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ABSTRACT

We propose a new loss function for supervised and physics-informed training of
neural networks and operators that incorporates a posteriori error estimate. More
specifically, during the training stage, the neural network learns additional physi-
cal fields that lead to rigorous error majorants after a computationally cheap post-
processing stage. Theoretical results are based upon the theory of functional a
posteriori error estimates, which allows for the systematic construction of such
loss functions for a diverse class of practically relevant partial differential equa-
tions. From the numerical side, we demonstrate on a series of elliptic problems
that for a variety of architectures and approaches (physics-informed neural net-
works, physics-informed neural operators, neural operators, and classical archi-
tectures in the regression and physics-informed settings), we can reach better or
comparable accuracy and in addition to that cheaply recover high-quality upper
bounds on the error after training.

1 INTRODUCTION

Recently it has been a surge of interest in cheap surrogates for partial-differential equation (PDEs)
solvers in the machine learning (ML) community. This interest led to the construction of a plethora
of novel efficient architectures including Fourier Neural Operator (FNO) Li et al. (2020), Deep
Operator Network (DeelONet) Lu et al. (2019), wavelet- and transformer-based approaches Gupta
et al. (2021), Hao et al. (2023).

Arguably, for low-dimensional case the most promising results appeared in the regression setting,
when the neural network learns a mapping from the input PDEs data to the quantity of interest (e.g.,
the solution at a particular time or on the whole spacetime interval of interest), given observed data
or results of the classical simulations. Often, it is possible to retain enough accuracy (the typical
error is a few percent of the relative L2 norm) and simultaneously reduce solution time by a few
orders of magnitude Li et al. (2022), Brandstetter et al. (2022), Lam et al. (2022). In this scenario,
one can hope to use neural network-based PDE solvers in compute-intensive applications such as
weather forecasts, PDE-constraint optimization Biegler et al. (2003), or inverse problems Tarantola
(2005).

Despite being promising, neural PDE solvers are unreliable. Even when the results on approximation
capabilities are available Kovachki et al. (2021), Lanthaler et al. (2022), they do not guarantee that
it is possible to reach good accuracy with standard training approaches (see Fokina & Oseledets
(2023), Colbrook et al. (2022)). Since a priori error analysis seems futile, the natural alternative is
a posteriori error analysis.1 If reliable and computationally cheap a posteriori error analysis were
possible, it would allow the safe application of neural PDE solvers.

With this note, we hope to draw the attention of the ML community to a well-developed powerful
approach to a posteriori error analysis known as functional a posteriori error analysis Neittaanmäki
& Repin (2004), Mali et al. (2013), Repin (2008), Muzalevsky & Repin (2021). The main strength

1We briefly recall the difference between a priori and a posteriori error analysis. The former one is an
estimation that does not depend on the obtained solution, e.g., it can be a statement on the order of convergence:
error ≤ Chp, where h is a grid spacing, p ∈ N, and C is an unspecified constant that depends on the problem
data. The latter one is a concrete estimation that explicitly depends on the obtained approximate solution but
not on the exact solution, i.e., error ≃ f(approximate solution, problem data).
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of the technique is that it allows for error estimation regardless of the method used to construct
approximation (contrast this with highly specialized approaches, e.g., FEM a posteriori analysis
Ainsworth & Oden (1997)). This feature makes functional a posteriori analysis especially appealing
for solvers based on neural networks that often act as black boxes.

More specifically, functional a posteriori error analysis supplies a technique to construct error ma-
jorant (upper bound on the error) that depends on approximate solution, PDE data, and additional
fields that can be used to tighten the upper bound. The main properties of the functional approach
are that: (i) the majorant remains upper bound for arbitrary approximate solution2 regardless of the
quality and the nature of the approximation, (ii) it provides a tight upper bound which is saturated
for exact solution only. Using this powerful approach, we contribute the following:

1. In Section 2, following pioneering contribution Muzalevsky & Repin (2021), we define
novel loss function for physics-informed training called Astral (neurAl a poSTerioRi func-
tionAl Loss).

2. In Section 3, we demonstrate that for elliptic equations training with Astral loss is much
more robust than training with residual and variational losses (see Fig. 3). Besides that,
Astral is equivariant to rescaling and allows for direct error control, which is impossible
with other approaches.

3. As we explain in Section 2 Astral can also be used for parametric PDEs. We present two
schemes to achieve that: the physics-informed (unsupervised) Fig. 1 and supervised Fig. 2.
We test these schemes in Section 4 and find that in unsupervised setting Astral outperforms
residual training used in PINO Li et al. (2021) by a significant margin (see Fig. 4).

2 FUNCTIONAL A POSTERIORI ERROR ESTIMATE AS A NOVEL LOSS
FUNCTION

2.1 HIGH-LEVEL DESCRIPTION OF THE ERROR ESTIMATE

Consider PDE in the abstract form
A [u,D] = 0, (1)

where A is a nonlinear operator containing partial derivatives of the solution u, D stands for supple-
mentary data such as initial conditions, boundary conditions, and PDE parameters.

Typically, the exact solution to Eq. (1) is not available, so one obtains only approximate solution
ũ. Now, it is desirable to estimate the quality of ũ, i.e., the distance between approximate and
exact solution in some norm ∥ũ− uexact∥. The estimate (i) should have definitive relation to the
error norm (e.g., upper or lower bound), (ii) is computable only from PDE data and approximate
solution ũ, (iii) is cheaper to compute than the approximate solution ũ itself. Estimates following
desiderata are known for specific discretizations, most notably for finite element methods Babuška
& Rheinboldt (1978), but they are not applicable when the solution comes from neural networks.
The only approach suitable for deep learning is discretization-agnostic functional a posteriori error
analysis, which we now outline.

In general, functional a posteriori error bounds for a given PDE have a form

L[ũ,D, wL] ≤ ∥ũ− uexact∥ ≤ U [ũ,D, wU ], (2)

where u is an approximate solution, wL and wU are arbitrary free functions (we call them certifi-
cates in the text below) from certain problem-dependent functional space, D is problem data (e.g.,
diffusion coefficient, viscosity, information on the geometry of the domain e.t.c.), U and L, error
majorant and minorant, are problem-dependent nonlinear functionals (see Section 2.3 for concrete
example) Mali et al. (2013). Majorant and minorant has special properties:

1. They are defined in a continuous sense for arbitrary ũ, wU from certain functional spaces,
that is, they do not contain information on a particular solution method, grid quantities,
convergence, or smoothness properties.

2The only requirement is that approximate solution should lay in the appropriate PDE-dependent functional
space.
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uexact – exact PDE solution;
ũ – approximate solution;
∥ũ− uexact∥ ≤ inf
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U [ũ,D, wU ],

saturated iff ũ = u⋆(D)

Error ∥ũ− uexact∥ is not computable
but error majorant U [ũ,D, wU ] is readily known.

Figure 1: Unsupervised learning scheme with a posteriori functional error estimate and the explana-
tion of basic properties of the upper bound. Neural network N takes input PDE data D and outputs
approximate solution ũ and certificate wU . Input to N and both outputs are plugged into error
majorant U [u,D, wU ] which is used as an unsupervised loss.

2. The bounds are tight. That is, solving supwL,u L[u,D, wL] or infwU ,u U [u,D, wU ] one
recovers exact solution uexact.

3. They are explicitly computable based on ũ and the problem data D.

Typical application of Eq. (2) is to plug given approximate solution ũ and optimize for additional
field supwL

L[ũ,D, wL] ≤ ∥ũ− uexact∥ ≤ infwU
U [ũ,D, wU ], to find error bounds as tight as

possible. The optimization problems are potentially computationally demanding, so one can use
deep learning to mitigate numerical costs.

The other possibility is to consider the upper bound in Eq. (2) as a novel loss function and optimize
it for u and wU . Since the bounds are tight, u converges to the exact solution, and since the majorant
provides an upper bound, we have direct access to the upper bound on error during training.

