
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EFFICIENT PARALLEL SAMPLERS FOR RECURRENT-
DEPTH MODELS AND THEIR CONNECTION TO DIFFU-
SION LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Language models with recurrent depth, also referred to as universal or looped when
considering transformers, are defined by the capacity to increase their computation
through the repetition of layers. Recent efforts in pretraining have demonstrated that
these architectures can scale to modern language modeling tasks while exhibiting
advantages in reasoning tasks. In this work, we examine the relationship between
recurrent-depth models and diffusion language models. Building on their similar-
ities, we develop a new diffusion forcing sampler for these models to accelerate
generation. The sampler advances by decoding new tokens at every forward pass of
the model, while the latent states of these tokens can be further refined in parallel
through recurrence. Theoretically, generation with our sampler is strictly more
expressive than the baseline autoregressive generation using the same time budget
on modern hardware. Moreover, this sampler, based on principles from diffusion
literature, can be directly applied to existing 3.5B recurrent-depth transformers
without any tuning, leading to up to a 5x speedup. Consequently, our findings
not only provide an efficient mechanism for parallelizing the extra computation
in recurrent-depth models at inference, but also suggest that such models can be
naturally viewed as strong continuous, though causal, diffusion language models.

1 INTRODUCTION

Conventional large language models (LLMs) are constructed as fixed-depth neural networks with
a predetermined number of layers (often merely a two-digit count), a property that not only allows
these models to be trained efficiently, but in practice appears sufficient for many tasks (Radford et al.,
2019). However, more challenging tasks in mathematics and programming often require conceptual
leaps over multiple steps in a logical chain that are hard for these models to learn robustly. More
formally, fixed-depth transformers fall within the complexity class TC0 (Merrill & Sabharwal, 2023).
To resolve this, recent efforts have focused on training models to “verbalize” their internal reasoning
into chains-of-thought composed of small sub-steps, each of which the model is capable of learning.

An alternative to fixed-depth are models with recurrent depth (Dehghani et al., 2019; Schwarzschild
et al., 2021), which can repeat layers. Consequently, these models are also referred to as looped
transformers (Giannou et al., 2023), or, as universal transformers, (Dehghani et al., 2019) when
highlighting the motivation for these systems to represent universal Turing machines (Graves et al.,
2014; Graves, 2017). Merrill & Sabharwal (2025) showcase that, in contrast to fixed-depth models,
models with arbitrary recurrence are indeed capable of representing a larger complexity class.

However, generation with autoregressive recurrent-depth models is typically slow, given that every
repetition of the model layers must be executed sequentially before the next token can be produced. In
this work, we discuss how generation from recurrent-depth models can be efficiently parallelized by
connecting this architecture to diffusion model architectures. Both architectures “recur” in a related
sense, and even though both are trained with different objectives, we show that samplers adapted
from diffusion literature, namely, diffusion forcing (Chen et al., 2024b), can be directly applied to
parallelize the generation of already existing recurrent-depth models from Geiping et al. (2025).

We discuss how to adapt diffusion forcing sampling to recurrent-depth models, identifying the
essential architectural components and strategies required to ensure both stability of the iterates and

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) Sequential Generation

R
ec

ur
re

nc
e

S
te

ps

Token Position

1

2

3

4

5

6

7

8

9

(b) Diffusion Forcing Sampler

Token Position

1 2 3 4 5

2 3 4

3 4 5

4 5

5
Legend

Prior Compute Steps

Current Compute Step

R
ec

ur
re

nc
e

S
te

ps

5

Figure 1: Different generation schemes for autoregressive, recurrent-depth models. Left: Standard sequential
generation, which proceeds one token and step of the recurrence at a time (time steps denoted by integers). Right:
A diffusion forcing sampler used for the same model can parallelize generation “diagonally”, by computing one
step of the recurrence per token position, iteratively refining its estimate of the generated sequence.

bounded memory usage. As illustrated in Figure 1, rather than waiting for the recurrence at sequence
position n to fully converge before generating the next token, our sampler immediately produces
token drafts from intermediate iterates. It then advances to position n + 1, where the subsequent
forward pass simultaneously refines the drafts for steps n and n+ 1, while also decoding an initial
draft for n + 2. In this way, the sampler achieves parallelism along the sequence dimension, akin
to speculative decoding. Importantly, because the underlying model is trained as a causal language
model, information still propagates strictly from left to right, and the output sequence is iteratively
refined across recurrences. This parallelization is not guaranteed to generate the same solution, but
we show in this work theoretically and practically that it generally leads to solutions with similar
quality that are generated much quicker. While the approach does not reduce FLOPs, it effectively
exploits modern GPU architectures by unlocking additional opportunities for parallelization. Overall,
in this work, we

• Clarify the connection between recurrent-depth models and diffusion models via diffusion forcing
and block or wave-based inference strategies for sequence-based diffusion models.

• Describe how to apply principles from diffusion forcing to efficiently parallelize the inference of
models with recurrent depth.

• Verify that recurrent-depth models equipped with diffusion-forcing samplers achieve the strongest
balance between practical efficiency and theoretical expressiveness in both prefilling and decoding.

• Show that diffusion forcing sampling outperforms even well-tuned speculative decoding baselines
for the same model with speed gains that can be smoothly traded off against response quality.

2 RELATED WORK

We briefly introduce both recurrent models and diffusion models, focusing on language applications.

Recurrent Models. Models with recurrent computations have long been central to machine learning
(Amari, 1972; Hopfield, 1982; Braitenberg, 1986; Gers & Schmidhuber, 2000; Sutskever et al.,
2008), not only due to significant inspiration from recurrent firing patterns found in neuroscience
(Hopfield, 1982; Lamme & Roelfsema, 2000; Douglas & Martin, 2004), and early successes in
language modeling centered on recurrent neural networks (Mikolov et al., 2010; Sutskever et al.,
2011). With the advent of transformer models, these architectures were considered less scalable,
yet recurrence, now as recurrence in depth, was swiftly re-introduced as universal transformers,
Dehghani et al. (2019), motivating that these models could be capable of modeling universal Turing
machines (Graves et al., 2014). Other work showed that recurrent models were capable of learning
algorithms (Schwarzschild et al., 2021; Bansal et al., 2022; Bear et al., 2024). That recurrence was
capable of representing universal computation was explicitly constructed for transformer models
in Giannou et al. (2023), and following work on looped transformers has shown that these models
are capable learners (Giannou et al., 2023; Gatmiry et al., 2024; Yang et al., 2024; McLeish et al.,
2024; Fan et al., 2025). These findings have led to a wave of work training larger, general-purpose
recurrent-depth models of language (Tan et al., 2023; Abnar et al., 2023; Mathur et al., 2024; Csordás
et al., 2024; Geiping et al., 2025), as well as work retro-fitting recurrence into trained models (Li
et al., 2020; Bae et al., 2024; Hay & Wolf, 2023; Liu et al., 2024b). Several of these works also
highlight the possibility of implementing latent reasoning via recurrence, that is to complement or
replace verbalized chains-of-thought, with recurrence. Examples for this line of thinking are Coconut
(Hao et al., 2024), as well as Liu et al. (2024a); Cheng & Durme (2024).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

t=3 To determine the number I

t=4 To determine how number of would

t=5 To determine how many of eggs-

t=6 To determine how many dozens dozens Claireto

t=7 To determine how many dozens of of willons

t=8 To determine how many dozens of eggs eggs be of

t=9 To determine how many dozens of eggs Claire Claire Claire a

t=10 To determine how many dozens of eggs Claire will will will day

t=11 To determine how many dozens of eggs Claire will eat eat eat in

t=12 To determine how many dozens of eggs Claire will eat in in in 4

t=13 To determine how many dozens of eggs Claire will eat in 4 4 4 weeks

Frozen tokens, committed to KV cache Current Candidate Tokens Newly Sampled Token

Figure 2: An example of a text sequence being generated with the proposed diffusion forcing sampler from
a depth-recurrent model. While the original recurrent-depth model requires 32 recurrence steps to produce a
single token (the default for this model), the diffusion sampler has already produced and committed 8 new tokens
(green). As described, the sampler advances by at least one token per step of the recurrence. Decoded candidate
tokens are initial spell out incoherent text, but map into the right concepts, and quickly improve with more steps.
Note that the “freeze” decision is dynamic, based on distance to the previous state in latent space (not pictured).

In this work, we propose a generic sampling algorithm for depth-recurrent models, which we test with
the models developed in Geiping et al. (2025), which are trained for general language understanding
and reasoning on 800B tokens, with 3.5B parameters, and openly accessible.

Diffusion Language Models. Diffusion models are general-purpose generative models, with early
applications focusing on continuous domains, such as images (Song & Ermon, 2019; Rombach et al.,
2022; Peebles & Xie, 2023), which lead to substantial interest in extending diffusion also to discrete
domains, such as text (Austin et al., 2021; Hoogeboom et al., 2021). Approaches to language diffusion
are split on whether to incorporate diffusion processes on a continuous variable (that is then projected
into discrete space) (Chen et al., 2022; Dieleman et al., 2022; Han et al., 2023; Karimi Mahabadi et al.,
2024; Jo & Hwang, 2025; Graves et al., 2025), or diffusion processes that directly act on discrete
variables.(Lou et al., 2024; Richemond et al., 2023). The latter though, especially using masking as
the discrete forward diffusion step, is currently the most scalable approach, employed in large-scale
efforts to train language diffusion models, competitive with autoregressive models (Gong et al.,
2025a;b; DeepMind, 2025; Nie et al., 2025; Wang et al., 2025b; Xie et al., 2025; Ye et al., 2025).

Inference Strategies for Diffusion Language Models. To make diffusion tractable for arbitrarily
long sequences requires techniques such as block diffusion (Arriola et al., 2025), where chunks of
text are being modified by the diffusion model, and then frozen and their KV entries cached, with the
sampler moving to the next chunk. A more free-form approach to handle sequence-based diffusion is
to use diffusion forcing (Chen et al., 2024b), a hybrid model, where noise is added to future tokens in
a sequence relative to the position of the current token, allowing the sampler to move both on both
the sequence dimension and the diffusion time dimension.

Inference Acceleration for Fixed-Depth Transformers. Inference in transformers, in particular in
small-batch settings is memory-bound, meaning that the transfer of data (or, in the default case, model
parameters) to and from the L1 cache of the accelerator, is the dominating cost during inference,
allowing algorithms such as speculative decoding (Leviathan et al., 2023) and follow-ups (Cai
et al., 2024; Miao et al., 2024; Chen et al., 2024c) to improve inference speed through speculative
parallelization. Using smaller draft models, these algorithms draft text several tokens in the future,
which can then be verified using the original model, as verification of the entire text sequence is
compute-bound and hence, fast.

3 APPLYING DIFFUSION FORCING TO RECURRENT-DEPTH MODELS

In this section, we present our diffusion forcing sampler for recurrent-depth models, which accelerates
text generation by advancing at least one token in each recurrence step, as illustrated in Figure 2.

