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Abstract

Text-to-image diffusion models have achieved re-
markable success in generating high-quality and
diverse images. Building on these advancements,
diffusion models have also demonstrated excep-
tional performance in text-guided image editing.
A key strategy for effective image editing involves
inverting the source image into editable noise
maps associated with the target image. However,
previous inversion methods face challenges in ad-
hering closely to the target text prompt. The limi-
tation arises because inverted noise maps, while
enabling faithful reconstruction of the source im-
age, restrict the flexibility needed for desired ed-
its. To overcome this issue, we propose Editable
Noise Map Inversion (ENM Inversion), a novel in-
version technique that searches for optimal noise
maps to ensure both content preservation and ed-
itability. We analyze the properties of noise maps
for enhanced editability. Based on this analysis,
our method introduces an editable noise refine-
ment that aligns with the desired edits by mini-
mizing the difference between the reconstructed
and edited noise maps. Extensive experiments
demonstrate that ENM Inversion outperforms ex-
isting approaches across a wide range of image
editing tasks in both preservation and edit fidelity
with target prompts. Our approach can also be
easily applied to video editing, enabling tempo-
ral consistency and content manipulation across
frames.
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1. Introduction
Text-to-Image diffusion models have demonstrated impres-
sive performance in high-quality image generation (Rom-
bach et al., 2022; Saharia et al., 2022; Ramesh et al., 2022;
Podell et al., 2023). Building on this success, recent re-
search has extended the capabilities to text-guided image
(Hertz et al., 2022; Brooks et al., 2023; Tumanyan et al.,
2023; Kawar et al., 2023; Cao et al., 2023) and video edit-
ing (Wu et al., 2023; Qi et al., 2023; Liu et al., 2024) by
leveraging these diffusion models. An important step in
text-driven image editing involves inverting a given image
into a sequence of noise vectors, termed noise maps. These
noise vectors are used for editing. The goal of inversion is
to produce editable noise maps that preserve the content of
the original image and exhibit high editability.

Source Image PNPInv Ours

“a single dried
rose in front of
an orange wall”

“a parrot on a
leaf in the
garden”

Figure 1. ENM Inversion for real image editing. PNP Inversion
(PNPInv) preserves the structure and content of the original image
but shows limited editing capability. Our method preserves the
details of source image and enables precise modification.

In practice, many inversion methods rely on Denoising Dif-
fusion Implicit Models (DDIM) inversion (Song et al., 2020)
to obtain the latent noise representation of an image and
then apply their proposed editing process. However, DDIM
inversion often introduces approximation errors, resulting
in noticeable inconsistencies between the reconstructed and
original images. These errors are further amplified by the
use of Classifier-Free Guidance (Ho & Salimans, 2022). To
address this challenge, Null-Text Inversion (NTI) (Mokady
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Figure 2. The pipeline of image editng. (a) DDIM Inversion transforms the input image into noise maps that allow reconstruction of
the original image. Additionally, ENM inversion minimizes the gap with ideal noise by applying editable noise refinement, enabling
improved reconstruction and editability. (b) Utilizing attention control, the attention maps from the reconstruction path are transferred to
the editing path. Our inversion enhances both editability and preservation, resulting in the desired output image.

et al., 2023) optimizes the null-text embedding to improve
reconstruction quality. Negative-Prompt Inversion (NPI)
(Miyake et al., 2023) attempts to approximate the optimized
null-text embedding, thereby reducing inference time. PNP
Inversion (Ju et al., 2024) more efficiently preserves the
essential content in the source image by adding the differ-
ences between the inverted and reconstructed noise maps.
Furthermore, several works, such as fixed-point iteration
methods (Pan et al., 2023; Meiri et al., 2023), reduce the ap-
proximation errors at each timestep by optimizing implicit
function.

Despite these advancements in diffusion inversion, editabil-
ity remains a significant challenge. The primary reason is
that the noise maps obtained through DDIM Inversion are
designed to reconstruct the source image rather than gener-
ate edited output. That is, the target image is not “imprinted”
onto the noise maps. Moreover, much of the existing re-
search focuses on enhancing image reconstruction quality to
improve preservation, resulting in poor editing performance
and artifacts in the edited image (e.g., failing to transform a
butterfly into a parrot, as shown in Figure 1).