We provide concrete examples of error bounds for elliptic equations and discuss how to construct
them for other equations in Section 2.3, but before that we digress to explain in more details two
approaches to combine deep learning with a posteriori functional error estimate outlined above.

2.2 FROM ERROR MAJORANT TO DEEP LEARNING

As we mentioned in the introduction, one of the most successful applications of deep learning to
PDEs is the construction of cheap surrogates for classical solvers, i.e., the neural network produces
an approximate solution given PDE data as input. To train such a network, one collects a dataset
with pairs (PDE data, solution) using a classical solver and trains a neural network in the regression
setting. One downside of this approach is the absence of guarantees. When neural networks provide
solutions for unseen data, how can one measure the approximation error?

One possibility is to plug the solution ũ in discretization-agnostic upper bound U [ũ,D, wU ] and
optimize for wU . This was done in Muzalevsky & Repin (2021) for solution obtained with physics-
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Figure 2: Supervised learning scheme with a posteriori functional error estimate. From left to right:
(1) PDE is solved for selected input data; (2) pairs (input data, approximate solution) are used to
train N1 with ordinary L2 loss; (3) approximate solutions produced by N1 are plugged into upper
bound and optimized certificates are found with direct optimization; (4) triples (input data, N1

approximation, certificate) are used to train N2 with ordinary L2 loss; (5) certificates produced by
N2, output of N1 and input data are plugged into upper bound to obtain bounds on error.

informed neural networks. However, the complexity of the optimization problem can be comparable
with solving the original PDE, so this method does not look computationally appealing.

The natural alternative is find the solution ũ and the certificated wU in a single optimization run. For
that we define novel loss function and the training strategy.
Astral loss. For PDE with functional error majorant U [ũ,D, wU ], and neural network N (D, θ) =
(ũ, wU ) with weights θ that predicts solution ũ and certificate wU optimize

min
θ

U [ũ,D, wU ] s.t. (ũ, wU ) = N (D, θ). (3)

That is, training is done the same way as for classical physics-informed neural networks and neural
operators, but with two differences. First, the loss function is the error majorant, not the residual.
Second, the neural network has additional outputs since it needs to predict certificates wU along with
the approximate solution ũ. The concrete example of Astral loss is given in Section 2.3 for elliptic
problem (see Eq. (6)), it is also explained there how to construct it for other PDEs.

Unfortunately, physics-informed approach are often computationally less efficient for low dimen-
sional problems Grossmann et al. (2023), Karnakov et al. (2022). So one can resort to standard
solvers and optimizers and simply replace the computationally demanding search for optimal wU

with a cheap neural network surrogate. This may sound suspicious. One can argue that we will lose
guarantees on the upper bound if we outsource optimization to possibly inaccurate neural networks.
Fortunately, this is not the case since the upper bound holds for arbitrary wU . When neural networks
fail to predict sufficiently accurate wU , the upper bound merely ceases to be tight but remains a
genuine upper bound. These considerations lead to the approach summarized in Fig. 2. It consists
of four stages:

1. Classical solver is used to produce dataset of pairs (PDE data, solution).
2. Neural network N1 is trained on the dataset to predict solutions from PDE data.
3. Predictions of neural network N1 are analyzed with the help of the upper bound, i.e., for

each prediction certificate wU is obtained by direct optimization of the upper bound. From
this data, a second dataset of triples (PDE data, solution, certificate wU ) is formed.
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4. Second neural network N2 is trained to predict certificate wU from PDE data and approxi-
mate solution produced by N1.

At the inference stage, N1 predicts approximate solution ũ given problem data, N2 predicts certifi-
cate wU given approximate solution and problem data and the upper bound is used to compute upper
bound on the error.

2.3 CONCRETE ERROR BOUNDS

To illustrate abstract approach described in Section 2.1 we consider elliptic equation in the domain
Γ ⊆ [0, 1]D:

−
D∑

ij=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
+ b2(x)u(x) = f(x), u|∂Γ = 0, aij(x) ≥ c > 0. (4)

For later use we define several norms

∥v∥22 =

∫
Γ

dx v2, ∥w∥2a−1 =

∫
Γ

dx

∑
i,j

(
a−1

)
ij
wiwj

 , |||u|||2 = ∥u∥2a + ∥bu∥22 . (5)

Using the weak form, Cauchy-Schwarz, and Friedrichs inequalities, it is possible to show (see (Mali
et al., 2013, Chapter 3) and also Appendix B) that for Eq. (4) the energy norm of the deviation of
approximate solution ũ from the exact one u is bounded from above:

|||ũ− uexact|||2 ≤ LAstral[ũ, y,D, β] =

∫
Γ

dx
C2(1 + β)

C2b(x)2(1 + β) + 1
R(ũ, y)2 +

1 + β

β
∥a∇ũ− y∥2a−1 ,

R(ũ, y) = f(x)− b(x)2ũ+
∑
i

∂yi(x)

∂xi
, C = 1

/(
inf
x

√
λmin(aij(x))πD

)
,

(6)

where β is positive number, y is a vector field. Note that upper bound is the Astral loss defined in
Section 2.2 where y and β in Eq. (6) correspond to wU from the definition Eq. (3).

Eq. (6) possess properties described in Section 2. First, it is easy to see that the bound is computable
from the problem data (for considered PDE Eq. (4) the data is b(x), aij(x), f(x)), approximate
solution ũ(x) and supplementary parameters (vector field y and β). Second, it is straightforward to
check that the bound is tight, since it is saturated when y(x) =

∑D
j=1 aij

∂
∂xj

uexact and β → ∞. For
the formal proofs we refer to (Mali et al., 2013, Chapter 3).

Our second example of functional a posteriori upper bound is given for initial-boundary value prob-
lem

∂u(x, t)

∂t
− ∂2u(x, t)

∂x2
+ a

∂u(x, t)

∂x
= f(x, t), u(x, 0) = ϕ(x), u(x, t)|x∈∂Γ = 0, a = const, (7)

where Γ = [0, 1]× [0, T ]. As shown in Repin & Tomar (2010), the upper bound for this case reads

|||e|||c.d. ≡
∫

dxdt

(
∂e

∂x

)2

+
1

2

∫
dx e2

∣∣
t=T

≤ LAstral[v, y,D],

LAstral[v, y,D] =

∫
dxdt

((
y − ∂v

∂x

)2

+
1

π

(
f − ∂v

∂t
− a

∂v

∂x
+

∂y

∂x

)2
)
,

(8)

where e(x, t) = u(x, t)−v(x, t) is the error, v(x, t) and u(x, t) are approximate and exact solutions,
y(x, t) is a free field corresponding to wU from the definition Eq. (3).

We have seen that for elliptic and convection-diffusion equations, the bounds are available. It is
also positive to derive similar bounds for other practically-relevant PDEs. In particular, bounds are
known for Maxwell equations Repin (2007), reaction-diffusion problems Repin & Sauter (2006),
elastoplasticity problems Repin & Valdman (2009), PDEs for the flow of viscose fluid Repin (2002),
and non-linear elliptic problems Repin (1999).

5



Under review as a conference paper at ICLR 2024

10 5 10 4 10 3 10 2 10 1 100

l = |loss value|1/2

10 5

10 4

10 3

10 2

e 
= 

er
ro

r
      residual (collocation)

e = l
mean

10 5 10 4 10 3 10 2 10 1

     variational (Gauss)

10 5 10 4 10 3 10 2 10 1

 variational (Monte Carlo)

10 5 10 4 10 3 10 2

     Astral (Gauss)

Figure 3: Comparison of PiNN solutions obtained with four different loss functions (from left to
right): residual loss (Eq. (11), first equation) enforced on the set of points, variational loss (Eq. (11),
second equation) computed with Gauss quadrature, variational loss computed with Monte Carlo,
Astral loss Eq. (10) computed with Gauss quadrature. On each plot x-axis represents square root of
the absolute value of the loss and y-axis represents the value of error in the energy norm |||e||| (see
Eq. (5)), both computed at the end of the optimization process.

