic duality gap introduced in Section 4 of the main text.
First, we relate the gap to the expected suboptimality (in terms of return) of πJ against a comparator
policy π∗ in Appendix B.1.1. Next, we relate the dynamic duality gap to the average regret of each
player in Appendix B.1.2.

B.1.1 Proof of Lemma 4.1

By definition of the the dynamic duality gap, we have that

GT

(
ΦTµπ∗

, π∗, {θπt}Tt=1

)
=

1

T

T∑
t=1

f(ΦTµπ∗
, π∗;θt)− f(λt, πt;θ

πt).

Considering the first term, we see that

f(ΦTµπ∗
, π∗;θt) =

〈
ΦTµπ∗

,ω
〉
+
〈
θt,Φ

Tµλ∗,π∗ −ΦTµπ∗
〉

(a)
=
〈
µπ∗

, r
〉
+
〈
θt,Φ

Tµλ∗,π∗ −ΦTµπ∗
〉

(b)
=
〈
µπ∗

, r
〉
,

where we have used (a) the linear MDP property (definition 2.1) and (b) the following relation:

µλ∗,π∗(x, a) = π∗(a|x)
[
(1− γ)ν0(x) + γ

〈
ψ(x),ΦTµπ∗

〉]
= π∗(a|x)

[
(1− γ)ν0(x) + γ

∑
x′,a′

p (x|x′, a′)µπ∗
(x′, a′)

]
= µπ∗

(x, a).

Now for the second term, we have

f(λt, πt;θ
πt) = (1− γ) ⟨ν0,vθπt ,πt⟩+ ⟨λt,ω + γΨvθπt ,πt − θπt⟩

= ⟨µπt , r⟩+ ⟨λt,ω + γΨvπt − θπt⟩
= ⟨µπt , r⟩ ,

where we have used the Bellman equations qπt = Φθπt = r + γPvπt = Φ (ω + γΨvπt), which
together with the fact that Φ is full rank implies that θπt = ω + γΨvπt . Substituting the above
expressions for f(ΦTµπ∗

, π∗;θt) and f(λt, πt;θ
πt) in the dynamic duality gap and noting that πJ

is such that 1
T

∑T
t=1 ⟨µπt , r⟩ = EJ [⟨µπJ , r⟩] we get

GT

(
ΦTµπ∗

, π∗, {θπt}Tt=1

)
= EJ

[〈
µπ∗

− µπJ , r
〉]

.

This completes the proof.

B.1.2 Proof of Lemma 4.2

Recall that for any comparator points
(
λ∗, π∗; {θ∗t }Tt=1

)
, the dynamic duality gap is defined as

GT

(
λ∗, π∗; {θ∗t }Tt=1

)
=

1

T

T∑
t=1

(f(λ∗, π∗;θt)− f(λt, πt;θ
∗
t )) .
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Then, by adding and subtracting some terms we express the dynamic duality gap in terms of the
average loss of each player with respect to the objective f(λ, π;θ). This gives

GT (λ
∗, π∗,θ∗1:T ) =

1

T

T∑
t=1

f(λ∗, π∗;θt)− f(λ∗, πt;θt)

+
1

T

T∑
t=1

f(λ∗, πt;θt)− f(λt, πt;θt)

+
1

T

T∑
t=1

f(λt, πt;θt)− f(λt, πt;θ
∗
t ). (11)

Consider the first set of terms from the above expression. By definition of f in Equation (7), we
immediately obtain the instantaneous regret of the π-player as

f(λ∗, π∗;θt)− f(λ∗, πt;θt) = ⟨θt,ΦTµλ∗,π∗ −ΦTµλ∗,πt⟩

=
∑
x

ν∗(x)
∑
a

(π∗(a|x)− πt(a|x)) qt(x, a)

=
∑
x

ν∗(x)
∑
a

(π∗(a|x)− πt(a|x)) qt(x, a),

where ν∗(x) = (1− γ)ν0(x) + γ ⟨ψ(x),λ∗⟩. For the regret of the λ and θ-players, notice that we
can express the estimator f̂ in terms of the objective f as follows:

f̂(λ, π;θ) = (1− γ) ⟨ν0,vθ,π⟩+
〈
λ,ω + γΨ̂vθ,π − θ

〉
= f(λ, π;θ) + γ

〈
λ, Ψ̂vθ,π −Ψvθ,π

〉
.

Taking advantage of this relation, we now consider the last two set of terms in Equation (11). Indeed,
for the second set of terms in the equation, we write

f(λ∗, πt;θt)− f(λt, πt;θt)

= f̂(λ∗, πt;θt)− f̂(λt, πt;θt)− γ
〈
λ∗, Ψ̂vθt,πt

−Ψvθt,πt

〉
+ γ

〈
λt, Ψ̂vθt,πt

−Ψvθt,πt

〉
=
〈
λ∗ − λt,ω + γΨ̂vθt,πt

− θt
〉
− γ

〈
λ∗, Ψ̂vθt,πt

−Ψvθt,πt

〉
+ γ

〈
λt, Ψ̂vθt,πt

−Ψvθt,πt

〉
,

Notice that the last equality follows directly from definition of f̂ . Along these lines, we can also
express the last set of terms in Equation (11) as follows:

f(λt, πt;θt)− f(λt, πt;θ
∗
t )

= f̂(λt, πt;θt)− f̂(λt, πt;θ
∗
t )− γ

〈
λt, Ψ̂vθt,πt −Ψvθt,πt

〉
+ γ

〈
λt, Ψ̂vθt,πt −Ψvθ∗

t ,πt

〉
= ⟨θt − θ∗t ,ΦTµ̂λt,πt − λt⟩ − γ

〈
λt, Ψ̂vθt,πt −Ψvθt,πt

〉
+ γ

〈
λt, Ψ̂vθt,πt −Ψvθ∗

t ,πt

〉
,

Plugging the above derivations in the dynamic duality gap, we have that

GT (λ
∗, π∗,θ∗1:T ) =

1

T

T∑
t=1

∑
x

ν∗(x)
∑
a

(π∗(a|x)− πt(a|x)) qt(x, a)