3.1 UNDERSTANDING RECURRENT-DEPTH AS LATENT DIFFUSION

Before detailing the diffusion forcing sampler, we briefly describe the particular recurrent-depth archi-
tecture proposed by Geiping et al. (2025), emphasizing features of the model that are pertinent to the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

sampler’s functionality. We will use the checkpoint name Huginn-0125 when referring to the trained
model. The architecture of this model contains three main blocks, each composed of multiple trans-
former layers: (i) a prelude block P , projecting the embedded input tokens into a latent space; (ii) a
recurrent block R, iterating r times in this latent space by refining a state vector s, and (iii) a coda block
C that processes the latent state and produces the model’s probabilities for the next token, formally

e = P (x)

s0 ∼ N (0, σ2I)

si = R(e, si−1) for i ∈ {1, . . . , r}
p = C(sr).

Notably, while this architecture is derived from looping the middle layers of fixed-depth transformer
models (Skean et al., 2024; Sun et al., 2024; Kaplan et al., 2024), with features such as input injection
and random state initialization from the literature of recurrent-depth models (Bansal et al., 2022; Anil
et al., 2022), it can also be interpreted as a latent-space diffusion model following the formulation
of Rombach et al. (2022): Starting from an initial random state s0, the model iteratively refines this
state conditioned on the embedded input sequence e, until we assume the state to be completely
denoised at the end of the process, at which point it will be decoded into the next token using C.

In Geiping et al. (2025), this model is trained using randomized unrolling with truncated backpropa-
gation, i.e. a random number of iterates r is sampled (from a Poisson-lognormal distribution), and
then the entire current batch of training sequences is iterated up to r, which is not directly related to
diffusion language modeling, which most effectively trains by randomized masking and adaptation
from autoregressive models (Nie et al., 2025; Xie et al., 2025; Ye et al., 2025; Gong et al., 2025a).

3.2 THE INGREDIENTS FOR DIFFUSION FORCING SAMPLING

While we will describe experiments using this particular recurrent-depth model, the sam-
pler can be applied to all recurrent-depth models that fulfill the following requirements.

0 5 10 15 20 25 30
Recurrence Steps (r)

0%

10%

20%

30%

40%

50%

Ac
cu

ra
cy

KV-Cache Sharing (KV size fix)
Baseline (KV size prop. to r)

Figure 3: The Huginn-0125
recurrent-depth model can match
the baseline performance on the
GSM8k dataset when enabling
KV cache sharing (with a min-
imal cache size of 1), using r-
times less memory for KV states.

Input Injection. The first necessary component, aside from the
recurrence over layers itself, is the input injection, i.e., the con-
ditioning of the recurrence on e. This will allow the sampler to
“course-correct” if conditioning changes without having to jettison
a partially computed state s. The other component that may im-
prove the connection to diffusion modeling is the initialization of
random states, but while we speculate that this is beneficial, it is not
architecturally necessary. As such, recurrent-depth models trained
in Csordás et al. (2024); Schöne et al. (2025); Mohtashami et al.
(2024) or Wang et al. (2025a) could also benefit from this sampler.
However, looped architectures such as Coconut (Hao et al., 2024),
which train to feed the outputs of a transformer back in as inputs,
are not immediately supported and require retraining to incorporate
input injection, separating their recurrent state from their input data.

Robust Recurrence. The second necessary property is that the
intermediate state at every step of the recurrence must be decodable
to approximately correct solutions. While this property is generally satisfied, it may fail in models
trained exclusively with a fixed number of recurrences r, where decoding from earlier steps can yield
nonsensical outputs rather than approximate versions of the intended result.

KV Cache Sharing. The third property, while not strictly required but highly beneficial for diffusion
forcing samplers, is the ability of different recurrent depths to share their KV cache across iterations
during generation. Without fungible KV states, all KV states from previous recurrences and tokens
must be retained in memory, causing the cache to grow with both sequence length and recurrence
depth. As shown in Figure 3, the trained Huginn-0125 model inherently supports KV cache sharing,
allowing us to store only the KV state of the most recent recurrence for each token position1.

1With this form of KV sharing, the cache requires no more memory than that of a parameter-matched
fixed-depth transformer.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Diffusion-forcing-style generation, simplified version (Full Version in Algorithm 2)

Require: current text context x, max new tokens N , inner recurrence r′, total recurrences per token r, diffusion
steps T , init scale α

1: yfrozen ← x
2: ycurrent ← x
3: z← InitState(1, α)
4: for step t = 1, . . . , T do
5: e← P(ycurrent)
6: znoise ← InitState(1, α)
7: z← (1− βt)z+ βt znoise
8: for j = 1, . . . , r′ do
9: z← R(z, e) ▷ Inner recurrence

10: end for
11: p← C(z) ▷ project latent states to logits
12: ŷ← Sample(p)
13: ycurrent ← [yfrozen, ŷ]
14: yfrozen ← Assign ycurrent up to the last ⌈ r

r′ ⌉ entries ▷ Freeze completed tokens
15: if |yfrozen| − |x| ≥ N then break
16: end if
17: z← [z, InitState(1, α)] ▷ Append a new latent state for the next position
18: end for
19: return yfrozen

3.3 A SIMPLIFIED VERSION OF THE SAMPLING ALGORITHM

Next, we present the algorithm for our sampler. Given a prompt x, Algorithm 1 describes a simplified
version that directly adapts diffusion forcing principles to parallelize generation across the sequence
dimension. This approach yields improvements in tokens/second while maintaining equivalent total
FLOP requirements. An example of the sampler’s behavior is illustrated in Figure 2.

We emphasize several important aspects. First, the number of inner recurrences r′ may be chosen
to exceed one. These additional iterations are relatively inexpensive, since the broader logic of
the sampler is not yet invoked. More importantly, they serve to stabilize the recurrence. Because
the conditioning on the input embedding e may vary across successive steps of the sampler, the
model risks becoming trapped in oscillatory behavior unless sufficient steps are allowed to adapt the
current state to the evolving conditioning. This mechanism closely parallels practices in the diffusion
literature, such as the use of supplementary diffusion steps in Bansal et al. (2023) to incorporate
complex guidance signals into image diffusion models.

Second, we naturally employ this sampler only during the generation phase, as the prefill phase is
already parallelizable in the sequence dimension, as the recurrence can be computed on all token
positions of the prompt simultaneously.

Further, in terms of efficiency, we note that we do not actually want to keep the state for all tokens
changing indefinitely, as doing so would slow down generation again, as well as increase memory
usage dramatically. As such, similar to block-diffusion samplers (Arriola et al., 2025), we look for
rules that decide when each position is “finished”. In the simplified version of the sampler, we freeze
the last token once we reach a predetermined number of recurrence steps at this position – which
naturally happens r positions behind the current maximal extent of the sequence. Frozen tokens are
removed from the state vector and their KV states are added to the cache, so that, as in block diffusion
models (Arriola et al., 2025), at each point in time, only a small subset of tokens in being modified
and the full generation runs like a wave over the generating sequence. Finally, note that with this
simplified exit rule, r′ = r exactly recovers the original autoregressive sampler.

3.4 STABILIZING COMPONENTS BASED ON DIFFUSION PRINCIPLES

Further, we also experiment with adding momentum to the input conditioning e, setting

e = η eprev + (1− η)P(ycurrent), (1)

which we find can stabilize the recurrence in challenging sequences, providing a small, but robust
gain on average.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0 20 40 60 80
Token Position

0

20

40

60

80

100

120

140

Sa
m

pl
er

 S
te

p

0 20 40 60 80
Token Position

0

20

40

60

80

100

120

140

Sa
m

pl
er

 S
te

p

0 20 40 60 80
Token Position

0

20

40

60

80

100

120

140

Sa
m

pl
er

 S
te

p

Figure 4: Examples of adaptive sampler behavior. Each color represents a token id in the vocabulary of the
model, showing the development of the generated sequence (running left to right) as a function of sampler steps
(running top to bottom) for different hyperparameter choices. The leftmost example is r′ = 4, and tokens are
frozen quickly, whereas middle and right show sequences with r < 4 require more adaptive computation, and
in both cases the sampler stalls after hitting the maximal length of the wavefront (here 32 to visualize), before
resolving the sequence and advancing again.

Secondly, surprisingly, we find that even though these models are never trained with noise injected
into intermediate states, that artificially adding noise to the state in each step of the sampler, in
analogy to sampling from continuous diffusion models, i.e.

z′ = (1− βt)z+ βt znoise where znoise = InitState(1, α), (2)

can stabilize the iterative process, leading to gains in both accuracy and throughput if r′ is small. In
practice, we schedule βt linearly as a function of steps t at each position, so that the latter steps are
naturally less noisy (Chen et al., 2024a), which we find to outperform either scheduling βt scaled by
the square root of the number of recurrences at each position or keeping it constant. However, the
optimal value of βt depends on r′.

3.5 ADAPTIVE EXITS

However, the fixed exit scheme of the simplified sampler can run into issues. The recurrent-depth
model is causal and how quickly states converge depends on the complexity of the query. This can
lead to situations where either, compute is wasted because the states at certain positions have already
converged quicker than r, or, more problematically, states where, due to a late change in the condi-
tioning of prior tokens, the states have not converged in time. Freezing these unfinished states would
worsen generation, in the worst case leading to a spiral where each token that is frozen incorrectly
slows down convergence further, leading to a response that becomes more incorrect with each token.

However, we can remedy both cases through adaptive compute. We pick the simplest adaptive exit
criterion, the normalized distance in latent space, and compute this quantity for each position and
freeze up to all positions where this distance δi is smaller than a threshold ε.

δi =
∥zi − zprev,i∥2
∥zi∥2

, k∗ = max{k : δj < ε for all j ≤ k} (3)

We combine this with a limiter on the maximum length of the wavefront of the algorithm to guarantee
that both 1) the number of states currently being modified, so the maximum memory footprint, is
bounded and 2) only positions with converged states are frozen. The full algorithm is described in
Appendix Algorithm 2. With these rules in place, we note that setting the wavefront to 1 token, we
exactly recover the token-per-token adaptive compute sampler from (Geiping et al., 2025).

We show the practical outcome of this sampler for a challenging input sequence from GSM8k in
a series of heatmaps in the appendix, see Figure 13. The heatmap shows the development of the
sequence as a function of generation steps and tokens. We see that the wave first advances quickly,
but then halts for a short amount of steps, before resuming the advance.
Remark 3.1 (Convergence of the Adaptive Diffusion Sampler). With this algorithm, we can, in
principle guarantee convergence to the same solution as when sampling autoregressively, if we
assume that the recurrent block R was a contraction. Then, convergence of iterates, i.e. Equation (3),
would imply convergence to the fixed point of the operator. Second, because the model is causal,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

convergence of the first token position does not depend others and will converge at some step t. At this
step, the conditioning of the subsequent token is frozen, so it will also converge, proving convergence
of the full sequence to the autoregressive solution by induction. However, in practice, large-scale
recurrent-depth models are not easily proven to be contractive, even if models are approximately
path-independent (Anil et al., 2022), so we provide this only as a conceptual remark.