Besides, there are a few general techniques to obtain functional error estimates. Most notable is the
use of dual theory for variational problems with convex functionals Repin (2000a), Repin (2000b).
More details on functional error estimates and systematic ways to derive them are available in mono-
graphs Repin (2008), Neittaanmäki & Repin (2004), Mali et al. (2013).

2.4 RELATION BETWEEN ENERGY AND L2 NORMS

Since the L2 norm is the most widely used one, it is instructive to establish how it is related to the
energy norm used in the previous section. For example, for elliptic equations, we can find

|||e|||2 =

∫
Γ

dx
∑
ij

∂e

∂xi

∂e

∂xj
aij + ∥be∥22 ≥ λ2

min ∥e∥
2
2 + ∥be∥22 ≥ λ2

min||e||2 + inf
x

b(x)2 ∥e∥22 , (9)

where λmin is a minimal eigenvalue of the elliptic problem − ∂
∂xi

aij
∂

∂xj
u(x) = λu(x) defined on

the same domain and with the same boundary conditions as the original elliptic problem. From the
expression above, we obtain the bound ∥e∥22 ≤ 1

λ2
min+infx(b(x))

2 |||e|||. With the same reasoning, we
can obtain a lower bound and find that L2 and energy norms are equivalent (for suitably defined
space of functions). The upper bound alone is sufficient to claim that whenever the error energy
norm is sufficiently small, the L2 norm of error is small too.

3 PINN TRAINING WITH ASTRAL, RESIDUAL AND VARIATIONAL LOSSES

To practically evaluate Astral loss function, we compare it to other available losses for elliptic PDE.
For simplicity we consider Eq. (4) with aij(x) = a(x)δij , b(x) = 0, D = 2, where δij are elements
of identity matrix. For this particular case, upper bound Eq. (6) simplifies (see Appendix C), and we

Table 1: Quality of the upper bound
(√

LAstral − |||e|||
) /

|||e||| and comparison of error in two different
norms for elliptic Eq. (4) in the L−shaped domain and convection-diffusion Eq. (7) equations.

elliptic, L-shaped domain convection-diffusion
bound quality 0.84± 0.60 0.63± 0.18

loss relative error energy norm relative error energy norm

Astral (7.3± 9.8) 10−3 (2.7± 4.1) 10−2 (8.3± 8.9) 10−3 (1.3± 0.6) 10−2

residual (5.0± 7.2) 10−3 (1.4± 1.2) 10−2 (9.9± 11) 10−3 (7.8± 2.4) 10−3
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Figure 4: Comparison of errors for training with residual loss Eq. (11) (black) used in PINO Li et al.
(2021) and Astral loss Eq. (10) (white) for elliptic equations with smooth coefficient. The results for
Astral loss are better by large margin.

obtain a loss function

LAstral[u, y,D, β] = (1 + β)

∫
dx


(
f(x) +

∑2
i=1

∂yi

∂xi

)2
4π2 infx a(x)

+

∑2
i=1

(
a(x) ∂u

∂xi
− yi

)2
βa(x)

 . (10)

For the elliptic equation, one can also apply standard residual and variational loss functions3

Lres =

∫
dx

(
2∑

i=1

∂

∂xi

(
a
∂u

∂xi

)
+ f

)2

, Lvar =

∫
dx

(
1

2
a(x)

2∑
i=1

(
∂u

∂xi

)2

− fu

)
, (11)

widely used in physics-informed neural networks Lagaris et al. (1998), Raissi et al. (2019), and
Deep Ritz method E & Yu (2018).

To compare three loss functions, we produce a dataset for elliptic equations with known exact so-
lutions and randomly generated smooth a(x) with widely varying magnitudes (see Appendix D for
details on dataset and training). On this dataset, we train physics-informed networks of similar size
under the same optimization setting for three different losses above. To approximate integral, we
use Monte Carlo (Kalos & Whitlock, 2009, Section 4) method or Gauss quadratures (Tyrtyshnikov,
1997, Lecture 16), and in case of residual loss, we used standard collocation formulation. In the net-
work design and training, we closely follow the best practices for PiNN training Wang et al. (2023).
A complete description of the training, network architectures, and dataset generation are available
in Appendix J. To measure the quality of predicted solution we use error in the energy norm |||e|||
(see Eq. (5)).

In addition we perform two more experiments. Namely, training with residual and Astral loss Eq. (8)
for convection-diffusion problem Eq. (7), as well as for the elliptic problem Eq. (4) in L-shaped
domain, i.e., Γ = [0, 1]2\[0.5, 1]2. Details on these experiments are given in Appendix E and Ap-
pendix F respectively. The L−shaped domain is included as a classical benchmark used in literature
on a posteriori error estimate.

3.1 DISCUSSION OF TRAINING RESULTS

Results for losses comparison appear in Fig. 3. We can make several important observations:

1. For all losses but LAstral, there are samples with errors larger and smaller than loss (there
are samples from both sides on the line with slope equals one). This means only LAstral
provides the upper bound for the error.

2. Astral loss has a much smaller spread for the value of the loss and for the error, i.e., the
optimization process with this loss is more robust. This can be explained by the fact, that
Astral loss is equivariant to rescaling. Suppose we multiply elliptic equation (4) by s. It
is easy to see that for Astral loss Eq. (10) one obtains overall scale s2, i.e., the same scale

3For consistency, here we write residual loss in a continuous form, but in our experiments, we used the
standard collocation approach.
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Figure 5: Comparison of mean errors in energy norm obtained with unsupervised (Fig. 1) and su-
pervised (Fig. 2) training. Supervised training leads to slightly smaller error.

as for squared error, simply by rescaling neural network output, i.e., yi −→ syi. This is
automatically done during training, so Astral loss converges more uniformly.

3. On average, we see that residual loss shows faster convergence. However, when the number
of iterations is increased, we reach roughly the same errors with all losses.

The results for convection-diffusion equation and elliptic equation in the L− shaped domain appear
in Table 1. We can highlight the following:

1. Statistically, astral and residual losses typically provide roughly the same performance. On
average, residual loss leads to slightly better relative error for elliptic problem and slightly
worse for convection-diffusion equation.

2. For both equations Astral loss provide high-quality upper bound. This is especially inter-
esting for L−shaped domain since solution has corner singularity.

4 APPLICATION TO PARAMETRIC PDES

In the case of parametric PDE, our experiments were guided by the following research questions: (i)
What is the difference in accuracy between supervised (Fig. 2) and unsupervised (Fig. 1) settings,
which one leads to tighter bounds on error? (ii) How sensitive is training to the parameters of PDE
Eq. (4)? In particular, how well does the training work for discontinuous diffusion coefficients and
zero source terms? (iii) In the unsupervised setting (Fig. 1), how does the upper bound loss compare
with classical residual losses? (iv) How do the results depend on the choice of architecture?

To answer these questions, we generated four datasets with different source terms and diffusion
coefficients. Namely, the equations with their short names are: smoothb – a(x) is smooth, b(x) is
present, (23); disco – a(x) is discontinuous, b(x) is zero, (24); discb – a(x) is discontinuous, b(x) is
present, (25); smootho – a(x) is smooth, b(x) is zero, (26).

