

# EFFICIENT PARALLEL SAMPLERS FOR RECURRENT-DEPTH MODELS AND THEIR CONNECTION TO DIFFUSION LANGUAGE MODELS

006 **Anonymous authors**

007 Paper under double-blind review

## ABSTRACT

013 Language models with recurrent depth, also referred to as universal or looped when  
 014 considering transformers, are defined by the capacity to increase their computation  
 015 through the repetition of layers. Recent efforts in pretraining have demonstrated that  
 016 these architectures can scale to modern language modeling tasks while exhibiting  
 017 advantages in reasoning tasks. In this work, we examine the relationship between  
 018 recurrent-depth models and diffusion language models. Building on their similarities,  
 019 we develop a new diffusion forcing sampler for these models to accelerate  
 020 generation. The sampler advances by decoding new tokens at every forward pass of  
 021 the model, while the latent states of these tokens can be further refined in parallel  
 022 through recurrence. Theoretically, generation with our sampler is strictly more  
 023 expressive than the baseline autoregressive generation using the same time budget  
 024 on modern hardware. Moreover, this sampler, based on principles from diffusion  
 025 literature, can be directly applied to existing 3.5B recurrent-depth transformers  
 026 without any tuning, leading to up to a **5x** speedup. Consequently, our findings  
 027 not only provide an efficient mechanism for parallelizing the extra computation  
 028 in recurrent-depth models at inference, but also suggest that such models can be  
 029 naturally viewed as strong continuous, though causal, diffusion language models.

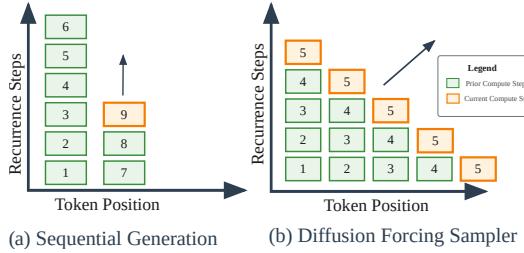
## 1 INTRODUCTION

032 Conventional large language models (LLMs) are constructed as fixed-depth neural networks with  
 033 a predetermined number of layers (often merely a two-digit count), a property that not only allows  
 034 these models to be trained efficiently, but in practice appears sufficient for many tasks (Radford et al.,  
 035 2019). However, more challenging tasks in mathematics and programming often require conceptual  
 036 leaps over multiple steps in a logical chain that are hard for these models to learn robustly. More  
 037 formally, fixed-depth transformers fall within the complexity class  $TC^0$  (Merrill & Sabharwal, 2023).  
 038 To resolve this, recent efforts have focused on training models to “verbalize” their internal reasoning  
 039 into chains-of-thought composed of small sub-steps, each of which the model is capable of learning.

040 An alternative to fixed-depth are models with *recurrent depth* (Dehghani et al., 2019; Schwarzschild  
 041 et al., 2021), which can repeat layers. Consequently, these models are also referred to as *looped*  
 042 transformers (Giannou et al., 2023), or, as *universal* transformers, (Dehghani et al., 2019) when  
 043 highlighting the motivation for these systems to represent universal Turing machines (Graves et al.,  
 044 2014; Graves, 2017). Merrill & Sabharwal (2025) showcase that, in contrast to fixed-depth models,  
 045 models with arbitrary recurrence are indeed capable of representing a larger complexity class.

046 However, generation with autoregressive recurrent-depth models is typically slow, given that every  
 047 repetition of the model layers must be executed sequentially before the next token can be produced. In  
 048 this work, we discuss how generation from recurrent-depth models can be efficiently parallelized by  
 049 connecting this architecture to diffusion model architectures. Both architectures “recur” in a related  
 050 sense, and even though both are trained with different objectives, we show that samplers adapted  
 051 from diffusion literature, namely, *diffusion forcing* (Chen et al., 2024b), can be directly applied to  
 052 parallelize the generation of already existing recurrent-depth models from Geiping et al. (2025).

053 We discuss how to adapt diffusion forcing sampling to recurrent-depth models, identifying the  
 054 essential architectural components and strategies required to ensure both stability of the iterates and



**Figure 1:** Different generation schemes for autoregressive, recurrent-depth models. **Left:** Standard sequential generation, which proceeds one token and step of the recurrence at a time (time steps denoted by integers). **Right:** A diffusion forcing sampler used for the same model can parallelize generation “diagonally”, by computing one step of the recurrence per token position, iteratively refining its estimate of the generated sequence.

bounded memory usage. As illustrated in Figure 1, rather than waiting for the recurrence at sequence position  $n$  to fully converge before generating the next token, our sampler immediately produces token drafts from intermediate iterates. It then advances to position  $n + 1$ , where the subsequent forward pass simultaneously refines the drafts for steps  $n$  and  $n + 1$ , while also decoding an initial draft for  $n + 2$ . In this way, the sampler achieves parallelism along the sequence dimension, akin to speculative decoding. Importantly, because the underlying model is trained as a causal language model, information still propagates strictly from left to right, and the output sequence is iteratively refined across recurrences. This parallelization is not guaranteed to generate the same solution, but we show in this work theoretically and practically that it generally leads to solutions with similar quality that are generated much quicker. While the approach does not reduce FLOPs, it effectively exploits modern GPU architectures by unlocking additional opportunities for parallelization. Overall, in this work, we

- Clarify the connection between recurrent-depth models and diffusion models via diffusion forcing and block or wave-based inference strategies for sequence-based diffusion models.
- Describe how to apply principles from diffusion forcing to efficiently parallelize the inference of models with recurrent depth.
- Verify that recurrent-depth models equipped with diffusion-forcing samplers achieve the strongest balance between practical efficiency and theoretical expressiveness in both prefilling and decoding.
- Show that diffusion forcing sampling outperforms even well-tuned speculative decoding baselines for the same model with speed gains that can be smoothly traded off against response quality.

## 2 RELATED WORK

We briefly introduce both recurrent models and diffusion models, focusing on language applications.

**Recurrent Models.** Models with recurrent computations have long been central to machine learning (Amar, 1972; Hopfield, 1982; Braatenberg, 1986; Gers & Schmidhuber, 2000; Sutskever et al., 2008), not only due to significant inspiration from recurrent firing patterns found in neuroscience (Hopfield, 1982; Lamme & Roelfsema, 2000; Douglas & Martin, 2004), and early successes in language modeling centered on recurrent neural networks (Mikolov et al., 2010; Sutskever et al., 2011). With the advent of transformer models, these architectures were considered less scalable, yet recurrence, now as *recurrence in depth*, was swiftly re-introduced as *universal transformers*, Dehghani et al. (2019), motivating that these models could be capable of modeling universal Turing machines (Graves et al., 2014). Other work showed that recurrent models were capable of learning algorithms (Schwarzschild et al., 2021; Bansal et al., 2022; Bear et al., 2024). That recurrence was capable of representing universal computation was explicitly constructed for transformer models in Giannou et al. (2023), and following work on *looped* transformers has shown that these models are capable learners (Giannou et al., 2023; Gatmiry et al., 2024; Yang et al., 2024; McLeish et al., 2024; Fan et al., 2025). These findings have led to a wave of work training larger, general-purpose recurrent-depth models of language (Tan et al., 2023; Abnar et al., 2023; Mathur et al., 2024; Csordás et al., 2024; Geiping et al., 2025), as well as work retro-fitting recurrence into trained models (Li et al., 2020; Bae et al., 2024; Hay & Wolf, 2023; Liu et al., 2024b). Several of these works also highlight the possibility of implementing *latent reasoning* via recurrence, that is to complement or replace verbalized chains-of-thought, with recurrence. Examples for this line of thinking are *Coconut* (Hao et al., 2024), as well as Liu et al. (2024a); Cheng & Durme (2024).



**Figure 2:** An example of a text sequence being generated with the proposed diffusion forcing sampler from a depth-recurrent model. While the original recurrent-depth model requires 32 recurrence steps to produce a single token (the default for this model), the diffusion sampler has already produced and committed 8 new tokens (green). As described, the sampler advances by at least one token per step of the recurrence. Decoded candidate tokens are initial spell out incoherent text, but map into the right concepts, and quickly improve with more steps. Note that the “freeze” decision is dynamic, based on distance to the previous state in latent space (not pictured).

In this work, we propose a generic sampling algorithm for depth-recurrent models, which we test with the models developed in [Geiping et al. \(2025\)](#), which are trained for general language understanding and reasoning on 800B tokens, with 3.5B parameters, and openly accessible.

**Diffusion Language Models.** Diffusion models are general-purpose generative models, with early applications focusing on continuous domains, such as images ([Song & Ermon, 2019](#); [Rombach et al., 2022](#); [Peebles & Xie, 2023](#)), which lead to substantial interest in extending diffusion also to discrete domains, such as text ([Austin et al., 2021](#); [Hoogeboom et al., 2021](#)). Approaches to language diffusion are split on whether to incorporate diffusion processes on a continuous variable (that is then projected into discrete space) ([Chen et al., 2022](#); [Dieleman et al., 2022](#); [Han et al., 2023](#); [Karimi Mahabadi et al., 2024](#); [Jo & Hwang, 2025](#); [Graves et al., 2025](#)), or diffusion processes that directly act on discrete variables. ([Lou et al., 2024](#); [Richemond et al., 2023](#)). The latter though, especially using *masking* as the discrete forward diffusion step, is currently the most scalable approach, employed in large-scale efforts to train language diffusion models, competitive with autoregressive models ([Gong et al., 2025a;b](#); [DeepMind, 2025](#); [Nie et al., 2025](#); [Wang et al., 2025b](#); [Xie et al., 2025](#); [Ye et al., 2025](#)).

**Inference Strategies for Diffusion Language Models.** To make diffusion tractable for arbitrarily long sequences requires techniques such as block diffusion ([Arriola et al., 2025](#)), where chunks of text are being modified by the diffusion model, and then frozen and their KV entries cached, with the sampler moving to the next chunk. A more free-form approach to handle sequence-based diffusion is to use *diffusion forcing* ([Chen et al., 2024b](#)), a hybrid model, where noise is added to future tokens in a sequence relative to the position of the current token, allowing the sampler to move both on both the sequence dimension and the diffusion time dimension.

**Inference Acceleration for Fixed-Depth Transformers.** Inference in transformers, in particular in small-batch settings is memory-bound, meaning that the transfer of data (or, in the default case, model parameters) to and from the L1 cache of the accelerator, is the dominating cost during inference, allowing algorithms such as speculative decoding ([Leviathan et al., 2023](#)) and follow-ups ([Cai et al., 2024](#); [Miao et al., 2024](#); [Chen et al., 2024c](#)) to improve inference speed through speculative parallelization. Using smaller draft models, these algorithms draft text several tokens in the future, which can then be verified using the original model, as verification of the entire text sequence is compute-bound and hence, fast.

### 3 APPLYING DIFFUSION FORCING TO RECURRENT-DEPTH MODELS

In this section, we present our diffusion forcing sampler for recurrent-depth models, which accelerates text generation by advancing at least one token in each recurrence step, as illustrated in [Figure 2](#).

#### 3.1 UNDERSTANDING RECURRENT-DEPTH AS LATENT DIFFUSION

Before detailing the diffusion forcing sampler, we briefly describe the particular recurrent-depth architecture proposed by [Geiping et al. \(2025\)](#), emphasizing features of the model that are pertinent to the

sampler’s functionality. We will use the checkpoint name *Huginn-0125* when referring to the trained model. The architecture of this model contains three main blocks, each composed of multiple transformer layers: (i) a prelude block  $P$ , projecting the embedded input tokens into a latent space; (ii) a recurrent block  $R$ , iterating  $r$  times in this latent space by refining a state vector  $\mathbf{s}$ , and (iii) a coda block  $C$  that processes the latent state and produces the model’s probabilities for the next token, formally

$$\begin{aligned} \mathbf{e} &= P(\mathbf{x}) \\ \mathbf{s}_0 &\sim \mathcal{N}(\mathbf{0}, \sigma^2 I) \\ \mathbf{s}_i &= R(\mathbf{e}, \mathbf{s}_{i-1}) \quad \text{for } i \in \{1, \dots, r\} \\ \mathbf{p} &= C(\mathbf{s}_r). \end{aligned}$$

Notably, while this architecture is derived from looping the middle layers of fixed-depth transformer models (Skean et al., 2024; Sun et al., 2024; Kaplan et al., 2024), with features such as input injection and random state initialization from the literature of recurrent-depth models (Bansal et al., 2022; Anil et al., 2022), it can also be interpreted as a *latent-space diffusion model* following the formulation of Rombach et al. (2022): Starting from an initial random state  $s_0$ , the model iteratively refines this state conditioned on the embedded input sequence  $e$ , until we assume the state to be completely denoised at the end of the process, at which point it will be decoded into the next token using  $C$ .

In Geiping et al. (2025), this model is trained using randomized unrolling with truncated backpropagation, i.e. a random number of iterates  $r$  is sampled (from a Poisson-lognormal distribution), and then the entire current batch of training sequences is iterated up to  $r$ , which is not directly related to diffusion language modeling, which most effectively trains by randomized masking and adaptation from autoregressive models (Nie et al., 2025; Xie et al., 2025; Ye et al., 2025; Gong et al., 2025a).