+
1

T

T∑
t=1

〈
λ∗ − λt,ω + γΨ̂vθt,πt

− θt
〉

+
1

T

T∑
t=1

⟨θt − θ∗t ,ΦTµ̂λt,πt
− λt⟩

+
γ

T

T∑
t=1

〈
λ∗,Ψvθt,πt − Ψ̂vθt,πt

〉
+

γ

T

T∑
t=1

〈
λt, Ψ̂vθ∗

t ,πt −Ψvθ∗
t ,πt

〉
.

This matches the claim of the lemma, thus completing the proof.
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B.2 Bounding the Regret Terms

In this section we provide the proofs of the our claims made in the main text about the regret of each
player—precisely, Lemmas 4.3–4.5.

B.2.1 Proof of Lemma 4.3

Consider the regret of the π-player introduced in the main text as,

RT (π∗) =

T∑
t=1

∑
x

ν∗(x)
∑
a

(π∗(a|x)− πt(a|x)) qt(x, a)

(a)

≤
∑

x ν
∗(x)DKL (π

∗ (·|x)∥π1 (·|x))
α

+
αTR2D2

θ

2
(b)

≤ logA

α
+

αTR2D2
θ

2
.

We have used (a) the standard Mirror descent analysis of softmax policy iterates recalled in
Lemma E.1 for completeness, and (b) the fact that π1 is a uniform policy and ν∗ ∈ ∆X . Dividing
the above expression by T completes the proof.

B.2.2 Proof of Lemma 4.4

Recall the total regret of the λ-player against any fixed comparator λ∗ ∈ Rd is given as

RT (λ∗) =

T∑
t=1

⟨λ∗ − λt,ω + γΨ̂vθt,πt
− θt⟩.

Since the feature-occupancy updates of Algorithm 1 simply implements a version of the composite-
objective mirror descent scheme due to Duchi et al. [2010] we apply the standard analysis of this
method (recalled as Lemma C.1 in Appendix C) to bound the instantaneous regret as

⟨λ∗ − λt,ω + γΨ̂vθt,πt
− θt⟩

≤
∥λt − λ∗∥2Λ−1

n
− ∥λt+1 − λ∗∥2Λ−1

n

2η
+

η

2
∥Λngλ(t)∥2Λ−1

n
+

ϱ

2
∥λ∗∥2Λ−1

n
− ϱ

2
∥λt+1∥2Λ−1

n
.

Then, taking the sum for t = 1, · · · , T , evaluating the telescoping sums and upper-bounding some
negative terms by zero yields the expression

T∑
t=1

⟨λ∗ − λt,ω + γΨ̂vθt,πt
− θt⟩

≤
∥λ1 − λ∗∥2Λ−1

n

2η
+

η

2

T∑
t=1

∥Λngλ(t)∥2Λ−1
n

+
ϱT

2
∥λ∗∥2Λ−1

n
− ϱ

2

T∑
t=1

∥λt∥2Λ−1
n

+
ϱ

2
∥λ1∥2Λ−1

n

=

(
1

2η
+

ϱT

2

)
∥λ∗∥2Λ−1

n
+

η

2

T∑
t=1

∥Λngλ(t)∥2Λ−1
n

− ϱ

2

T∑
t=1

∥λt∥2Λ−1
n

.

In the equality, we have used that λ1 = 0. Dividing the resulting term by T gives the following
bound on the average regret:

1

T
RT (λ∗) ≤

(
1

2Tη
+

ϱ

2

)
∥λ∗∥2Λ−1

n
+

η

2T

T∑
t=1

∥Λngλ(t)∥2Λ−1
n

− ϱ

2T

T∑
t=1

∥λt∥2Λ−1
n

.

The proof is completed by applying Lemma C.2 to bound the norm of the gradients and plugging the
result into the bound above.
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B.2.3 Proof of Lemma 4.5

For the regret of the θ-player, first note that for any policy π with corresponding state-action value
function weights θπ = ω + γΨvπ , we have

∥θπ∥2 = ∥ω + γΨvπ∥2 ≤ ∥ω∥2 + γ ∥Ψvπ∥2 ≤
√
d+

γ
√
d

(1− γ)
=

√
d

(1− γ)
,

where we have used the triangle inequality in the second line. The last inequality uses Definition 2.1
and the fact that ∥vπ∥∞ ≤ 1

(1−γ) since the rewards are bounded in [0, 1]. Thanks to this bound, we

can ensure that θ∗t = θπt ∈ Bd(Dθ) holds with the choice Dθ =
√
d/ (1− γ) as required by the

lemma.Therefore, by construction of value-parameter updates in Algorithm 1, we have

⟨θt − θ∗t ,ΦTµ̂λt,πt
− λt⟩ ≤ 0 for t = 1, · · · , T.

This concludes the proof.

B.3 Bounding the gap-estimation error

In this section, we provide the proof of Lemma 4.6 which bounds the gap-estimation error defined for
an arbitrary comparator sequence (λ∗, πt,θ

∗
t ) ∈ Rd ×Π(Dπ)× Bd(Dθ) for t = 1, . . . , T as,

errΨ̂ =

T∑
t=1

〈
λ∗,
(
Ψ− Ψ̂

)
vθt,πt

〉
+

T∑
t=1

〈
λt,
(
Ψ̂−Ψ

)
vθ∗

t ,πt

〉
.