For these datasets we trained several architectures with different losses, including L2 loss for the su-
pervised training scheme (Fig. 2), upper bound loss Eq. (6) for D = 2 and the residual loss Eq. (11)
for the unsupervised training scheme (Fig. 1). The architectures used are: (i) FNO – classical Fourier
Neural Operator from Li et al. (2020); (ii) fSNO – Spectral Neural Operator on Gauss-Chebyshev
grid. The construction mirrors FNO, but instead of FFT, a transformation based on Gauss quadra-
tures is used Fanaskov & Oseledets (2022); (iii) ChebNO – Spectral Neural Operator on Chebyshev
grid. Again, the construction is the same as for FNO, but DCT-I is used instead of FFT Fanaskov
& Oseledets (2022); (iv) DilResNet – Dilated Residual Network from Yu et al. (2017), Stachenfeld
et al. (2021); (v) UNet – classical computer vision architecture introduced in Ronneberger et al.
(2015); (vi) MLP – vanilla feedforward neural network. So, we cover modern neural operators
(FNO, fSNO, ChebNO) and classical computer vision architectures widely used for PDE modeling
(DilResNet, UNet). MLP appears as a weak baseline.

To measure the quality of the predicted solution, we, again, use error in the energy norm |||e||| (see
Eq. (5)), and to measure the quality of predicted certificates y, β, we use the ratio of upper bound
(the square root of the loss function Eq. (10)) to the error in the energy norm. The choice of metric
for certificates is motivated by the fact that the only end of y and β is to provide an upper bound.
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Figure 6: Comparison of relative upper bounds obtained with unsupervised (Fig. 1) and supervised
(Fig. 2) training. Unsupervised training leads to much tighter error upper bound.

Also, only relative value is of interest since even when the error is large, neural network can provide
a good upper bound, if it predicts the magnitude of this error accurately.

More details on experiments appear in Appendix H and Appendix I. More experimental results can
be found in Appendix J

4.1 DISCUSSION OF TRAINING RESULTS

We can make the following important observations:

1. We can see from Fig. 4 that the Astral loss function produces much better error than the
PINN loss Li et al. (2021) for all architectures considered and all equations with smooth
coefficients.

2. Fig. 5 indicates that the supervised training scheme leads to slightly better errors for all
architectures but DilResNet.

3. From Fig. 6, we can conclude that unsupervised training leads to a much tighter error bound
than the supervised one. The upper bound obtained with Astral loss is almost the same as
the one obtained with numerically expensive direct optimization of the upper bound. This
shows one can produce high-quality upper bounds cheaply with a neural network.

4. We do not observe any sensitivity to the smoothness of coefficients of the elliptic equation,
the presence of the source term, and the architecture used. In general, DilResNet performs
better than other architectures, and neural operators seem to show second-best results, but
the differences are not prominent.

5 CONCLUSION

Following Muzalevsky & Repin (2021), we outlined how a posteriori error estimate of functional
type can be used to train physics-informed neural networks, and neural operators in supervised and
unsupervised settings. As we argue, error majorants provide a novel systematic way to construct loss
functions for physics-informed training. Our results indicate that for elliptic equations, the proposed
loss leads to more stable training than classical residual and variational losses. Besides that, it allows
for direct error control. For the parametric PDE, functional a posteriori error estimate allows for the
first time to obtain practical error upper bound. That way, one can estimate the quality of the solution
obtained by a black-box neural network. Predicting error majorants with neural networks looks
especially appealing since one simultaneously retains guarantees (thanks to the superb properties of
functional error estimate) and substantially decreases the computational load by removing the need
to solve a complex optimization problem to obtain a tighter upper bound.

6 REPRODUCIBILITY

We use JAX Bradbury et al. (2018), Equinox Kidger & Garcia (2021) and Optax Babuschkin et al.
(2020).
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The anonymous version of GitHub repository with notebooks, architectures and training scripts is
https://anonymous.4open.science/r/UQNO-23BC.
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mates for artificial neural network approximations for heat equations. IMA Journal of Numerical
Analysis, 42(3):1991–2054, 2022.

Tamara G Grossmann, Urszula Julia Komorowska, Jonas Latz, and Carola-Bibiane Schönlieb.
Can physics-informed neural networks beat the finite element method? arXiv preprint
arXiv:2302.04107, 2023.

Mengwu Guo and Ehsan Haghighat. Energy-based error bound of physics-informed neural network
solutions in elasticity. Journal of Engineering Mechanics, 148(8):04022038, 2022.

Gaurav Gupta, Xiongye Xiao, and Paul Bogdan. Multiwavelet-based operator learning for differen-
tial equations. Advances in Neural Information Processing Systems, 34:24048–24062, 2021.

Ernst Hairer, Syvert P Nørsett, and Gerhard Wanner. Solving ordinary differential equations. 1,
Nonstiff problems. Springer-Vlg, 1993.

Zhongkai Hao, Chengyang Ying, Zhengyi Wang, Hang Su, Yinpeng Dong, Songming Liu,
Ze Cheng, Jun Zhu, and Jian Song. Gnot: A general neural operator transformer for operator
learning. arXiv preprint arXiv:2302.14376, 2023.

Birgit Hillebrecht and Benjamin Unger. Certified machine learning: A posteriori error estimation for
physics-informed neural networks. In 2022 International Joint Conference on Neural Networks
(IJCNN), pp. 1–8. IEEE, 2022.

Yuling Jiao, Yanming Lai, Yisu Lo, Yang Wang, and Yunfei Yang. Error analysis of deep ritz
methods for elliptic equations. arXiv preprint arXiv:2107.14478, 2021.

Malvin H Kalos and Paula A Whitlock. Monte carlo methods. John Wiley & Sons, 2009.

Petr Karnakov, Sergey Litvinov, and Petros Koumoutsakos. Optimizing a discrete loss (odil) to solve
forward and inverse problems for partial differential equations using machine learning tools. arXiv
preprint arXiv:2205.04611, 2022.

Patrick Kidger and Cristian Garcia. Equinox: neural networks in JAX via callable PyTrees and
filtered transformations. Differentiable Programming workshop at Neural Information Processing
Systems 2021, 2021.

Nikola Kovachki, Samuel Lanthaler, and Siddhartha Mishra. On universal approximation and error
bounds for fourier neural operators. The Journal of Machine Learning Research, 22(1):13237–
13312, 2021.

Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. Artificial neural networks for solving
ordinary and partial differential equations. IEEE transactions on neural networks, 9(5):987–1000,
1998.

Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato,
Alexander Pritzel, Suman Ravuri, Timo Ewalds, Ferran Alet, Zach Eaton-Rosen, et al. Graphcast:
Learning skillful medium-range global weather forecasting. arXiv preprint arXiv:2212.12794,
2022.

11



Under review as a conference paper at ICLR 2024

Samuel Lanthaler, Siddhartha Mishra, and George E Karniadakis. Error estimates for deeponets: A
deep learning framework in infinite dimensions. Transactions of Mathematics and Its Applica-
tions, 6(1):tnac001, 2022.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020.

Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial
differential equations. arXiv preprint arXiv:2111.03794, 2021.

Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. Fourier neural operator
with learned deformations for pdes on general geometries. arXiv preprint arXiv:2207.05209,
2022.

Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for iden-
tifying differential equations based on the universal approximation theorem of operators. arXiv
preprint arXiv:1910.03193, 2019.
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Pekka Neittaanmäki and Sergey R Repin. Reliable methods for computer simulation: Error control
and posteriori estimates. Elsevier, 2004.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

S Repin. Functional a posteriori estimates for maxwell’s equation. Journal of Mathematical Sci-
ences, 142(1), 2007.

Sergey Repin. A posteriori error estimation for variational problems with uniformly convex func-
tionals. Mathematics of Computation, 69(230):481–500, 2000a.

Sergey Repin. A posteriori estimates for partial differential equations. Walter de Gruyter, 2008.

Sergey Repin and Stefan Sauter. Functional a posteriori estimates for the reaction-diffusion problem.
C. R. Math. Acad. Sci. Paris, 343(5):349–354, 2006. ISSN 1631-073X. doi: 10.1016/j.crma.2006.
06.024. URL https://doi.org/10.1016/j.crma.2006.06.024.

Sergey Repin and Jan Valdman. Functional a posteriori error estimates for incremental models in
elasto-plasticity. Open Mathematics, 7(3):506–519, 2009.