4 THEORETICAL ANALYSIS

This section develops a theoretical framework to justify the optimality of our design in balancing
efficiency and expressiveness with two research questions (RQs): (i) Why should models prioritize
recurrence, i.e. depth scaling, during prefilling? and (ii) Why should models prioritize parallelizing
decoding from a larger wavefront of tokens using the sampler described in the previous section, i.e.
width scaling during decoding?

4.1 PROBLEM FORMULATION

Before answering these RQs, we formalize the notions of depth and width within our framework,
which limits our analysis to Transformer-based autoregressive LLMs. In particular, we focus exclu-
sively on the comparison between depth and width, without considering length (i.e., CoT) scaling.

Definition 4.1 (Depth and Width in Recurrent-Depth Models, informal). For recurrent-depth models,
we define depth dt and width wt at each time step t ∈ N, with initial conditions d0 = 0 and w0 = L0

(where L0 denotes the input sequence length). The corresponding update rules are given as follows:

1. Depth Update: At each step t, dt+1 = dt + 1 with d0 = 0, therefore dt = t for all t ∈ N.

2. Width Update: At each step t, width changes only through token exits and token entries:

δ(t) =

{
−1, if a hidden state decodes from the model (exit event),
+1, if a latest token encodes into the model (entry event).

4.2 LLMS SHOULD PRIORITIZE DEPTH SCALING DURING PREFILLING.

To establish this, we first define a width scaling architecture without increasing model parameters
following Wu et al. (2025). Concretely, we repeat each token along the sequence dimension. Note
that during prefilling, increasing the number of such repeated tokens is equivalent to width scaling
under our definition, since this expands the input sequence length. Here, we introduce two variants:

• Width Scaling without KV Sharing (Width-NoShare): For the j-th copy of token i, attention is
allowed to all copies of tokens 0, . . . , i− 1, as well as the first j − 1 copies of token i.

• Width Scaling with KV Sharing (Width-KVShare): For the j-th copy of token i, attention is limited
to (i) the last copy of tokens 0, . . . , i− 1, and (ii) the first j − 1 copies of token i.

Based on the above definition, we state the importance of depth scaling during prefilling stage.

Theorem 4.2 (Depth vs. Width Scaling in Prefilling, informal). Given the width-scaling architecture
above and our recurrent-depth model with the same scaling factor s. Then the following hold:

1. Expressiveness. Under equal scaling factors, depth scaling is more expressive than width scaling.

2. Complexity. For asymptotic prefill cost (including both attention and linear layers), we have

EDepth≤EWidth-KVShare<EWidth-NoShare.

3. Parallelism. There exists a threshold L⋆ such that for L < L⋆, width scaling provides s2 times
the parallelism of depth scaling, while for L ≥ L⋆ both saturate with similar parallelism.

Remark 4.3. Let L be a random variable for prompt length with distribution D. Then the probability
that depth scaling is more efficient than width scaling equals PrL∼D[L ≥ L⋆]. Since L⋆ on modern
GPUs typically lies between a few hundred and a few thousand tokens while empirical input length
distributions place substantial mass above this range, the probability is indeed close to 1 in practice.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Sampler GSM8K MATH500 HumanEval MBPP

Acc t/s Acc t/s Acc t/s Acc t/s

Static AR (r = 32) 41.77% 36.1 17.60% 6.4 22.56% 13.5 31.60% 15.3

Static AR (r = 4) 1.59% 312.9 3.20% 18.6 0.61% 244.1 1.40% 49.6
Static AR (r = 8) 31.61% 137.5 14.80% 23.1 21.34% 61.7 27.40% 57.2
Static AR (r = 64) 42.15% 18.2 18.60% 3.4 22.56% 7.3 30.20% 7.6

Adaptive Compute AR 42.23% 66.9 18.20% 12.2 21.95% 26.1 30.20% 29.5
Speculative Decoding AR 42.76% 69.5 17.80% 13.4 20.12% 27.5 30.60% 31.6

Diff. Sampler (r′ = 2, βt = 0.5) 40.71% 182.2 17.60% 35.9 20.12% 67.4 27.80% 92.3
Diff. Sampler (r′ = 4, βt = 0) 42.08% 157.3 18.00% 30.3 20.12% 64.9 31.00% 70.2

Relative Diff to AR (r = 32) +0.31 4.36x +0.40 4.73x -2.44 4.81x -0.60 4.59x

Table 1: Performance comparison of autoregressive (AR) and diffusion samplers for the Huginn-0125 model
using a comparable backend (batch size 1, transformers with dynamic KV caching, no further inference
optimizations). For both samplers, we record the total evaluation time divided by the number of samples. “Acc”
denotes task accuracy, and “t/s” denotes the median of tokens/second measurements for all samples in the task.

4.3 LLMS SHOULD PRIORITIZE WIDTH SCALING DURING DECODING.

Using this framework, we can compute when recurrent-depth models should use diffusion forcing
samplers during decoding.
Theorem 4.4 (Depth vs. Width Scaling in Decoding, informal). For recurrent-depth models with r >
1 inner recurrences, if diffusion forcing sampling and KV-cache sharing are employed with wavefront
size W ≤ L⋆, then diffusion forcing decoding achieves equal depth and strictly greater width
compared to standard autoregressive decoding under the same runtime constraints. Mathematically,
this relationship can be expressed as:

dDF(T) = dAR(T) and wDF(T) > wAR(T),

where T is the runtime budget, and DF and AR denote diffusion forcing and autoregressive decoding.

Remark 4.5. Since model parameters and KV states are shared, the I/O cost of processing multiple
tokens is asymptotically equivalent to processing a single token, enabling increased token generation
within identical runtime constraints. At each decoding step, an expanded wavefront enables greater
width scaling, providing superior expressiveness compared to autoregressive decoding. Empirically,
since maximum recurrence depth rarely exceeds r ≈ 100, the condition W ≤ L⋆ typically holds.

5 EXPERIMENTAL EVALUATION

To assess whether our method really accelerates generation, we compare our sampler against an
equally optimized implementation of standard autoregressive sampling, both evaluated with a batch
size of 1. Extensions to larger batch sizes are conceivable but fall outside the scope of this study, see
additional discussion in Section A.2

We evaluate the 4 generative benchmarks (GSM8K, MATH500, HumanEval and MBPP) also eval-
uated in (Geiping et al., 2025), which we rerun using our sampler and compare against a number
of baselines. Aside from the static, autoregressive baseline (static AR), at different recurrence
steps, we also compare against the adaptive compute sampler of the original work, which still
samples token-by-token, but exits the recurrence at every token, once the difference in latent space
is small enough. We tune this sampler, finding that its hyperparameter, the threshold ε is similar to
the diffusion sampler. Finally, we also compare against a heavily tuned self-speculative decoding
baseline. It was observed in Geiping et al. (2025) that recurrent-depth models can be natively used as
their own draft models, using fewer steps to draft. We find that drafting 4 tokens into the future, each
with 4 draft steps is optimal for the Huginn-0125 checkpoint on GSM8k.

We implement all samplers in comparable Hugging Face transformers implementations with
dynamic KV caching and we measure mean accuracy and median tokens per second, computed

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25 30
Inner Recurrence (r′), t = 0

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

Ac
cu

ra
cy

 (%
)

Accuracy
Throughput

25

50

75

100

125

150

175

200

To
ke

ns
/S

ec
on

d

0.03 0.05 0.08 0.25 0.50 0.80
Exit Threshold (), t = 0

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

Ac
cu

ra
cy

 (%
)

Accuracy
Throughput

20

40

60

80

100

120

140

160

180

200

To
ke

ns
/S

ec
on

d

Figure 5: Trade-off between accuracy and speed on GSM8k under different hyperparameter choices. Left:
Effect of increasing inner recurrence r′. Inner recurrence stabilizes the sampling, increasing accuracy at the cost
of throughput. Right: Effect of varying the exit threshold ε. Modulating the exit threshold most directly trades
off throughput and accuracy.

Sampler GSM8K Minerva Math HumanEval MBPP

Acc Time Acc t/s Acc t/s Acc t/s

Huginn-0125

Static AR (r = 32) 41.77% 36.1 12.98% 21.0 22.56% 13.5 31.60% 15.3
Diff. Sampler (r′ = 4, βt = 0) 42.08% 157.3 13.06% 96.0 20.12% 64.9 31.00% 70.2

SWA Model Variant

Static AR (r = 32) 47.99% 36.2 14.86% 22.1 23.78% 14.9 31.20% 11.8
Diff. Sampler (r′ = 4, βt = 0) 47.08% 143.1 14.52% 101.4 23.78% 71.2 29.20% 59.7

Math-Finetuned Model

Static AR (r = 32) 58.91% 29.8 22.20% 7.9 17.07% 11.5 28.80% 11.2
Diff. Sampler (r′ = 4, βt = 0) 58.45% 144.1 21.40% 39.8 15.24% 47.9 27.60% 57.1

Table 2: Hyperparameters remain stable across different model variants. For example, both the weight-averaged
checkpoint from the original work and the model finetuned on MetaMath for this study exhibit consistent speed
gains in the range of 4–5× and accuracy deviations within 0.5–1%, even when baseline values change.

over queries from each benchmark. All timings are obtained from CUDA event measurements on
sandboxed A100-40GB GPUs. If not otherwise mentioned, we default to conservative settings for the
sampler, always setting an exit threshold of ε = 0.03, βt = 0, η = 0.1 and r′ = 4, for a maximum
wavefront size of 128, if not otherwise mentioned.

Benchmark Results. We summarize our findings in Table 1. We find that on all benchmarks,
executing the parallelized sampler leads to significant speedups of around 5x, with only minor
trade-offs in generation quality of around 1%, depending on the task, owing to the trade-off set by our
default hyperparameters. In Table 2 we repeat all benchmarks for two additional model checkpoints,
the SWA model also released in Geiping et al. (2025), and a math variant, that we finetuned on the
MetaMath dataset (Yu et al., 2023). Even though these model variants differ noticeably in their
benchmark scores, they show similar gains and trade-offfs when using the diffusion sampler.

