
Why So Pessimistic? Estimating Uncertainties for Offline
RL through Ensembles, and Why Their Independence Matters

Seyed Kamyar Seyed Ghasemipour
Robotics@Google

kamyar@google.com

Shixiang Shane Gu
Google Research, Brain Team

shanegu@google.com

Ofir Nachum
Google Research, Brain Team
ofirnachum@google.com

Abstract

Motivated by the success of ensembles for uncertainty estimation in supervised
learning, we take a renewed look at how ensembles ofQ-functions can be leveraged
as the primary source of pessimism for offline reinforcement learning (RL). We
begin by identifying a critical flaw in a popular algorithmic choice used by many
ensemble-based RL algorithms, namely the use of shared pessimistic target values
when computing each ensemble member’s Bellman error. Through theoretical
analyses and construction of examples in toy MDPs, we demonstrate that shared
pessimistic targets can paradoxically lead to value estimates that are effectively
optimistic. Given this result, we propose MSG, a practical offline RL algorithm
that trains an ensemble of Q-functions with independently computed targets based
on completely separate networks, and optimizes a policy with respect to the lower
confidence bound of predicted action values. Our experiments on the popular
D4RL and RL Unplugged offline RL benchmarks demonstrate that on challenging
domains such as antmazes, MSG with deep ensembles surpasses highly well-tuned
state-of-the-art methods by a wide margin. Additionally, through ablations on
benchmarks domains, we verify the critical significance of using independently
trained Q-functions, and study the role of ensemble size. Finally, as using separate
networks per ensemble member can become computationally costly with larger
neural network architectures, we investigate whether efficient ensemble approxima-
tions developed for supervised learning can be similarly effective, and demonstrate
that they do not match the performance and robustness of MSG with separate
networks, highlighting the need for new efforts into efficient uncertainty estimation
directed at RL.

1 Introduction

Offline reinforcement learning (RL), also referred to as batch RL [1], is a problem setting in which
one is provided a dataset of interactions with an environment in the form of a Markov decision process
(MDP), and the goal is to learn an effective policy exclusively from this fixed dataset. Offline RL
holds the promise of data-efficiency through data reuse, and improved safety due to minimizing the
need for policy rollouts. As a result, offline RL has been the subject of significant renewed interest in
the machine learning literature [2].

One common approach to offline RL in the model-free setting is to use approximate dynamic
programming (ADP) to learn a Q-value function via iterative regression to backed-up target values.
The predominant algorithmic philosophy with most success in ADP-based offline RL is to encourage

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

obtained policies to remain close to the support set of the available offline data. A large variety of
methods have been developed for enforcing such constraints, examples of which include regularizing
policies with behavior cloning objectives [3, 4], performing updates only on actions observed inside
[5, 6, 7, 8] or close to [9] the offline dataset, and regularizing value functions to underestimate the
value of actions not seen in the dataset [10, 11, 12].

The need for such regularizers arises from inevitable inaccuracies in value estimation when function
approximation, bootstrapping, and off-policy learning – i.e. The Deadly Triad [13] – are involved. In
offline RL in particular, such inaccuracies cannot be resolved through additional interactions with the
MDP. Thus, remaining close to the offline dataset limits opportunities for catastrophic inaccuracies
to arise. However, recent works have argued that the aforementioned constraints can be overly
pessimistic, and instead opt for approaches that take into consideration the uncertainty about the
value function [14, 15, 16], thus re-focusing the offline RL problem to that of deriving accurate lower
confidence bounds (LCB) of Q-values.

In the empirical supervised learning literature, deep network ensembles (definition in Appendix L)
and their more efficient variants have been shown to be the most effective approaches for uncertainty
estimation, towards learning calibrated estimates and confidence bounds with modern neural network
function approximators [17]. Motivated by this, in our work we take a renewed look intoQ-ensembles,
and study how to leverage them as the primary source of pessimism for offline RL.

In deep RL, a very popular algorithmic choice is to use an ensemble of Q-functions to obtain pes-
simistic value estimates and combat overestimation bias [18]. Specifically, in the policy evaluation
procedure, all Q-networks are updated towards a shared pessimistic temporal difference target. Simi-
larly in offline RL, in addition to the main offline RL objective that they propose, several existing
methods use such Q-ensembles [10, 3, 19, 20, 21, 22, 23, 8]. We begin by mathematically character-
izing a critical flaw in the aforementioned ensembling procedure. Specifically, we demonstrate that
using shared pessimistic targets can paradoxically lead to Q-estimates which are in fact optimistic!
We verify our finding by constructing pedagogical toy MDPs. These results demonstrate that the
formulation of using shared pessimistic targets is fundamentally ill-formed.