We control the above term with the now-classic techniques developed by Jin et al. [2020] for bounding
model-estimation errors for linear MDPs. These results also make heavy use of self-normalized tail
inequalities as popularized by Abbasi-Yadkori et al. [2011] (see also Lattimore and Szepesvári, 2020).
To make this clear, we first note that, for any λ ∈ Rd, v ∈ RX , and ξ > 0,〈
λ,
(
Ψ̂−Ψ

)
v
〉 (a)

≤ ∥λ∥Λ−1
n

∥∥∥Λn

(
Ψ̂−Ψ

)
v
∥∥∥
Λ−1

n

(b)

≤
∥λ∥2Λ−1

n

2Tξ
+

Tξ

2

∥∥∥Λn

(
Ψ̂−Ψ

)
v
∥∥∥2
Λ−1

n

.

Here, we have first used (a) the Cauchy–Schwarz inequality, and (b) the inequality of arithmetic and
geometric means. Using this expression, we can upper-bound the gap estimation error as

errΨ̂ ≤
∥λ∗∥2Λ−1

n

2ξ
+

T∑
t=1

∥λt∥2Λ−1
n

2Tξ

+
Tξ

2

T∑
t=1

∥∥∥Λn

(
Ψ̂−Ψ

)
vθt,πt

∥∥∥2
Λ−1

n

+
Tξ

2

T∑
t=1

∥∥∥Λn

(
Ψ̂−Ψ

)
vπt

∥∥∥2
Λ−1

n

. (12)

To control the last two terms in the bound, we employ two main lemmas stated below.
Lemma B.1. Let v ∈ [−B,B]X . With probability at least 1− δ, we have that:

∥∥∥Λn

(
Ψ̂−Ψ

)
v
∥∥∥
Λ−1

n

≤ 2B√
n

√√√√d log

(
1 +

R2

dβ

)
+ 2 log

1

δ
+B

√
dβ.

Lemma B.2. Consider the function class,

V =
{
vπ,θ : X → [−RDθ, RDθ]

∣∣∣π ∈ Π(Dπ) ,θ ∈ Bd(Dθ)
}
,

Let Dπ = αTDθ so that vθt,πt ∈ V . For any ϵ ∈ (0, 1), with probability at least 1− δ,∥∥∥Λn

(
Ψ̂−Ψ

)
vθt,πt

∥∥∥
Λ−1

n

≤ 2RDθ√
n

√√√√d log

(
1 +

R2

dβ

)
+ 4d log

(
1 +

4αTR2D2
θ

ϵ

)
+ 2 log

1

δ

+RDθ
√
dβ +

(√
β + 1

)
ϵ
√
d.
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The rather tedious but otherwise standard proofs of the above lemmas are given in Appendix D. Now,
taking into account the fact that for Dθ large enough vπt ∈ V yields Corollary B.3 below.
Corollary B.3. In the linear MDP setting described in Definition 2.1, notice that vπt = vθπt ,πt

with
θπt = ω + γΨvθπt ,πt

. Furthermore, with RDθ = R
√
d/(1− γ) ≥ ∥vπt∥∞ and Dπ = αTDθ we

have that vπt ∈ V . Therefore, for all ϵ > 0 with probability at least 1− δ, the following holds:∥∥∥Λn

(
Ψ̂−Ψ

)
vπt

∥∥∥
Λ−1

n

≤ 2
√
d√

n (1− γ)

√√√√d log

(
1 +

R2

dβ

)
+ 4d log

(
1 +

4αTR2d

ϵ (1− γ)
2

)
+ 2 log

1

δ

+
d
√
β

(1− γ)
+
(√

β + 1
)
ϵ
√
d.

In the following, we apply these results to bound the last two terms in the right-hand side of Equa-

tion (12). Precisely, using Dθ =
√
d/(1−γ), α =

√
2 logA/R2D2

θT =

√
2 (1− γ)

2
logA/R2dT

(which follows from optimizing the regret of the π-player in Lemma 4.3), as well as ϵ =

4αR2d/ (1− γ)
2
=

√
32R2d logA

(1−γ)
√
T

and β = R2/dT we have that in any round t, with probabil-
ity at least 1− δ,∥∥∥Λn

(
Ψ̂−Ψ

)
vθt,πt

∥∥∥
Λ−1

n

≤

√
20d2 log (2T/δ)

n (1− γ)
2 +

√
R2d

T (1− γ)
2+

√
R4d logA

T 2
+

√
32R2d2 logA

T (1− γ)
2 .

Likewise,∥∥∥Λn

(
Ψ̂−Ψ

)
vπt

∥∥∥
Λ−1

n

≤

√
20d2 log (2T/δ)

n (1− γ)
2 +

√
R2d

T (1− γ)
2+

√
R4d logA

T 2
+

√
32R2d2 logA

T (1− γ)
2 .

Then plugging in the above bounds in Equation (12) with T ≥ 2R2n logA
log(1/δ) , it follows that for

DΨ̂ =
√

320d2 log(2T/δ)

n(1−γ)2
,

errΨ̂ ≤
∥λ∗∥2Λ−1

n

2ξ
+

T∑
t=1

∥λt∥2Λ−1
n

2Tξ
+ T 2ξD2

Ψ̂
,

with probability at least 1− δ, thus proving the claim.