In this paper, we propose Editable Noise Map Inversion
(ENM Inversion). Unlike previous approaches that concen-
trate on reconstructing the source image, ENM Inversion
identifies optimal noise maps tailored for both the original
and edited images. To achieve this objective, we utilize an

editable noise refinement that searches for the ideal noise
maps, which are optimized for both preservation and ed-
itability, as shown in Figure 2(a). Our approach leverages
the observation that high-quality edits can be effectively
achieved by aligning reconstructed and edited noise maps
in each inversion step. By reducing the difference between
two versions of noise vectors, we can effectively imprint
the desired image onto the noise and improve editability.
Additionally, to maintain the content of source image, we
decrease reconstruction errors in the inverted noise maps.
This ensures that ENM Inversion achieves an ideal balance
between preserving the details of the original image and edit
fidelity.

Our proposed approach can be applied to attention-based
image editing pipelines, such as Prompt-to-Prompt (Hertz
et al., 2022), MasaCtrl (Cao et al., 2023), and Plug-and-Play
(Tumanyan et al., 2023). Experimental results demonstrate
that ENM Inversion outperforms existing methods across
diverse image editing tasks both quantitatively and qualita-
tively. In addition to image editing, ENM Inversion can be
extended to video editing, enabling manipulation of visual
content across frames.
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2. Related Work
As shown in Figure 2, diffusion-based editing pipelines typ-
ically consist of two processes: an inversion process, which
transforms the input image into Gaussian noise, and an edit-
ing process, which commonly employs attention control to
modify the image.

Editing with Diffusion Models. Text-to-image diffusion
models such as Stable Diffusion (Rombach et al., 2022),
Imagen (Saharia et al., 2022), and DALL·E2 (Ramesh et al.,
2022) have significantly advanced the field of image genera-
tion. Leveraging these powerful models, current methods
(Meng et al., 2021; Hertz et al., 2022; Patashnik et al., 2023;
Park et al., 2024; Hertz et al., 2024) apply their capabili-
ties to text-guided image editing without additional training.
Prompt-to-Prompt (P2P) (Hertz et al., 2022) was the first to
achieve remarkable localized modifications by manipulating
cross-attention maps in Stable Diffusion. As illustrated in
Figure 2(b), P2P replaces the attention maps of the editing
path with the corresponding maps of the reconstruction path.
Plug-and-Play (PNP) (Tumanyan et al., 2023) is another ap-
proach that modifies spatial features and self-attention maps
to control the structure of the generated image. Pix2pix-
Zero (Parmar et al., 2023) utilizes cross-attention guidance
for zero-shot image-to-image translation. MasaCtrl (Cao
et al., 2023) converts the self-attention in diffusion into mu-
tual self-attention, enabling non-rigid edits. Recent studies
(Wu et al., 2023; Wang et al., 2023; Liu et al., 2024) have
adopted this technique for video editing, which aims to
modify the source video contents according to text prompts.
When applied to real-world images, these editing methods
require inverting the images into the noise vectors.

Inversion with Editing Methods. Inversion techniques are
broadly categorized into DDIM-based and DDPM-based
methods. DDIM inversion is a widely adopted method that
estimates the noise map to reconstruct the original image
through deterministic sampling. However, when Classifier-
Free Guidance is applied, this method incurs significant
errors, leading to poor reconstruction. Optimization-based
approaches, such as Null-Text Inversion (NTI) (Mokady
et al., 2023), and Negative-prompt Inversion (NPI) (Miyake
et al., 2023) adjust text embedding to achieve accurate re-
construction. Methods like EDICT (Wallace et al., 2023;
Zhang et al., 2025) offer an exact inversion via an auxiliary
neural network. PNP Inversion (Ju et al., 2024) more effi-
ciently preserves the essential content in the source image by
disentangling the inversion process into distinct source and
target branches. AIDI (Pan et al., 2023), FPI (Meiri et al.,
2023) and ReNoise (Garibi et al., 2024) utilize fixed-point
iteration processes at each inversion step to obtain accurate
noise maps. While these methods achieve high-quality re-
construction, they often exhibit reduced editability. Instead
of a deterministic method, DDPM inversion (Huberman-

Spiegelglas et al., 2024), often exhibits instability in editing,
particularly in content preservation and edit fidelity due to
the stochastic nature of the process.

Since inverted noise maps are designed to reconstruct the
source image, existing methods often face challenges in
achieving high fidelity to both the original content and the
desired edits. Unlike previous approaches, ENM inversion
aims to encode the target image into noise maps. This en-
ables our method to achieve content consistency and precise
editing. Furthermore, by integrating our inversion with exist-
ing attention-based editing pipelines, such as P2P, MasaCtrl,
we demonstrate a significant improvement in both content
preservation and edit fidelity.