Hyperparameter Choices. We show the trade-off curves arising when varying the inner recurrence
r′ and the exit threshold ε in Figure 5 for two settings of noise βt, finding that we can effectively
trade-off additional generation speed against minor losses in accuracy. We further vary the embedding

0.0 0.1 0.2 0.3 0.4 0.5
Embedding EMA Value (), t = 0

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

Ac
cu

ra
cy

 (%
)

Accuracy
Throughput

20

40

60

80

100

120

140

160

180

200

To
ke

ns
/S

ec
on

d

4 8 32 64 256 1024
Maximum Wavefront Size

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

Ac
cu

ra
cy

 (%
)

Accuracy
Throughput

20

40

60

80

100

120

140

160

180

200

To
ke

ns
/S

ec
on

d

Figure 6: Left: Scaling the amount of momentum η in the conditioning., showing that small, but non-zero η
values are optimal. Right: Size of the wavefront. Increasing wavefront size up to a value around 64-128 appears
optimal. We note that the optimal wavefront size is also likely to be accelerator-specific.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

40 60 80 100 120 140 160 180
Throughput (Tokens/Second)

0.38

0.39

0.40

0.41

0.42

Ac
cu

ra
cy

r=1
r=2
r=3
r=4
r=5
r=6
r=7
r=8
r=16
r=32

t=0.0
t=0.1
t=0.2
t=0.3
t=0.5
t=0.8
t=1.0
t=2.0

Pareto Frontier

(32, 0)

(32, 0.5) (6, 0.2)

(4, 0.2)
(4, 0.3)

(2, 0.2)

(2, 0.3)

(2, 0.5)

(2, 0)

Figure 7: The Pareto Curve of Accuracy and Throughput on GSM8k spanned by varying inner recurrence and
noise hyperparameter pairs (r′, βt). Adding moderate amounts of noise, e.g. βt = 0.2 is dominating runs with
no noise added. Note also the scale of y-axis, as we are observing accuracy losses of only 2% on the frontier.

Text Similarity to AR LLM-as-Judge Evaluation Log-Perplexity

ROUGE Ident.
Resp.

Prefer.
(Win or Tie)

Correct Helpful Coherent Complete Self Ext.
(Qwen)

Tok/
Sec

Dataset 1 L

MTBench
AR Baseline 4.31 4.75 5.83 5.34 0.82 1.42 8.04
Diff. Sampler 0.68 0.55 9% 58% 4.26 4.67 5.69 5.15 0.90 1.33 24.53

AlpacaEval
AR Baseline 5.00 5.32 6.79 5.76 0.92 1.52 8.10
Diff. Sampler 0.68 0.55 11% 57% 4.88 5.15 6.43 5.42 0.95 1.56 26.48

LitBench
AR Baseline 4.23 4.49 5.38 4.96 1.12 1.66 8.10
Diff. Sampler 0.50 0.24 0.6% 44% 3.91 4.17 4.82 4.08 1.17 1.72 26.48

Hermes-3
AR Baseline 4.54 4.84 6.20 5.70 0.72 1.63 9.61
Diff. Sampler 0.75 0.67 31% 71% 4.67 4.82 6.22 5.50 0.69 1.63 34.37

Table 3: Comparison of free-form generation quality of autoregressive (AR) vs. Diffusion Sampling (Diff), cov-
ering textual overlap between both sampling strategies (in ROUGE F1 and percentage of identical answers), judge
preference (measuring percentage of answers that tie or exceed the AR baseline) and rating (from 1-10), both
via Claude Sonnet-4.5 and perplexity evaluated on the original model, and externally using Qwen-3-8b (base).

EMA η and the noise schedule in Figure 6, showing that the sampler is robust to a broad range
of settings for both options, although upsides are also limited. In Figure 7, we sweep a range of
values for r′ and βt, showing that, on average, more noise is helpful if the model takes fewer inner
recurrence steps. In Figure 6 (right), we confirm that larger maximum wavefront sizes (i.e. the
number of tokens that is modified at once in the adaptive sampler) allow for better parallelization. For
the tested A100 GPU, the optimal maximal wavefront size is between 64 and 128, although this is
likely accelerator-specific. In Table 3 we compare free-form generation quality metrics for a range of
prompt datasets, measuring text overlap and LLM-as-a-judge ratings. We find that the speed trade-off
is similar for free-form as for the reasoning benchmarks evaluated earlier.

6 CONCLUSIONS: ARE RECURRENT-DEPTH TRANSFORMERS SECRETLY
CONTINUOUS LANGUAGE DIFFUSION MODELS?

We have shown that, surprisingly, diffusion forcing samplers can be directly applied to parallelize the
inference of existing recurrent-depth language models, which we justify theoretically, and implement
in practice, leading to five times faster single-sequence inference, even on reasoning and coding
benchmark questions. Interestingly, we could also interpret this relationship in the opposite direction,
namely that some recurrent-depth models could be thought of effectively as continuous latent language
diffusion models, just trained with an unusual objective, namely truncated unrolling. This would
imply that unrolling objectives could be competitive objectives for future language diffusion models.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We provide a code submission with this submission that contains the complete sampler we describe,
including all options that can be directly slotted into pre-existing recurrent-depth modeling code. We
provide experimental details in Section 5 and provide further ablations and variants in the appendix.
If not otherwise mentioned, all measured values are based on at least 5 repeated experiments. All
timing are measured using CUDA events on GPUs of equal power, and are comparable to timings in
the same table or figure.

REFERENCES

Samira Abnar, Omid Saremi, Laurent Dinh, Shantel Wilson, Miguel Angel Bautista, Chen Huang,
Vimal Thilak, Etai Littwin, Jiatao Gu, Josh Susskind, and Samy Bengio. Adaptivity and Modularity
for Efficient Generalization Over Task Complexity. arxiv:2310.08866[cs], October 2023. doi:
10.48550/arXiv.2310.08866. URL http://arxiv.org/abs/2310.08866.

S.-I. Amari. Learning Patterns and Pattern Sequences by Self-Organizing Nets of Threshold Elements.
IEEE Transactions on Computers, C-21(11):1197–1206, November 1972. ISSN 1557-9956. doi:
10.1109/T-C.1972.223477. URL https://ieeexplore.ieee.org/document/16720
70.

Cem Anil, Ashwini Pokle, Kaiqu Liang, Johannes Treutlein, Yuhuai Wu, Shaojie Bai, J. Zico Kolter,
and Roger Baker Grosse. Path Independent Equilibrium Models Can Better Exploit Test-Time
Computation. In Advances in Neural Information Processing Systems, October 2022. URL
https://openreview.net/forum?id=kgT6D7Z4Xv9.

Marianne Arriola, Aaron Gokaslan, Justin T. Chiu, Zhihan Yang, Zhixuan Qi, Jiaqi Han, Sub-
ham Sekhar Sahoo, and Volodymyr Kuleshov. Block Diffusion: Interpolating Between Autoregres-
sive and Diffusion Language Models. arxiv:2503.09573[cs], May 2025. doi: 10.48550/arXiv.250
3.09573. URL http://arxiv.org/abs/2503.09573.

Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Struc-
tured Denoising Diffusion Models in Discrete State-Spaces. In Advances in Neural Informa-
tion Processing Systems, volume 34, pp. 17981–17993. Curran Associates, Inc., 2021. URL
https://proceedings.neurips.cc/paper/2021/hash/958c530554f78bcd8
e97125b70e6973d-Abstract.html.

Sangmin Bae, Adam Fisch, Hrayr Harutyunyan, Ziwei Ji, Seungyeon Kim, and Tal Schuster. Relaxed
Recursive Transformers: Effective Parameter Sharing with Layer-wise LoRA. October 2024. doi:
10.48550/arXiv.2410.20672. URL http://arxiv.org/abs/2410.20672.

Arpit Bansal, Avi Schwarzschild, Eitan Borgnia, Zeyad Emam, Furong Huang, Micah Goldblum,
and Tom Goldstein. End-to-end Algorithm Synthesis with Recurrent Networks: Extrapolation
without Overthinking. In Advances in Neural Information Processing Systems, October 2022. URL
https://openreview.net/forum?id=PPjSKy40XUB.

Arpit Bansal, Hong-Min Chu, Avi Schwarzschild, Roni Sengupta, Micah Goldblum, Jonas Geiping,
and Tom Goldstein. Universal Guidance for Diffusion Models. In The Twelfth International
Conference on Learning Representations, October 2023. URL https://openreview.net
/forum?id=pzpWBbnwiJ.

Jay Bear, Adam Prügel-Bennett, and Jonathon Hare. Rethinking Deep Thinking: Stable Learning of
Algorithms using Lipschitz Constraints. arxiv:2410.23451[cs], October 2024. doi: 10.48550/arX
iv.2410.23451. URL http://arxiv.org/abs/2410.23451.

Valentino Braitenberg. Vehicles: Experiments in Synthetic Psychology. MIT press, 1986.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri
Dao. Medusa: Simple LLM Inference Acceleration Framework with Multiple Decoding Heads.
arxiv:2401.10774[cs], January 2024. doi: 10.48550/arXiv.2401.10774. URL http://arxiv.
org/abs/2401.10774.

11

http://arxiv.org/abs/2310.08866
https://ieeexplore.ieee.org/document/1672070
https://ieeexplore.ieee.org/document/1672070
https://openreview.net/forum?id=kgT6D7Z4Xv9
http://arxiv.org/abs/2503.09573
https://proceedings.neurips.cc/paper/2021/hash/958c530554f78bcd8e97125b70e6973d-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/958c530554f78bcd8e97125b70e6973d-Abstract.html
http://arxiv.org/abs/2410.20672
https://openreview.net/forum?id=PPjSKy40XUB
https://openreview.net/forum?id=pzpWBbnwiJ
https://openreview.net/forum?id=pzpWBbnwiJ
http://arxiv.org/abs/2410.23451
http://arxiv.org/abs/2401.10774
http://arxiv.org/abs/2401.10774

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Boyuan Chen, Diego Marti Monso, Yilun Du, Max Simchowitz, Russ Tedrake, and Vincent Sitzmann.
Diffusion Forcing: Next-token Prediction Meets Full-Sequence Diffusion. arxiv:2407.01392[cs],
July 2024a. URL http://arxiv.org/abs/2407.01392.

Boyuan Chen, Diego Marti Monso, Yilun Du, Max Simchowitz, Russ Tedrake, and Vincent Sitzmann.
Diffusion Forcing: Next-token Prediction Meets Full-Sequence Diffusion. arxiv:2407.01392[cs],
December 2024b. doi: 10.48550/arXiv.2407.01392. URL http://arxiv.org/abs/2407
.01392.

Ting Chen, Ruixiang Zhang, and Geoffrey Hinton. Analog Bits: Generating Discrete Data using
Diffusion Models with Self-Conditioning. In The Eleventh International Conference on Learning
Representations, September 2022. URL https://openreview.net/forum?id=3itjR9
QxFw.

Zhuoming Chen, Avner May, Ruslan Svirschevski, Yuhsun Huang, Max Ryabinin, Zhihao Jia, and
Beidi Chen. Sequoia: Scalable, robust, and hardware-aware speculative decoding. arXiv preprint
arXiv:2402.12374, 2024c.

Jeffrey Cheng and Benjamin Van Durme. Compressed Chain of Thought: Efficient Reasoning
Through Dense Representations. arxiv:2412.13171[cs], December 2024. doi: 10.48550/arXiv.241
2.13171. URL http://arxiv.org/abs/2412.13171.

Róbert Csordás, Kazuki Irie, Jürgen Schmidhuber, Christopher Potts, and Christopher D. Manning.
MoEUT: Mixture-of-Experts Universal Transformers. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, November 2024. URL https://openreview.net
/forum?id=ZxVrkm7Bjl¬eId=xzoi2mTLOI.