Sergey I Repin. A posteriori error estimates for approximate solutions to variational problems with
strongly convex functionals. Journal of Mathematical Sciences, 97:4311–4328, 1999.

Sergey I Repin. A posteriori error estimation for nonlinear variational problems by duality theory.
Journal of Mathematical Sciences, 99:927–935, 2000b.

Sergey I Repin. A posteriori estimates for the stokes problem. Journal of Mathematical Sciences,
109:1950–1964, 2002.

12

https://doi.org/10.1016/j.crma.2006.06.024


Under review as a conference paper at ICLR 2024

Sergey I Repin and Satyendra K Tomar. A posteriori error estimates for approximations of evolu-
tionary convection–diffusion problems. Journal of mathematical sciences, 170:554–566, 2010.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pp. 234–241. Springer, 2015.
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A RELATED RESEARCH

We can classify the related research articles into several categories.

The first one consists of generalization error analysis for physics-informed neural networks, e.g.,
De Ryck et al. (2022), Mishra & Molinaro (2022), De Ryck & Mishra (2022), Gonon et al. (2022),
Jiao et al. (2021). In such contributions, authors show that it is possible to reach a given approxi-
mation accuracy with a neural network of a particular size. The bound on error involves unknown
quantities, such as the norm of the exact solution. This line of work provides scaling arguments and
establishes how expressive a particular architecture can be, but the results are unusable for actual
error estimates.

The second line of work is on adaptive loss estimation for physics-informed neural networks. The
examples include Wu et al. (2023), Zubov et al. (2021). In a standard physics-informed neural
network, the set of collocation points is either randomly selected E & Yu (2018) or fixed from the
start Raissi et al. (2019). Adaptive loss estimation aims to select points such that the residual is
uniformly small. Typically, this tends to improve the accuracy and stability of training. The problem
is it does not allow for error control since the relation between the residual and the error is not
straightforward.
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The next set of articles is related to the generalization bound for neural operators, e.g., Kovachki
et al. (2021), Lanthaler et al. (2022). In analogy with physics-informed neural networks, the results
usually established are bounds on network size sufficient to solve a given class of parametric PDEs.
For the same reasons, with those results, it is not possible to estimate the actual error in a practical
setting.

Besides that, there are several contributions directly related to a posteriori error estimation Guo &
Haghighat (2022), Filici (2010), Hillebrecht & Unger (2022), Berrone et al. (2022), Minakowski &
Richter (2023), Roth et al. (2022), Cai et al. (2020). In all these contributions, authors specialize in
a particular classical error bound to deep learning PDE/ODE solvers. Namely, Filici (2010) adopts
a well-known error estimation for ODEs, based on the construction of related problems with exactly
known solution Zadunaisky (1976). Similarly, Hillebrecht & Unger (2022) uses well-known expo-
nential bound on error that involves residual and Lipschitz constant Hairer et al. (1993) and applies
a neural network to perform the residual interpolation. Similarly, contributions Guo & Haghighat
(2022), Berrone et al. (2022) and Cai et al. (2020) are based on FEM posterior error estimates, and
Minakowski & Richter (2023), Roth et al. (2022) are on dual weighted residual estimator Becker &
Rannacher (2001).

B DERIVATION OF ASTRAL LOSS FOR ELLIPTIC EQUATION

The discussion in this section follows (Mali et al., 2013, Chapter 3).

We consider the boundary value problem

−div a∇u(x) + b(x)2u(x) = f(x), x ⊆ Γ = [0, 1]D,

u
∣∣
∂Γ

= 0.
(12)

where a is a symmetric matrix satisfying the condition ax · x ≥ c|x|2, ∀x ∈ RD and b2 is a
nonnegative function of x. The general solution u(x) of (12) is defined by the integral identity∫

Γ

dx
[
a∇u(x) · ∇w(x) + b2(x)u(x)w(x)

]
=

∫
Γ

dx f(x)w(x), (13)

that holds for every w(x) from Sobolev space of square summable functions with square summable
derivatives up to the order 1, H1([0, 1]D), with Dirichlet boundary conditions. Let ũ(x) approxi-
mate the exact solution u(x) of the problem (12). By (13) we deduce the relation∫

Γ

dx
[
a∇(u− ũ) · ∇w + b2(u− ũ)w

]
=

∫
Γ

dx
[
fw − b2ũw −∇ũ · ∇w

]
.

Since w vanishes at the boundary:∫
Γ

dx(∇ · (yw)) = yw
∣∣∣
∂Γ

= 0,

where y(x) ∈ RD is arbitrary vector. We can rewrite previous relation as follows:∫
Γ

dx
[
a∇(u− ũ) · ∇w + b2(u− ũ)w

]
=

∫
Γ

dx
[
R(ũ, y)w +

(
y − a∇ũ

)
· ∇w

]
, (14)

where R(ũ, y) = f − b2ũ + div y. Let us represent the first integral on the right-hand side of (14)
as follows ∫

Γ

dx R(ũ, y)w =

∫
Γ

dx αR(ũ, y)w +

∫
Γ

dx (1− α)R(ũ, y)w,

where α ∈ L∞
[0, 1]

(
Γ
)
=
{
α ∈ L∞(Γ) ∣∣ 0 ≤ α(x) ≤ 1

}
is a weight function. It is easy to see that∫

Γ

dx
(
y − a∇ũ

)
· ∇w ≤

∥∥y − a∇ũ
∥∥
a−1∥∇w∥a,∫

Γ

dx R(ũ, y)w ≤ C
∥∥∥R(ũ, y)

∥∥∥
2
∥∇w∥a,
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where C is a constant in the inequality

∥w∥2 ≤ C∥∇w∥a, ∀w ∈ H1
(
[0, 1]D

)
.

Then, we have∣∣∣ ∫
Γ

dx R(ũ, y)w
∣∣∣ ≤ ∥∥∥α

b
R(ũ, y)

∥∥∥
2
∥bw∥2 + C

∥∥∥(1− α)R(ũ, y)
∥∥∥
2
∥∇w∥a,

∥w∥2a =

∫
Γ

dx aw · w, ∥w∥2a−1 =

∫
Γ

dx a−1w · w.
(15)

By setting w = u− ũ we arrive at the estimate

|||ũ− u|||2 ≤
(
C
∥∥∥(1− α

)
R(ũ, y)

∥∥∥
2
+
∥∥a∇ũ− y

∥∥
a−1

)2
+
∥∥∥α
b
R(ũ, y)

∥∥∥2
2
.

In the sake of simplicity, we use the algebraic Young’s inequality. For a, b ∈ R and for any β
positive number:

2ab ≤ βa2 +
1

β
b2.

We find that ∣∣a+ b
∣∣2 ≤

(
1 + β

)∣∣a∣∣2 + 1 + β

β

∣∣b∣∣2.
Thus, we have

|||ũ− u|||2 ≤ (1 + β)C2
∥∥∥(1− α

)
R(ũ, y)

∥∥∥2
2
+

1 + β

β

∥∥a∇ũ− y
∥∥
a−1 +

∥∥∥α
b
R(ũ, y)

∥∥∥2
2
, (16)

where β is an arbitrary positive number.

Minimization of the right-hand side of (16) with respect to α is reduced to the following auxiliary
variational problem: find α̂ ∈ L∞

[0, 1]

(
Γ
)

such that

Υ
(
α̂
)
= inf

α∈L[0, 1]∞(Γ)

∫
Γ

dx
(
α2P (x) +

(
1− α

)2
Q(x)

)
,

and P and Q are nonnegative integrable functions, which do not vanish simultaneously. It is easy to
find that for almost all x

α̂(x) =
Q

P +Q
∈ [0, 1], Υ

(
α̂
)
=

PQ

P +Q
.

In our case, P = b−2R
(
ũ, y

)
and Q = C2

(
1 + β

)
R
(
ũ, y

)
.