3. Method
3.1. Preliminaries

Text-guided Diffusion Model. Diffusion models are gener-
ative models that progressively add Gaussian noise to data
through a forward process and denoise it through a reverse
process. The forward process can be formulated as:

zt =
√
αtz0 +

√
1− αtϵ, ϵ ∼ N (0, I), (1)

where z0 represents the original data, zt is the noisy data at
timestep t, and {αt}Tt=0 is a predefined noise schedule for
t ∈ [1, T ].

The training objective of diffusion models involves learning
a noise prediction network, ϵθ, parameterized by a neu-
ral network. The network is conditioned on embedding
C, which is obtained the given text P and is optimized to
minimize the loss:

Ldm = Ez0,ϵ,t

[
∥ϵ− ϵθ(zt, t, C)∥2

]
. (2)

DDIM Inversion. DDIM inversion is useful for real image
editing as it allows encoding an image into the latent space
of the diffusion model. DDIM employs a deterministic
reverse process to generate an image from zT :

zt−1 =

√
αt−1√
αt

zt+ (3)

√
αt−1

(√
1

αt−1
− 1−

√
1

αt
− 1

)
ϵθ(zt, t, C).

This process can be written as zt−1 ← f(zt, t, C). Based
on the assumption that the ODE formula can be reversed in
the limit of infinitesimally small steps, DDIM inversion can
be derived from Equation (3):
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zt+1 =

√
αt+1√
αt

zt+ (4)

√
αt+1

(√
1

αt+1
− 1−

√
1

αt
− 1

)
ϵθ(zt, t, C).

We can summarize the inversion process as zt ←
finv(zt−1, t−1, C). DDIM inversion introduces approxima-
tion errors at each timestep, leading to a significant decrease
in both reconstruction accuracy and editability. To minimize
these errors, fixed-point iteration methods compute the ideal
noise for the source image by solving implicit functions.
This approach improves reconstruction quality but exhibits
limited editability.

wolf

cat

penguin

giraffe

Be�er
performance

elephant

camel

Figure 3. Relationship Between Editing Performance and Noise
Map Differences. Editing performance is evaluated using LPIPS,
which measures perceptual similarity, and CLIP score, which as-
sesses alignment with the target prompt. The size of each circle
indicates the magnitude of differences between the reconstructed
and edited noise maps at the 30th inversion step. Smaller noise
map differences correlate with better editing performance.

3.2. Editable Noise Map Inversion

Editable Noise Map Inversion (ENM Inversion) proposes a
method for inverting noise maps that are suitable for both
reconstruction and editing. The primary observation moti-
vating our approach is that noise maps, which enable high-
quality edits, exhibit minimal differences between those
reconstructed with the source prompt and those edited with
the target prompt. Our analysis is inspired by Pix2pix-Zero
(Parmar et al., 2023), which computes editing directions by
using changes in attention maps between reconstructed and
edited noisy inputs. Unlike attention maps, which mainly
reflect high-level semantic relationships, noise maps inher-
ently capture low-level structural details and spatial context.
Therefore, we analyze the differences between reconstructed
and edited noise maps to improve the inversion process.

Algorithm 1 Editable Noise Map Inversion
Input: A source image z0, number of inversion steps
T , source prompt Psrc, target prompt Ptgt, number of
refinement steps K, threshold τ
Output: Inverted noise maps {zT , . . . , z1}.
for t← 1, 2, . . . , T do

zt ← finv(zt−1, t− 1, Csrc)
zet−1 ← f(zt, t, Ctgt)
for i← 1, . . . , K do
zrt−1 ← f(zt, t, Csrc)
Ledit = ||zet−1 − zrt−1||2
Lrecon = ||zt−1 − zrt−1||2
zt ← zt −∇(Lrecon + λLedit)
if Lrecon + λLedit < τ then

Break
end if

end for
end for

To investigate the properties of noise maps that lead to ef-
fective manipulation, we analyze cases where editing has
succeeded and failed. Using AFHQ images (Choi et al.,
2020), we perform various edits where the source image of
a dog is transformed into different target objects (e.g., a cat,
a penguin). We focus on the differences between the recon-
structed noise map and the edited ones at the 30th inversion
step, evaluating their impact on editing performance. As
shown in Figure 3, we observe that smaller differences be-
tween the reconstructed and edited noise maps have strongly
correlated with better editing performance. Similar trends
are observed across other inversion steps, and a detailed
analysis of these is provided in Appendix B.

By leveraging these observations, we implement an editable
noise refinement. Specifically, we align the inversion di-
rection towards the ideal noise at each inversion step by
reducing the difference between the reconstructed and the
edited noise maps:

Ledit = ∥f(zt, t, Csrc)− f(zt, t, Ctgt)∥2 (5)

where Csrc and Ctgt represent the source and target text
embedding, respectively.