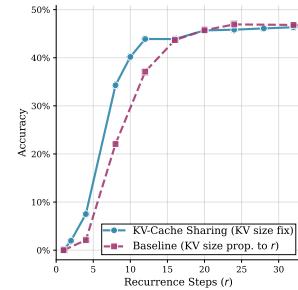
### 3.2 THE INGREDIENTS FOR DIFFUSION FORCING SAMPLING

While we will describe experiments using this particular recurrent-depth model, the sampler can be applied to all recurrent-depth models that fulfill the following requirements.

**Input Injection.** The first necessary component, aside from the recurrence over layers itself, is the input injection, i.e., the conditioning of the recurrence on  $e$ . This will allow the sampler to “course-correct” if conditioning changes without having to jettison a partially computed state  $s$ . The other component that may improve the connection to diffusion modeling is the initialization of random states, but while we speculate that this is beneficial, it is not architecturally necessary. As such, recurrent-depth models trained in Csordás et al. (2024); Schöne et al. (2025); Mohtashami et al. (2024) or Wang et al. (2025a) could also benefit from this sampler. However, looped architectures such as *Coconut* (Hao et al., 2024), which train to feed the outputs of a transformer back in as inputs, are not immediately supported and require retraining to incorporate input injection, separating their recurrent state from their input data.

**Robust Recurrence.** The second necessary property is that the intermediate state at every step of the recurrence must be decodable to approximately correct solutions. While this property is generally satisfied, it may fail in models trained exclusively with a fixed number of recurrences  $r$ , where decoding from earlier steps can yield nonsensical outputs rather than approximate versions of the intended result.

**KV Cache Sharing.** The third property, while not strictly required but highly beneficial for diffusion forcing samplers, is the ability of different recurrent depths to share their KV cache across iterations during generation. Without fungible KV states, all KV states from previous recurrences and tokens must be retained in memory, causing the cache to grow with both sequence length and recurrence depth. As shown in Figure 3, the trained *Huginn-0125* model inherently supports KV cache sharing, allowing us to store only the KV state of the most recent recurrence for each token position<sup>1</sup>.



**Figure 3:** The *Huginn-0125* recurrent-depth model can match the baseline performance on the GSM8k dataset when enabling KV cache sharing (with a minimal cache size of 1), using  $r$ -times less memory for KV states.

<sup>1</sup>With this form of KV sharing, the cache requires no more memory than that of a parameter-matched fixed-depth transformer.

---

216 **Algorithm 1** Diffusion-forcing-style generation, simplified version (Full Version in [Algorithm 2](#))  
217  
218 **Require:** current text context  $\mathbf{x}$ , max new tokens  $N$ , inner recurrence  $r'$ , total recurrences per token  $r$ , diffusion  
219 steps  $T$ , init scale  $\alpha$   
220 1:  $\mathbf{y}_{\text{frozen}} \leftarrow \mathbf{x}$   
221 2:  $\mathbf{y}_{\text{current}} \leftarrow \mathbf{x}$   
222 3:  $\mathbf{z} \leftarrow \text{InitState}(1, \alpha)$   
223 4: **for** step  $t = 1, \dots, T$  **do**  
224 5:    $\mathbf{e} \leftarrow \mathcal{P}(\mathbf{y}_{\text{current}})$   
225 6:    $\mathbf{z}_{\text{noise}} \leftarrow \text{InitState}(1, \alpha)$   
226 7:    $\mathbf{z} \leftarrow (1 - \beta_t)\mathbf{z} + \beta_t \mathbf{z}_{\text{noise}}$   
227 8:   **for**  $j = 1, \dots, r'$  **do**  
228 9:      $\mathbf{z} \leftarrow \mathcal{R}(\mathbf{z}, \mathbf{e})$  ▷ Inner recurrence  
229 10:   **end for**  
230 11:    $\mathbf{p} \leftarrow \mathcal{C}(\mathbf{z})$  ▷ project latent states to logits  
231 12:    $\hat{\mathbf{y}} \leftarrow \text{Sample}(\mathbf{p})$   
232 13:    $\mathbf{y}_{\text{current}} \leftarrow [\mathbf{y}_{\text{frozen}}, \hat{\mathbf{y}}]$   
233 14:    $\mathbf{y}_{\text{frozen}} \leftarrow \text{Assign } \mathbf{y}_{\text{current}} \text{ up to the last } \lceil \frac{r}{r'} \rceil \text{ entries}$  ▷ Freeze completed tokens  
234 15:   **if**  $|\mathbf{y}_{\text{frozen}}| - |\mathbf{x}| \geq N$  **then break**  
235 16:   **end if**  
236 17:    $\mathbf{z} \leftarrow [\mathbf{z}, \text{InitState}(1, \alpha)]$  ▷ Append a new latent state for the next position  
237 18: **end for**  
238 19: **return**  $\mathbf{y}_{\text{frozen}}$

---

236  
237 3.3 A SIMPLIFIED VERSION OF THE SAMPLING ALGORITHM  
238

239 Next, we present the algorithm for our sampler. Given a prompt  $x$ , [Algorithm 1](#) describes a simplified  
240 version that directly adapts diffusion forcing principles to parallelize generation across the sequence  
241 dimension. This approach yields improvements in tokens/second while maintaining equivalent total  
242 FLOP requirements. An example of the sampler’s behavior is illustrated in [Figure 2](#).

243 We emphasize several important aspects. First, the number of inner recurrences  $r'$  may be chosen  
244 to exceed one. These additional iterations are relatively inexpensive, since the broader logic of  
245 the sampler is not yet invoked. More importantly, they serve to stabilize the recurrence. Because  
246 the conditioning on the input embedding  $\mathbf{e}$  may vary across successive steps of the sampler, the  
247 model risks becoming trapped in oscillatory behavior unless sufficient steps are allowed to adapt the  
248 current state to the evolving conditioning. This mechanism closely parallels practices in the diffusion  
249 literature, such as the use of supplementary diffusion steps in [Bansal et al. \(2023\)](#) to incorporate  
250 complex guidance signals into image diffusion models.

251 Second, we naturally employ this sampler only during the generation phase, as the prefill phase is  
252 already parallelizable in the sequence dimension, as the recurrence can be computed on all token  
253 positions of the prompt simultaneously.

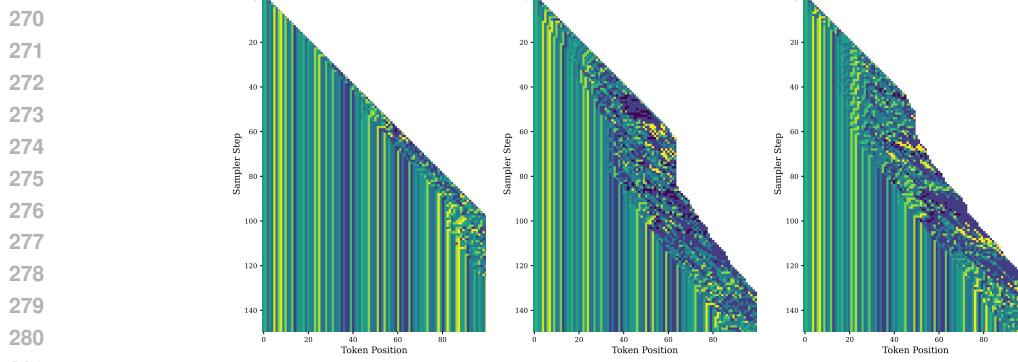
254 Further, in terms of efficiency, we note that we do not actually want to keep the state for all tokens  
255 changing indefinitely, as doing so would slow down generation again, as well as increase memory  
256 usage dramatically. As such, similar to block-diffusion samplers ([Arriola et al., 2025](#)), we look for  
257 rules that decide when each position is “finished”. In the simplified version of the sampler, we freeze  
258 the last token once we reach a predetermined number of recurrence steps at this position – which  
259 naturally happens  $r$  positions behind the current maximal extent of the sequence. Frozen tokens are  
260 removed from the state vector and their KV states are added to the cache, so that, as in block diffusion  
261 models ([Arriola et al., 2025](#)), at each point in time, only a small subset of tokens in being modified  
262 and the full generation runs like a wave over the generating sequence. Finally, note that with this  
263 simplified exit rule,  $r' = r$  exactly recovers the original autoregressive sampler.

264 3.4 STABILIZING COMPONENTS BASED ON DIFFUSION PRINCIPLES  
265

266 Further, we also experiment with adding momentum to the input conditioning  $\mathbf{e}$ , setting

$$\mathbf{e} = \eta \mathbf{e}_{\text{prev}} + (1 - \eta) \mathcal{P}(\mathbf{y}_{\text{current}}), \quad (1)$$

267 which we find can stabilize the recurrence in challenging sequences, providing a small, but robust  
268 gain on average.



**Figure 4: Examples of adaptive sampler behavior.** Each color represents a token id in the vocabulary of the model, showing the development of the generated sequence (running left to right) as a function of sampler steps (running top to bottom) for *different hyperparameter choices*. The leftmost example is  $r' = 4$ , and tokens are frozen quickly, whereas middle and right show sequences with  $r < 4$  require more adaptive computation, and in both cases the sampler stalls after hitting the maximal length of the wavefront (here 32 to visualize), before resolving the sequence and advancing again.

Secondly, surprisingly, we find that even though these models are never trained with noise injected into intermediate states, that artificially adding noise to the state in each step of the sampler, in analogy to sampling from continuous diffusion models, i.e.

$$\mathbf{z}' = (1 - \beta_t)\mathbf{z} + \beta_t \mathbf{z}_{\text{noise}} \quad \text{where } \mathbf{z}_{\text{noise}} = \text{InitState}(1, \alpha), \quad (2)$$

can stabilize the iterative process, leading to gains in both accuracy and throughput if  $r'$  is small. In practice, we schedule  $\beta_t$  linearly as a function of steps  $t$  at each position, so that the latter steps are naturally less noisy (Chen et al., 2024a), which we find to outperform either scheduling  $\beta_t$  scaled by the square root of the number of recurrences at each position or keeping it constant. However, the optimal value of  $\beta_t$  depends on  $r'$ .

### 3.5 ADAPTIVE EXITS

However, the fixed exit scheme of the simplified sampler can run into issues. The recurrent-depth model is causal and how quickly states converge depends on the complexity of the query. This can lead to situations where either, compute is wasted because the states at certain positions have already converged quicker than  $r$ , or, more problematically, states where, due to a late change in the conditioning of prior tokens, the states have not converged in time. Freezing these unfinished states would worsen generation, in the worst case leading to a spiral where each token that is frozen incorrectly slows down convergence further, leading to a response that becomes more incorrect with each token.

However, we can remedy both cases through adaptive compute. We pick the simplest adaptive exit criterion, the normalized distance in latent space, and compute this quantity for each position and freeze up to all positions where this distance  $\delta_i$  is smaller than a threshold  $\varepsilon$ .

$$\delta_i = \frac{\|\mathbf{z}_i - \mathbf{z}_{\text{prev},i}\|_2}{\|\mathbf{z}_i\|_2}, \quad k^* = \max\{k : \delta_j < \varepsilon \text{ for all } j \leq k\} \quad (3)$$

We combine this with a limiter on the maximum length of the wavefront of the algorithm to guarantee that both 1) the number of states currently being modified, so the maximum memory footprint, is bounded and 2) only positions with converged states are frozen. The full algorithm is described in Appendix [Algorithm 2](#). With these rules in place, we note that setting the wavefront to 1 token, we exactly recover the token-per-token adaptive compute sampler from (Geiping et al., 2025).

We show the practical outcome of this sampler for a challenging input sequence from GSM8k in a series of heatmaps in the appendix, see [Figure 13](#). The heatmap shows the development of the sequence as a function of generation steps and tokens. We see that the wave first advances quickly, but then halts for a short amount of steps, before resuming the advance.

**Remark 3.1** (Convergence of the Adaptive Diffusion Sampler). *With this algorithm, we can, in principle guarantee convergence to the same solution as when sampling autoregressively, if we assume that the recurrent block  $R$  was a contraction. Then, convergence of iterates, i.e. [Equation \(3\)](#), would imply convergence to the fixed point of the operator. Second, because the model is causal,*

324 convergence of the first token position does not depend others and will converge at some step  $t$ . At this  
 325 step, the conditioning of the subsequent token is frozen, so it will also converge, proving convergence  
 326 of the full sequence to the autoregressive solution by induction. However, in practice, large-scale  
 327 recurrent-depth models are not easily proven to be contractive, even if models are approximately  
 328 path-independent (Anil et al., 2022), so we provide this only as a conceptual remark.  
 329

## 330 4 THEORETICAL ANALYSIS

332 This section develops a theoretical framework to justify the optimality of our design in balancing  
 333 efficiency and expressiveness with two research questions (RQs): (i) Why should models prioritize  
 334 recurrence, i.e. *depth scaling*, during prefilling? and (ii) Why should models prioritize parallelizing  
 335 decoding from a larger wavefront of tokens using the sampler described in the previous section, i.e.  
 336 *width scaling* during decoding?

### 337 4.1 PROBLEM FORMULATION

339 Before answering these RQs, we formalize the notions of depth and width within our framework,  
 340 which limits our analysis to Transformer-based autoregressive LLMs. In particular, we focus exclusively  
 341 on the comparison between depth and width, without considering length (i.e., CoT) scaling.