Therefore, we obtain

|||ũ− u|||2 ≤
∫
Γ

dx
C2(1 + β)

C2b(x)2(1 + β) + 1
R(ũ, y)2 +

1 + β

β
∥a∇ũ− y∥2a−1 = LAstral[ũ, y,D, β],

R(ũ, y) = f(x)− b(x)2ũ+ div y, C = 1
/(

inf
x

√
λmin(a)πD

)
.

(17)

C SIMPLIFIED ASTRAL LOSS FOR SCALAR DIFFUSION COEFFICIENT

In this section, we illustrate how to derive Eq. (10) from Eq. (6).

First, observe that b = 0 so the residual weight simplifies to C2(1 + β) and the residual itself
becomes f(x) −

∑2
i=1

∂yi

∂xi
for D = 2 problem considered. Next, the second term with flux

condition simplifies because aij(x) = δija(x) where δij are matrix elements of the identity ma-
trix. More specifically, the inverse matrix a−1 is simply a division by a(x), so the term becomes
1

a(x)

∑2
i=1

(
a(x)∂ũ(x)∂xi

− yi

)2
. Finally, the constant C simplifies to 1

/(
2π infx

√
a(x)

)
, since for

diagonal matrix aij(x) the minimal eigenvalue is a(x).

With all that we obtain a simplified version of Astral loss Eq. (10).
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D EXPERIMENT 1: COMPARISON OF LOSSES FOR PHYSICS-INFORMED
NEURAL NETWORKS

In all experiments, we use feedforward physics-informed neural networks with 3 layers, 50 features
in each layer, and GELU activation functions. Following suggestions in Wang et al. (2023), we
transform input coordinates to obtain 50 Fourier features. Each network was optimized for 50000
epoch with Lion optimizer Chen et al. (2023). Starting learning rate is 10−4 with exponential decay
×0.5 each 10000 epoch. The output of the neural network was multiplied by sin(πx) sin(πy) to
enforce boundary conditions. When error majorant is used as loss functions, we predict y1, y2, and
u with three separate neural networks.

To generate random elliptic equation we draw random function from f ∼ N
(
0, (I −∆)

−2
)

after
that this function is shifter and rescaled such that minx f(x) = 1,maxx f(x) = 6. After that we
multiply this function on 1/s where s is drawn from exponential distribution with mean 100. This
way we obtain positive functions of widely varying scale that we use as diffusion coefficient a(x).
For all elliptic equations we fix exact solution to be u(x) = x1(1 − x1)x2(1 − x2) and find f(x)
from known a(x) and u(x).

E EXPERIMENT 2: CONVECTION-DIFFUSION PROBLEM

The architecture and training scheme are the same as in Appendix D, but we train for 10000 epoch
and multiply learning rate by 0.5 each 3000 epoch.

To test PiNN networks we sample exact solutions of convection-diffusion equation Eq. (7) given by

u(x, t) = Re

(
N∑

k=0

cke
−(2πk)2t−2πkait+2πkxi

)
sin(πx) = ũ(x, t) sin(πx). (18)

It is easy to see that
∂ũ(x, t)

∂t
− ∂2ũ(x, t)

∂x2
+ a

∂ũ(x, t)

∂x
= 0, (19)

and that u(x, t) fulfills boundary conditions. If we choose

f(x, t) = ũ(x, t)
(
π2 sin(πx) + aπ cos(πx)

)
− 2π

∂ũ(x, t)

∂x
cos(πx), (20)

than u(x, t) solves original equation Eq. (7).

So, to generate exact solutions we used Eq. (18) with ck sampled from (x+ iy)
/
(1 + (πk/5)2)2

where x, y ∼ N (0, 1) and a sampled from 10−2N (0, 1), N = 150. After that we compute source
term using Eq. (20).

F EXPERIMENT 3: ELLIPTIC EQUATION, L-SHAPED DOMAIN

The architecture and training scheme are the same as in Appendix E.

For this particular geometry exact solutions are available only for specific boundary conditions, so
we use finite difference discretization to obtain solution on the fine grid and use this solution as a
ground truth.

Parameters of the problem are sampled as follows

a(x) = (10g1(x))
2
+ 1, f(x) = 10g2(x), b(x) = 0, g1(x), g2(x) ∼ N

(
0,
(
I − 10−1∆

)−2
)
,

(21)
where Laplace operator has periodic boundary conditions.

To enforce Dirichlet boundary conditions in all experiments we used mean value coordinates Floater
(2003) as explained in Sukumar & Srivastava (2022).
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G ELLIPTIC EQUATIONS USED FOR EXPERIMENTS WITH PARAMETRIC PDES

All elliptic PDEs considered are based on general form, described in (4).

First, we define random trigonometric polynomials

P(N1, N2, α) =

{
f(x) = R

(
N1∑
m=0

N2∑
n=0

cmn exp (2πi(mx1 + nx2))

(1 +m+ n)α

)
: R(c), I(c) ≃ N (0, I)

}
.

(22)

For the first equation, we use Cholesky factorization to define matrix a and random trigonometric
polynomials for b and f :

a(x) =

(
α(x) 0
γ(x) β(x)

)(
α(x) γ(x)
0 β(x)

)
,

α(x), β(x) ≃ 0.1P(5, 5, 2) + 1; γ(x), b(x), f(x) ≃ P(5, 5, 2).

(23)

The next equation has a discontinuous scalar diffusion coefficient:

a(x) = α(x)I, α(x) =

{
10, p1(x) ≥ 0;

1, p1(x) < 0,
b(x) = 0, f(x) = 1, p1(x) ≃ P(5, 5, 2). (24)

The analogous equation is dubbed “Darcy flow” in Li et al. (2020).

Third equation is similar to (24) but with more diverse b and f :

a(x) = α(x)I, α(x) =

{
10, p1(x) ≥ 0;

1, p1(x) < 0,
b(x), f(x), p1(x) ≃ P(5, 5, 2). (25)

Last equation is similar to (23) but with b = 0:

a(x) =

(
α(x) 0
γ(x) β(x)

)(
α(x) γ(x)
0 β(x)

)
,

α(x), β(x) ≃ 0.1P(5, 5, 2) + 1; γ(x), f(x) ≃ P(5, 5, 2); b(x) = 0.

(26)

H EXPERIMENT 4: SUPERVISED TRAINING WITH BUILD-IN ERROR ESTIMATE

We performed 6 training runs with Ntrain = 200, 400, 600, 800, 1000, 1200 for all architectures listed
in Section 4 and all equations. The number of grid points is 25+1 along each dimension. To estimate
the exact solution, we solve the same problem with a higher resolution grid, using 27 + 1 points.
The averaged results are reported in Tables 10, 11, 12, 14.

In addition, for the first equation (23), we gather data on the same 6 training runs with varying
resolution 2J + 1, J = 5, 6, 7. For this experiment, averaged results appear in Table 13.

In all optimization runs, we train for 1000 epochs with Adam optimizer having the learning rate
10−3 multiplied by 0.5 each 200 epochs (exponential decay) and weight decay 10−2.

Details on architectures used are as follows.

1. Construction of FNO closely follows the one given in Li et al. (2020). We use 24 featrures
in processor, 4 layers and the number of modes is ⌈Nspatial/4⌉.

2. Construction of fSNO is similar to the one of FNO (i.e., encoder-processor-decoder and
integral kernel in place of the linear layer), but following Fanaskov & Oseledets (2022) we
replace Fourier basis with orthogonal polynomials in the integral kernel. For this partic-
ular architecture, the construction of the integral kernel is as follows. We use the Gauss-
Chebyshev grid, and compute projection on the basis of polynomials using Gauss quadra-
tures Golub & Welsch (1969). After the projection on the space of polynomials, we apply
three convolutions with kernel size 3. Finally, to return to the physical space, we compute
sum

∑
n cnpn(x) on the Gauss-Chebyshev grid, where cn are coefficients obtained after

convolutions. In this case, the number of features in the processor is 34, the number of
layers is 4 and the number of modes is ⌈Nspatial/4⌉
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3. ChebNO is a spectral neural operator Fanaskov & Oseledets (2022) defined on Chebyshev
grid. Construction of integral kernel is similar to fSNO but DCT is used to find projection
on the polynomial space in place of Gauss quadratures. In the current architecture, the
processor has 32 features, the number of layers is 4, and 16 modes are used for all grids.