In addition, to prevent the noise maps from deviating ex-
cessively from the source image, ENM Inversion incorpo-
rates an additional term to reduce the reconstruction error
Lprev = ∥zt−1 − f(zt, t, Csrc)∥2. To improve editability
and content preservation, our method iteratively updates zt
by minimizing the following loss function:

argmin
zt

L = Lprev + λLedit (6)

where, λ is a hyperparameter weighting factor for the edit-
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Table 1. Quantitative comparisons of inversion methods across text-guided image editing techniques: Prompt-to-Prompt (P2P) (Hertz
et al., 2022), MasaCtrl (Cao et al., 2023), and Plug-and-Play (PnP) (Tumanyan et al., 2023), on the PIE-Bench dataset. Our method
consistently outperforms other baseline methods in editing performance. Best results are highlighted in bold, and second-best results in
underline.

Method Structure Background Preservation CLIP Similariy

Inverse Editing Distance×103 ↓ PSNR ↑ LPIPS×103 ↓ MSE×104 ↓ SSIM×102 ↑ Whole ↑ Edited ↑

DDIM P2P 69.43 17.87 208.80 219.88 71.14 25.01 22.44
NTI P2P 13.44 27.03 60.67 35.86 84.11 24.75 21.86

StyleD P2P 11.65 26.05 66.10 38.63 83.42 24.78 21.72
NMG P2P 22.83 26.01 79.42 109.53 82.40 24.53 21.60

EF P2P 18.05 24.55 91.88 94.58 81.57 23.97 21.03
PNPInv P2P 11.65 27.22 54.55 32.86 84.76 25.02 22.10

Ours P2P 10.13 28.19 45.26 27.02 86.29 25.30 22.12

DDIM MasaCtrl 28.38 22.17 106.62 86.97 79.67 23.96 21.16
NMG MasaCtrl 38.72 20.33 127.21 135.03 77.48 24.54 21.32

PNPInv MasaCtrl 24.70 22.64 87.94 81.09 81.33 24.38 21.35

Ours MasaCtrl 22.89 23.01 83.99 77.55 82.34 24.62 21.44

DDIM PnP* 28.22 22.28 113.46 83.64 79.05 25.41 22.55
PNPInv PnP* 24.29 22.46 106.06 80.45 79.68 25.41 22.62

Ours PnP* 18.44 25.32 78.53 46.34 83.57 25.57 22.63

* use Stable Diffusion v1.5 as base model (others all use Stable Diffusion v1.4)

ing alignment term. Furthermore, for efficient inversion,
we introduce a pre-defined threshold τ at each timestep t.
By iteratively refining zt to minimize this loss, ENM Inver-
sion imprints the target image more strongly onto the noise
maps while preserving content from the source image. We
summarize our proposed process in Algorithm 1.

3.3. Extension to Video Editing

Video editing focuses on modifying source video content
according to a given text prompt. Recent methods such
as Tune-A-Video (TAV) (Wu et al., 2023) and Video-P2P
(Liu et al., 2024) have extended text-to-image diffusion
models to the video domain, enabling text-guided video
editing. However, these approaches treat video frames as
a whole for editing, which often results in poor editability
and temporal inconsistency between frames.

To overcome these limitations of video editing, we inte-
grate our inversion into Video-P2P. First, we fine-tune an
image diffusion model for text-to-video modeling. Subse-
quently, we utilize ENM Inversion to invert each frame of
the source video into noise maps that preserve the struc-
ture of the original video and provide enhanced editability.
Finally, we apply attention control across all frames to en-
sure consistent modifications throughout the video. This
approach addresses limitations in previous methods by en-
abling high-quality edits while maintaining structural and

temporal coherence between frames.

4. Experiments
4.1. Experiments Setup

Datasets. To evaluate the effectiveness and efficiency of
our proposed ENM Inversion, we use two datasets. For
image editing, we use the PIE-Bench introduced by (Ju
et al., 2024), which contains high-resolution images, each
accompanied by 9 distinct editing tasks, covering a diverse
range of semantic and structural modifications. For video
editing, we follow previous works (Bar-Tal et al., 2022; Liu
et al., 2024) and use videos from the DAVIS dataset (Pont-
Tuset et al., 2017) and the Internet to evaluate our approach.
The two datasets consist of paired source and target prompts,
along with target region masks for localized evaluation.