To resolve this problem, we propose Model Standard-deviation Gradients (MSG), an ensemble-based
offline RL algorithm. In MSG, each Q-network is trained independently, without sharing targets.
Crucially, ensembles trained with independent target values will always provide pessimistic value
estimates. The pessimistic lower-confidence bound (LCB) value estimate – computed as the mean
minus standard deviation of the Q-value ensemble – is then used to update the policy being trained.
Evaluating MSG on the established D4RL [24] and RL Unplugged [25] benchmarks for offline
RL, we demonstrate that MSG matches, and in the more challenging domains such as antmazes,
significantly exceeds the prior state-of-the-art. Additionally, through a series of ablation experiments
on benchmark domains, we verify the significance of our theoretical findings, study the role of
ensemble size, and highlight the settings in which ensembles provide the most benefit.

The use of ensembles will inevitably be a computational bottleneck when applying offline RL to
domains requiring large neural network models. Hence, as a final analysis, we investigate whether
the favorable performance of MSG can be obtained through the use of modern efficient ensemble
approaches which have been successful in the supervised learning literature [26, 27, 28, 17]. We
demonstrate that while efficient ensembles are competitive with the state-of-the-art on simpler offline
RL benchmark domains, similar to many popular offline RL methods they fail on more challenging
tasks, and cannot recover the performance and robustness of MSG using full ensembles with separate
neural networks.

Our work highlights some of the unique and often overlooked challenges of ensemble-based uncer-
tainty estimation in offline RL. Given the strong performance of MSG, we hope our work motivates
increased focus into efficient and stable ensembling techniques directed at RL, and that it highlights
intriguing research questions for the community of neural network uncertainty estimation researchers
whom thus far have not employed sequential domains such as offline RL as a testbed for validating
modern uncertainty estimation techniques.

2 Related Work

Uncertainty estimation is a core component of RL, since an agent only has a limited view into
the mechanics of the environment through its available experience data. Traditionally, uncertainty

2

estimation has been key to developing proper exploration strategies such as upper confidence bound
(UCB) and Thompson sampling [29], in which an agent is encouraged to seek out paths where
its uncertainty is high. Offline RL presents an alternative paradigm, where the agent must act
conservatively and is thus encouraged to seek out paths where its uncertainty is low [14]. In either
case, proper and accurate estimation of uncertainties is paramount. To this end, much research has
been produced with the aim of devising provably correct uncertainty estimates [30, 31, 32], or at
least bounds on uncertainty that are good enough for acting exploratorily [33] or conservatively [34].
However, these approaches require exceedingly simple environment structure, typically either a finite
discrete state and action space or linear spaces with linear dynamics and rewards.

While theoretical guarantees for uncertainty estimation are more limited in practical situations with
deep neural network function approximators, a number of works have been able to achieve practical
success, for example using deep network analogues for count-based uncertainty [35], Bayesian
uncertainty [36, 37], and bootstrapping [38, 39]. Many of these methods employ ensembles. In
fact, in continuous control RL, it is common to use an ensemble of two value functions and use
their minimum for computing a target value during Bellman error minimization [18]. A number
of works in offline RL have extended this to propose backing up minimums or lower confidence
bound estimates over larger ensembles [3, 10, 19, 20, 22, 23, 21]. In our work, we continue to find
that ensembles are extremely useful for acting conservatively, but the manner in which ensembles
are used is critical. Specifically our proposed MSG algorithm advocates for using independently
learned ensembles, without sharing of target values, and this important design decision is supported
by empirical evidence.

The widespread success of ensembles for uncertainty estimation in RL echoes similar findings in
supervised deep learning. While there exist proposals for more technical approaches to uncertainty
estimation [40, 41, 42], ensembles have repeatedly been found to perform best empirically [26, 43].
Much of the active literature on ensembles in supervised learning is concerned with computational
efficiency, with various proposals for reducing the compute or memory footprint of training and
inference on large ensembles [28, 44, 27]. While these approaches have been able to achieve
impressive results in supervised learning, our empirical results suggest that their performance suffers
significantly in challenging offline RL settings compared to deep ensembles.