B.4 Full proof of Theorem 3.1

To control the expected suboptimality of the output policy πJ of Algorithm 1, we study the repective
regret and gap-estimation error at the selected comparator points. Precisely, combining Lemma 4.1
and 4.2 when (λ∗, π∗,θ∗1:T ) =

(
ΦTµπ∗

, π∗,θπt
)
∈ Rd ×Π(Dπ)× Bd(Dθ), we have that,

EJ

[〈
µπ∗

− µπJ , r
〉]

=
1

T
RT (π∗) +

1

T
RT

(
λπ∗

)
+

1

T
RT (θ∗1:T ) +

γ

T
errΨ̂. (13)

where,

RT (π∗) =

T∑
t=1

∑
x

ν∗(x)
∑
a

(π∗(a|x)− πt(a|x)) qt(x, a),

RT

(
λπ∗

)
=

T∑
t=1

⟨λπ∗
− λt,ω + γΨ̂vθt,πt

− θt⟩,

RT (θ∗1:T ) =

T∑
t=1

⟨θt − θπt
t ,ΦTµ̂λt,πt

− λt⟩

errΨ̂ =

T∑
t=1

〈
λπ∗

,
(
Ψ− Ψ̂

)
vθt,πt

〉
+

T∑
t=1

〈
λt,
(
Ψ̂−Ψ

)
vπt
〉
.
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Notice that for this choice of λ∗, by Definition 2.1 ν∗(x) = (1− γ)ν0(x) + γ⟨ψ(x),µ∗⟩ = νπ
∗
(x)

is a valid state occupancy measure. Next, introducing the bounds stated in Lemmas 4.3–4.6 under

the required conditions Dθ =
√
d/ (1− γ), α =

√
2 (1− γ)

2
logA/R2dT , Dπ = αTDθ =√

2T logA/R2 and T ≥ 2R2n logA
log(1/δ) , as well as ξ ≥ 0 and DΨ̂ =

√
320d2 log(2T/δ)

n(1−γ)2
yields,

EJ

[〈
µπ∗

− µπJ , r
〉]

≤

√
2R2d logA

(1− γ)
2
T

+

(
1

2ηT
+

ϱ

2

)∥∥∥λπ∗
∥∥∥2
Λ−1

n

+
ηC

2
− ϱ

2T

T∑
t=1

∥λt∥2Λ−1
n

+
γ

2Tξ

(∥∥∥λπ∗
∥∥∥2
Λ−1

n

+
1

T

T∑
t=1

∥λt∥2Λ−1
n

)
+ γTξD2

Ψ̂
,

with probability at least 1−δ, where C = 6β
(
d+D2

θ

)
+3d (1 +RDθ)

2
+3γ2dR2D2

θ . Rearranging
the bound and selecting ϱ = γ/ξT to eliminate the (potentially large) norm of the iterates, we obtain

EJ

[〈
µπ∗

− µπJ , r
〉]

≤

√
d log (1/δ)

n (1− γ)
2 +

(
1

2ηT
+

ϱ

2
+

γ

2ξT

)∥∥∥λπ∗
∥∥∥2
Λ−1

n

+
ηC

2

+

(
γ

ξT
− ϱ

)
1

2T

T∑
t=1

∥λt∥2Λ−1
n

+ γTξD2
Ψ̂

=

√
d log (1/δ)

n (1− γ)
2 +

(
1

2ηT
+

γ

ξT

)∥∥∥λπ∗
∥∥∥2
Λ−1

n

+
ηC

2
+ γTξD2

Ψ̂
.

Furthermore, choosing ξ = 1/TDΨ̂ i.e ϱ = γDΨ̂, we further simplify the above bound on the regret
in terms of the optimization error arising from the policy and feature occupancy updates as,

EJ

[〈
µπ∗

− µπJ , r
〉]

≤

√
d log (1/δ)

n (1− γ)
2 +

1

2ηT

∥∥∥λπ∗
∥∥∥2
Λ−1

n

+
ηC

2
+ γ

(∥∥∥λπ∗
∥∥∥2
Λ−1

n

+ 1

)
DΨ̂.

Moving our attention to our earlier bound on the norm of gλ(t),

C = 6β
(
d+D2

θ

)
+ 3d (1 +RDθ)

2
+ 3γ2dR2D2

θ ≤ 27R2d2

(1− γ)
2 .

The inequality follows from our earlier choice of β = R2/dT and that T ≥ 1/d2. Plugging the values

of C and DΨ̂ in the bound, then choosing η =

√
(1−γ)2

27R2d2T and using the condition T ≥ 2R2n logA
log(1/δ) ,

we have that with probability at least 1− δ,

EJ

[〈
µπ∗

− µπJ , r
〉]

≤

√
d log (1/δ)

n (1− γ)
2 +

(∥∥∥λπ∗
∥∥∥2
Λ−1

n

+ 1

)√
27d2 log (1/δ)

8n logA (1− γ)
2

+ γ

(∥∥∥λπ∗
∥∥∥2
Λ−1

n

+ 1

)√
320d2 log (2T/δ)

n (1− γ)
2

= O

∥∥λπ∗∥∥2
Λ−1

n
+ 1

(1− γ)

√
d2 log (2T/δ)

n

 .

This completes the proof.

19



C Missing proofs of Section B.2

Lemma C.1. (cf. Lemma 1 of Duchi et al. [2010]) Let gλ(t) = ω + γΨ̂vθt,πt
− θt Given λ1 = 0

and ϱ, η > 0 and the sequence of iterates {λt}Tt=2 defined for t = 1, · · · , T as:

λt+1 = arg min
λ∈Rd

{
−⟨λ, gλ(t)⟩+

1

2η
∥λ− λt∥2Λ−1

n
+

ϱ

2
∥λ∥2Λ−1

n

}
. (14)

Then, for any λ∗ ∈ Rd,

⟨λ∗ − λt,ω + γΨ̂vθt,πt
− θt⟩

≤
∥λt − λ∗∥2Λ−1

n
− ∥λt+1 − λ∗∥2Λ−1

n

2η
+

η

2
∥Λngλ(t)∥2Λ−1

n
+

ϱ

2
∥λ∗∥2Λ−1

n
− ϱ

2
∥λt+1∥2Λ−1

n
.