Comparison Methods. We quantitatively and qualitatively
compare ENM Inversion with existing inversion techniques.
These include DDIM Inversion (Song et al., 2020), Null-
Text Inversion (NTI) (Mokady et al., 2023), StyleDiffusion
(StyleD) (Li et al., 2023), Noise Map Guidance (NMG)
(Cho et al., 2024), Edit-Friendly DDPM Inversion (EF)
(Huberman-Spiegelglas et al., 2024), and PnP Inversion
(PNPInv) (Ju et al., 2024). For image editing, these inver-
sion methods are integrated with three text-guided image
editing techniques: Prompt-to-Prompt (P2P) (Hertz et al.,
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Source Image DDIM NTI StyleD NMG EF PNPInv Ours

A colorful car is parked on the street →A colorful motorcycle is parked on the street

A red rose in the dark →A blue rose in the dark

The Christmas illustration of a santa’s laughing face→ The Christmas illustration of a santa’s angry face

Gold buddha statue in the temple → Stone buddha statue in the temple

A woman with glasses sitting on a stone wall →A woman sitting on a stone wall

A woman with dark hair →A woman with dark hair wearing earrings

Figure 4. Qualitative comparisons of various inversion methods using Prompt-to-Prompt (P2P) (Hertz et al., 2022). Other inversion
techniques result in an inconsistent background or structure with the source image or exhibit limited editing capabilities. Our approach
not only retains high fidelity to the source image but also demonstrates superior editing capabilities.

2022), MasaCtrl (Cao et al., 2023), and Plug-and-Play (PnP)
(Tumanyan et al., 2023). For video editing, DDIM Inversion
and NTI are applied to Tune-A-Video (TAV) (Wu et al.,
2023) and Video-P2P (Liu et al., 2024), respectively.

Evaluation Metrics. To quantitatively assess the perfor-
mance of our method across various aspects, we utilize
the metrics established by PNPInv. We measure structure
distance using the DINO score (Tumanyan et al., 2022),
and assess background preservation through PSNR, LPIPS

(Zhang et al., 2018), MSE, and SSIM (Wang et al., 2004).
Background preservation is specifically computed in the
unedited regions, defined by areas outside the editing mask.
Additionally, we evaluate target prompt-image consistency
by computing CLIP Similarity (Wu et al., 2021) for the
entire image and the regions within the editing mask. For
video editing, we further evaluate temporal consistency by
incorporating the Temp metric (Esser et al., 2023).

Implementation Details. We perform all experiments on
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[DDIM + TAV] A brown bear is walking on the grass.

[Ours + Video-P2P] A brown bear is walking on the grass.

[NTI + Video-P2P] A brown bear is walking on the grass.

[Input Video] A brown bear is walking on the beach.[Input Video] A camel walking in a fenced in area.

[Ours + Video-P2P] A elephant walking in a fenced in area.

[NTI + Video-P2P] A elephant walking in a fenced in area.

[DDIM + TAV] A elephant walking in a fenced in area.

Figure 5. Qualitative comparison of our inversion using Video-P2P (Liu et al., 2024) for video editing. Our method demonstrates superior
performance in terms of temporal consistency, content maintenance, and editing quality, when modifying backgrounds or objects.

a single RTX3090. Following previous studies (Ju et al.,
2024; Liu et al., 2024), we use Stable Diffusion V1-4 for
P2P and MasaCtrl, while Stable Diffusion V1-5 is used for
PnP, TAV, and Video-P2P. We employ a DDIM schedule
with 50 steps and apply Classifier-Free Guidance of 7.5
for the editing process. For editing experiments, we adapt
the default parameters for cross-attention injection and self-
attention injection.

4.2. Comparison with Image Editing

Quantitative Comparisons. Table 1 provides the quantita-
tive evaluations of various inversion methods on PIE-Bench.
Compared to existing methods, ENM Inversion achieves no-
table improvements in most metrics. Our approach demon-
strates superior performance in text-image alignment and
structure preservation, achieving higher CLIP Similarity,
DINO Score, PSNR, and SSIM, while maintaining lower
LPIPS and MSE values.

We also compare the inference time of different inversion
methods integrated with P2P, as shown in Table 2. ENM
Inversion achieves better editing performance and is more
efficient than NTI and StyleD.

Table 2. Inference time
of inversion techniques.