3 Pessimistic Q-Ensembles: Independent or Shared Targets?

In this section we identify a critical flaw in how ensembles are commonly employed – in offline
as well as online RL – for obtaining pessimistic value estimates [10, 3, 19, 20, 21, 22, 23, 8, 21],
which can paradoxically lead to an optimism bonus! We begin by mathematically characterizing this
problem and presenting a simple fix. Subsequently, we leverage our results to construct pedagogical
toy MDPs demonstrating the practical importance of the identified problem and solution.

3.1 Mathematical Characterization

1. Initialize θi for all i ∈ Z.
2. For t = 1, 2, . . . :
• For each (s, a, r, s′) ∈ D and i ∈ Z com-

pute target values yi(r, s′, π).
• For each i ∈ Z, update θi to optimize the

regression objective

1

|D|
∑

(s,a,r,s′)∈D

(Qθi(s, a)−yi(r, s′, π))2

3. Return a pessimistic Q-value function
Qpessimistic based on the trained ensemble.

We assume access to a dataset D com-
posed of (s, a, r, s′) transition tuples from
a Markov Decision Process (MDP) deter-
mined by a tuple M = 〈S,A,R,P, γ〉,
corresponding to state space, action space,
reward function, transitions dynamics, and
discount, respectively. As is standard in
RL, we do not assume any knowledge of
R,P , other than that implicitly provided
by the dataset D. In this section, for clarity
of exposition, we assume that the policies
we consider are deterministic, and that our
MDPs do not have terminal states.

We consider Q-value ensemble members
given by a parameterization Qθi , where i
indexes into some set Z, which is finite in practice but may be infinite or uncountable in theory.
We assume Z has an associated probability space allowing us to make expectation E or variance V

3

computations over the ensemble members. Given a fixed policy π, a general dynamic programming
based procedure for obtaining pessimistic value estimates is outlined by the iterative regression
described in the box above.

A key algorithmic choice in this recipe is where pessimism should be introduced. This can be
done by either (a) pessimistically aggregating Q-values after training, i.e. inside Step 3, or (b)
also incorporating pessimism during Step 2, by using a shared pessimistic target value y. Through
our review of the offline RL (as well as online RL) literature, we have observed that the most
common approach is the latter, where the targets are pessimistic, shared, and identical across
ensemble members [10, 3, 19, 20, 21, 22, 23, 8]. Specifically, they are computed as, yi(r, s′, π) =
PO({r + γQθi(s

′, π(s′)),∀i ∈ Z}) with PO being a desired pessimism operator aggregating the
TD target values of the ensemble members (e.g. “mean minus standard deviation", or “minimum").

In this section, our goal is to compare these two alternative approaches. For our analysis, we will use
“mean minus standard deviation" (a lower confidence bound (LCB)) as our pessimism operator, and
use the notation QLCB in place of Qpessimistic (defined in the box above). Under the LCB pessimism
operator we will have:

Independent Targets (Method 1): yi(r, s′, π) = r + γ ·Qθi(s′, π(s′))

Shared Targets (Method 2): yi(r, s′, π) = r + γ ·
(
Eens [Qθi(s

′, π(s′))]−
√
Vens [Qθi(s′, π(s′))]

)
For both we have: QLCB(s, a) = Eens [Qθi(s, a)]−

√
Vens [Qθi(s, a)]

To characterize the form of QLCB when using complex neural networks, we refer to the work on
infinite-width neural networks, namely the Neural Tangent Kernel (NTK) [45]. We consider Q-value
ensemble members, Qθi , which all share the same infinite-width neural network architecture (and
thus the same NTK parameterization). As noted in the algorithm box above, and as is the case in
deep ensembles [43], the only difference amongst ensemble members Qθi is in their initial weights
θi sampled from the neural network’s initial weight distribution.

Before presenting our results, we establish some notation relevant to the infinite-width and NTK
regime. Let X , R,X ′ denote data matrices containing (s, a), r, and (s′, π(s′)) appearing in the
offline dataset D; i.e., the k-th transition (s, a, r, s′) in D is represented by the k-th rows in X , R,X ′.
Let A,B denote two data matrices, where similar to X ,X ′, each row contains a state-action tuple
(s, a) ∈ S ×A. The NTK, which governs the training dynamics of the infinitely-wide neural network,
is then given by the outer product of gradients of the neural network at initialization: Θ̂

(0)
i (A,B) :=

∇θQθi(A) · ∇θQθi(B)T |t=0, where we overload notation Qθi(A) to represent the column vector
containing Q-values. At infinite-width in the NTK regime, Θ̂