Proof. The proof of Lemma C.1 follows directly from the referenced Lemma from Duchi et al.
[2010]. Consider,

⟨λ∗ − λt, gλ(t)⟩+
ϱ

2
∥λt+1∥2Λ−1

n
− ϱ

2
∥λ∗∥2Λ−1

n

=

〈
λt+1 − λ∗,−gλ(t) +

1

η
Λ−1

n (λt+1 − λt) + ϱΛ−1
n λt+1

〉
+ ⟨λt+1 − λt, gλ(t)⟩

−
〈
λt+1 − λ∗,

1

η
Λ−1

n (λt+1 − λt) + ϱΛ−1
n λt+1

〉
+

ϱ

2
∥λt+1∥2Λ−1

n
− ϱ

2
∥λ∗∥2Λ−1

n

(a)

≤ ⟨λt+1 − λt, gλ(t)⟩ −
1

η

〈
λt+1 − λ∗,Λ−1

n (λt+1 − λt)
〉

+ ϱ
〈
λ∗,Λ−1

n λt+1

〉
− ϱ

2
∥λt+1∥2Λ−1

n
− ϱ

2
∥λ∗∥2Λ−1

n

(b)

≤ ⟨λt+1 − λt, gλ(t)⟩+
1

η

〈
λt+1 − λ∗,Λ−1

n (λt − λt+1)
〉

(c)
= ⟨λt+1 − λt, gλ(t)⟩ −

1

2η
∥λt+1 − λt∥2Λ−1

n
+

1

2η

(
∥λ∗ − λt∥2Λ−1

n
− ∥λ∗ − λt+1∥2Λ−1

n

)
≤ 1

η
sup
y∈Rd

(〈
y, ηΛ1/2

n gλ(t)
〉
− 1

2
∥y∥22

)
+

1

2η

(
∥λ∗ − λt∥2Λ−1

n
− ∥λ∗ − λt+1∥2Λ−1

n

)
(d)
=

η

2
∥Λngλ(t)∥2Λ−1

n
+

1

2η

(
∥λ∗ − λt∥2Λ−1

n
− ∥λ∗ − λt+1∥2Λ−1

n

)
We have used

(a) The first order optimality condition on Equation (14):

For any λ ∈ Rd,〈
λt+1 − λ,−gλ(t) +

1

η
Λ−1

n (λt+1 − λt) + ϱΛ−1
n λt+1

〉
≤ 0.

(b) The relation:

ϱ
〈
λ∗,Λ−1

n λt+1

〉
− ϱ

2
∥λt+1∥2Λ−1

n
− ϱ

2
∥λ∗∥2Λ−1

n
= −ϱ

2
∥λt+1 − λ∗∥2Λ−1

n
≤ 0.

(c) By definition of the squared L2-norm for vectors a = Λ
−1/2
n (λt+1 − λ∗) and b =

Λ
−1/2
n (λt − λt+1):

⟨a, b⟩ = 1

2

(
−∥b∥22 + ∥a+ b∥22 − ∥a∥22

)
.

Note that a and b are well defined since Λn is both symmetric and positive definite.
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(d) By definition of the Fenchel conjugate of 1
2 ∥y∥

2
2 for y ∈ Rd.

Rearranging the terms and plugging in gλ(t) = ω + γΨ̂vθt,πt − θt completes the proof.

Finally, we will use the following result that bounds the gradient norms appearing in the bound above.
Lemma C.2. Under the conditions of the linear MDP setting we have that,

∥Λngλ(t)∥2Λ−1
n

≤ 6β
(
d+D2

θ

)
+ 3d (1 +RDθ)

2
+ 3γ2dR2D2

θ.

Proof. Recall that for t = 1, · · · , T gλ(t) = ω + γΨ̂vθt,πt
− θt. Then,

∥Λngλ(t)∥2Λ−1
n

=
∥∥∥Λn

[
ω + γΨ̂vθt,πt

− θt
]∥∥∥2

Λ−1
n

=

∥∥∥∥∥β (ω − θt) +
1

n

n∑
i=1

φi (r (xi, ai)− ⟨φi,θt⟩) + γΛnΨ̂vθt,πt

∥∥∥∥∥
2

Λ−1
n

≤ 3 ∥β (ω − θt)∥2Λ−1
n

+ 3

∥∥∥∥∥ 1n
n∑

i=1

φi (r (xi, ai)− ⟨φi,θt⟩)

∥∥∥∥∥
2

Λ−1
n

+ 3γ2
∥∥∥ΛnΨ̂vθt,πt

∥∥∥2
Λ−1

n

.

Now to bound each of the three terms, we use that

∥β (ω − θt)∥2Λ−1
n

≤ 2β2
∥∥Λ−1

n

∥∥
2

(
d+D2

θ

)
≤ 2β

(
d+D2

θ

)
,

where the first inequality uses the assumption that ∥ω∥2 ≤
√
d (cf. Definition 2.1) and θt ∈ Bd(Dθ).

Next, we have that∥∥∥∥∥ 1n
n∑

i=1

φi (r (xi, ai)− ⟨φi,θt⟩)

∥∥∥∥∥
2

Λ−1
n

≤ 1

n

n∑
i=1

∥φi∥2Λ−1
n

|r (xi, ai)− ⟨φi,θt⟩|2

≤ d (1 +RDθ)
2
.