4. DilResNet that we use closely follows architecture described in Stachenfeld et al. (2021).
Namely, we use a processor with 24 features that has 4 layers. Each layer consists of
convolutions with strides [1, 2, 4, 8, 4, 2, 1], kernel size 3, and skip connection.

5. For UNet Ronneberger et al. (2015) we start with 10 features and double the number of
features with each downsampling that decreases the number of grid points by the factor of
2 in each dimension. On each grid we use 2 convolutions (kernel size 3) and max pooling,
transposed convolution are used for upsampling, and 3 convolutions (kernel size 3) appears
on each grid after upsampling. In total, we have 4 grids.

6. MLP that we use consists of linear layers that process each dimension (including the feature
dimension) separately. That way, the linear operator is defined by three matrices in D = 2.
MLP uses 64 in the processor and has 4 layers.

For all networks, we use ReLU nonlinearity. Typical number of parameters for each network is
given in the table below.

FNO fSNO ChebNO DilResNet UNet MLP
# parameters 668× 103 130× 103 115× 103 147× 103 248× 103 24× 103

I EXPERIMENT 5: UNSUPERVISED TRAINING WITH BUILD-IN ERROR
ESTIMATE

The unsupervised case is addressed by analyzing the D = 2 of (4) and optimizing the upper bound
(6) to produce an approximate solution ũ and an upper bound certificate y. The loss that was used
to train the neural network N is:

L[ũ, y,D, β, λ] =
√
LAstral[ũ, y,D, β] + λ

√
ũ2
∂Γ, (27)

L[ũ, y,D, β, λ] → min
ũ, y

,

where ũ, y are the output of the neural network, a, b, f, C are defined from problem data D for each
equation, and λ and β are hyperparameters of the loss function (27). Including the part of the loss
with boundaries is necessary to compensate for the lack of information about the exact solution on
x ∈ ∂Γ.

In this paper, a comparison was made with the state-of-the-art unsupervised model proposed by Li
et al. (2021). The PINO loss is defined as

Lpino[ũ, uexact,D, α, γ] = Ldata[ũ, uexact] + αLresidual[ũ,D] + γ
√
ũ2
∂Γ, (28)

where

Lresidual[ũ,D] =

√√√√∫
Γ

dx

(
2∑

i=1

∂

∂xi

(
a(x)

∂ũ

∂xi

)
+ f(x)− b(x)ũ

)2

,

Ldata[ũ, uexact] =

√∫
Γ

dx
(
ũ− uexact

)2
.

The PINO loss consists of the physics loss in the interior and the data loss on the boundary condition,
with hyperparameters α, γ > 0. It is important to note that the proposed loss function (27) does not
contain an exact solution uexact obtained using traditional solvers, unlike the PINO loss function
(28).

We trained for 500 epochs with Adam optimizer that has the learning rate 2 · 10−3 multiplied by 0.5
for each 50 epoch and weight decay 10−2. Hyperparameters λ and β were chosen to be 1.
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The experiments are carried out according to the scheme in Fig. 1. We performed 9 training runs with
Ntrain = 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800 for all architectures and all equations.
The number of points in the grid is 25 + 1 along each dimension. To estimate the exact solution,
we solve the same problem with a higher resolution grid, using 27 + 1 points. The results using our
loss function (27) are presented in Tables 2,6,7,8,9. The results for PINO loss proposed in Li et al.
(2021) are presented in Table 3.

The architectures used for unsupervised learning are identical to those used for supervised learning.
For all networks, we use ReLU nonlinearity.

In Tables 15, 16, 17, 18, one can find the results for train runs with different λ for all architectures
and datasets for 2D equations. To check dependencies from λ, we used Ntrain = 1200 for training,
and Ntest = 800 for testing.

J ADDITIONAL DATA FOR EXPERIMENTS 2 AND 3

Table 2: Results for Ntrain = 1800, Ntest = 200 for 2D equations using loss (27).

equation fSNO ChebNO DilResNet UNet
Etrain Etest Etrain Etest Etrain Etest Etrain Etest

(23) 0.012 0.013 0.013 0.015 0.008 0.009 0.012 0.014
(24) 0.019 0.018 0.019 0.018 0.017 0.016 0.025 0.024
(25) 0.014 0.017 0.015 0.018 0.011 0.012 0.070 0.078
(26) 0.013 0.014 0.013 0.014 0.009 0.010 0.013 0.014

Table 3: Results for Ntrain = 1800, Ntest = 200 for 2D equations using PINO loss (28).

equation fSNO ChebNO DilResNet UNet
Etrain Etest Etrain Etest Etrain Etest Etrain Etest

(23) 0.091 0.092 0.081 0.081 0.055 0.056 0.065 0.070
(26) 0.091 0.092 0.082 0.085 0.058 0.058 0.061 0.064

Table 4: Results for distinct Ntrain averaged with respect to equations for 2D using loss (27), Ntest =
200.

Ntrain fSNO ChebNO DilResNet UNet
Etrain Eup

train Etrain Eup
train Etrain Eup

train Etrain Eup
train

200 0.037 0.062 0.039 0.067 0.025 0.049 0.049 0.080
400 0.024 0.044 0.027 0.047 0.017 0.030 0.031 0.059
600 0.021 0.038 0.022 0.040 0.014 0.024 0.045 0.072
800 0.018 0.032 0.019 0.035 0.013 0.020 0.031 0.056
1000 0.017 0.029 0.018 0.032 0.013 0.018 0.030 0.054
1200 0.016 0.028 0.017 0.029 0.012 0.015 0.029 0.052
1400 0.015 0.026 0.016 0.028 0.012 0.014 0.028 0.051
1600 0.015 0.025 0.015 0.027 0.012 0.013 0.029 0.052
1800 0.014 0.024 0.015 0.026 0.011 0.012 0.030 0.053
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Table 5: Results for distinct Ntrain averaged with respect to equations for 2D using loss (27), Ntest =
200.

Ntrain fSNO ChebNO DilResNet UNet
Etest Eup

test Etest Eup
test Etest Eup

test Etest Eup
test

200 0.041 0.078 0.042 0.081 0.029 0.063 0.055 0.115
400 0.027 0.057 0.029 0.059 0.019 0.039 0.038 0.080
600 0.023 0.048 0.024 0.050 0.015 0.030 0.048 0.085
800 0.020 0.042 0.021 0.044 0.014 0.025 0.034 0.068
1000 0.018 0.038 0.020 0.040 0.013 0.022 0.033 0.066
1200 0.018 0.036 0.018 0.036 0.012 0.019 0.032 0.063
1400 0.017 0.033 0.018 0.034 0.012 0.017 0.031 0.059
1600 0.016 0.030 0.016 0.032 0.012 0.016 0.031 0.060
1800 0.015 0.029 0.016 0.031 0.012 0.015 0.033 0.062

Table 6: fSNO train and test results for all 2D datasets, Ntrain = 1800, Ntest = 200.

equation Etrain Etest Eup
train Eup

test Rup
train Rup

test

(23) 0.012 0.013 0.024 0.031 0.844 0.821
(24) 0.017 0.018 0.023 0.023 0.795 0.819
(25) 0.014 0.017 0.022 0.028 0.938 0.929
(26) 0.013 0.014 0.027 0.034 0.844 0.834

Table 7: ChebNO train and test results for all 2D datasets, Ntrain = 1800, Ntest = 200.