342 **Definition 4.1** (Depth and Width in Recurrent-Depth Models, informal). For recurrent-depth models,  
 343 we define *depth*  $d_t$  and *width*  $w_t$  at each time step  $t \in \mathbb{N}$ , with initial conditions  $d_0 = 0$  and  $w_0 = L_0$   
 344 (where  $L_0$  denotes the input sequence length). The corresponding update rules are given as follows:

- 346 **1. Depth Update:** At each step  $t$ ,  $d_{t+1} = d_t + 1$  with  $d_0 = 0$ , therefore  $d_t = t$  for all  $t \in \mathbb{N}$ .
- 347 **2. Width Update:** At each step  $t$ , width changes only through token exits and token entries:

$$349 \quad \delta^{(t)} = \begin{cases} -1, & \text{if a hidden state decodes from the model (exit event),} \\ 350 & \\ 351 & +1, \quad \text{if a latest token encodes into the model (entry event).} \end{cases}$$

### 353 4.2 LLMs SHOULD PRIORITIZE DEPTH SCALING DURING PREFILLING.

355 To establish this, we first define a width scaling architecture without increasing model parameters  
 356 following Wu et al. (2025). Concretely, we repeat each token along the sequence dimension. Note  
 357 that during prefilling, increasing the number of such repeated tokens is equivalent to width scaling  
 358 under our definition, since this expands the input sequence length. Here, we introduce two variants:

- 359 • Width Scaling without KV Sharing (Width-NoShare): For the  $j$ -th copy of token  $i$ , attention is  
 360 allowed to all copies of tokens  $0, \dots, i-1$ , as well as the first  $j-1$  copies of token  $i$ .
- 361 • Width Scaling with KV Sharing (Width-KVShare): For the  $j$ -th copy of token  $i$ , attention is limited  
 362 to (i) the last copy of tokens  $0, \dots, i-1$ , and (ii) the first  $j-1$  copies of token  $i$ .

363 Based on the above definition, we state the importance of depth scaling during prefilling stage.

365 **Theorem 4.2** (Depth vs. Width Scaling in Prefilling, informal). *Given the width-scaling architecture  
 366 above and our recurrent-depth model with the same scaling factor  $s$ . Then the following hold:*

- 367 **1. Expressiveness.** *Under equal scaling factors, depth scaling is more expressive than width scaling.*
- 368 **2. Complexity.** *For asymptotic prefill cost (including both attention and linear layers), we have*

$$370 \quad E_{\text{Depth}} \leq E_{\text{Width-KVShare}} < E_{\text{Width-NoShare}}.$$

- 373 **3. Parallelism.** *There exists a threshold  $L_*$  such that for  $L < L_*$ , width scaling provides  $s^2$  times  
 374 the parallelism of depth scaling, while for  $L \geq L_*$  both saturate with similar parallelism.*

375 **Remark 4.3.** *Let  $L$  be a random variable for prompt length with distribution  $\mathcal{D}$ . Then the probability  
 376 that depth scaling is more efficient than width scaling equals  $\Pr_{L \sim \mathcal{D}}[L \geq L_*]$ . Since  $L_*$  on modern  
 377 GPUs typically lies between a few hundred and a few thousand tokens while empirical input length  
 378 distributions place substantial mass above this range, the probability is indeed close to 1 in practice.*

| Sampler                                   | GSM8K  |              | MATH500 |              | HumanEval |              | MBPP   |              |
|-------------------------------------------|--------|--------------|---------|--------------|-----------|--------------|--------|--------------|
|                                           | Acc    | t/s          | Acc     | t/s          | Acc       | t/s          | Acc    | t/s          |
| Static AR ( $r = 32$ )                    | 41.77% | 36.1         | 17.60%  | 6.4          | 22.56%    | 13.5         | 31.60% | 15.3         |
| Static AR ( $r = 4$ )                     | 1.59%  | 312.9        | 3.20%   | 18.6         | 0.61%     | 244.1        | 1.40%  | 49.6         |
| Static AR ( $r = 8$ )                     | 31.61% | 137.5        | 14.80%  | 23.1         | 21.34%    | 61.7         | 27.40% | 57.2         |
| Static AR ( $r = 64$ )                    | 42.15% | 18.2         | 18.60%  | 3.4          | 22.56%    | 7.3          | 30.20% | 7.6          |
| Adaptive Compute AR                       | 42.23% | 66.9         | 18.20%  | 12.2         | 21.95%    | 26.1         | 30.20% | 29.5         |
| Speculative Decoding AR                   | 42.76% | 69.5         | 17.80%  | 13.4         | 20.12%    | 27.5         | 30.60% | 31.6         |
| Diff. Sampler ( $r' = 2, \beta_t = 0.5$ ) | 40.71% | 182.2        | 17.60%  | 35.9         | 20.12%    | 67.4         | 27.80% | 92.3         |
| Diff. Sampler ( $r' = 4, \beta_t = 0$ )   | 42.08% | 157.3        | 18.00%  | 30.3         | 20.12%    | 64.9         | 31.00% | 70.2         |
| Relative Diff to AR ( $r = 32$ )          | +0.31  | <b>4.36x</b> | +0.40   | <b>4.73x</b> | -2.44     | <b>4.81x</b> | -0.60  | <b>4.59x</b> |

**Table 1:** Performance comparison of autoregressive (AR) and diffusion samplers for the *Huginn-0125* model using a comparable backend (batch size 1, transformers with dynamic KV caching, no further inference optimizations). For both samplers, we record the total evaluation time divided by the number of samples. “Acc” denotes task accuracy, and “t/s” denotes the median of tokens/second measurements for all samples in the task.

#### 4.3 LLMs SHOULD PRIORITIZE WIDTH SCALING DURING DECODING

Using this framework, we can compute when recurrent-depth models should use diffusion forcing samplers during decoding.

**Theorem 4.4** (Depth vs. Width Scaling in Decoding, informal). *For recurrent-depth models with  $r > 1$  inner recurrences, if diffusion forcing sampling and KV-cache sharing are employed with wavefront size  $W \leq L_*$ , then diffusion forcing decoding achieves equal depth and strictly greater width compared to standard autoregressive decoding under the same runtime constraints. Mathematically, this relationship can be expressed as:*

$$d_{DF}(T) = d_{AR}(T) \quad \text{and} \quad w_{DF}(T) > w_{AR}(T),$$

where  $T$  is the runtime budget, and  $DF$  and  $AR$  denote diffusion forcing and autoregressive decoding.

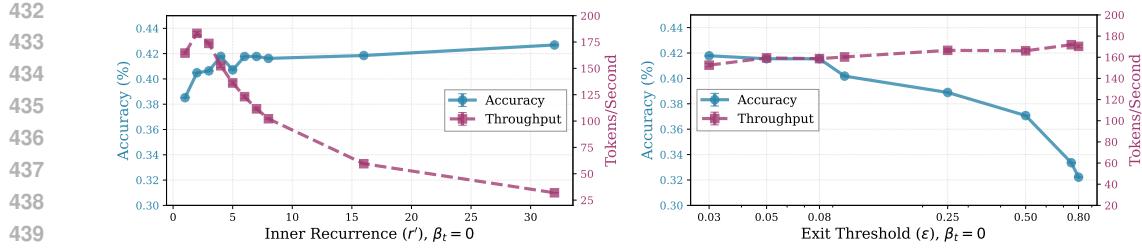
**Remark 4.5.** Since model parameters and KV states are shared, the I/O cost of processing multiple tokens is asymptotically equivalent to processing a single token, enabling increased token generation within identical runtime constraints. At each decoding step, an expanded wavefront enables greater width scaling, providing superior expressiveness compared to autoregressive decoding. Empirically, since maximum recurrence depth rarely exceeds  $r \approx 100$ , the condition  $W \leq L_*$  typically holds.

## 5 EXPERIMENTAL EVALUATION

To assess whether our method really accelerates generation, we compare our sampler against an equally optimized implementation of standard autoregressive sampling, both evaluated with a batch size of 1. Extensions to larger batch sizes are conceivable but fall outside the scope of this study, see additional discussion in [Section A.2](#)

We evaluate the 4 generative benchmarks (GSM8K, MATH500, HumanEval and MBPP) also evaluated in (Geiping et al., 2025), which we rerun using our sampler and compare against a number of baselines. Aside from the **static, autoregressive baseline** (static AR), at different recurrence steps, we also compare against the **adaptive compute** sampler of the original work, which still samples token-by-token, but exits the recurrence at every token, once the difference in latent space is small enough. We tune this sampler, finding that its hyperparameter, the threshold  $\varepsilon$  is similar to the diffusion sampler. Finally, we also compare against a heavily tuned **self-speculative decoding baseline**. It was observed in Geiping et al. (2025) that recurrent-depth models can be natively used as their own draft models, using fewer steps to draft. We find that drafting 4 tokens into the future, each with 4 draft steps is optimal for the *Huginn-0125* checkpoint on GSM8k.

We implement all samplers in comparable Hugging Face `transformers` implementations with dynamic KV caching and we measure mean accuracy and median tokens per second, computed



**Figure 5:** Trade-off between accuracy and speed on GSM8k under different hyperparameter choices. **Left:** Effect of increasing inner recurrence  $r'$ . Inner recurrence stabilizes the sampling, increasing accuracy at the cost of throughput. **Right:** Effect of varying the exit threshold  $\epsilon$ . Modulating the exit threshold most directly trades off throughput and accuracy.

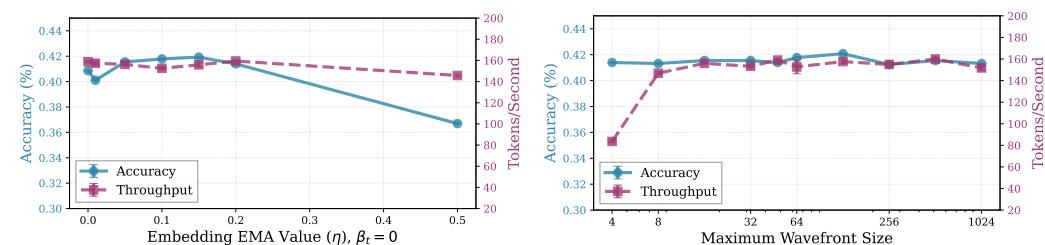
| Sampler                                 | GSM8K  |       | Minerva Math |       | HumanEval |      | MBPP   |      |
|-----------------------------------------|--------|-------|--------------|-------|-----------|------|--------|------|
|                                         | Acc    | Time  | Acc          | t/s   | Acc       | t/s  | Acc    | t/s  |
| Huginn-0125                             |        |       |              |       |           |      |        |      |
| Static AR ( $r = 32$ )                  | 41.77% | 36.1  | 12.98%       | 21.0  | 22.56%    | 13.5 | 31.60% | 15.3 |
| Diff. Sampler ( $r' = 4, \beta_t = 0$ ) | 42.08% | 157.3 | 13.06%       | 96.0  | 20.12%    | 64.9 | 31.00% | 70.2 |
| SWA Model Variant                       |        |       |              |       |           |      |        |      |
| Static AR ( $r = 32$ )                  | 47.99% | 36.2  | 14.86%       | 22.1  | 23.78%    | 14.9 | 31.20% | 11.8 |
| Diff. Sampler ( $r' = 4, \beta_t = 0$ ) | 47.08% | 143.1 | 14.52%       | 101.4 | 23.78%    | 71.2 | 29.20% | 59.7 |
| Math-Finetuned Model                    |        |       |              |       |           |      |        |      |
| Static AR ( $r = 32$ )                  | 58.91% | 29.8  | 22.20%       | 7.9   | 17.07%    | 11.5 | 28.80% | 11.2 |
| Diff. Sampler ( $r' = 4, \beta_t = 0$ ) | 58.45% | 144.1 | 21.40%       | 39.8  | 15.24%    | 47.9 | 27.60% | 57.1 |

**Table 2:** Hyperparameters remain stable across different model variants. For example, both the weight-averaged checkpoint from the original work and the model finetuned on MetaMath for this study exhibit consistent speed gains in the range of 4–5× and accuracy deviations within 0.5–1%, even when baseline values change.

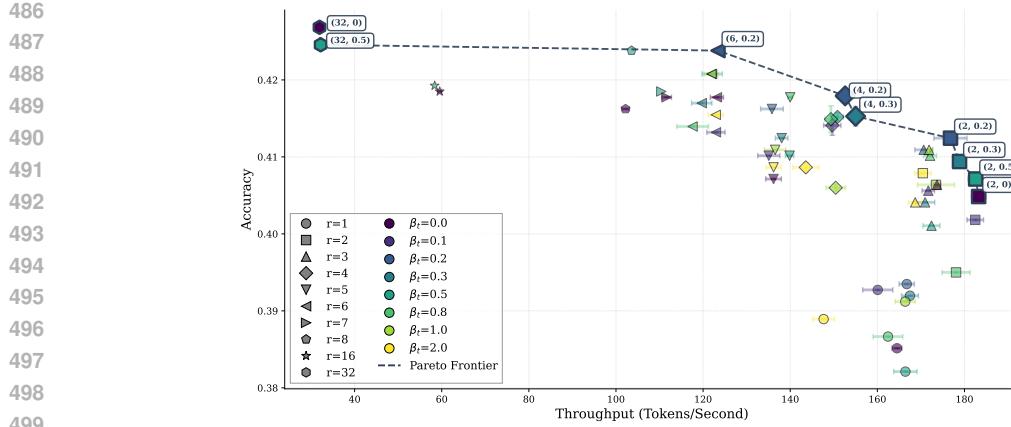
over queries from each benchmark. All timings are obtained from CUDA event measurements on sandboxed A100-40GB GPUs. If not otherwise mentioned, we default to conservative settings for the sampler, always setting an exit threshold of  $\epsilon = 0.03$ ,  $\beta_t = 0$ ,  $\eta = 0.1$  and  $r' = 4$ , for a maximum wavefront size of 128, if not otherwise mentioned.