Method Time (s)

DDIM 18.22
NTI 148.48

StyleD 382.98
NMG 36.48

EF 19.10
PNPInv 28.17

Ours 38.87

Qualitative Results. We present
a visual comparison of inversion
methods using P2P in Figure 4.
Our approach consistently sur-
passes competing methods in var-
ious editing tasks, such as chang-
ing content, removing an object,
and modifying attributes like ma-
terial or color. Existing meth-
ods struggle with various editing
tasks such as changing a car into
a motorcycle (the 1st row), removing glasses from a face
(the 3rd row), and modifying the color of a rose (the 6th
row). NTI faces challenges in maintaining the details of the
original image (the 2nd and 3rd rows). Furthermore, both
NTI and PnPInv attempt to modify a smiling face to an an-
gry expression but leave residual traces of the smile (the 4th
row). EF often introduces noise artifacts into the generated
image (the 4th and 6th rows). In contrast, our method excels
in preserving structure of the original image while achieving
higher alignment with the text prompt compared to existing
approaches. For additional qualitative results using other
editing methods, please see Appendix F.
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Table 3. Quantitative comparisons of performance between fixed-point iteration methods and our approach on the PIE-Bench dataset.
Following their settings, AIDI and FPI are combined P2P, while ReNoise utilizes the img2img pipeline of Stable Diffusion V1-4.

Method Structure Background Preservation CLIP Similariy

Inverse Editing Distance×103 ↓ PSNR ↑ LPIPS×103 ↓ MSE×104 ↓ SSIM×102 ↑ Whole ↑ Edited ↑

DDIM P2P 69.43 17.87 208.80 219.88 71.14 25.01 22.44
AIDI P2P 12.19 26.96 57.92 39.82 84.17 24.96 22.01
FPI P2P 14.71 26.61 61.97 37.64 83.52 23.93 21.35

ReNoise / 22.60 25.19 85.29 49.51 82.30 23.78 21.15

Ours P2P 10.13 28.19 45.26 27.02 86.29 25.30 22.12

Table 4. Quantitative evaluation against baselines in video editing.
We measure target text alignment (CLIP Score), background preser-
vation (LPIPS and SSIM), and temporal consistency (TEMP).

Method CLIP ↑ LPIPS ↓ SSIM ↑ TEMP ↑

DDIM+TAV 26.13 169.80 68.02 0.9464
NTI+Video-P2P 26.14 104.64 74.74 0.9451
Ours+Video-P2P 26.57 98.24 75.43 0.9454

4.3. Comparison with Video Editing

Quantitative Comparisons. We present the quantitative
evaluation results in Table 4, which compare the perfor-
mance of our method with state-of-the-art models. Com-
pared to DDIM+TAV and NTI+Video-P2P, we achieve
higher CLIP Score, SSIM, and lower LPIPS, demonstrat-
ing better alignment with text, superior structural integrity,
and perceptual accuracy. Moreover, our approach produces
these results in significantly less time compared to NTI.
Table 4 shows that ENM inversion excels in text fidelity
and content preservation, delivering high-quality video with
improved efficiency.

Qualitative Results. Figure 5 presents the results of video
editing. DDIM+TAV struggles to preserve the content of the
input video accurately. NTI+Video-P2P fail to consistently
align with the user-specified prompts, leading to the genera-
tion of artifacts and unrealistic outputs. Both baselines also
exhibit poor editing performance due to limited editability
of the latent noise (right side of Figure 5). In contrast, our
inversion with Video-P2P performs temporally consistent
video editing, while preserving fine details of the original
video and achieving high edit fidelity.

4.4. Comparison With Fixed-Point Methods

In Table 3, we compare ENM Inversion with fixed-point
iteration methods for image editing. Fixed-point iteration
methods (Pan et al., 2023; Meiri et al., 2023; Garibi et al.,
2024) improve the structure and background preservation
in DDIM Inversion, but clip similarity has decreased. This

result occurs because these methods focus on solving an
implicit function to ensure accurate reconstruction of the
source image, leading to lower editability. In contrast, ENM
Inversion optimizes a loss function that refines the noise map
for editing, aligning it with the target image while maintain-
ing details from the source. This allows us to enhance both
content preservation and edit performance simultaneously.

Figure 6. Cross-attention alignment for image editing across de-
noising steps with different inversion techniques.

4.5. Exploring the Editability of Noise Maps

Since the editing performance is measured solely based
on CLIP Similarity, we add experiments for the editability
of noise maps. To assess edit fidelity, we evaluate cross-
attention alignment for image editing across denoising steps
(Tumanyan et al., 2023; Butt et al., 2025). Specifically, we
compute the cross-attention map corresponding to the target
text and measure its overlap with the target region mask.
The alignment is denoted as score =

∑
(At ·M)/

∑
At.