Google DeepMind. Gemini Diffusion, May 2025. URL https://blog.google/technolo
gy/google-deepmind/gemini-diffusion/.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K.
Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui
Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan
Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou,
Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu,
Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun
Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan
Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu,
Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and
Zhen Zhang. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement
Learning. arxiv:2501.12948[cs], January 2025. doi: 10.48550/arXiv.2501.12948. URL
http://arxiv.org/abs/2501.12948.

12

http://arxiv.org/abs/2407.01392
http://arxiv.org/abs/2407.01392
http://arxiv.org/abs/2407.01392
https://openreview.net/forum?id=3itjR9QxFw
https://openreview.net/forum?id=3itjR9QxFw
http://arxiv.org/abs/2412.13171
https://openreview.net/forum?id=ZxVrkm7Bjl¬eId=xzoi2mTLOI
https://openreview.net/forum?id=ZxVrkm7Bjl¬eId=xzoi2mTLOI
https://blog.google/technology/google-deepmind/gemini-diffusion/
https://blog.google/technology/google-deepmind/gemini-diffusion/
http://arxiv.org/abs/2501.12948

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Universal
Transformers. arxiv:1807.03819[cs, stat], March 2019. doi: 10.48550/arXiv.1807.03819. URL
http://arxiv.org/abs/1807.03819.

Sander Dieleman, Laurent Sartran, Arman Roshannai, Nikolay Savinov, Yaroslav Ganin, Pierre H.
Richemond, Arnaud Doucet, Robin Strudel, Chris Dyer, Conor Durkan, Curtis Hawthorne,
Rémi Leblond, Will Grathwohl, and Jonas Adler. Continuous diffusion for categorical data.
arxiv:2211.15089[cs], December 2022. doi: 10.48550/arXiv.2211.15089. URL http:
//arxiv.org/abs/2211.15089.

Rodney J. Douglas and Kevan A. C. Martin. Neuronal circuits of the neocortex. Annual Review of
Neuroscience, 27:419–451, 2004. ISSN 0147-006X. doi: 10.1146/annurev.neuro.27.070203.1441
52.

Ying Fan, Yilun Du, Kannan Ramchandran, and Kangwook Lee. Looped Transformers for Length
Generalization. In The Thirteenth International Conference on Learning Representations, 2025.
URL https://openreview.net/forum?id=2edigk8yoU.

Daniel Fein, Sebastian Russo, Violet Xiang, Kabir Jolly, Rafael Rafailov, and Nick Haber. Litbench: A
benchmark and dataset for reliable evaluation of creative writing. arXiv preprint arXiv:2507.00769,
2025.

Khashayar Gatmiry, Nikunj Saunshi, Sashank J. Reddi, Stefanie Jegelka, and Sanjiv Kumar. Can
Looped Transformers Learn to Implement Multi-step Gradient Descent for In-context Learning?
October 2024. doi: 10.48550/arXiv.2410.08292. URL http://arxiv.org/abs/2410.0
8292.

Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R. Bartoldson,
Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up Test-Time Compute with
Latent Reasoning: A Recurrent Depth Approach. arxiv:2502.05171[cs], February 2025. doi:
10.48550/arXiv.2502.05171. URL http://arxiv.org/abs/2502.05171.

F.A. Gers and J. Schmidhuber. Recurrent nets that time and count. In Proceedings of the IEEE-INNS-
ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New
Challenges and Perspectives for the New Millennium, volume 3, pp. 189–194 vol.3, July 2000. doi:
10.1109/IJCNN.2000.861302. URL https://ieeexplore.ieee.org/document/861
302.

Angeliki Giannou, Shashank Rajput, Jy-Yong Sohn, Kangwook Lee, Jason D. Lee, and Dimitris
Papailiopoulos. Looped Transformers as Programmable Computers. In Proceedings of the 40th
International Conference on Machine Learning, pp. 11398–11442. PMLR, July 2023. URL
https://proceedings.mlr.press/v202/giannou23a.html.

Shansan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An,
Peilin Zhao, Wei Bi, Jiawei Han, Hao Peng, and Lingpeng Kong. Scaling Diffusion Language
Models via Adaptation from Autoregressive Models. arxiv:2410.17891[cs], May 2025a. doi:
10.48550/arXiv.2410.17891. URL http://arxiv.org/abs/2410.17891.

Shansan Gong, Ruixiang Zhang, Huangjie Zheng, Jiatao Gu, Navdeep Jaitly, Lingpeng Kong, and
Yizhe Zhang. DiffuCoder: Understanding and Improving Masked Diffusion Models for Code
Generation. arxiv:2506.20639[cs], June 2025b. doi: 10.48550/arXiv.2506.20639. URL
http://arxiv.org/abs/2506.20639.

Alex Graves. Adaptive Computation Time for Recurrent Neural Networks. arxiv:1603.08983[cs],
February 2017. doi: 10.48550/arXiv.1603.08983. URL http://arxiv.org/abs/1603.0
8983.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural Turing Machines. arxiv:1410.5401[cs],
December 2014. URL http://arxiv.org/abs/1410.5401.

Alex Graves, Rupesh Kumar Srivastava, Timothy Atkinson, and Faustino Gomez. Bayesian Flow
Networks. arxiv:2308.07037[cs], March 2025. doi: 10.48550/arXiv.2308.07037. URL
http://arxiv.org/abs/2308.07037.

13

http://arxiv.org/abs/1807.03819
http://arxiv.org/abs/2211.15089
http://arxiv.org/abs/2211.15089
https://openreview.net/forum?id=2edigk8yoU
http://arxiv.org/abs/2410.08292
http://arxiv.org/abs/2410.08292
http://arxiv.org/abs/2502.05171
https://ieeexplore.ieee.org/document/861302
https://ieeexplore.ieee.org/document/861302
https://proceedings.mlr.press/v202/giannou23a.html
http://arxiv.org/abs/2410.17891
http://arxiv.org/abs/2506.20639
http://arxiv.org/abs/1603.08983
http://arxiv.org/abs/1603.08983
http://arxiv.org/abs/1410.5401
http://arxiv.org/abs/2308.07037

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Xiaochuang Han, Sachin Kumar, and Yulia Tsvetkov. SSD-LM: Semi-autoregressive Simplex-
based Diffusion Language Model for Text Generation and Modular Control. In Anna Rogers,
Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 11575–11596, Toronto,
Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.64
7. URL https://aclanthology.org/2023.acl-long.647/.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong Tian.
Training Large Language Models to Reason in a Continuous Latent Space. arxiv:2412.06769[cs],
December 2024. doi: 10.48550/arXiv.2412.06769. URL http://arxiv.org/abs/2412.0
6769.

Tamir David Hay and Lior Wolf. Dynamic Layer Tying for Parameter-Efficient Transformers.
In The Twelfth International Conference on Learning Representations, October 2023. URL
https://openreview.net/forum?id=d4uL2MSe0z.

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax Flows
and Multinomial Diffusion: Learning Categorical Distributions. In Advances in Neural Information
Processing Systems, volume 34, pp. 12454–12465. Curran Associates, Inc., 2021. URL https:
//proceedings.neurips.cc/paper/2021/hash/67d96d458abdef21792e6d8
e590244e7-Abstract.html.

J J Hopfield. Neural networks and physical systems with emergent collective computational abilities.
Proceedings of the National Academy of Sciences of the United States of America, 79(8):2554–
2558, April 1982. ISSN 0027-8424. URL https://www.ncbi.nlm.nih.gov/pmc/art
icles/PMC346238/.

Jaehyeong Jo and Sung Ju Hwang. Continuous Diffusion Model for Language Modeling.
arxiv:2502.11564[cs], February 2025. doi: 10.48550/arXiv.2502.11564. URL http:
//arxiv.org/abs/2502.11564.

Guy Kaplan, Matanel Oren, Yuval Reif, and Roy Schwartz. From Tokens to Words: On the Inner
Lexicon of LLMs. arxiv:2410.05864[cs], October 2024. doi: 10.48550/arXiv.2410.05864. URL
http://arxiv.org/abs/2410.05864.

Rabeeh Karimi Mahabadi, Hamish Ivison, Jaesung Tae, James Henderson, Iz Beltagy, Matthew
Peters, and Arman Cohan. TESS: Text-to-Text Self-Conditioned Simplex Diffusion. In Yvette
Graham and Matthew Purver (eds.), Proceedings of the 18th Conference of the European Chapter
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 2347–2361, St.
Julian’s, Malta, March 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.e
acl-long.144. URL https://aclanthology.org/2024.eacl-long.144/.

V. A. Lamme and P. R. Roelfsema. The distinct modes of vision offered by feedforward and recurrent
processing. Trends in Neurosciences, 23(11):571–579, November 2000. ISSN 0166-2236. doi:
10.1016/s0166-2236(00)01657-x.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast Inference from Transformers via Speculative
Decoding. In Proceedings of the 40th International Conference on Machine Learning, pp. 19274–
19286. PMLR, July 2023. URL https://proceedings.mlr.press/v202/leviath
an23a.html.

Xian Li, Asa Cooper Stickland, Yuqing Tang, and Xiang Kong. Deep Transformers with Latent
Depth. arxiv:2009.13102[cs], October 2020. doi: 10.48550/arXiv.2009.13102. URL http:
//arxiv.org/abs/2009.13102.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
models. https://github.com/tatsu-lab/alpaca_eval, 5 2023.

Luyang Liu, Jonas Pfeiffer, Jiaxing Wu, Jun Xie, and Arthur Szlam. Deliberation in Latent Space via
Differentiable Cache Augmentation. arxiv:2412.17747[cs], December 2024a. doi: 10.48550/arX
iv.2412.17747. URL http://arxiv.org/abs/2412.17747.

14

https://aclanthology.org/2023.acl-long.647/
http://arxiv.org/abs/2412.06769
http://arxiv.org/abs/2412.06769
https://openreview.net/forum?id=d4uL2MSe0z
https://proceedings.neurips.cc/paper/2021/hash/67d96d458abdef21792e6d8e590244e7-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/67d96d458abdef21792e6d8e590244e7-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/67d96d458abdef21792e6d8e590244e7-Abstract.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC346238/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC346238/
http://arxiv.org/abs/2502.11564
http://arxiv.org/abs/2502.11564
http://arxiv.org/abs/2410.05864
https://aclanthology.org/2024.eacl-long.144/
https://proceedings.mlr.press/v202/leviathan23a.html
https://proceedings.mlr.press/v202/leviathan23a.html
http://arxiv.org/abs/2009.13102
http://arxiv.org/abs/2009.13102
https://github.com/tatsu-lab/alpaca_eval
http://arxiv.org/abs/2412.17747

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Zechun Liu, Changsheng Zhao, Forrest Iandola, Chen Lai, Yuandong Tian, Igor Fedorov, Yunyang
Xiong, Ernie Chang, Yangyang Shi, Raghuraman Krishnamoorthi, Liangzhen Lai, and Vikas
Chandra. MobileLLM: Optimizing Sub-billion Parameter Language Models for On-Device Use
Cases. arxiv:2402.14905[cs], February 2024b. URL http://arxiv.org/abs/2402.149
05.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
of the data distribution. In Proceedings of the 41st International Conference on Machine Learning,
volume 235 of ICML’24, pp. 32819–32848, Vienna, Austria, July 2024. JMLR.org.