(0)
i (A,B) converges to a deterministic

kernel (i.e. does not depend on the random weight sample θi), and hence is the same for all ensemble
members. Thus, hereafter we will remove the index i from the notation of the NTK kernel and
simply write, Θ̂(0)(A,B). With our notation in place, we define, C := Θ̂(0)(X ′,X) · Θ̂(0)(X ,X)−1.
Intuitively, C is a |D| × |D| matrix where the element at column q, row p, captures a notion of
similarity between (s, a) in the qth row of X , and (s′, π(s′)) in the pth row of X ′.
We now have all the necessary machinery to characterize the form of QLCB:

Theorem 3.1. For a given (s, a) ∈ S×A, letQ(0)
θi (s, a) denoteQθi(s, a)|t=0 (value at initialization),

with θ sampled from the initial weight distribution. After t + 1 iterations of pessimistic policy
evaluation, the LCB value estimate for (s′, π(s′)) ∈ X ′ is given by,

Independent Targets (Method 1): (1)

Q
(t+1)
LCB (X ′) = O(γt‖C‖t) + (1 + . . .+ γtCt)︸ ︷︷ ︸

backup term

CR−
√√√√Eens

[(
(1 + . . .+ γtCt)︸ ︷︷ ︸

backup term

(Q
(0)
θi (X ′)− CQ(0)

θi (X))
)2]

Shared Targets (Method 2): (2)

Q
(t+1)
LCB (X ′) = O(γt‖C‖t) + (1 + . . .+ γtCt)︸ ︷︷ ︸

backup term

CR− (1 + . . .+ γtCt)︸ ︷︷ ︸
backup term

√
Eens

[(
Q

(0)
θi (X ′)− CQ(0)

θi (X)
)2]

4

where the square and square-root operations are applied element-wise.1 Please refer to Appendix F
for the proof.

As can be seen, the equations for the pessimistic LCB value estimates in both settings are similar,
only differing in the third term. The first term is negligible and tends towards zero as the number of
iterations of policy evaluation increases. The second term shared by both variants corresponds to
the expected result of the policy evaluation procedure without any pessimism (as before, we mean
expectation under θ sampled from the initial weight distribution). Accordingly, the differing third
term in each variant exactly corresponds to the “pessimism” or “penalty” induced by that variant.

Considering the available offline RL dataset D as a restricted MDP in itself, we see that the use
of Independent Targets (Method 1) leads to a pessimism term that performs “backups" along the
trajectories that the policy would experience in this restricted MDP (using the geometric term
1 + · · ·+ γtCt) before computing a variance estimate. Meanwhile the use of Shared Targets (Method
2) does the reverse – it first computes a variance term and then performs the “backups".

While this difference may seem inconsequential, it becomes critical when one realizes that in Equation
2 for Shared Targets (Method 2), the pessimism term (third term) may become positive, i.e. a negative
penalty, yielding an effectively optimistic LCB estimate. Critically, with Independent Targets (Method
1), this problem cannot occur.

3.2 Validating Theoretical Predictions

1. Initialize empty X , R,X ′

2. For N episodes:
• sample s ∼ N (0, I)

• For T steps:
– sample a ∼ N (0, I)
– sample s′ ∼ N (0, I)
– set π(s′)← a
– Add (s, a) to X
– Add r ∼ N (0, I) to R
– Add (s′, π(s′)) to X ′
– Set s← s′

3. Return the offline dataset X , R,X ′

In this section we demonstrate that our analysis
is not solely a theoretical result concerning the
idiosyncracies of infinite-width neural networks,
but that it is rather straightforward to construct
combinations of an MDP, offline data, and a pol-
icy, that lead to the critical flaw of an optimistic
LCB estimate.

Let ds, da denote the dimensionality of state
and action vectors respectively. We consider an
MDP whose initial state distribution is a spher-
ical multivariate normal distribution N (0, I),
and whose transition function is given by
P(s′|s, a) = N (0, I). Consider the procedure
for generating our offline data matrices, de-
scribed in the box to the right. This procedure
returns data matrices X , R,X ′ by generating N episodes of length T , using a behavior policy
a ∼ N (0, I). In this generation process, we set the policy we seek to pessimistically evaluate, π, to
always apply the behavior policy’s action in state s to the next state s′.