The last step follows from the fact that the rewards are bounded in [0, 1], ∥φi∥ ≤ R, θt ∈ Bd(Dθ)
and Equation (17). The last remaining term is bounded as∥∥∥ΛnΨ̂vθt,πt

∥∥∥2
Λ−1

n

=

∥∥∥∥∥ 1n
n∑

i=1

φivθt,πt
(x′

i)

∥∥∥∥∥
2

Λ−1
n

≤ 1

n

n∑
i=1

∥φi∥2Λ−1
n

∥vθt,πt
∥2∞ ≤ dR2D2

θ

Therefore, we obtain

∥Λngλ(t)∥2Λ−1
n

≤ 6β
(
d+D2

θ

)
+ 3d (1 +RDθ)

2
+ 3γ2dR2D2

θ

and this completes the proof.
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D Missing proofs of Section B.3

In this section, we prove the lemmas stated in Section B.3.

D.1 Proof of Lemma B.1

By definition of Λn Section 3 and Ψ̂ in Equation (8), we can write:

Λn

(
Ψ̂−Ψ

)
v = Λn

(
1

n
Λ−1

n

n∑
i=1

φie
T

x′
i

)
v −

(
βIn +

1

n

n∑
i=1

φiφ
T

i

)
Ψv

=
1

n

n∑
i=1

φi[v (x
′
i)− ⟨p (·|xi, ai) ,v⟩]− βΨv

In the last equality we used definition 2.1 to write φT
iΨ = p (·|xi, ai)

T. Let ξi = v (x′
i) −

⟨p (·|xi, ai) ,v⟩. Then,∥∥∥Λn

(
Ψ̂−Ψ

)
v
∥∥∥
Λ−1

n

≤

∥∥∥∥∥ 1n
n∑

i=1

φiξi

∥∥∥∥∥
Λ−1

n

+ ∥βΨv∥Λ−1
n

.

We easily control the second term with the relation:

∥βΨv∥Λ−1
n

≤ β
∥∥∥Λ−1/2

n

∥∥∥
2
∥Ψv∥2 ≤ B

√
dβ (15)

The last inequality follows from the fact that
∥∥∥Λ−1/2

n

∥∥∥
2
≤ 1/

√
β and by definition 2.1 ∥Ψv∥2 ≤

B
√
d for v ∈ [−B,B]X .

Now, to handle the first term, let D0 = ∅. We construct a filtration Fi−1 = Di−1 ∪ (x0
i , xi, ai, ri)

for i = 1, 2, · · · , n. Notice that by construction of the dataset ξi is a martingale difference sequence
(i.e E [ξi |Fi−1 ] = 0) taking values in the range [−2B, 2B]. Then, we can directly apply Lemma E.3
to obtain a bound on the first term as:∥∥∥∥∥ 1n

n∑
i=1

φiξi

∥∥∥∥∥
Λ−1

n

=
1√
n

√√√√√∥∥∥∥∥
n∑

i=1

φiξi

∥∥∥∥∥
2

(nΛn)
−1

≤ 2B√
n

√√√√2 log

(
det (nΛn)

1/2
det (nβI)

−1/2

δ

)

≤ 2B√
n

√√√√d log

(
1 +

R2

dβ

)
+ 2 log

1

δ
.

with probability 1− δ. In the last inequality we have used the AM-GM inequality and bound on the
feature vectors:

det (nΛn) ≤
(

tr (nΛn)

d

)d

=

(
nβ +

tr (
∑n

i=1φiφ
T
i )

d

)d

≤
(
nβ +

nR2

d

)d

.

Putting everything together, we have that w.p 1− δ,∥∥∥Λn

(
Ψ̂−Ψ

)
v
∥∥∥
Λ−1

n

≤ 2B√
n

√√√√d log

(
1 +

R2

dβ

)
+ 2 log

1

δ
+B

√
dβ.

This completes the proof.

D.2 Proof of Lemma B.2

Unlike Lemma B.1, we now aim to control the error term
∥∥∥Λn

(
Ψ̂−Ψ

)
v
∥∥∥
Λ−1

n

when v is random.

Also, notice that with π1 (a|x) = e⟨φ(x,a),0⟩∑
a′∈A e⟨φ(x,a′),0⟩ as the uniform policy, for t = 1, · · · , T we have

that,

πt+1(a|x) =
π1(a|x)eα⟨φ(x,a),

∑t
k=1 θk⟩∑

a′ π1(a′|x)eα⟨φ(x,a′),
∑t

k=1 θk⟩
=

e⟨φ(x,a),α
∑t

k=0 θk⟩∑
a′ e⟨φ(x,a′),α

∑t
k=0 θk⟩

,
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where θ0 = 0. Furthermore, since {θt}Tt=1 ⊂ Bd(Dθ), for any t
∥∥∥α∑t

k=0 θk

∥∥∥
2
≤ αTDθ. Hence,

with Dπ = αTDθ, πt ∈ Π(Dπ) and vθt,πt
∈ V .

Therefore, as we have seen in previous works [Jin et al., 2020, Hong and Tewari, 2024], the quantity∥∥∥Λn

(
Ψ̂−Ψ

)
vθt,πt

∥∥∥
Λ−1

n

can be controlled without any dependence on the size of the state space

with a uniform covering argument over V . Let Cv be an ϵ-cover of V . That is, for vπt,θt ∈ V , there
exists v′ ∈ Cv such that ∥vπ,θt − v′∥∞ ≤ ϵ. Then, we can write:∥∥∥Λn

(
Ψ̂−Ψ

)
vθt,πt

∥∥∥
Λ−1

n

≤
∥∥∥Λn

(
Ψ̂−Ψ

)
v′
∥∥∥
Λ−1

n

+
∥∥∥ΛnΨ̂ (vθt,πt − v′)

∥∥∥
Λ−1

n

+ ∥ΛnΨ (v′ − vθt,πt)∥Λ−1
n

(16)

Consider the first term in the bound. Note that v′ is still random with respect to uncertainty in the
learning process. However, due to the structure of V we know that Cv exists and has cardinality
log |Cv| = O

(
d log

(
1 + 4RDπRDθ

ϵ

))
(see Lemma E.6). Inspired by Lemma B.1, consider the event:

Ev =

{
existsv ∈ Cv :

∥∥∥Λn

(
Ψ̂−Ψ

)
v
∥∥∥
Λ−1

n

>
2RDθ√

n

√√√√d log

(
1 +

R2

dβ

)
+ 2 log

1

δ′
+RDθ

√
dβ

}

Since Cv ⊆ V , we know from Lemma B.1 that P (Ev) ≤ δ′. Now, taking the union bound over the
cover Cv we have that,

P

( ⋃
v∈Cv

Ev

)
≤ |Cv|δ′.