Mrinal Mathur, Barak A. Pearlmutter, and Sergey M. Plis. MIND over Body: Adaptive Thinking using
Dynamic Computation. In The Thirteenth International Conference on Learning Representations,
October 2024. URL https://openreview.net/forum?id=EjJGND0m1x.

Sean Michael McLeish, Arpit Bansal, Alex Stein, Neel Jain, John Kirchenbauer, Brian R. Bartoldson,
Bhavya Kailkhura, Abhinav Bhatele, Jonas Geiping, Avi Schwarzschild, and Tom Goldstein.
Transformers Can Do Arithmetic with the Right Embeddings. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, September 2024. URL https://open
review.net/forum?id=aIyNLWXuDO.

William Merrill and Ashish Sabharwal. The Parallelism Tradeoff: Limitations of Log-Precision
Transformers. Transactions of the Association for Computational Linguistics, 11:531–545, June
2023. ISSN 2307-387X. doi: 10.1162/tacl_a_00562. URL https://doi.org/10.1162/
tacl_a_00562.

William Merrill and Ashish Sabharwal. A Little Depth Goes a Long Way: The Expressive Power of
Log-Depth Transformers. arxiv:2503.03961[cs], May 2025. doi: 10.48550/arXiv.2503.03961.
URL http://arxiv.org/abs/2503.03961.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. Specinfer: Accelerating large
language model serving with tree-based speculative inference and verification. In Proceedings of
the 29th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 3, pp. 932–949, 2024.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černocký, and Sanjeev Khudanpur. Recurrent
neural network based language model. In Proc. Interspeech 2010, pp. 1045–1048, 2010. doi:
10.21437/Interspeech.2010-343. URL https://www.isca-archive.org/interspee
ch_2010/mikolov10_interspeech.html.

Amirkeivan Mohtashami, Matteo Pagliardini, and Martin Jaggi. CoTFormer: A Chain of Thought
Driven Architecture with Budget-Adaptive Computation Cost at Inference. In The Thirteenth
International Conference on Learning Representations, October 2024. URL https://openre
view.net/forum?id=7igPXQFupX.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin, Ji-
Rong Wen, and Chongxuan Li. Large Language Diffusion Models. arxiv:2502.09992[cs], February
2025. doi: 10.48550/arXiv.2502.09992. URL http://arxiv.org/abs/2502.09992.

William Peebles and Saining Xie. Scalable Diffusion Models with Transformers. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023. URL
https://openaccess.thecvf.com/content/ICCV2023/html/Peebles_Scal
able_Diffusion_Models_with_Transformers_ICCV_2023_paper.html.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
Models are Unsupervised Multitask Learners. OpenAI, pp. 24, 2019.

Pierre Harvey Richemond, Sander Dieleman, and Arnaud Doucet. Categorical SDEs with Simplex
Diffusion. In ICML 2023 Workshop: Sampling and Optimization in Discrete Space, August 2023.
URL https://openreview.net/forum?id=6rETbXxGX5#all.

15

http://arxiv.org/abs/2402.14905
http://arxiv.org/abs/2402.14905
https://openreview.net/forum?id=EjJGND0m1x
https://openreview.net/forum?id=aIyNLWXuDO
https://openreview.net/forum?id=aIyNLWXuDO
https://doi.org/10.1162/tacl_a_00562
https://doi.org/10.1162/tacl_a_00562
http://arxiv.org/abs/2503.03961
https://www.isca-archive.org/interspeech_2010/mikolov10_interspeech.html
https://www.isca-archive.org/interspeech_2010/mikolov10_interspeech.html
https://openreview.net/forum?id=7igPXQFupX
https://openreview.net/forum?id=7igPXQFupX
http://arxiv.org/abs/2502.09992
https://openaccess.thecvf.com/content/ICCV2023/html/Peebles_Scalable_Diffusion_Models_with_Transformers_ICCV_2023_paper.html
https://openaccess.thecvf.com/content/ICCV2023/html/Peebles_Scalable_Diffusion_Models_with_Transformers_ICCV_2023_paper.html
https://openreview.net/forum?id=6rETbXxGX5#all

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
Resolution Image Synthesis With Latent Diffusion Models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 10684–10695, 2022. URL https:
//openaccess.thecvf.com/content/CVPR2022/html/Rombach_High-Resol
ution_Image_Synthesis_With_Latent_Diffusion_Models_CVPR_2022_pap
er.html.

Mark Schöne, Babak Rahmani, Heiner Kremer, Fabian Falck, Hitesh Ballani, and Jannes
Gladrow. Implicit Language Models are RNNs: Balancing Parallelization and Expressiv-
ity. arxiv:2502.07827[cs], February 2025. doi: 10.48550/arXiv.2502.07827. URL
http://arxiv.org/abs/2502.07827.

Avi Schwarzschild, Eitan Borgnia, Arjun Gupta, Furong Huang, Uzi Vishkin, Micah Goldblum,
and Tom Goldstein. Can You Learn an Algorithm? Generalizing from Easy to Hard Problems
with Recurrent Networks. In Advances in Neural Information Processing Systems, volume 34, pp.
6695–6706. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/p
aper_files/paper/2021/hash/3501672ebc68a5524629080e3ef60aef-Abs
tract.html.

Oscar Skean, Md Rifat Arefin, Yann LeCun, and Ravid Shwartz-Ziv. Does Representation Matter?
Exploring Intermediate Layers in Large Language Models. arxiv:2412.09563[cs], December 2024.
doi: 10.48550/arXiv.2412.09563. URL http://arxiv.org/abs/2412.09563.

Yang Song and Stefano Ermon. Generative Modeling by Estimating Gradients of the Data Distribution.
arXiv:1907.05600 [cs, stat], October 2019. URL http://arxiv.org/abs/1907.05600.

Qi Sun, Marc Pickett, Aakash Kumar Nain, and Llion Jones. Transformer Layers as Painters.
arxiv:2407.09298[cs], August 2024. doi: 10.48550/arXiv.2407.09298. URL http://arxiv.
org/abs/2407.09298.

Ilya Sutskever, Geoffrey E Hinton, and Graham W Taylor. The Recurrent Temporal Restricted
Boltzmann Machine. In Advances in Neural Information Processing Systems, volume 21. Curran
Associates, Inc., 2008. URL https://proceedings.neurips.cc/paper_files/p
aper/2008/hash/9ad6aaed513b73148b7d49f70afcfb32-Abstract.html.

Ilya Sutskever, James Martens, and Geoffrey Hinton. Generating text with recurrent neural networks.
In Proceedings of the 28th International Conference on International Conference on Machine
Learning, ICML’11, pp. 1017–1024, Madison, WI, USA, June 2011. Omnipress. ISBN 978-1-
4503-0619-5.

Shawn Tan, Yikang Shen, Zhenfang Chen, Aaron Courville, and Chuang Gan. Sparse Universal
Transformer. arxiv:2310.07096[cs], October 2023. doi: 10.48550/arXiv.2310.07096. URL
http://arxiv.org/abs/2310.07096.

Ryan Teknium, Roger Jin, Jai Suphavadeeprasit, Dakota Mahan, Jeffrey Quesnelle, Joe Li, Chen
Guang, Shannon Sands, and Karan Malhotra. Hermes 4 technical report. arXiv preprint
arXiv:2508.18255, 2025.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya
Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar
Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan
Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen
Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan
Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez,
Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open Foundation and Fine-
Tuned Chat Models. arxiv:2307.09288[cs], July 2023. doi: 10.48550/arXiv.2307.09288. URL
http://arxiv.org/abs/2307.09288.

16

https://openaccess.thecvf.com/content/CVPR2022/html/Rombach_High-Resolution_Image_Synthesis_With_Latent_Diffusion_Models_CVPR_2022_paper.html
https://openaccess.thecvf.com/content/CVPR2022/html/Rombach_High-Resolution_Image_Synthesis_With_Latent_Diffusion_Models_CVPR_2022_paper.html
https://openaccess.thecvf.com/content/CVPR2022/html/Rombach_High-Resolution_Image_Synthesis_With_Latent_Diffusion_Models_CVPR_2022_paper.html
https://openaccess.thecvf.com/content/CVPR2022/html/Rombach_High-Resolution_Image_Synthesis_With_Latent_Diffusion_Models_CVPR_2022_paper.html
http://arxiv.org/abs/2502.07827
https://proceedings.neurips.cc/paper_files/paper/2021/hash/3501672ebc68a5524629080e3ef60aef-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2021/hash/3501672ebc68a5524629080e3ef60aef-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2021/hash/3501672ebc68a5524629080e3ef60aef-Abstract.html
http://arxiv.org/abs/2412.09563
http://arxiv.org/abs/1907.05600
http://arxiv.org/abs/2407.09298
http://arxiv.org/abs/2407.09298
https://proceedings.neurips.cc/paper_files/paper/2008/hash/9ad6aaed513b73148b7d49f70afcfb32-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2008/hash/9ad6aaed513b73148b7d49f70afcfb32-Abstract.html
http://arxiv.org/abs/2310.07096
http://arxiv.org/abs/2307.09288

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Guan Wang, Jin Li, Yuhao Sun, Xing Chen, Changling Liu, Yue Wu, Meng Lu, Sen Song, and
Yasin Abbasi Yadkori. Hierarchical Reasoning Model. arxiv:2506.21734[cs], August 2025a. doi:
10.48550/arXiv.2506.21734. URL http://arxiv.org/abs/2506.21734.

Xu Wang, Chenkai Xu, Yijie Jin, Jiachun Jin, Hao Zhang, and Zhijie Deng. Diffusion LLMs Can Do
Faster-Than-AR Inference via Discrete Diffusion Forcing. arxiv:2508.09192[cs], August 2025b.
doi: 10.48550/arXiv.2508.09192. URL http://arxiv.org/abs/2508.09192.

Bohong Wu, Shen Yan, Sijun Zhang, Jianqiao Lu, Yutao Zeng, Ya Wang, and Xun Zhou. Efficient
pretraining length scaling. arXiv preprint arXiv:2504.14992, 2025.

Zhihui Xie, Jiacheng Ye, Lin Zheng, Jiahui Gao, Jingwei Dong, Zirui Wu, Xueliang Zhao, Shansan
Gong, Xin Jiang, Zhenguo Li, and Lingpeng Kong. Dream-Coder 7B: An Open Diffusion Language
Model for Code. arxiv:2509.01142[cs], September 2025. doi: 10.48550/arXiv.2509.01142. URL
http://arxiv.org/abs/2509.01142.