**Benchmark Results.** We summarize our findings in Table 1. We find that on all benchmarks, executing the parallelized sampler leads to significant speedups of around 5x, with only minor trade-offs in generation quality of around 1%, depending on the task, owing to the trade-off set by our default hyperparameters. In Table 2 we repeat all benchmarks for two additional model checkpoints, the SWA model also released in Geiping et al. (2025), and a math variant, that we finetuned on the MetaMath dataset (Yu et al., 2023). Even though these model variants differ noticeably in their benchmark scores, they show similar gains and trade-offs when using the diffusion sampler.

**Hyperparameter Choices.** We show the trade-off curves arising when varying the inner recurrence  $r'$  and the exit threshold  $\epsilon$  in Figure 5 for two settings of noise  $\beta_t$ , finding that we can effectively trade-off additional generation speed against minor losses in accuracy. We further vary the embedding



**Figure 6:** **Left:** Scaling the amount of momentum  $\eta$  in the conditioning, showing that small, but non-zero  $\eta$  values are optimal. **Right:** Size of the wavefront. Increasing wavefront size up to a value around 64–128 appears optimal. We note that the optimal wavefront size is also likely to be accelerator-specific.



**Figure 7:** The Pareto Curve of Accuracy and Throughput on GSM8k spanned by varying inner recurrence and noise hyperparameter pairs  $(r', \beta_t)$ . Adding moderate amounts of noise, e.g.  $\beta_t = 0.2$  is dominating runs with no noise added. Note also the scale of y-axis, as we are observing accuracy losses of only 2% on the frontier.

| Dataset           | Text Similarity to AR |              |                      | LLM-as-Judge Evaluation |         |          |          | Log-Perplexity |             |          |       |
|-------------------|-----------------------|--------------|----------------------|-------------------------|---------|----------|----------|----------------|-------------|----------|-------|
|                   | ROUGE                 | Ident. Resp. | Prefer. (Win or Tie) | Correct                 | Helpful | Coherent | Complete | Self           | Ext. (Qwen) | Tok/ Sec |       |
| <b>MTBench</b>    |                       |              |                      |                         |         |          |          |                |             |          |       |
| AR Baseline       |                       |              |                      | 4.31                    | 4.75    | 5.83     | 5.34     | 0.82           | 1.42        | 8.04     |       |
| Diff. Sampler     | 0.68                  | 0.55         | 9%                   | 58%                     | 4.26    | 4.67     | 5.69     | 5.15           | 0.90        | 1.33     | 24.53 |
| <b>AlpacaEval</b> |                       |              |                      |                         |         |          |          |                |             |          |       |
| AR Baseline       |                       |              |                      | 5.00                    | 5.32    | 6.79     | 5.76     | 0.92           | 1.52        | 8.10     |       |
| Diff. Sampler     | 0.68                  | 0.55         | 11%                  | 57%                     | 4.88    | 5.15     | 6.43     | 5.42           | 0.95        | 1.56     | 26.48 |
| <b>LitBench</b>   |                       |              |                      |                         |         |          |          |                |             |          |       |
| AR Baseline       |                       |              |                      | 4.23                    | 4.49    | 5.38     | 4.96     | 1.12           | 1.66        | 8.10     |       |
| Diff. Sampler     | 0.50                  | 0.24         | 0.6%                 | 44%                     | 3.91    | 4.17     | 4.82     | 4.08           | 1.17        | 1.72     | 26.48 |
| <b>Hermes-3</b>   |                       |              |                      |                         |         |          |          |                |             |          |       |
| AR Baseline       |                       |              |                      | 4.54                    | 4.84    | 6.20     | 5.70     | 0.72           | 1.63        | 9.61     |       |
| Diff. Sampler     | 0.75                  | 0.67         | 31%                  | 71%                     | 4.67    | 4.82     | 6.22     | 5.50           | 0.69        | 1.63     | 34.37 |

**Table 3:** Comparison of free-form generation quality of autoregressive (AR) vs. Diffusion Sampling (Diff), covering textual overlap between both sampling strategies (in ROUGE F1 and percentage of identical answers), judge preference (measuring percentage of answers that tie or exceed the AR baseline) and rating (from 1-10), both via Claude Sonnet-4.5 and perplexity evaluated on the original model, and externally using Qwen-3-8b (base).

EMA  $\eta$  and the noise schedule in Figure 6, showing that the sampler is robust to a broad range of settings for both options, although upsides are also limited. In Figure 7, we sweep a range of values for  $r'$  and  $\beta_t$ , showing that, on average, more noise is helpful if the model takes fewer inner recurrence steps. In Figure 6 (right), we confirm that larger maximum wavefront sizes (i.e. the number of tokens that is modified at once in the adaptive sampler) allow for better parallelization. For the tested A100 GPU, the optimal maximal wavefront size is between 64 and 128, although this is likely accelerator-specific. In Table 3 we compare free-form generation quality metrics for a range of prompt datasets, measuring text overlap and LLM-as-a-judge ratings. We find that the speed trade-off is similar for free-form as for the reasoning benchmarks evaluated earlier.

## 6 CONCLUSIONS: ARE RECURRENT-DEPTH TRANSFORMERS SECRETLY CONTINUOUS LANGUAGE DIFFUSION MODELS?

We have shown that, surprisingly, diffusion forcing samplers can be directly applied to parallelize the inference of existing recurrent-depth language models, which we justify theoretically, and implement in practice, leading to five times faster single-sequence inference, even on reasoning and coding benchmark questions. Interestingly, we could also interpret this relationship in the opposite direction, namely that some recurrent-depth models *could* be thought of effectively as continuous latent language diffusion models, just trained with an unusual objective, namely truncated unrolling. This would imply that unrolling objectives could be competitive objectives for future language diffusion models.

540 REPRODUCIBILITY STATEMENT  
541

542 We provide a code submission with this submission that contains the complete sampler we describe,  
543 including all options that can be directly slotted into pre-existing recurrent-depth modeling code. We  
544 provide experimental details in [Section 5](#) and provide further ablations and variants in the appendix.  
545 If not otherwise mentioned, all measured values are based on at least 5 repeated experiments. All  
546 timing are measured using CUDA events on GPUs of equal power, and are comparable to timings in  
547 the same table or figure.

548  
549 REFERENCES

550 Samira Abnar, Omid Saremi, Laurent Dinh, Shantel Wilson, Miguel Angel Bautista, Chen Huang,  
551 Vimal Thilak, Eta Littwin, Jiatao Gu, Josh Susskind, and Samy Bengio. Adaptivity and Modularity  
552 for Efficient Generalization Over Task Complexity. *arxiv:2310.08866[cs]*, October 2023. doi:  
553 10.48550/arXiv.2310.08866. URL <http://arxiv.org/abs/2310.08866>.

554 S.-I. Amari. Learning Patterns and Pattern Sequences by Self-Organizing Nets of Threshold Elements.  
555 *IEEE Transactions on Computers*, C-21(11):1197–1206, November 1972. ISSN 1557-9956. doi:  
556 10.1109/T-C.1972.223477. URL <https://ieeexplore.ieee.org/document/1672070>.

557 Cem Anil, Ashwini Pokle, Kaiqu Liang, Johannes Treutlein, Yuhuai Wu, Shaojie Bai, J. Zico Kolter,  
558 and Roger Baker Grosse. Path Independent Equilibrium Models Can Better Exploit Test-Time  
559 Computation. In *Advances in Neural Information Processing Systems*, October 2022. URL  
560 <https://openreview.net/forum?id=kgT6D7z4Xv9>.

561 Marianne Arriola, Aaron Gokaslan, Justin T. Chiu, Zhihan Yang, Zhixuan Qi, Jiaqi Han, Sub-  
562 ham Sekhar Sahoo, and Volodymyr Kuleshov. Block Diffusion: Interpolating Between Autoregres-  
563 sive and Diffusion Language Models. *arxiv:2503.09573[cs]*, May 2025. doi: 10.48550/arXiv.250  
564 3.09573. URL <http://arxiv.org/abs/2503.09573>.

565 Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Struc-  
566 tured Denoising Diffusion Models in Discrete State-Spaces. In *Advances in Neural Infor-  
567 mation Processing Systems*, volume 34, pp. 17981–17993. Curran Associates, Inc., 2021. URL  
568 <https://proceedings.neurips.cc/paper/2021/hash/958c530554f78bcd8e97125b70e6973d-Abstract.html>.

569 Sangmin Bae, Adam Fisch, Hrayr Harutyunyan, Ziwei Ji, Seungyeon Kim, and Tal Schuster. Relaxed  
570 Recursive Transformers: Effective Parameter Sharing with Layer-wise LoRA. October 2024. doi:  
571 10.48550/arXiv.2410.20672. URL <http://arxiv.org/abs/2410.20672>.

572 Arpit Bansal, Avi Schwarzschild, Eitan Borgnia, Zeyad Emam, Furong Huang, Micah Goldblum,  
573 and Tom Goldstein. End-to-end Algorithm Synthesis with Recurrent Networks: Extrapolation  
574 without Overthinking. In *Advances in Neural Information Processing Systems*, October 2022. URL  
575 <https://openreview.net/forum?id=PPjSKy40XUB>.

576 Arpit Bansal, Hong-Min Chu, Avi Schwarzschild, Roni Sengupta, Micah Goldblum, Jonas Geiping,  
577 and Tom Goldstein. Universal Guidance for Diffusion Models. In *The Twelfth International  
578 Conference on Learning Representations*, October 2023. URL [https://openreview.net/  
579 /forum?id=pzpWBbnwiJ](https://openreview.net/forum?id=pzpWBbnwiJ).

580 Jay Bear, Adam Prügel-Bennett, and Jonathon Hare. Rethinking Deep Thinking: Stable Learning of  
581 Algorithms using Lipschitz Constraints. *arxiv:2410.23451[cs]*, October 2024. doi: 10.48550/arX  
582 iv.2410.23451. URL <http://arxiv.org/abs/2410.23451>.

583 Valentino Braatenberg. *Vehicles: Experiments in Synthetic Psychology*. MIT press, 1986.

584 Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri  
585 Dao. Medusa: Simple LLM Inference Acceleration Framework with Multiple Decoding Heads.  
586 *arxiv:2401.10774[cs]*, January 2024. doi: 10.48550/arXiv.2401.10774. URL <http://arxiv.org/abs/2401.10774>.

594 Boyuan Chen, Diego Marti Monso, Yilun Du, Max Simchowitz, Russ Tedrake, and Vincent Sitzmann.  
 595 Diffusion Forcing: Next-token Prediction Meets Full-Sequence Diffusion. *arxiv:2407.01392[cs]*,  
 596 July 2024a. URL <http://arxiv.org/abs/2407.01392>.

597

598 Boyuan Chen, Diego Marti Monso, Yilun Du, Max Simchowitz, Russ Tedrake, and Vincent Sitzmann.  
 599 Diffusion Forcing: Next-token Prediction Meets Full-Sequence Diffusion. *arxiv:2407.01392[cs]*,  
 600 December 2024b. doi: 10.48550/arXiv.2407.01392. URL <http://arxiv.org/abs/2407.01392>.

601

602 Ting Chen, Ruixiang Zhang, and Geoffrey Hinton. Analog Bits: Generating Discrete Data using  
 603 Diffusion Models with Self-Conditioning. In *The Eleventh International Conference on Learning  
 604 Representations*, September 2022. URL <https://openreview.net/forum?id=3itjR9QxFw>.

605

606 Zhuoming Chen, Avner May, Ruslan Svirchevski, Yuhsun Huang, Max Ryabinin, Zhihao Jia, and  
 607 Beidi Chen. Sequoia: Scalable, robust, and hardware-aware speculative decoding. *arXiv preprint  
 608 arXiv:2402.12374*, 2024c.

609

610 Jeffrey Cheng and Benjamin Van Durme. Compressed Chain of Thought: Efficient Reasoning  
 611 Through Dense Representations. *arxiv:2412.13171[cs]*, December 2024. doi: 10.48550/arXiv.241  
 612 2.13171. URL <http://arxiv.org/abs/2412.13171>.

613

614 Róbert Csordás, Kazuki Irie, Jürgen Schmidhuber, Christopher Potts, and Christopher D. Manning.  
 615 MoEUT: Mixture-of-Experts Universal Transformers. In *The Thirty-eighth Annual Conference on  
 616 Neural Information Processing Systems*, November 2024. URL [https://openreview.net  
 /forum?id=ZxVrkm7Bjl&noteId=xzoi2mTLOI](https://openreview.net<br/>
  617 /forum?id=ZxVrkm7Bjl&noteId=xzoi2mTLOI).