Therefore for any v′ ∈ Cv with probability at least 1− δ,∥∥∥Λn

(
Ψ̂−Ψ

)
v′
∥∥∥
Λ−1

n

≤ 2RDθ√
n

√√√√d log

(
1 +

R2

dβ

)
+ 2 log

|Cv|
δ

+RDθ
√
dβ

≤ 2RDθ√
n

√√√√d log

(
1 +

R2

dβ

)
+ 4d log

(
1 +

4RDπRDθ
ϵ

)
+ 2 log

1

δ
+RDθ

√
dβ

Now, for the second term in Equation (16) we write,

∥∥∥ΛnΨ̂ (vθt,πt − v′)
∥∥∥2
Λ−1

n

=

∥∥∥∥∥ 1n
n∑

i=1

φi (vθt,πt (x
′
i)− v′ (x′

i))

∥∥∥∥∥
2

Λ−1
n

(a)

≤ 1

n

n∑
i=1

|vθt,πt
(x′

i)− v′ (x′
i)|

2 ∥φi∥2Λ−1
n

≤ ϵ2
1

n

n∑
i=1

∥φi∥2Λ−1
n

(b)

≤ ϵ2d.

We have used (a) Jensen’s inequality and (b) since Λn ≻ 0, the relation,

1

n

n∑
i=1

φT

iΛ
−1
n φi =

1

n

n∑
i=1

tr
(
Λ−1

n φiφ
T

i

)
= tr

(
Λ−1

n

1

n

n∑
i=1

φiφ
T

i

)
≤ tr (I) = d. (17)
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For the last term, notice that:

∥ΛnΨ (v′ − vθt,πt
)∥Λ−1

n
=

∥∥∥∥∥βΨ (v′ − vθt,πt
) +

1

n

n∑
i=1

φi

[∑
x′

p (x′|xi, ai) (v
′ (x′)− vθt,πt

(x′))
]∥∥∥∥∥

Λ−1
n

(a)

≤ ϵ
√

dβ +

√√√√∥∥∥∥∥ 1n
n∑

i=1

φi

[∑
x′

p (x′|xi, ai) (v′ (x′)− vθt,πt
(x′))

]∥∥∥∥∥
2

Λ−1
n

(b)

≤ ϵ
√

dβ +

√√√√ 1

n

n∑
i=1

∥v′ − vθt,πt
∥2∞ ∥φi∥2Λ−1

n

(c)

≤ ϵ
√

dβ + ϵ
√
d = ϵ

√
d
(√

β + 1
)
.

This follows from (a) Equation (15) since v = v′ − vθt,πt
∈ [−ϵ, ϵ]X and (b) monotonicity of the

square root function as well as Jensen’s inequality and (c) Equation (17).

Finally, plugging the above results back into Equation (16), we have that with probability at least
1− δ, ∥∥∥Λn

(
Ψ̂−Ψ

)
vθt,πt

∥∥∥
Λ−1

n

≤ 2RDθ√
n

√√√√d log

(
1 +

R2

dβ

)
+ 4d log

(
1 +

4RDπRDθ
ϵ

)
+ 2 log

1

δ

+RDθ
√

dβ +
(√

β + 1
)
ϵ
√
d

The proof of Lemma B.2 is complete.
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E Auxiliary Lemmas

Lemma E.1. Let q1, · · · , qt be a sequence of iterates satisfying ∥qt∥∞ ≤ RDθ by virtue of
definition 2.1 and θt ∈ Bd(Dθ). Given an initial policy π1 and learning rate α > 0, and sequence of
policies {πt}Tt=2 defined as:

πt+1(a|x) =
πt(a|x)eαqt(x,a)∑
a′ πt(a′|x)eαqt(x,a′)

,

Then, for any comparator policy π∗ and ν∗ some state distribution,

T∑
t=1

∑
x

ν∗(x)
∑
a

(π∗(a|x)− πt(a|x)) qt(x, a) ≤
∑

x ν
∗(x)DKL (π

∗ (·|x)∥π1 (·|x))
α

+
αTR2D2

θ

2
.

The proof of the lemma follows from bounding the regret of the π-player in each state x as

T∑
t=1

∑
a

(π∗(a|x)− πt(a|x)) qt(x, a) ≤
DKL (π

∗ (·|x)∥π1 (·|x))
α

+
α

2

T∑
t=1

∥qt(x, ·)∥2∞ ,

via the application of the standard analysis of the exponentially weighted forecaster of Vovk [1990],
Littlestone and Warmuth [1994], Freund and Schapire [1997] (see, e.g., Theorem 2.2 in Cesa-Bianchi
and Lugosi, 2006), and noting that ∥qt∥∞ ≤ RDθ for all t.
Lemma E.2. Suppose that ∥φ(x, a)∥2 ≤ R for all (x, a) ∈ X ×A. Let πθ, πθ′ be softmax policies.
Then, for all states x ∈ X we have that:∑

a

|πθ (a|x)− πθ′ (a|x)| ≤ R ∥θ − θ′∥2

holds for any θ,θ′ ∈ Rd.