At represents the cross-attention map at timestep t, and
M is the binary mask indicating the edited region. We
compare our method against DDIM Inversion and DDPM
Inversion, applying P2P in Figure 6. DDIM Inversion ini-
tially improves alignment at early timesteps, and gradually
declines after a certain point, leading to reduced editability.
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DDPM Inversion achieves better performance than DDIM
but exhibits instability and low initial alignment due to its
stochastic nature. Our method achieves higher scores than
both inversion techniques. Furthermore, unlike DDPM In-
version, which suffers from instability, our approach ensures
stable improvement in alignment across timesteps. With our
editable noise maps, we can effectively generate edited im-
ages.

5. Conclusion
In this paper, we propose ENM Inversion, an effective in-
version technique for high-quality real image editing. By
refining noise maps to align with both the source and tar-
get images, ENM Inversion encodes the target image more
strongly into the noise maps, thus enabling high-quality
edits while preserving the details of the source image. Ex-
perimental results demonstrate the superiority of our method
over existing methods in various image editing tasks. More-
over, with the high edit flexibility of our noise maps, our
approach can be easily extended to video editing.
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Table 5. Analysis on Hyper-parameters of ENM Inversion added with Prompt-to-Prompt (P2P) (Hertz et al., 2022).

Parameters Structure Background Preservation CLIP Similariy

Distance×103 ↓ PSNR ↑ LPIPS×103 ↓ MSE×104 ↓ SSIM×102 ↑ Whole ↑ Edited ↑

λ = 5 10.10 28.22 45.19 26.91 86.23 25.17 22.03
λ = 10 10.13 28.19 45.26 27.02 86.29 25.30 22.12
λ = 15 10.38 28.13 46.33 27.25 86.15 25.32 22.07
λ = 20 12.41 28.01 46.80 27.30 86.12 25.34 22.08

T = 20 8.74 28.50 44.05 25.19 86.35 24.95 21.71
T = 50 10.13 28.19 45.26 27.02 86.29 25.30 22.12
T = 75 10.35 28.10 46.47 27.68 86.11 25.35 22.13
T = 100 10.89 28.01 48.03 27.91 86.05 25.44 22.20

Default 10.13 28.19 45.26 27.02 86.29 25.30 22.12

A. Limitations
Our proposed method has several limitations. First, it relies on the generative capabilities of Stable Diffusion. As a result, if
the target image lies outside the domain that Stable Diffusion can generate, our method may fail to edit the image effectively.
Another limitation lies in computational efficiency. Unlike existing methods that perform a single inversion per source
image and reuse the result across multiple target prompts, our approach requires a separate inversion process for each target
text-image combination. This increases the computational cost, especially in scenarios involving multiple edits of the same
image. Additionally, the optimizing of noise maps introduces further inference time. While this added cost is relatively
small, as shown in Table 2, it may still pose challenges in real-time applications.

B. Analysis of Noise Map Differences Across Inversion Steps
We analyze the differences between the reconstructed and edited noise maps across various inversion steps to better
understand their impact on editing performance. Figure 7 (left) provides an analysis of noise map differences across
inversion steps for various editing cases. For editing cases with lower performance (e.g., transforming a dog into an elephant
or a giraffe), we observe larger gaps across inversion steps. This indicates that greater deviations between the reconstructed
and edited noise maps can lead to poorer editing outcomes. Figure 7 (right) illustrates the relationship between editing
performance and noise map changes at the 30th inversion step. Compared to DDIM inversion, our approach achieves a
smaller gap between the reconstructed and edited noise maps, which leads to higher editing performance.

Be�er
performance

Figure 7. Noise map differences across inversion steps for various editing cases (left). Relationship between editing performance and
noise map differences at the 30th inversion step (right). The size of stars and circles represents the magnitude of the difference.
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Table 6. Quantitative comparisons of performance between flow-based models and our approach on the PIE-Bench dataset. Our method
outperforms other flow-based methods in editing performance.

Method Structure Background Preservation CLIP Similariy

Distance×103 ↓ PSNR ↑ LPIPS×103 ↓ MSE×104 ↓ SSIM×102 ↑ Whole ↑ Edited ↑

SDEdit-Flux 118.97 14.41 329.92 450.06 60.82 25.06 22.50
RFInv 60.08 18.24 232.88 210.02 64.78 24.94 22.65

Ours + RFInv 46.38 19.77 185.86 153.90 69.57 25.05 22.65

Table 7. Comparison of reconstruction quality when using the source prompt Csrc and a null text during inversion.