618

619 Google DeepMind. Gemini Diffusion, May 2025. URL <https://blog.google/technology/google-deepmind/gemini-diffusion/>.

620

621 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,  
 622 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,  
 623 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao  
 624 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,  
 625 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,  
 626 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,  
 627 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang  
 628 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,  
 629 Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,  
 630 Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,  
 631 Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,  
 632 Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.  
 633 Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,  
 634 Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng  
 635 Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng  
 636 Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan  
 637 Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,  
 638 Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,  
 639 Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K.  
 640 Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui  
 641 Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan  
 642 Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou,  
 643 Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu,  
 644 Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun  
 645 Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan  
 646 Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu,  
 647 Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and  
 648 Zhen Zhang. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement  
 649 Learning. *arxiv:2501.12948[cs]*, January 2025. doi: 10.48550/arXiv.2501.12948. URL  
<http://arxiv.org/abs/2501.12948>.

648 Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Universal  
649 Transformers. *arxiv:1807.03819[cs, stat]*, March 2019. doi: 10.48550/arXiv.1807.03819. URL  
650 <http://arxiv.org/abs/1807.03819>.

651 Sander Dieleman, Laurent Sartran, Arman Roshannai, Nikolay Savinov, Yaroslav Ganin, Pierre H.  
652 Richemond, Arnaud Doucet, Robin Strudel, Chris Dyer, Conor Durkan, Curtis Hawthorne,  
653 Rémi Leblond, Will Grathwohl, and Jonas Adler. Continuous diffusion for categorical data.  
654 *arxiv:2211.15089[cs]*, December 2022. doi: 10.48550/arXiv.2211.15089. URL <http://arxiv.org/abs/2211.15089>.

655 Rodney J. Douglas and Kevan A. C. Martin. Neuronal circuits of the neocortex. *Annual Review of  
656 Neuroscience*, 27:419–451, 2004. ISSN 0147-006X. doi: 10.1146/annurev.neuro.27.070203.1441  
657 52.

658 Ying Fan, Yilun Du, Kannan Ramchandran, and Kangwook Lee. Looped Transformers for Length  
659 Generalization. In *The Thirteenth International Conference on Learning Representations*, 2025.  
660 URL <https://openreview.net/forum?id=2edigk8yoU>.

661 Daniel Fein, Sebastian Russo, Violet Xiang, Kabir Jolly, Rafael Rafailov, and Nick Haber. Litbench: A  
662 benchmark and dataset for reliable evaluation of creative writing. *arXiv preprint arXiv:2507.00769*,  
663 2025.

664 Khashayar Gatmiry, Nikunj Saunshi, Sashank J. Reddi, Stefanie Jegelka, and Sanjiv Kumar. Can  
665 Looped Transformers Learn to Implement Multi-step Gradient Descent for In-context Learning?  
666 October 2024. doi: 10.48550/arXiv.2410.08292. URL <http://arxiv.org/abs/2410.08292>.

667 Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R. Bartoldson,  
668 Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up Test-Time Compute with  
669 Latent Reasoning: A Recurrent Depth Approach. *arxiv:2502.05171[cs]*, February 2025. doi:  
670 10.48550/arXiv.2502.05171. URL <http://arxiv.org/abs/2502.05171>.

671 F.A. Gers and J. Schmidhuber. Recurrent nets that time and count. In *Proceedings of the IEEE-INNS-  
672 ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New  
673 Challenges and Perspectives for the New Millennium*, volume 3, pp. 189–194 vol.3, July 2000. doi:  
674 10.1109/IJCNN.2000.861302. URL <https://ieeexplore.ieee.org/document/861302>.

675 Angeliki Giannou, Shashank Rajput, Jy-Yong Sohn, Kangwook Lee, Jason D. Lee, and Dimitris  
676 Papailiopoulos. Looped Transformers as Programmable Computers. In *Proceedings of the 40th  
677 International Conference on Machine Learning*, pp. 11398–11442. PMLR, July 2023. URL  
678 <https://proceedings.mlr.press/v202/giannou23a.html>.

679 Shansan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An,  
680 Peilin Zhao, Wei Bi, Jiawei Han, Hao Peng, and Lingpeng Kong. Scaling Diffusion Language  
681 Models via Adaptation from Autoregressive Models. *arxiv:2410.17891[cs]*, May 2025a. doi:  
682 10.48550/arXiv.2410.17891. URL <http://arxiv.org/abs/2410.17891>.

683 Shansan Gong, Ruixiang Zhang, Huangjie Zheng, Jiatao Gu, Navdeep Jaitly, Lingpeng Kong, and  
684 Yizhe Zhang. DiffuCoder: Understanding and Improving Masked Diffusion Models for Code  
685 Generation. *arxiv:2506.20639[cs]*, June 2025b. doi: 10.48550/arXiv.2506.20639. URL  
686 <http://arxiv.org/abs/2506.20639>.

687 Alex Graves. Adaptive Computation Time for Recurrent Neural Networks. *arxiv:1603.08983[cs]*,  
688 February 2017. doi: 10.48550/arXiv.1603.08983. URL <http://arxiv.org/abs/1603.08983>.

689 Alex Graves, Greg Wayne, and Ivo Danihelka. Neural Turing Machines. *arxiv:1410.5401[cs]*,  
690 December 2014. URL <http://arxiv.org/abs/1410.5401>.

691 Alex Graves, Rupesh Kumar Srivastava, Timothy Atkinson, and Faustino Gomez. Bayesian Flow  
692 Networks. *arxiv:2308.07037[cs]*, March 2025. doi: 10.48550/arXiv.2308.07037. URL  
693 <http://arxiv.org/abs/2308.07037>.

702 Xiaochuang Han, Sachin Kumar, and Yulia Tsvetkov. SSD-LM: Semi-autoregressive Simplex-  
 703 based Diffusion Language Model for Text Generation and Modular Control. In Anna Rogers,  
 704 Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual Meeting of the*  
 705 *Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 11575–11596, Toronto,  
 706 Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.64  
 707 7. URL <https://aclanthology.org/2023.acl-long.647/>.

708 Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong Tian.  
 709 Training Large Language Models to Reason in a Continuous Latent Space. *arxiv:2412.06769[cs]*,  
 710 December 2024. doi: 10.48550/arXiv.2412.06769. URL <http://arxiv.org/abs/2412.06769>.

711 Tamir David Hay and Lior Wolf. Dynamic Layer Tying for Parameter-Efficient Transformers.  
 712 In *The Twelfth International Conference on Learning Representations*, October 2023. URL  
 713 <https://openreview.net/forum?id=d4uL2MSe0z>.

714 Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax Flows  
 715 and Multinomial Diffusion: Learning Categorical Distributions. In *Advances in Neural Information  
 716 Processing Systems*, volume 34, pp. 12454–12465. Curran Associates, Inc., 2021. URL <https://proceedings.neurips.cc/paper/2021/hash/67d96d458abdef21792e6d8e590244e7-Abstract.html>.

717 J J Hopfield. Neural networks and physical systems with emergent collective computational abilities.  
 718 *Proceedings of the National Academy of Sciences of the United States of America*, 79(8):2554–  
 719 2558, April 1982. ISSN 0027-8424. URL <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC346238/>.

720 Jaehyeong Jo and Sung Ju Hwang. Continuous Diffusion Model for Language Modeling.  
 721 *arxiv:2502.11564[cs]*, February 2025. doi: 10.48550/arXiv.2502.11564. URL <http://arxiv.org/abs/2502.11564>.

722 Guy Kaplan, Matanel Oren, Yuval Reif, and Roy Schwartz. From Tokens to Words: On the Inner  
 723 Lexicon of LLMs. *arxiv:2410.05864[cs]*, October 2024. doi: 10.48550/arXiv.2410.05864. URL  
 724 <http://arxiv.org/abs/2410.05864>.

725 Rabeeh Karimi Mahabadi, Hamish Ivison, Jaesung Tae, James Henderson, Iz Beltagy, Matthew  
 726 Peters, and Arman Cohan. TESS: Text-to-Text Self-Conditioned Simplex Diffusion. In Yvette  
 727 Graham and Matthew Purver (eds.), *Proceedings of the 18th Conference of the European Chapter  
 728 of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 2347–2361, St.  
 729 Julian’s, Malta, March 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.e  
 730 acl-long.144. URL <https://aclanthology.org/2024.eacl-long.144/>.

731 V. A. Lamme and P. R. Roelfsema. The distinct modes of vision offered by feedforward and recurrent  
 732 processing. *Trends in Neurosciences*, 23(11):571–579, November 2000. ISSN 0166-2236. doi:  
 733 10.1016/s0166-2236(00)01657-x.

734 Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast Inference from Transformers via Speculative  
 735 Decoding. In *Proceedings of the 40th International Conference on Machine Learning*, pp. 19274–  
 736 19286. PMLR, July 2023. URL <https://proceedings.mlr.press/v202/leviathan23a.html>.

737 Xian Li, Asa Cooper Stickland, Yuqing Tang, and Xiang Kong. Deep Transformers with Latent  
 738 Depth. *arxiv:2009.13102[cs]*, October 2020. doi: 10.48550/arXiv.2009.13102. URL <http://arxiv.org/abs/2009.13102>.

739 Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy  
 740 Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following  
 741 models. [https://github.com/tatsu-lab/alpaca\\_eval](https://github.com/tatsu-lab/alpaca_eval), 5 2023.

742 Luyang Liu, Jonas Pfeiffer, Jiaxing Wu, Jun Xie, and Arthur Szlam. Deliberation in Latent Space via  
 743 Differentiable Cache Augmentation. *arxiv:2412.17747[cs]*, December 2024a. doi: 10.48550/arX  
 744 iv.2412.17747. URL <http://arxiv.org/abs/2412.17747>.

756 Zechun Liu, Changsheng Zhao, Forrest Iandola, Chen Lai, Yuandong Tian, Igor Fedorov, Yunyang  
 757 Xiong, Ernie Chang, Yangyang Shi, Raghuraman Krishnamoorthi, Liangzhen Lai, and Vikas  
 758 Chandra. MobileLLM: Optimizing Sub-billion Parameter Language Models for On-Device Use  
 759 Cases. *arxiv:2402.14905[cs]*, February 2024b. URL <http://arxiv.org/abs/2402.14905>.

760

761 Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios  
 762 of the data distribution. In *Proceedings of the 41st International Conference on Machine Learning*,  
 763 volume 235 of *ICML’24*, pp. 32819–32848, Vienna, Austria, July 2024. JMLR.org.

764

765 Mrinal Mathur, Barak A. Pearlmutter, and Sergey M. Plis. MIND over Body: Adaptive Thinking using  
 766 Dynamic Computation. In *The Thirteenth International Conference on Learning Representations*,  
 767 October 2024. URL <https://openreview.net/forum?id=EjJGND0m1x>.

768

769 Sean Michael McLeish, Arpit Bansal, Alex Stein, Neel Jain, John Kirchenbauer, Brian R. Bartoldson,  
 770 Bhavya Kailkhura, Abhinav Bhatele, Jonas Geiping, Avi Schwarzschild, and Tom Goldstein.  
 771 Transformers Can Do Arithmetic with the Right Embeddings. In *The Thirty-eighth Annual  
 772 Conference on Neural Information Processing Systems*, September 2024. URL [https://open review.net/forum?id=aIyNLWXuDO](https://open<br/>
  773 review.net/forum?id=aIyNLWXuDO).

774

775 William Merrill and Ashish Sabharwal. The Parallelism Tradeoff: Limitations of Log-Precision  
 776 Transformers. *Transactions of the Association for Computational Linguistics*, 11:531–545, June  
 777 2023. ISSN 2307-387X. doi: 10.1162/tacl\_a\_00562. URL [https://doi.org/10.1162/tacl\\_a\\_00562](https://doi.org/10.1162/tacl_a_00562).

778

779 William Merrill and Ashish Sabharwal. A Little Depth Goes a Long Way: The Expressive Power of  
 780 Log-Depth Transformers. *arxiv:2503.03961[cs]*, May 2025. doi: 10.48550/arXiv.2503.03961.  
 781 URL <http://arxiv.org/abs/2503.03961>.

782

783 Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae  
 784 Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. Specinfer: Accelerating large  
 785 language model serving with tree-based speculative inference and verification. In *Proceedings of  
 786 the 29th ACM International Conference on Architectural Support for Programming Languages  
 787 and Operating Systems, Volume 3*, pp. 932–949, 2024.

788

789 Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černocký, and Sanjeev Khudanpur. Recurrent  
 790 neural network based language model. In *Proc. Interspeech 2010*, pp. 1045–1048, 2010. doi:  
 791 10.21437/Interspeech.2010-343. URL [https://www.isca-archive.org/interspeech\\_2010/mikolov10\\_interspeech.html](https://www.isca-archive.org/interspeech_2010/mikolov10_interspeech.html).

792

793 Amirkeivan Mohtashami, Matteo Pagliardini, and Martin Jaggi. CoTFormer: A Chain of Thought  
 794 Driven Architecture with Budget-Adaptive Computation Cost at Inference. In *The Thirteenth  
 795 International Conference on Learning Representations*, October 2024. URL [https://open review.net/forum?id=7igPXQFupX](https://open<br/>
  796 review.net/forum?id=7igPXQFupX).

797

798 Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin, Ji-  
 799 Rong Wen, and Chongxuan Li. Large Language Diffusion Models. *arxiv:2502.09992[cs]*, February  
 800 2025. doi: 10.48550/arXiv.2502.09992. URL <http://arxiv.org/abs/2502.09992>.