equation Etrain Etest Eup
train Eup

test Rup
train Rup

test

(23) 0.013 0.015 0.028 0.034 0.858 0.847
(24) 0.017 0.018 0.025 0.025 0.767 0.796
(25) 0.015 0.018 0.024 0.030 0.941 0.933
(26) 0.013 0.014 0.028 0.034 0.859 0.831

Table 8: UNet train and test results for all 2D datasets, Ntrain = 1800, Ntest = 200.

equation Etrain Etest Eup
train Eup

test Rup
train Rup

test

(23) 0.012 0.014 0.023 0.035 0.872 0.823
(24) 0.025 0.024 0.037 0.036 0.869 0.883
(25) 0.070 0.078 0.128 0.142 0.824 0.819
(26) 0.013 0.014 0.026 0.035 0.866 0.820

Table 9: DilResNet train and test results for all 2D datasets, Ntrain = 1800, Ntest = 200.

equation Etrain Etest Eup
train Eup

test Rup
train Rup

test

(23) 0.008 0.009 0.015 0.018 0.823 0.771
(24) 0.010 0.012 0.016 0.017 0.807 0.826
(25) 0.009 0.011 0.014 0.019 0.890 0.881
(26) 0.009 0.010 0.015 0.018 0.818 0.803

Table 10: Results for distinct equations averaged with respect to architectures, Ntrain = 1200.

equation Etrain Etest Eub
train Eub

test Rub
train Rub

test Ẽub
train Ẽub

test R̃ub
train R̃ub

test

(23) 0.009 0.012 0.017 0.023 0.861 0.859 0.117 0.125 0.840 0.831
(24) 0.015 0.017 0.031 0.034 0.980 0.986 0.103 0.107 0.832 0.841
(25) 0.015 0.020 0.027 0.034 0.977 0.984 0.113 0.138 0.752 0.794
(26) 0.010 0.013 0.017 0.021 0.861 0.877 0.111 0.116 0.789 0.786
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Table 11: Results for distinct architectures averaged with respect to equations, Ntrain = 1200.

Architecture Etrain Etest Eub
train Eub

test Rub
train Rub

test Ẽub
train Ẽub

test R̃ub
train R̃ub

test

ChebNO 0.012 0.014 0.021 0.024 0.916 0.922 0.092 0.097 0.911 0.906
DilResNet 0.013 0.016 0.023 0.035 0.939 0.935 0.072 0.077 0.779 0.838

FNO 0.009 0.016 0.017 0.026 0.911 0.935 0.133 0.168 0.818 0.838
MLP 0.020 0.020 0.036 0.034 0.922 0.916 0.166 0.167 0.709 0.693
UNet 0.009 0.013 0.018 0.023 0.923 0.929 0.090 0.096 0.783 0.777
fSNO 0.011 0.013 0.022 0.025 0.907 0.921 0.114 0.124 0.820 0.827

Table 12: Results for distinct Ntrain averaged with respect to the network type and equation.

Ntrain Etrain Etest Eub
train Eub

test Rub
train Rub

test Ẽub
train Ẽub

test R̃ub
train R̃ub

test

200 0.039 0.052 0.113 0.190 0.916 0.925 0.263 0.322 0.768 0.819
400 0.023 0.030 0.049 0.073 0.917 0.930 0.177 0.206 0.795 0.813
600 0.018 0.023 0.033 0.047 0.915 0.925 0.145 0.165 0.794 0.809
800 0.015 0.019 0.027 0.035 0.915 0.925 0.135 0.149 0.804 0.818

1000 0.013 0.017 0.024 0.031 0.914 0.924 0.116 0.129 0.795 0.809
1200 0.012 0.015 0.023 0.028 0.920 0.926 0.111 0.122 0.803 0.813

Table 13: Equation (23), different resolutions, results are averaged with respect to architecture type.

J Etrain Etest Eub
train Eub

test Ẽub
train Ẽub

test Ẽub
train

/
Eub

train Ẽub
test

/
Eub

test

5 0.009 0.012 0.017 0.023 0.117 0.125 7.019 5.448
6 0.012 0.015 0.024 0.027 0.127 0.135 5.364 5.020
7 0.020 0.022 0.060 0.058 0.183 0.183 3.043 3.174

Table 14: Ratios upper bound obtained by a posteriori neural solver
upper bound obtained by optimization , Ntrain = 1200.

train set test set
architecture \ equation (23) (24) (25) (26) (23) (24) (25) (26)

ChebNO 4.5 3.8 3.0 5.2 5.4 4.0 3.3 5.9
DilResNet 2.7 1.5 2.2 3.3 4.0 2.4 2.9 3.6

FNO 6.5 5.9 6.6 7.3 10.1 5.6 6.7 10.0
MLP 8.6 1.6 5.7 5.8 8.9 1.6 5.0 6.0
UNet 4.6 3.3 3.6 5.8 6.9 3.4 3.4 8.4
fSNO 5.2 4.8 5.0 5.5 5.9 4.9 4.8 6.1

Table 15: Results for fSNO for different λ for 2D datasets, Ntrain = 1200, Ntest = 800

.
equation λ = 0.01 λ = 0.1 λ = 1 λ = 10 λ = 100

Etrain Etest Etrain Etest Etrain Etest Etrain Etest Etrain Etest

(23) 0.026 0.027 0.016 0.018 0.014 0.016 0.017 0.019 0.104 0.102
(24) 0.028 0.028 0.02 0.02 0.019 0.019 0.021 0.021 0.03 0.029
(25) 0.021 0.023 0.015 0.017 0.016 0.018 0.017 0.019 0.071 0.070
(26) 0.032 0.033 0.016 0.019 0.014 0.017 0.017 0.019 0.105 0.105
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Table 16: Results for ChebNO for different λ for 2D datasets, Ntrain = 1200, Ntest = 800

.
equation λ = 0.01 λ = 0.1 λ = 1 λ = 10 λ = 100

Etrain Etest Etrain Etest Etrain Etest Etrain Etest Etrain Etest

(23) 0.026 0.028 0.016 0.018 0.015 0.017 0.016 0.018 0.064 0.062
(24) 0.032 0.031 0.021 0.021 0.02 0.02 0.021 0.021 0.028 0.027
(25) 0.024 0.026 0.016 0.018 0.016 0.018 0.02 0.021 0.055 0.054
(26) 0.03 0.031 0.017 0.019 0.016 0.017 0.019 0.021 0.025 0.026

Table 17: Results for UNet for different λ for 2D datasets, Ntrain = 1200, Ntest = 800

.
equation λ = 0.01 λ = 0.1 λ = 1 λ = 10 λ = 100

Etrain Etest Etrain Etest Etrain Etest Etrain Etest Etrain Etest

(23) 0.02 0.021 0.013 0.015 0.015 0.015 0.021 0.022 0.104 0.102
(24) 0.04 0.04 0.028 0.027 0.019 0.019 0.091 0.09 0.11 0.109
(25) 0.024 0.024 0.071 0.07 0.071 0.07 0.071 0.07 0.071 0.07
(26) 0.016 0.017 0.016 0.018 0.012 0.015 0.032 0.035 0.105 0.105

Table 18: Results for DilResNet for different λ for 2D datasets, Ntrain = 1200, Ntest = 800

.
equation λ = 0.01 λ = 0.1 λ = 1 λ = 10 λ = 100

Etrain Etest Etrain Etest Etrain Etest Etrain Etest Etrain Etest

(23) 0.013 0.013 0.01 0.01 0.009 0.01 0.009 0.01 0.017 0.017
(24) 0.021 0.02 0.018 0.018 0.018 0.018 0.018 0.018 0.027 0.026
(25) 0.013 0.014 0.012 0.012 0.011 0.012 0.012 0.012 0.048 0.047
(26) 0.013 0.014 0.009 0.01 0.01 0.01 0.01 0.011 0.026 0.026
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