Liu Yang, Kangwook Lee, Robert D. Nowak, and Dimitris Papailiopoulos. Looped Transformers are
Better at Learning Learning Algorithms. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=HHbRxoDTxE.

Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
Kong. Dream 7B: Diffusion Large Language Models. arxiv:2508.15487[cs], August 2025. doi:
10.48550/arXiv.2508.15487. URL http://arxiv.org/abs/2508.15487.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. MetaMath: Bootstrap Your Own Mathematical Questions for
Large Language Models. In The Twelfth International Conference on Learning Representations,
October 2023. URL https://openreview.net/forum?id=N8N0hgNDRt.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena. In A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing Systems,
volume 36, pp. 46595–46623. Curran Associates, Inc., 2023. URL https://proceedings.
neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505
bf41832-Paper-Datasets_and_Benchmarks.pdf.

A APPENDIX

A.1 ADDITIONAL ALGORITHM DETAILS

We provide the full algorithm, including adaptive exiting in Algorithm 2.

A.2 ADDITIONAL VARIANTS AND CONSIDERATIONS

What are the memory costs of this parallelization strategy? The maximal memory allocated
during generation is dynamic, given that token positions exit the current stack of states as their latent
states converge and headway-many states are added per step of the sampler. However, the maximum
wavefront size parameter (see also Figure 6 controls the maximum extent of the wavefront, thereby
guaranteeing that the maximum memory allocation is bounded. In Figure 8 we provide additional
details regarding the precise peak memory during generation as a function of maximal wavefront
size. Plotted here is throughput as before on the y-axis, and, on the x-axis, we show the peak of
additional memory allocated during the generation phase for a given sample. On the left side, the
median additional memory peak is plotted, whereas on the right side, the worst-case event is shown.
While for most samples, increasing the wavefront size does not necessarily increase memory usage
after a certain point (left), as states usually exit quickly enough, with a wavefront size that is too
large, there are samples (right) that would substantially increase memory requirements, which would
be a concern if serving at scale. We recommend picking the smallest maximum wavefront size that
saturates throughput on a per-accelerator basis, to prevent worst-case memory allocation.

17

http://arxiv.org/abs/2506.21734
http://arxiv.org/abs/2508.09192
http://arxiv.org/abs/2509.01142
https://openreview.net/forum?id=HHbRxoDTxE
http://arxiv.org/abs/2508.15487
https://openreview.net/forum?id=N8N0hgNDRt
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 2 Diffusion-style generation with latent-diference-based freezing

Require: prompt x, max new tokens N , inner recurrence r, diffusion steps T , init scale α, exit
threshold ε

1: yfrozen ← x, ycurrent ← x
2: z← InitState(|x|, α)
3: zprev ← z
4: for step t = 1, . . . , T do
5: e← P(ycurrent)
6: znoise ∼ N (0, σ2I)
7: z← (1− βr)z+ βrznoise
8: for j = 1, . . . , r do
9: z← R(z, e)

10: end for
11: p← C(z)
12: ŷ← Sample(p)
13: ycurrent ← [yfrozen, ŷ]
14: δi ← ||zi − zprev,i||2/||zi||2 ▷ Compute relative changes in latents at each position.
15: if exists position i with δi < ε then
16: let k∗ ← index of the last such freezable position where δi < ε ▷ freeze up to k∗

17: yfrozen ← ycurrent[1:k
∗]

18: keep only unfrozen tail of latents: z← z[k∗ − ℓ:]
19: else
20: no tokens frozen this step
21: end if
22: if |yfrozen| − |x| ≥ N then break
23: end if
24: z← [z, InitState(1, α)] ▷ Append a new latent state for the next position
25: zprev ← z
26: end for
27: return yfrozen

0.16 0.18 0.20 0.22 0.24
Peak Additional Memory Allocated During Generation (GB)

90

100

110

120

130

140

150

160

Th
ro

ug
hp

ut
 (t

ok
en

s/
se

co
nd

)

4

8

16
32

48

64

128

256

512

1024

Wavefront Size
4 1024

1 2 3 4 5 6
Worst-case (over all samples) Peak Add. Memory Allocation (GB)

90

100

110

120

130

140

150

160

Th
ro

ug
hp

ut
 (t

ok
en

s/
se

co
nd

)

4

8

16 32 48 64 128256 5121024

Wavefront Size
4 1024

Figure 8: The median throughput in tokens/second and the median peak additional memory allocation during
generation plotted as a function of maximum wavefront size, again for the Huginn-0125 model on GSM8k. We
can see that increasing the maximum wavefront size increases both throughput and memory, although after a
certain point, the median memory increases only slightly (left). However, the max wavefront size does control
the memory allocated to the worst-case sample (right), and we can see that the maximal memory allocated during
the generation of that worst-case sample is indeed proportional to wavefront size (right).

Moving Forward Multiple Steps. In principle, there is no limitation of only advancing one token
at a time, and so we can consider headways greater than 1, however, for these, we have no prior
position to decode from, so we can only fill these positions with random tokens, or a particular
padding token. And, given that the model is still causal, it will take several steps for sequential
dependencies to be resolved, even if we sample a large headway in every step. We experiment with

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

headways greater than one, but while interestingly stable, this accelerates the speed of the sampler
only marginally at a cost to accuracy, see Figure 9, right.

Larger Batch Sizes. The sampler discussed in this work could, in principle, also be deployed in
batched or continuously-batched inference settings. In that scenario, similar to a paged KV cache,
the sampler would reserve a number of slots for hidden states up to an occupancy multiplier of
the maximum wavefront size, and would be capable of scheduling recurrent updates in tandem
with sequence updates. For larger models, this would, if implemented efficiently, actually simplify
deployment, as recurrent states are fungible, and e.g. states could be evicted from one device, and then
bundled into the next forward call of the model on a different device, as the slots of the model’s hidden
states do not have to correspond to contiguous sequences in either the sequence or the recurrence
dimension. However, due to to the imminent complexity of such an inference engine, we refrained
from engaging with this direction in this work, and focus only on properly bringing the general idea
of diffusion sampling to recurrent-depth models, and leave a batched inference engine as a limitation,
potentially motivating future work.

Also, we remark on practical back-of-the-envelope estimates of runtime cost:
Remark A.1 (Computational Cost). In comparison to the baseline autoregressive sampling algorithm
where the recurrence is computed one token at a time, there are two additional sources of computa-
tional cost, the cost to encode and decode latent states usingP and C, and the potential cost incurred if
convergence is slower than in baseline due to cascading effects of tokens changing late, as seen in Fig-
ure 4 if the adaptive version is used. The first cost depends on the size of the recurrent blockR, relative
to prelude and coda. For the model we study in this work this is disadvantageous as the FLOP costs for
prelude and coda equal one pass through the recurrent block. We define the FLOP costs of one pass
throughR as f , ignoring attention, so that the FLOP costs of one iteration of the sampler is roughly
(r′ + 1)f . Then, the total FLOP costs of running the baseline algorithm for w tokens are (r + 1)fw,
compared to (r + r

r′)fw for the non-adaptive diffusion sampler. However, as we will see, this FLOP
inefficiency is counteracted in practice by the parallelization gains obtained from the sampler.

A.3 ADDITIONAL EXPERIMENTAL DETAILS.

Finetuned Math Model: To verify that our findings are not limited to the particular model check-
point we evaluate, and its capabilities, we finetune the original checkpoint for one epoch with a
trapezoidal learning rate schedule with a peak learning rate of 5× 10−7 using the MetaMath dataset
(Yu et al., 2023). As suggested in the original work, we train the model with randomized unrolling,
we set a mean of r = 32 and sample r from an Exponential distribution. As a sidenote, we remark
that while we do train the full model, most of the gains can also be achieved by just finetuning the
adapter component of the model that maps inputs and states into the recurrent block.

Dataset Details. When evaluating GSM8k, we always refer to the CoT version of the dataset, which
we provide to the model with the 8 few-shot examples associated with this variant as in Touvron
et al. (2023). We always score GSM8k using the flexible-extract metric, i.e. by matching the last
number in the model response against the reference answer. For MATH500, we follow the format of
DeepSeek-AI et al. (2025), while for Minerva Math, we follow the updated format established in
the lm-eval harness. For both, we grade answers using math-verify. For MBPP and HumanEval, we
grade these benchmarks as normal. During inference we sample with a temperature of 0.2 and top-p
factor of 0.95 as in Geiping et al. (2025).

Details on Free-Form Generation Results. All results for the four free-form prompt datasets
in Table 3 are using the "default" diffusion sampler settings of r′ = 4 and βs = 0.2, which we
compare to the standard autoregressive sampling approach with r = 32. We take all (804) prompts
from the AlpacaEval benchmark dataset (Li et al., 2023), all (80) prompts from the MTBench
dataset (Zheng et al., 2023), and the first 500 LitBench training samples (Fein et al., 2025) and
the first 100 Hermes-3 training samples (Teknium et al., 2025), to cover a wide range of generic
instruction data, creative writing and technical questions. For each dataset and each prompt, we
compare both sampling strategies head-on. We first measure ROUGE-1 and ROUGE-L overlap
between the samples, and we record the fraction of prompts where response strings where entirely
equal (which they are often for either short, or very clear answers, whereas e.g. for creative writing,
the chance of generating the same story is very small). We then use Sonnet-4.5, in particular,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Noise Coefficient (t) with linear schedule

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

Ac
cu

ra
cy

 (%
)

Accuracy
Throughput

20

40

60

80

100

120

140

160

180

200

To
ke

ns
/S

ec
on

d

1 3 5 7 16 128
Headway (h)

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

Ac
cu

ra
cy

 (%
)

Accuracy
Throughput

20

40

60

80

100

120

140

160

180

200

To
ke

ns
/S

ec
on

d

Figure 9: Impact of Additional Hyperparameter Choices on GSM8k. Left: Scaling the amount of noise added
during inference for r′ = 4, scheduled linearly in the number of recurrence steps, also measured on GSM8k.
At r′ = 4, adding noise is as impactful. We plot the full spectrum of r′ to βt in Figure 7. Right: Amount of
headway. Larger amounts of headway than 1, i.e. advancing the sampler more than 1 token per step, do not seem
to materialize practical speedups for the studied model.

0 2 4 6 8 10
State Initialization Scale ()

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

Ac
cu

ra
cy

 (%
)

Accuracy
Throughput

20

40

60

80

100

120

140

160

180

200

To
ke

ns
/S

ec
on

d

0.0 0.2 0.4 0.6 0.8 1.0
Continuous Compute

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

Ac
cu

ra
cy

 (%
)

Accuracy
Throughput

20

40

60

80

100

120

140

160

180

200

To
ke

ns
/S

ec
on

d

Figure 10: Impact of Additional Hyperparameter Choices, also on GSM8k. Left Initialization Scale of new
states, which has only a minor effect of the result. Right: Continuous Compute, i.e. choosing to initialize new
states with previously computed states (We initialize new states with the latest state from the position one step to
the left). This is less effective for our sampler, given that the position one step to the left is only the result of r′

recurrences.

claude-sonnet-4-5-20250929 to judge both completions. The model is given the system
prompt and instruction for each query, and both responses, and is tasked to first reason about the
quality of both responses (in line with the MTBench judge prompt), then rate both responses in terms
of correctness, helpfulness, coherence and completeness on a scale of 1-10 and finally, to report
whether it prefers the diffusion sampling response, or whether it ties the original. Aside from this
evaluation, we also evaluate the log-perplexity of the generated completions, using either the original
model, or an external model to judge perplexity. The external model we use is Qwen-3-8b-base. Also
note that token/second in this chart are computed on a different accelerator than in other places in the
paper, and as noted in the reproducibility statement, timing results are only to be compared within
each figure or table.