801

802 William Peebles and Saining Xie. Scalable Diffusion Models with Transformers. In *Proceedings  
 803 of the IEEE/CVF International Conference on Computer Vision*, pp. 4195–4205, 2023. URL  
 804 [https://openaccess.thecvf.com/content/ICCV2023/html/Peebles\\_Scalable\\_Diffusion\\_Models\\_with\\_Transformers\\_ICCV\\_2023\\_paper.html](https://openaccess.thecvf.com/content/ICCV2023/html/Peebles_Scalable_Diffusion_Models_with_Transformers_ICCV_2023_paper.html).

805

806 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language  
 807 Models are Unsupervised Multitask Learners. *OpenAI*, pp. 24, 2019.

808

809 Pierre Harvey Richemond, Sander Dieleman, and Arnaud Doucet. Categorical SDEs with Simplex  
 810 Diffusion. In *ICML 2023 Workshop: Sampling and Optimization in Discrete Space*, August 2023.  
 811 URL <https://openreview.net/forum?id=6rETbXxGX5#all>.

810 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-  
 811 Resolution Image Synthesis With Latent Diffusion Models. In *Proceedings of the IEEE/CVF*  
 812 *Conference on Computer Vision and Pattern Recognition*, pp. 10684–10695, 2022. URL [https://openaccess.thecvf.com/content/CVPR2022/html/Rombach\\_High-Resolution\\_Image\\_Synthesis\\_With\\_Latent\\_Diffusion\\_Models\\_CVPR\\_2022\\_paper.html](https://openaccess.thecvf.com/content/CVPR2022/html/Rombach_High-Resolution_Image_Synthesis_With_Latent_Diffusion_Models_CVPR_2022_paper.html).

813

814

815

816 Mark Schöne, Babak Rahmani, Heiner Kremer, Fabian Falck, Hitesh Ballani, and Jannes  
 817 Gladrow. Implicit Language Models are RNNs: Balancing Parallelization and Expressiv-  
 818 ity. *arxiv:2502.07827[cs]*, February 2025. doi: 10.48550/arXiv.2502.07827. URL  
 819 <http://arxiv.org/abs/2502.07827>.

820

821 Avi Schwarzschild, Eitan Borgnia, Arjun Gupta, Furong Huang, Uzi Vishkin, Micah Goldblum,  
 822 and Tom Goldstein. Can You Learn an Algorithm? Generalizing from Easy to Hard Problems  
 823 with Recurrent Networks. In *Advances in Neural Information Processing Systems*, volume 34, pp.  
 824 6695–6706. Curran Associates, Inc., 2021. URL [https://proceedings.neurips.cc/paper\\_files/paper/2021/hash/3501672ebc68a5524629080e3ef60aef-Abstract.html](https://proceedings.neurips.cc/paper_files/paper/2021/hash/3501672ebc68a5524629080e3ef60aef-Abstract.html).

825

826

827 Oscar Skean, Md Rifat Arefin, Yann LeCun, and Ravid Shwartz-Ziv. Does Representation Matter?  
 828 Exploring Intermediate Layers in Large Language Models. *arxiv:2412.09563[cs]*, December 2024.  
 829 doi: 10.48550/arXiv.2412.09563. URL <http://arxiv.org/abs/2412.09563>.

830

831 Yang Song and Stefano Ermon. Generative Modeling by Estimating Gradients of the Data Distribution.  
 832 *arXiv:1907.05600 [cs, stat]*, October 2019. URL <http://arxiv.org/abs/1907.05600>.

833

834 Qi Sun, Marc Pickett, Aakash Kumar Nain, and Llion Jones. Transformer Layers as Painters.  
 835 *arxiv:2407.09298[cs]*, August 2024. doi: 10.48550/arXiv.2407.09298. URL <http://arxiv.org/abs/2407.09298>.

836

837 Ilya Sutskever, Geoffrey E Hinton, and Graham W Taylor. The Recurrent Temporal Restricted  
 838 Boltzmann Machine. In *Advances in Neural Information Processing Systems*, volume 21. Curran  
 839 Associates, Inc., 2008. URL [https://proceedings.neurips.cc/paper\\_files/paper/2008/hash/9ad6aaed513b73148b7d49f70afcfc32-Abstract.html](https://proceedings.neurips.cc/paper_files/paper/2008/hash/9ad6aaed513b73148b7d49f70afcfc32-Abstract.html).

840

841 Ilya Sutskever, James Martens, and Geoffrey Hinton. Generating text with recurrent neural networks.  
 842 In *Proceedings of the 28th International Conference on International Conference on Machine*  
 843 *Learning*, ICML’11, pp. 1017–1024, Madison, WI, USA, June 2011. Omnipress. ISBN 978-1-  
 844 4503-0619-5.

845

846 Shawn Tan, Yikang Shen, Zhenfang Chen, Aaron Courville, and Chuang Gan. Sparse Universal  
 847 Transformer. *arxiv:2310.07096[cs]*, October 2023. doi: 10.48550/arXiv.2310.07096. URL  
 848 <http://arxiv.org/abs/2310.07096>.

849

850 Ryan Teknium, Roger Jin, Jai Suphavadeeprasit, Dakota Mahan, Jeffrey Quesnelle, Joe Li, Chen  
 851 Guang, Shannon Sands, and Karan Malhotra. Hermes 4 technical report. *arXiv preprint*  
 852 *arXiv:2508.18255*, 2025.

853

854 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay  
 855 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-  
 856 tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,  
 857 Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,  
 858 Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel  
 859 Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya  
 860 Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar  
 861 Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan  
 862 Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen  
 863 Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan  
 864 Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez,  
 865 Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open Foundation and Fine-  
 866 Tuned Chat Models. *arxiv:2307.09288[cs]*, July 2023. doi: 10.48550/arXiv.2307.09288. URL  
 867 <http://arxiv.org/abs/2307.09288>.

864 Guan Wang, Jin Li, Yuhao Sun, Xing Chen, Changling Liu, Yue Wu, Meng Lu, Sen Song, and  
 865 Yasin Abbasi Yadkori. Hierarchical Reasoning Model. *arxiv:2506.21734[cs]*, August 2025a. doi:  
 866 10.48550/arXiv.2506.21734. URL <http://arxiv.org/abs/2506.21734>.

867

868 Xu Wang, Chenkai Xu, Yijie Jin, Jiachun Jin, Hao Zhang, and Zhijie Deng. Diffusion LLMs Can Do  
 869 Faster-Than-AR Inference via Discrete Diffusion Forcing. *arxiv:2508.09192[cs]*, August 2025b.  
 870 doi: 10.48550/arXiv.2508.09192. URL <http://arxiv.org/abs/2508.09192>.

871

872 Bohong Wu, Shen Yan, Sijun Zhang, Jianqiao Lu, Yutao Zeng, Ya Wang, and Xun Zhou. Efficient  
 873 pretraining length scaling. *arXiv preprint arXiv:2504.14992*, 2025.

874

875 Zhihui Xie, Jiacheng Ye, Lin Zheng, Jiahui Gao, Jingwei Dong, Zirui Wu, Xueliang Zhao, Shansan  
 876 Gong, Xin Jiang, Zhenguo Li, and Lingpeng Kong. Dream-Coder 7B: An Open Diffusion Language  
 877 Model for Code. *arxiv:2509.01142[cs]*, September 2025. doi: 10.48550/arXiv.2509.01142. URL  
<http://arxiv.org/abs/2509.01142>.

878

879 Liu Yang, Kangwook Lee, Robert D. Nowak, and Dimitris Papailiopoulos. Looped Transformers are  
 880 Better at Learning Learning Algorithms. In *The Twelfth International Conference on Learning  
 881 Representations*, 2024. URL <https://openreview.net/forum?id=HHbRxoDTxE>.

882

883 Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng  
 884 Kong. Dream 7B: Diffusion Large Language Models. *arxiv:2508.15487[cs]*, August 2025. doi:  
 10.48550/arXiv.2508.15487. URL <http://arxiv.org/abs/2508.15487>.

885

886 Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James Kwok, Zhenguo  
 887 Li, Adrian Weller, and Weiyang Liu. MetaMath: Bootstrap Your Own Mathematical Questions for  
 888 Large Language Models. In *The Twelfth International Conference on Learning Representations*,  
 889 October 2023. URL <https://openreview.net/forum?id=N8N0hgNDrt>.

890

891 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,  
 892 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E Gonzalez, and Ion Stoica.  
 893 Judging llm-as-a-judge with mt-bench and chatbot arena. In A. Oh, T. Naumann, A. Globerson,  
 894 K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural Information Processing Systems*,  
 895 volume 36, pp. 46595–46623. Curran Associates, Inc., 2023. URL [https://proceedings.neurips.cc/paper\\_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets\\_and\\_Benchmarks.pdf](https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf).

896

897

## 898 A APPENDIX

### 900 A.1 ADDITIONAL ALGORITHM DETAILS

901 We provide the full algorithm, including adaptive exiting in [Algorithm 2](#).

### 904 A.2 ADDITIONAL VARIANTS AND CONSIDERATIONS

906 **What are the memory costs of this parallelization strategy?** The maximal memory allocated  
 907 during generation is dynamic, given that token positions exit the current stack of states as their latent  
 908 states converge and headway-many states are added per step of the sampler. However, the maximum  
 909 waveform size parameter (see also [Figure 6](#)) controls the maximum extent of the waveform, thereby  
 910 guaranteeing that the maximum memory allocation is bounded. In [Figure 8](#) we provide additional  
 911 details regarding the precise peak memory during generation as a function of maximal waveform  
 912 size. Plotted here is throughput as before on the y-axis, and, on the x-axis, we show the peak of  
 913 additional memory allocated during the generation phase for a given sample. On the left side, the  
 914 median additional memory peak is plotted, whereas on the right side, the worst-case event is shown.  
 915 While for most samples, increasing the waveform size does not necessarily increase memory usage  
 916 after a certain point (left), as states usually exit quickly enough, with a waveform size that is too  
 917 large, there are samples (right) that would substantially increase memory requirements, which would  
 918 be a concern if serving at scale. We recommend picking the smallest maximum waveform size that  
 919 saturates throughput on a per-accelerator basis, to prevent worst-case memory allocation.

---

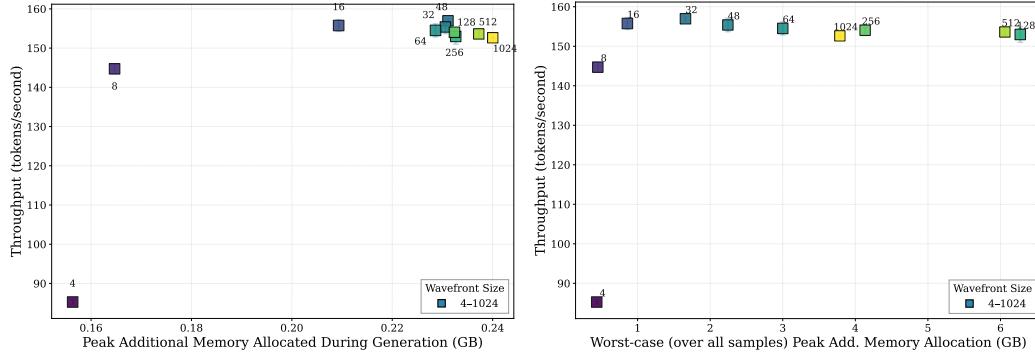
918 **Algorithm 2** Diffusion-style generation with latent-difference-based freezing

---

919 **Require:** prompt  $\mathbf{x}$ , max new tokens  $N$ , inner recurrence  $r$ , diffusion steps  $T$ , init scale  $\alpha$ , exit  
920 threshold  $\varepsilon$

921 1:  $\mathbf{y}_{\text{frozen}} \leftarrow \mathbf{x}$ ,  $\mathbf{y}_{\text{current}} \leftarrow \mathbf{x}$   
922 2:  $\mathbf{z} \leftarrow \text{InitState}(|\mathbf{x}|, \alpha)$   
923 3:  $\mathbf{z}_{\text{prev}} \leftarrow \mathbf{z}$   
924 4: **for** step  $t = 1, \dots, T$  **do**  
925 5:    $\mathbf{e} \leftarrow \mathcal{P}(\mathbf{y}_{\text{current}})$   
926 6:    $\mathbf{z}_{\text{noise}} \sim \mathcal{N}(0, \sigma^2 I)$   
927 7:    $\mathbf{z} \leftarrow (1 - \beta_r)\mathbf{z} + \beta_r \mathbf{z}_{\text{noise}}$   
928 8:   **for**  $j = 1, \dots, r$  **do**  
929 9:      $\mathbf{z} \leftarrow \mathcal{R}(\mathbf{z}, \mathbf{e})$   
930 10:   **end for**  
931 11:    $\mathbf{p} \leftarrow \mathcal{C}(\mathbf{z})$   
932 12:    $\hat{\mathbf{y}} \leftarrow \text{Sample}(\mathbf{p})$   
933 13:    $\mathbf{y}_{\text{current}} \leftarrow [\mathbf{y}_{\text{frozen}}, \hat{\mathbf{y}}]$   
934 14:    $\delta_i \leftarrow \|\mathbf{z}_{i,i} - \mathbf{z}_{\text{prev},i}\|_2 / \|\mathbf{z}_i\|_2$   $\triangleright$  Compute relative changes in latents at each position.  
935 15:   **if** exists position  $i$  with  $\delta_i < \varepsilon$  **then**  
936 16:     let  $k^* \leftarrow$  index of the last such freezable position where  $\delta_i < \varepsilon$   $\triangleright$  freeze up to  $k^*$   
937 17:      $\mathbf{y}_{\text{frozen}} \leftarrow \mathbf{y}_{\text{current}}[1:k^*]$   
938 18:     keep only unfrozen tail of latents:  $\mathbf{z} \leftarrow \mathbf{z}[k^* - \ell:]$   
939 19:   **else**  
940 20:     no tokens frozen this step  
941 21:   **end if**  
942 22:   **if**  $|\mathbf{y}_{\text{frozen}}| - |\mathbf{x}| \geq N$  **then break**  
943 23:   **end if**  
944 24:    $\mathbf{z} \leftarrow [\mathbf{z}, \text{InitState}(1, \alpha)]$   $\triangleright$  Append a new latent state for the next position  
945 25:    $\mathbf{z}_{\text{prev}} \leftarrow \mathbf{z}$   
946 26: **end for**  
947 27: **return**  $\mathbf{y}_{\text{frozen}}$

---



960 **Figure 8:** The median throughput in tokens/second and the median peak additional memory allocation during  
961 generation plotted as a function of maximum wavefront size, again for the *Hugginn-0125* model on GSM8k. We  
962 can see that increasing the maximum wavefront size increases both throughput and memory, although after a  
963 certain point, the median memory increases only slightly (left). However, the max wavefront size does control  
964 the memory allocated to the worst-case sample (right), and we can see that the maximal memory allocated during  
965 the generation of that worst-case sample is indeed proportional to wavefront size (right).