Proof. Recall that,

Π(Dπ) =

{
πθ (a|x) =

e⟨φ(x,a),θ⟩∑
a′ e⟨φ(x,a′),θ⟩

∣∣∣∣∣θ ∈ Bd(Dπ)

}
.

For πθ, πθ′ ∈ Π(Dπ) using Pinsker’s inequality we have that,

∥πθ (·|x)− πθ′ (·|x)∥1 ≤
√

2DKL (πθ (·|x)∥πθ′ (·|x)) for x ∈ X . (18)

Furthermore, taking into account the specific structure of the policies, we can write:

DKL (πθ (·|x)∥πθ′ (·|x)) =
∑
a

πθ (a|x) log
πθ (a|x)
πθ′ (a|x)

= −
∑
a

πθ (a|x) ⟨φ(x, a),θ′ − θ⟩+ log

∑
a e

⟨φ(x,a),θ′⟩∑
a e

⟨φ(x,a),θ⟩

(a)
= −

∑
a

πθ (a|x) ⟨φ(x, a),θ′ − θ⟩+ log
∑
a

πθ (a|x) e⟨φ(x,a),θ′−θ⟩

(b)
=

R2 ∥θ − θ′∥22
2

using that (a) the relation,

log

∑
a e

⟨φ(x,a),θ′⟩∑
a e

⟨φ(x,a),θ⟩ = log
∑
a

e⟨φ(x,a),θ′⟩∑
a′ e⟨φ(x,a′),θ⟩ · e

⟨φ(x,a),θ⟩

e⟨φ(x,a),θ⟩ = log
∑
a

πθ (a|x) e⟨φ(x,a),θ′−θ⟩,

and (b) Hoeffding’s lemma (cf. Lemma A.1 of Cesa-Bianchi and Lugosi [2006]). The final statement
follows from substituting this result in Equation (18).
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Lemma E.3. (Self-Normalized Bound for Vector-Valued Martingales - Theorem 1 of Abbasi-Yadkori
et al. [2011]) Let {Fi−1}∞i=1 be a filtration and {ξi}∞i=1 a real-valued stochastic process such that ξi
for i = 1, · · · is zero-mean (i.e E [ξi |Fi−1 ] = 0) and conditionally s-subgaussian for s ≥ 0. That is,
for all b ∈ R,

E
[
ebξi |Fi−1

]
≤ e

b2s2

2 .

Also, let {φi}∞i=1 be Fi−1-measurable. Then,∥∥∥∥∥
n∑

i=1

φiξi

∥∥∥∥∥
2

(nΛn)
−1

≤ 2s2 log

[
det (nΛn)

1/2
det (nβI)

−1/2

δ

]
.

Lemma E.4. (e.g. see Chapter 27 of Shalev-Shwartz and Ben-David [2014]) For all ϵ > 0,

logN (Bd(r), ∥·∥∞ , ϵ) ≤ d log

(
1 +

2r

ϵ

)
.

Corollary E.5. Under the conditions of Lemma E.2, for all ϵ > 0,

logN
(
Π(Dπ) , ∥·∥∞,1 , ϵ

)
≤ logN

(
Bd(Dπ), ∥·∥∞ ,

ϵ

R

)
≤ d log

(
1 +

2RDπ

ϵ

)
.

Lemma E.6. Consider the function class,

V =
{
vπ,θ : X → [−RDθ, RDθ]

∣∣∣π ∈ Π(Dπ) ,θ ∈ Bd(Dθ)
}
,

we have that:

N (V, ∥·∥∞ , ϵ) ≤ N
(
Π(Dπ) , ∥·∥∞,1 , ϵ/2RDθ

)
×N (Bd(Dθ), ∥·∥2 , ϵ/2R) ,

and,

logN (V, ∥·∥∞ , ϵ) ≤ 2d log

(
1 +

4RDπRDθ
ϵ

)
Proof. Let Cπ denote the ϵπ-cover of Π(Dπ) with respect to the norm ∥·∥∞,1 and Cθ the ϵθ-cover
of Bd(Dθ) under the L2-norm. For (π,θ) ∈ Π(Dπ)× Bd(Dθ) and (π′,θ′) ∈ Cπ × Cθ, it follows
that for any state x ∈ X ,

|vπ,θ(s)− vπ′,θ′(s)| =

∣∣∣∣∣∑
a∈A

π(a|x) ⟨φ(x, a),θ⟩ − π′(a|x) ⟨φ(x, a),θ′⟩

∣∣∣∣∣
=

∣∣∣∣∣∑
a∈A

(π(a|x)− π′(a|x)) ⟨φ(x, a),θ⟩+
∑
a∈A

π′(a|x) ⟨φ(x, a),θ − θ′⟩

∣∣∣∣∣
≤ RDθ

∑
a∈A

|π(a|x)− π′(a|x)|+R
∑
a∈A

π′(a|x) ∥θ − θ′∥2

Let Cv =
{
vπ,θ : X → [−RDθ, RDθ]

∣∣∣π ∈ Cπ,θ ∈ Cθ

}
. Then, Cv is an ϵ-cover of V with respect

to the L∞-norm when ϵπ = ϵ/2RDθ and ϵθ = ϵ/2R. Therefore, we can derive a bound on the
covering number of Cv as:

N (V, ∥·∥∞ , ϵ) ≤ N
(
Π(Dπ) , ∥·∥∞,1 , ϵ/2RDθ

)
×N (Bd(Dθ), ∥·∥2 , ϵ/2R)

≤
(
1 +

4RDπRDθ
ϵ

)d(
1 +

4RDθ
ϵ

)d

.

Hence,

logN (V, ∥·∥∞ , ϵ) ≤ 2d log

(
1 +

4RDπRDθ
ϵ

)
This completes the proof.
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