Method Structure Background Preservation

Distance×103 ↓ PSNR ↑ LPIPS×103 ↓ MSE×104 ↓ SSIM×102 ↑

Csrc 10.13 28.19 45.26 27.02 86.29
Null 9.89 28.18 46.28 27.13 86.11

C. Analysis of Hyper-parameters
In Table 5, we provide further experiments to analyze the impact of different choices in our method. As the editing alignment
weight λ increases, the performance in preserving the structure and background of the image decreases, while the CLIP
similarity improves. This trend indicates that a larger λ amplifies the editability, increasing the likelihood of edits but also
the probability of affecting unintended regions of the image. Additionally, increasing λ requires more inference time. To
maintain a balanced performance without excessive computational overhead, we select λ = 10 as a practical choice.

Furthermore, we conducted experiments with DDIM sampling steps T set to 20, 50, 75, and 100 in ENM Inversion. Fewer
steps resulted in better preservation of background and structure, while higher step counts improved CLIP similarity. To
achieve balanced performance across all metrics, we set T = 50 as the default setting.

D. Comparison with Flow-Based Models
While diffusion-based methods have demonstrated strong capabilities in reconstructing and editing images, recent advances
in flow-based models offer an alternative and promising direction. In particular, Rectified Flow (RF) models (Liu et al.,
2022; Albergo & Vanden-Eijnden, 2022; Esser et al., 2024) have emerged as an efficient generative framework that leverages
reverse Ordinary Differential Equations (ODEs) instead of the Stochastic Differential Equations (SDEs) commonly used in
diffusion models. Recent works have explored inversion techniques tailored for Rectified Flows, introducing algorithms
such as RF Inversion (RFInv) (Rout et al., 2024). Our method can be integrated into these methods. We conducted additional
experiments using the following baselines: SDEdit (Meng et al., 2021)-Flux, RFInv, and Ours + RFInv. As shown in Table 6,
our method significantly improves reconstruction quality while preserving the edit fidelity inherent in flow-based models.

E. Robustness to Different Source Prompts
In our method, accurate image reconstruction during inversion is achieved by minimizing Lprev as defined in Equation (6).
This loss is computed using the denoising function f(zt, t, Csrc), where Csrc is the source prompt provided during inversion.
To validate the robustness with respect to a different choice of Csrc, we conduct an additional experiment by setting Csrc to
a null text and comparing the quality against the case where the actual source prompt is used. Table 7 show that there is no
significant difference in reconstruction quality between the two settings.

F. Additional Qualitative Results
We present additional qualitative results using the PIE-Bench dataset. Figure 8, Figure 9, and Figure 10 show comparisons
of inversion methods combined with Prompt-to-Prompt, MasaCtrl, and Plug-and-Play techniques. Furthermore, Figure 11
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provides additional visualizations for video editing.

A view of the mountains covered in snow→A view of the mountains covered in leaves

A woman in a jacket standing in the rain →A woman in a blouse standing in the rain

A black raven sits on a tree stump in the rain →A white raven sits on a tree stump in the rain

A digital art woman with curly hair standing in front of buildings →A digital art woman with straight hair standing in front of buildings

A watercolor illustration of a chicken on a white background →An anime illustration of a chicken on a white background

A long haired cat looking up at something →A short haired cat looking up at something

Source Image DDIM NTI StyleD NMG EF PNPInv Ours

Figure 8. Qualitative results of different inversion methods with Prompt-to-Prompt (P2P).
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An illustration of a cat sitting on top of rock →An illustration of a bear sitting on top of rock

A bee flies over a flowering tree branch →A flowering tree branch

A woman in a hat and dress walking down … →A woman in a hat and dress running down …

A lone tree is reflected in the water at night with a bright moon →A lone tree is reflected in the water at night

A serious man→A angry man

Source Image DDIM NMG PNPInv Ours

Figure 9. Qualitative results of different inversion methods with MasaCtrl.
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A cat sitting in the grass →A cat sitting in the rocks

A puppy is sitting in a field of dandelions →A puppy is sitting in a field

A man wearing a tie →A man wearing a black and yellow stripes tie

White flowers on a tree … →An oil painting of white flowers on a tree …

A young girl … → Black and white sketch of a young girl …

Source Image DDIM PNPInv Ours

Figure 10. Qualitative results of different inversion methods with Plug-and-Play (PnP).
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[DDIM + TAV] An origami bird flying in the forest.

[Ours + Video-P2P] An origami bird flying in the forest.

[NTI + Video-P2P] An origami bird flying in the forest.

[Input Video] A bird flying in the forest.[Input Video] A man breakdancing on the street.

[Ours + Video-P2P] A man breakdancing on the beach.

[NTI + Video-P2P] A man breakdancing on the beach.

[DDIM + TAV] A man breakdancing on the beach.

Figure 11. Qualitative results of different inversion methods with Plug-and-Play (PnP).
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