966

967

968 **Moving Forward Multiple Steps.** In principle, there is no limitation of only advancing one token  
969 at a time, and so we can consider *headways* greater than 1, however, for these, we have no prior  
970 position to decode from, so we can only fill these positions with random tokens, or a particular  
971 padding token. And, given that the model is still causal, it will take several steps for sequential  
972 dependencies to be resolved, even if we sample a large headway in every step. We experiment with

972 headways greater than one, but while interestingly stable, this accelerates the speed of the sampler  
 973 only marginally at a cost to accuracy, see Figure 9, right.  
 974

975 **Larger Batch Sizes.** The sampler discussed in this work could, in principle, also be deployed in  
 976 batched or continuously-batched inference settings. In that scenario, similar to a paged KV cache,  
 977 the sampler would reserve a number of slots for hidden states up to an occupancy multiplier of  
 978 the maximum wavefront size, and would be capable of scheduling recurrent updates in tandem  
 979 with sequence updates. For larger models, this would, if implemented efficiently, actually simplify  
 980 deployment, as recurrent states are fungible, and e.g. states could be evicted from one device, and then  
 981 bundled into the next forward call of the model on a different device, as the slots of the model’s hidden  
 982 states do not have to correspond to contiguous sequences in either the sequence or the recurrence  
 983 dimension. However, due to the imminent complexity of such an inference engine, we refrained  
 984 from engaging with this direction in this work, and focus only on properly bringing the general idea  
 985 of diffusion sampling to recurrent-depth models, and leave a batched inference engine as a limitation,  
 986 potentially motivating future work.  
 987

988 Also, we remark on practical back-of-the-envelope estimates of runtime cost:

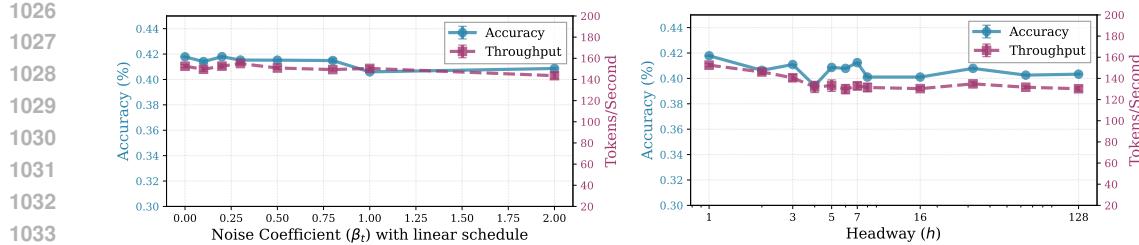
989 **Remark A.1** (Computational Cost). *In comparison to the baseline autoregressive sampling algorithm  
 990 where the recurrence is computed one token at a time, there are two additional sources of computa-  
 991 tional cost, the cost to encode and decode latent states using  $\mathcal{P}$  and  $\mathcal{C}$ , and the potential cost incurred if  
 992 convergence is slower than in baseline due to cascading effects of tokens changing late, as seen in Figure  
 993 4 if the adaptive version is used. The first cost depends on the size of the recurrent block  $\mathcal{R}$ , relative  
 994 to prelude and coda. For the model we study in this work this is disadvantageous as the FLOP costs for  
 995 prelude and coda equal one pass through the recurrent block. We define the FLOP costs of one pass  
 996 through  $\mathcal{R}$  as  $f$ , ignoring attention, so that the FLOP costs of one iteration of the sampler is roughly  
 997  $(r' + 1)f$ . Then, the total FLOP costs of running the baseline algorithm for  $w$  tokens are  $(r + 1)fw$ ,  
 998 compared to  $(r + \frac{r}{r'})fw$  for the non-adaptive diffusion sampler. However, as we will see, this FLOP  
 999 inefficiency is counteracted in practice by the parallelization gains obtained from the sampler.*

### 999 A.3 ADDITIONAL EXPERIMENTAL DETAILS.

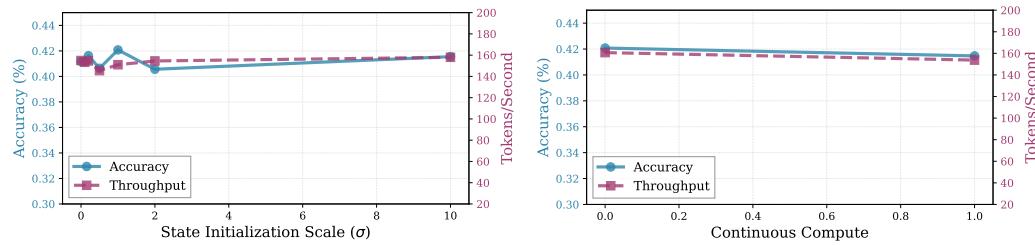
1000 **Finetuned Math Model:** To verify that our findings are not limited to the particular model check-  
 1001 point we evaluate, and its capabilities, we finetune the original checkpoint for one epoch with a  
 1002 trapezoidal learning rate schedule with a peak learning rate of  $5 \times 10^{-7}$  using the MetaMath dataset  
 1003 (Yu et al., 2023). As suggested in the original work, we train the model with randomized unrolling,  
 1004 we set a mean of  $r = 32$  and sample  $r$  from an Exponential distribution. As a sidenote, we remark  
 1005 that while we do train the full model, most of the gains can also be achieved by just finetuning the  
 1006 adapter component of the model that maps inputs and states into the recurrent block.  
 1007

1008 **Dataset Details.** When evaluating GSM8k, we always refer to the CoT version of the dataset, which  
 1009 we provide to the model with the 8 few-shot examples associated with this variant as in Touvron  
 1010 et al. (2023). We always score GSM8k using the flexible-extract metric, i.e. by matching the last  
 1011 number in the model response against the reference answer. For MATH500, we follow the format of  
 1012 DeepSeek-AI et al. (2025), while for Minerva Math, we follow the updated format established in  
 1013 the lm-eval harness. For both, we grade answers using *math-verify*. For MBPP and HumanEval, we  
 1014 grade these benchmarks as normal. During inference we sample with a temperature of 0.2 and top-p  
 1015 factor of 0.95 as in Geiping et al. (2025).

1016 **Details on Free-Form Generation Results.** All results for the four free-form prompt datasets  
 1017 in Table 3 are using the "default" diffusion sampler settings of  $r' = 4$  and  $\beta_s = 0.2$ , which we  
 1018 compare to the standard autoregressive sampling approach with  $r = 32$ . We take all (804) prompts  
 1019 from the AlpacaEval benchmark dataset (Li et al., 2023), all (80) prompts from the MTBench  
 1020 dataset (Zheng et al., 2023), and the first 500 LitBench training samples (Fein et al., 2025) and  
 1021 the first 100 Hermes-3 training samples (Teknium et al., 2025), to cover a wide range of generic  
 1022 instruction data, creative writing and technical questions. For each dataset and each prompt, we  
 1023 compare both sampling strategies head-on. We first measure ROUGE-1 and ROUGE-L overlap  
 1024 between the samples, and we record the fraction of prompts where response strings were entirely  
 1025 equal (which they are often for either short, or very clear answers, whereas e.g. for creative writing,  
 the chance of generating the same story is very small). We then use Sonnet-4.5, in particular,



**Figure 9:** Impact of Additional Hyperparameter Choices on GSM8k. **Left:** Scaling the amount of noise added during inference for  $r' = 4$ , scheduled linearly in the number of recurrence steps, also measured on GSM8k. At  $r' = 4$ , adding noise is as impactful. We plot the full spectrum of  $r'$  to  $\beta_t$  in Figure 7. **Right:** Amount of headway. Larger amounts of headway than 1, i.e. advancing the sampler more than 1 token per step, do not seem to materialize practical speedups for the studied model.



**Figure 10:** Impact of Additional Hyperparameter Choices, also on GSM8k. **Left:** Initialization Scale of new states, which has only a minor effect of the result. **Right:** Continuous Compute, i.e. choosing to initialize new states with previously computed states (We initialize new states with the latest state from the position one step to the left). This is less effective for our sampler, given that the position one step to the left is only the result of  $r'$  recurrences.

claude-sonnet-4-5-20250929 to judge both completions. The model is given the system prompt and instruction for each query, and both responses, and is tasked to first reason about the quality of both responses (in line with the MTBench judge prompt), then rate both responses in terms of correctness, helpfulness, coherence and completeness on a scale of 1-10 and finally, to report whether it prefers the diffusion sampling response, or whether it ties the original. Aside from this evaluation, we also evaluate the log-perplexity of the generated completions, using either the original model, or an external model to judge perplexity. The external model we use is Qwen-3-8b-base. Also note that token/second in this chart are computed on a different accelerator than in other places in the paper, and as noted in the reproducibility statement, timing results are only to be compared within each figure or table.

#### A.4 QUALITATIVE EVALUATION

To visualize the progress (or temporary lack thereof) of the sampler on a challenging sequence from the GSM8k validation set, we provide a few additional visualizations in Figure 13.

## B THEORETICAL ANALYSIS

### B.1 PROBLEM FORMULATIONS

**Definition B.1** (Depth and Width in Recurrent-Depth Models). Consider a recurrent-depth model  $\mathcal{M}_d$  that processes an input sequence  $\mathbf{x} \in \mathbb{R}^{L_0 \times h}$ , where  $L_0 \in \mathbb{N}$  is the sequence length and  $h \in \mathbb{N}$  is the hidden dimension. At each generation step  $t \in \mathbb{N}$ , we define a *hidden state* as the  $h$ -dimensional output vector produced by a Transformer block for an input token. Let  $\mathbf{H}_t \in \mathbb{R}^{w_t \times h}$  denote the 2D-matrix containing all hidden states at step  $t$ . We define the following two associated quantities:

- the *depth*  $d_t \in \mathbb{N}$ , defined as the number of *serial* Transformer block forward passes used to obtain  $\mathbf{H}_t$  from the initial  $L_0$  input tokens (i.e., the generation step), while ignoring any discretization;

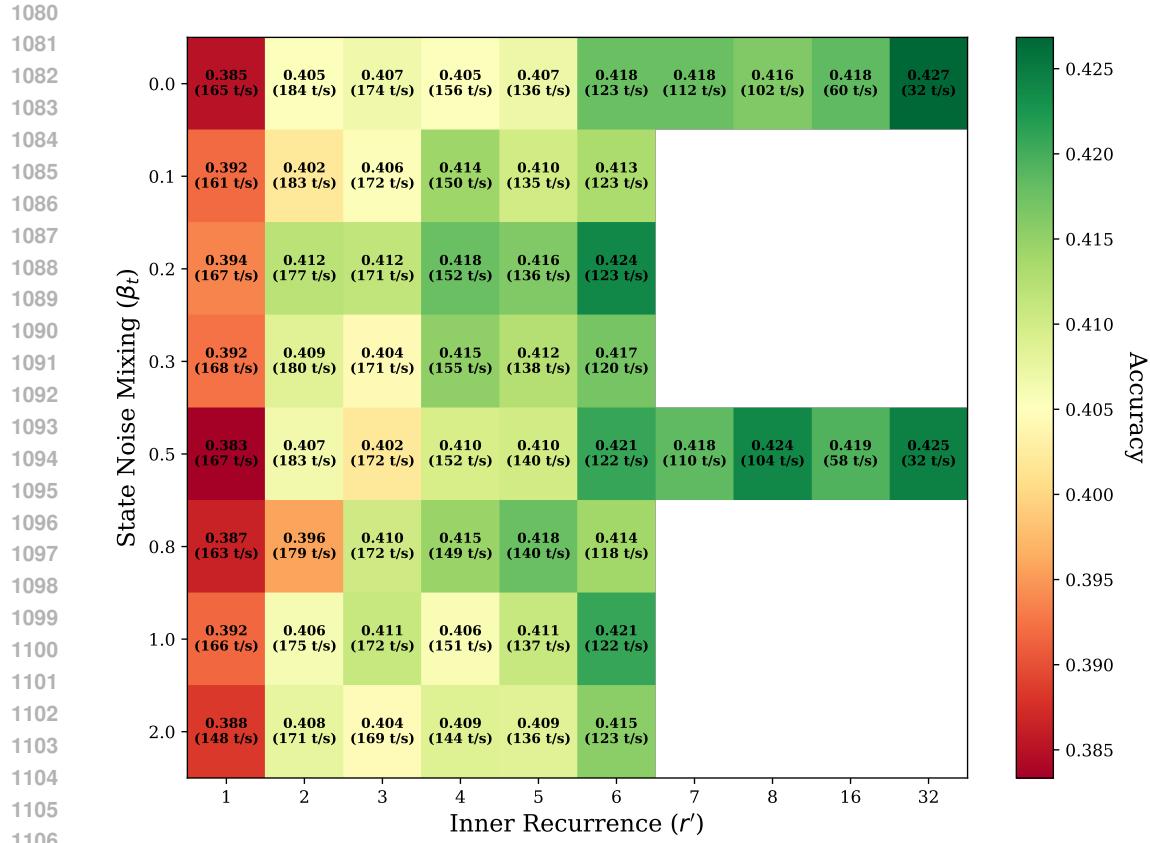


Figure 11: A heatmap of accuracy and throughput measurements spanned by varying noise and inner recurrence.