To construct our examples, we consider the setting where we use linear models to represent Qθi , with
the initial weight distribution being a spherical multivariate normal distribution, N (0, I). With linear
models, the equations for QLCB takes an identical form to those in Theorem 3.1.

Given the described data generating process and our choice of linear function approximation, we
can compute the pessimism term for the Shared Targets (Method 2) (i.e. the third term in Theorem
3.1, Equation 2). We implement this computation in a simple Python script, which we include in
the supplementary material. We choose, ds = 30, da = 30, γ = 0.5, N = 5, T = 5, and t = 1000
(t is the exponent in the geometric term above). We run this simulation 1000 times, each with a
different random seed. After filtering simulation runs to ensure γ‖C‖ < 1 (as discussed in an earlier
footnote), we observe that 221 of the simulation runs result in an optimistic LCB bonus, meaning that
in those experiments, the pessimism term was in fact positive for some (s′, π(s′)) ∈ X ′. We have
made the python notebook implementing this experiment available in our supplementary material.
For further intriguing investigations in pedagogical toy MDPs regarding the structure of uncertainties,
we strongly encourage the interested reader to refer to Appendix G.

1Note that if γ‖C‖ ≥ 1, dynamic programming is liable to diverge in either setting. In our discussions, we
avoid this degenerate case and assume γ‖C‖ < 1.

5

4 Model Standard-deviation Gradients (MSG)

It is important to note that even if the pessimism term does not become positive for a particular
combination of MDPs, offline datasets, and policies, the fact that it can occur highlights that the
formulation of Shared Targets is fundamentally ill-formed. To resolve this problem we propose
Model Standard-deviation Gradients (MSG), an offline RL algorithm which leverages ensembles to
approximate the LCB using the approach of Independent Targets.

4.1 Policy Evaluation and Optimization in MSG

MSG follows an actor-critic setup. At the beginning of training, we create an ensemble of N Q-
functions by taking N samples from the initial weight distribution. During training, in each iteration,
we first perform policy evaluation by estimating the QLCB for the current policy, and subsequently
optimize the policy through gradient ascent on QLCB.

Policy Evaluation As motivated by our analysis in Section 3, we train the ensemble Q-functions
independently using the standard least-squares Q-evaluation loss,

L(θi) = E(s,a,r,s′)∼D

[(
Qθi(s, a)− yi(r, s′, π)

)2]
; yi = r + γ · Ea′∼π(s′)

[
Qθ̄i(s

′, a′)
]

(3)

where θi, θ̄i denote the parameters and target network parameters for the ith Q-function.

In each iteration, as is common practice, we do not update the Q-functions until convergence, and
instead update the networks using a single gradient step. In practice, the expectation in L(θi) is
estimated by a minibatch, and the expectation in yi is estimated with a single action sample from the
policy. After every update to the Q-function parameters, their corresponding target parameters are
updated to be an exponential moving average of the parameters in the standard fashion.

Policy Optimization As in standard deep actor-critic algorithms, policy evaluation steps (learning
Q) are interleaved with policy optimization steps (learning π). In MSG, we optimize the policy
through gradient ascent on QLCB. Specifically, our proposed policy optimization objective in MSG
is,

L(π) = Es∼D,a∼π(s) [QLCB(s, a)] = Es∼D,a∼π(s)

[
Eens[Qθi(s, a)] + β

√
Vens[Qθi(s, a)]

]
(4)

where β ≤ 0 is a hyperparameter that determines the amount of pessimism.

4.2 The Trade-Off Between Trust and Pessimism

While our hope is to leverage the implicit generalization capabilities of neural networks to estimate
proper LCBs beyond states and actions in the finite dataset D, neural network architectures can
be fundamentally biased, or we can simply be in a setting with insufficient data coverage, such
that the generalization capability of those networks is limited. To this end, we augment the policy
evaluation objective of MSG (L(θi), equation 3) with a support constraint regularizer inspired by
CQL [11] 2: H(θi) = Es∼D,a∼π(s) [Qθi(s, a)]− E(s,a)∼D [Qθi(s, a)] . This regularizer encourages
the Q-functions to increase the values for actions seen in the dataset D, while decreasing the values
of the actions of the current policy. Practically, we estimate the latter expectation of H using the
states in the mini-batch, and we approximate the former expectation using a single sample from the
policy. We control the contribution ofH(θi) by weighting this term with weight parameter α. The
full critic loss is thus given by,

L(θ1, . . . , θN) =

N∑
i=1

(
L(θi) + αH(θi)

)
(5)

Empirically, as evidenced by our results in Appendix A.2, we have observed that such a regularizer
can be necessary in two situations: 1) The first scenario is where the offline dataset only contains a
narrow data distribution (e.g., imitation learning datasets only containing expert data). We believe

2Instead of a CQL-style value regularizer, other forms of support constraints such as a behavioral cloning
regularizer on the policy could potentially be used.