A.4 QUALITATIVE EVALUATION

To visualize the progress (or temporary lack thereof) of the sampler on a challenging sequence from
the GSM8k validation set, we provide a few additional visualizations in Figure 13.

B THEORETICAL ANALYSIS

B.1 PROBLEM FORMULATIONS

Definition B.1 (Depth and Width in Recurrent-Depth Models). Consider a recurrent-depth model
Md that processes an input sequence x ∈ RL0×h, where L0 ∈ N is the sequence length and h ∈ N is
the hidden dimension. At each generation step t ∈ N, we define a hidden state as the h-dimensional
output vector produced by a Transformer block for an input token. Let Ht ∈ Rwt×h denote the
2D-matrix containing all hidden states at step t. We define the following two associated quantities:

• the depth dt ∈ N, defined as the number of serial Transformer block forward passes used to obtain
Ht from the initial L0 input tokens (i.e., the generation step), while ignoring any discretization;

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6 7 8 16 32
Inner Recurrence (r′)

0.0

0.1

0.2

0.3

0.5

0.8

1.0

2.0

St
at

e
N

oi
se

 M
ix

in
g

(
t)

0.385
(165 t/s)

0.405
(184 t/s)

0.407
(174 t/s)

0.405
(156 t/s)

0.407
(136 t/s)

0.418
(123 t/s)

0.418
(112 t/s)

0.416
(102 t/s)

0.418
(60 t/s)

0.427
(32 t/s)

0.392
(161 t/s)

0.402
(183 t/s)

0.406
(172 t/s)

0.414
(150 t/s)

0.410
(135 t/s)

0.413
(123 t/s)

0.394
(167 t/s)

0.412
(177 t/s)

0.412
(171 t/s)

0.418
(152 t/s)

0.416
(136 t/s)

0.424
(123 t/s)

0.392
(168 t/s)

0.409
(180 t/s)

0.404
(171 t/s)

0.415
(155 t/s)

0.412
(138 t/s)

0.417
(120 t/s)

0.383
(167 t/s)

0.407
(183 t/s)

0.402
(172 t/s)

0.410
(152 t/s)

0.410
(140 t/s)

0.421
(122 t/s)

0.418
(110 t/s)

0.424
(104 t/s)

0.419
(58 t/s)

0.425
(32 t/s)

0.387
(163 t/s)

0.396
(179 t/s)

0.410
(172 t/s)

0.415
(149 t/s)

0.418
(140 t/s)

0.414
(118 t/s)

0.392
(166 t/s)

0.406
(175 t/s)

0.411
(172 t/s)

0.406
(151 t/s)

0.411
(137 t/s)

0.421
(122 t/s)

0.388
(148 t/s)

0.408
(171 t/s)

0.404
(169 t/s)

0.409
(144 t/s)

0.409
(136 t/s)

0.415
(123 t/s)

0.385

0.390

0.395

0.400

0.405

0.410

0.415

0.420

0.425
Accuracy

Figure 11: A heatmap of accuracy and throughput measurements spanned by varying noise and inner recurrence.

40 60 80 100 120 140 160 180
Throughput (Tokens/Second)

0.38

0.39

0.40

0.41

0.42

Ac
cu

ra
cy

0

0.1
0.2

0.3

0.5

0.8

1

2

0

0.1

0.2

0.3

0.5

0.8

1

2

0
0.1

0.2

0.3

0.5

0.8
1

2

0

0.1

0.2

0.30.50.8

1

2

0

0.1

0.2

0.3

0.5

0.8

1

2

0

0.1

0.2

0.3

0.5

0.8

1

2

0
0.5

0

0.5

0
0.5

0

0.5

inner_recurrence=1
inner_recurrence=2
inner_recurrence=3
inner_recurrence=4
inner_recurrence=5

inner_recurrence=6
inner_recurrence=7
inner_recurrence=8
inner_recurrence=16
inner_recurrence=32

Figure 12: Additional visualizations of the trade-off of noise and inner recurrence in Figure 7.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 13: A full example of a sampler hyperparameter failure. As in Figure 4, this figure shows the token ids
on the left, as they change during successive steps of the sampler (running from top to bottom) over the sequence
dimension (running left to right). We see that the model tries various configurations for the current tokens, before
they are gradually frozen as their latent states converge. Due to a few hard decisions (from the perspective of the
model), as seen on the stability charts on the right, early in the sequence, progress stalls until these tokens are
decided, but then picks up speed again. However, large points of the wavefront all decode into the whitespace
token (dark blue color), so that no useful states information is computed until the earlier tokens are resolved.

0.0 0.1 0.2 0.3 0.4 0.5
Embedding EMA Value (), t = 0

0.50

0.52

0.54

0.56

0.58

0.60

Ac
cu

ra
cy

 (%
)

Accuracy
Throughput

20

40

60

80

100

120

140

160

180

200

To
ke

ns
/S

ec
on

d

10 1

Exit Threshold ()

0.50

0.52

0.54

0.56

0.58

0.60

Ac
cu

ra
cy

 (%
)

Accuracy
Throughput

20

40

60

80

100

120

140

160

180

To
ke

ns
/S

ec
on

d

0 5 10 15 20 25 30
Inner Recurrence (r′)

0.50

0.52

0.54

0.56

0.58

0.60

Ac
cu

ra
cy

 (%
)

Accuracy
Throughput

20

40

60

80

100

120

140

160

180

To
ke

ns
/S

ec
on

d

0 5 10 15 20 25 30
Inner Recurrence (r′), t = 0

0.50

0.52

0.54

0.56

0.58

0.60

Ac
cu

ra
cy

 (%
)

Accuracy
Throughput

25

50

75

100

125

150

175

200

To
ke

ns
/S

ec
on

d

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Noise Coefficient (t) with linear schedule

0.50

0.52

0.54

0.56

0.58

0.60

Ac
cu

ra
cy

 (%
)

Accuracy
Throughput

20

40

60

80

100

120

140

160

180

200

To
ke

ns
/S

ec
on

d

Figure 14: Hyperparameter Robustness for the finetuned math model on GSM8k. These figure repeat the
ablation study from the main body concerning hyperparameter robustness also for the finetuned math model,
showing that behaviors are largely similar, even though the model’s capability has noticeably changed.

• the width wt ∈ N, defined as the cardinality of the active hidden-state set Ht (i.e., the number of
h-dimensional hidden states that are processed in parallel at generation step t).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

These quantities evolve according to the following rules:

1. Initialization. At time t = 0, we set

d0 = 0, w0 = L0.

2. Depth update. At each step t ≥ 0, one additional Transformer block is applied, hence

dt+1 = dt + 1,

so that dt = t for all t ∈ N.

3. Width update. At each step t ≥ 0, the width changes only due to two types of events:

• Token entry: let e(t) ∈ N0 denote the number of new tokens encoded into the model at step t,
each contributing a new hidden state;

• Hidden-state exit: let x(t) ∈ N0 denote the number of hidden states removed from the model at
step t due to decoding.

Then the width evolves as
wt+1 = wt + e(t) − x(t).

Equivalently, the net change can be written as δ(t) = e(t) − x(t), so that δ(t) > 0 corresponds to
entries (more tokens encoded), and δ(t) < 0 corresponds to exits (more hidden states decoded).

Remark B.2. At any generation step t, all hidden states in Ht share the same depth dt, since each
step corresponds to one additional serial forward pass through the Transformer block.

B.2 LLMS SHOULD PRIORITIZE DEPTH SCALING DURING PREFILLING.

Definition B.3 (Width Scaling Variants). Fix a width scaling factor s ∈ N. Given an input sequence
of length L, for each token i ∈ {1, . . . , L} we create s copies indexed by j ∈ {1, . . . , s}. The
replicated sequence therefore has length L · s, with elements denoted by (i, j), the j-th copy of token
i. The width-scaling model is obtained by applying a Transformer block (with parameters unchanged)
to this replicated sequence under a customized attention mask, followed by a reduction step that maps
the L · s outputs back to length L (e.g., by selecting the last copy or averaging over copies).

We define two variants according to how each copy may attend:

• Width-NoShare. The j-th copy of token i may attend to all copies of tokens 0, . . . , i− 1, as well
as the first j − 1 copies of token i.

• Width-KVShare. The j-th copy of token i may attend only to the last copy of tokens 0, . . . , i− 1,
together with the first j − 1 copies of token i.

Proposition B.4. During prefilling, both Width-NoShare and Width-KVShare are valid width-
scaling architectures with factor s.

Proof. Depth. At any generation step, each variant performs exactly one Transformer block forward
pass on the replicated sequence. Therefore the number of serial block forward passes needed to
produce the hidden states is unchanged, so the depth satisfies d̃t = dt.

Width. By definition, the width wt is the number of hidden states produced in parallel at step t.
In the original model, prefilling a sequence of length L produces L hidden states per step. In both
variants, we replicate each token s times, so the block computes hidden states for all pairs (i, j) with
i ∈ {1, . . . , L} and j ∈ {1, . . . , s}. Hence the total number of hidden states produced in that step is

w̃t = Ls = s · wt.

The difference between NoShare and KVShare lies only in the attention pattern (which copies each
query may attend to). This affects information flow but not the number of hidden states computed.
The optional reduction back to length L occurs after the parallel computation and thus does not
change the measured width.

Conclusion. Both variants keep serial depth fixed and enlarge width by a factor of s, which is
precisely our notion of width scaling.

23

	Introduction
	Related Work
	Applying Diffusion Forcing to Recurrent-Depth Models
	Understanding Recurrent-Depth as Latent Diffusion
	The Ingredients for Diffusion Forcing Sampling
	A Simplified Version of the Sampling Algorithm
	Stabilizing components based on Diffusion Principles
	Adaptive Exits

	Theoretical Analysis
	Problem Formulation
	LLMs should prioritize depth scaling during prefilling.
	LLMs should prioritize width scaling during decoding.

	Experimental Evaluation
	Conclusions: Are Recurrent-depth Transformers secretly continuous language diffusion models?
	Appendix
	Additional Algorithm Details
	Additional Variants And Considerations
	Additional Experimental Details.
	Qualitative Evaluation

	Theoretical Analysis
	Problem Formulations
	LLMs should prioritize depth scaling during prefilling.