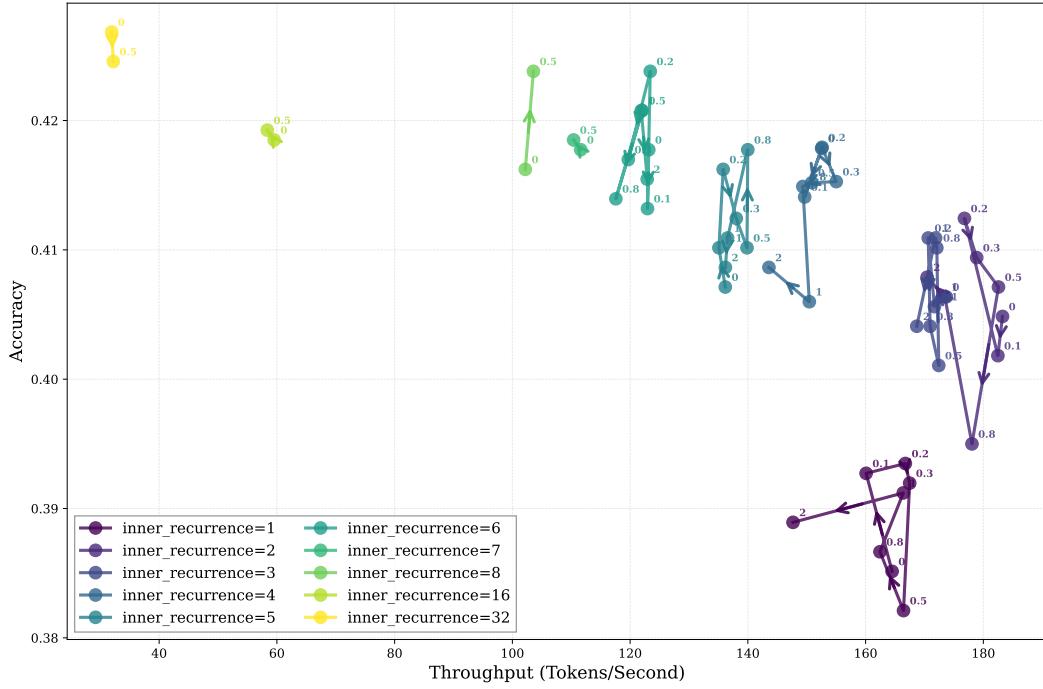
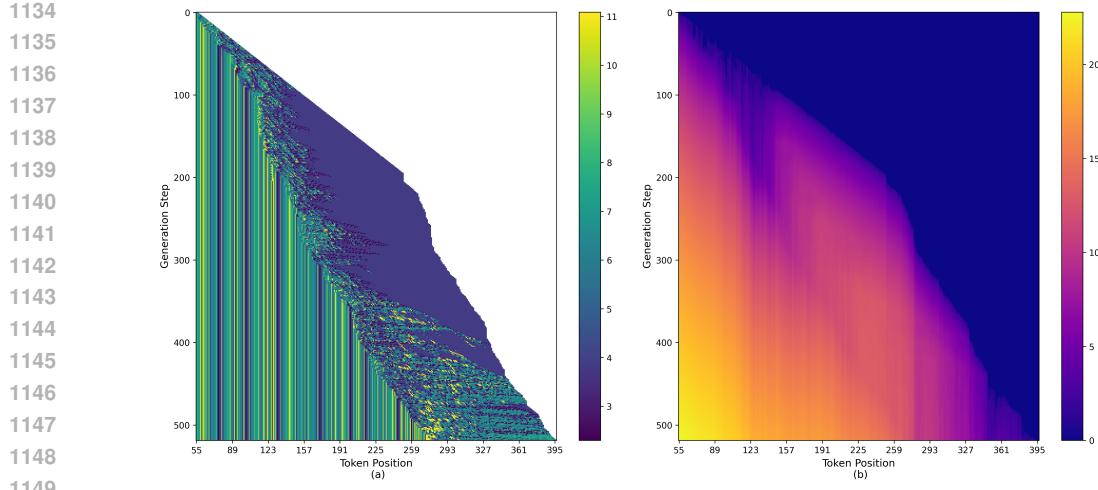
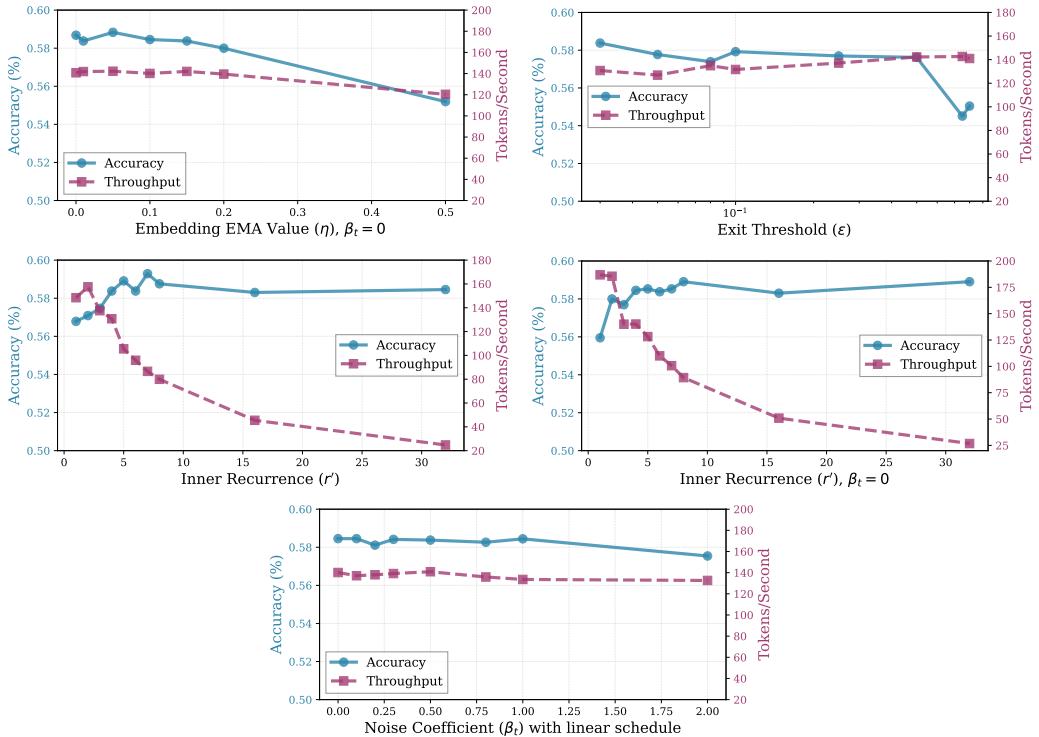


Figure 12: Additional visualizations of the trade-off of noise and inner recurrence in Figure 7.



**Figure 13:** A full example of a sampler hyperparameter failure. As in Figure 4, this figure shows the token ids on the left, as they change during successive steps of the sampler (running from top to bottom) over the sequence dimension (running left to right). We see that the model tries various configurations for the current tokens, before they are gradually frozen as their latent states converge. Due to a few hard decisions (from the perspective of the model), as seen on the stability charts on the right, early in the sequence, progress stalls until these tokens are decided, but then picks up speed again. However, large points of the waveform all decode into the whitespace token (dark blue color), so that no useful states information is computed until the earlier tokens are resolved.



**Figure 14:** Hyperparameter Robustness for the finetuned math model on GSM8k. These figure repeat the ablation study from the main body concerning hyperparameter robustness also for the finetuned math model, showing that behaviors are largely similar, even though the model’s capability has noticeably changed.

- the *width*  $w_t \in \mathbb{N}$ , defined as the cardinality of the active hidden-state set  $\mathbf{H}_t$  ( i.e., the number of  $h$ -dimensional hidden states that are processed in *parallel* at generation step  $t$ ).

1188 These quantities evolve according to the following rules:  
 1189

1190 1. **Initialization.** At time  $t = 0$ , we set

$$1191 \quad d_0 = 0, \quad w_0 = L_0.$$

1193 2. **Depth update.** At each step  $t \geq 0$ , one additional Transformer block is applied, hence

$$1194 \quad d_{t+1} = d_t + 1,$$

1196 so that  $d_t = t$  for all  $t \in \mathbb{N}$ .

1197 3. **Width update.** At each step  $t \geq 0$ , the width changes only due to two types of events:  
 1198

- 1199 • *Token entry:* let  $e^{(t)} \in \mathbb{N}_0$  denote the number of new tokens encoded into the model at step  $t$ ,  
 1200 each contributing a new hidden state;
- 1201 • *Hidden-state exit:* let  $x^{(t)} \in \mathbb{N}_0$  denote the number of hidden states removed from the model at  
 1202 step  $t$  due to decoding.

1203 Then the width evolves as

$$1204 \quad w_{t+1} = w_t + e^{(t)} - x^{(t)}.$$

1205 Equivalently, the net change can be written as  $\delta^{(t)} = e^{(t)} - x^{(t)}$ , so that  $\delta^{(t)} > 0$  corresponds to  
 1206 entries (more tokens encoded), and  $\delta^{(t)} < 0$  corresponds to exits (more hidden states decoded).

1207 **Remark B.2.** At any generation step  $t$ , all hidden states in  $H_t$  share the same depth  $d_t$ , since each  
 1208 step corresponds to one additional serial forward pass through the Transformer block.

## 1210 B.2 LLMS SHOULD PRIORITIZE DEPTH SCALING DURING PREFILLING.

1212 **Definition B.3** (Width Scaling Variants). Fix a width scaling factor  $s \in \mathbb{N}$ . Given an input sequence  
 1213 of length  $L$ , for each token  $i \in \{1, \dots, L\}$  we create  $s$  copies indexed by  $j \in \{1, \dots, s\}$ . The  
 1214 replicated sequence therefore has length  $L \cdot s$ , with elements denoted by  $(i, j)$ , the  $j$ -th copy of token  
 1215  $i$ . The width-scaling model is obtained by applying a Transformer block (with parameters unchanged)  
 1216 to this replicated sequence under a customized attention mask, followed by a reduction step that maps  
 1217 the  $L \cdot s$  outputs back to length  $L$  (e.g., by selecting the last copy or averaging over copies).

1218 We define two variants according to how each copy may attend:

- 1219 • **Width-NoShare.** The  $j$ -th copy of token  $i$  may attend to all copies of tokens  $0, \dots, i - 1$ , as well  
 1220 as the first  $j - 1$  copies of token  $i$ .
- 1222 • **Width-KVShare.** The  $j$ -th copy of token  $i$  may attend only to the last copy of tokens  $0, \dots, i - 1$ ,  
 1223 together with the first  $j - 1$  copies of token  $i$ .

1224 **Proposition B.4.** During prefilling, both *Width-NoShare* and *Width-KVShare* are valid width-  
 1225 scaling architectures with factor  $s$ .

1227 *Proof. Depth.* At any generation step, each variant performs exactly one Transformer block forward  
 1228 pass on the replicated sequence. Therefore the number of serial block forward passes needed to  
 1229 produce the hidden states is unchanged, so the depth satisfies  $\tilde{d}_t = d_t$ .

1230 **Width.** By definition, the width  $w_t$  is the number of hidden states produced in parallel at step  $t$ .  
 1231 In the original model, prefilling a sequence of length  $L$  produces  $L$  hidden states per step. In both  
 1232 variants, we replicate each token  $s$  times, so the block computes hidden states for all pairs  $(i, j)$  with  
 1233  $i \in \{1, \dots, L\}$  and  $j \in \{1, \dots, s\}$ . Hence the total number of hidden states produced in that step is

$$1234 \quad \tilde{w}_t = Ls = s \cdot w_t.$$

1236 The difference between *NoShare* and *KVShare* lies only in the attention pattern (which copies each  
 1237 query may attend to). This affects information flow but not the number of hidden states computed.  
 1238 The optional reduction back to length  $L$  occurs *after* the parallel computation and thus does not  
 1239 change the measured width.

1240 **Conclusion.** Both variants keep serial depth fixed and enlarge width by a factor of  $s$ , which is  
 1241 precisely our notion of width scaling.  $\square$