6

cartpole.swingup finger.turn_hard fish.swim manipulator.insert_ball manipulator.insert_peg walker.stand walker.walk cheetah.run humanoid.run mean0
200
400
600
800

1000

BC CRR MuZero Unplugged MSG Deep Ens. (N=64)

Figure 1: Results for DM Control Suite subset of the RL Unplugged benchmark [25]. We note that: 1) the
architecture used for MSG is smaller by a factor of approximately 60x which contributes to poor performance on
humanoid.run, 2) CRR results are reported by their best checkpoint throughout training which differs from
MSG, BC, and MuZero Unplugged which report performance at the end of training. Baseline results taken from
[47]. Despite MSG’s disadvantage on the humanoid.run task, it still edges out the baseline methods in mean
performance.

Domain CQL IQL MSG (N = 64) β α MSG (N = 4) β α

maze2d-umaze-v1 5.7 – 101.1± 26.3 −8 0 68.8± 20.2 −4 0.1
maze2d-medium-v1 5.0 – 57.0± 17.2 −4 0.1 53.2± 26.8 −4 0.1
maze2d-large-v1 12.5 – 159.3± 49.4 −4 0.1 59.2± 59.1 −8 0.5

antmaze-umaze-v0 74.0 87.5 97.8± 1.2 −4 0.5 98.6± 1.4 −4 1.0
antmaze-umaze-diverse-v0 84.0 62.2 81.8± 3.0 −4 1.0 76.6± 7.6 −4 0.5
antmaze-medium-play-v0 61.2 71.2 89.6± 2.2 −4 0.5 83.0± 7.1 −4 0.1
antmaze-medium-diverse-v0 53.7 70.0 88.6± 2.6 −4 0.5 83.0± 6.2 −4 0.5
antmaze-large-play-v0 15.8 39.6 72.6± 7.0 −8 0 46.8± 14.7 −4 0.5
antmaze-large-diverse-v0 14.9 47.5 71.4± 12.2 −8 0.1 58.2± 9.6 −8 0.1

Table 1: Results on D4RL maze2d and antmaze domains. In MSG, β is the hyperparameter controlling the
amount of pessimism in QLCB (Equation 4), and α is the hyperparameter controlling the contribution of the
CQL-style regularizer (Equation 5). As we were unable to reproduce CQL antmaze results despite extensive
hyperparameter tuning (see also [12]), we present the numbers reported by the original paper which uses the
same network architectures as MSG. We also present reported results for the current state-of-the-art, IQL [48].

this is because the power of ensembles comes from predicting a value distribution for unseen (s, a)
based on the available training data. Thus, if no data for sub-optimal actions is present, ensembles
cannot make accurate predictions and increased pessimism viaH becomes necessary. 2) The second
scenario is where environment dynamics can be chaotic (e.g. Gym [46] hopper and walker2d).
In such domains it would be beneficial to remain close to the observed data in the offline dataset.
Pseudo-code for our proposed MSG algorithm can be viewed in Algorithm Box 1.

5 Experiments

In this section we seek to empirically answer the following questions: 1) How well does MSG
perform compared to current state-of-the-art in offline RL? 2) Are the theoretical differences in
ensembling approaches (Section 3) practically relevant? 3) When and how does ensemble size affect
perfomance? 4) Can we match the performance of MSG through efficient ensemble approximations
developed in the supervised learning literature?

5.1 Offline RL Benchmarks

D4RL Gym Domains We begin by evaluating MSG on the Gym domains (halfcheetah,
hopper, walker2d) of the D4RL offline RL benchmark [24], using the medium, medium-replay,
medium-expert, and expert data settings. Our results presented in Appendix A.2 (summarized in
Figure 4) demonstrates that MSG is competitive with well-tuned state-of-the-art methods CQL [11]
and F-BRC [12].

D4RL Antmaze Domains Due to the narrow range of behaviors in Gym environments, offline
datasets for these domains tend to be very similar to imitation learning datasets. As a result, many
prior offline RL approaches that perform well on D4RL Gym fail on harder tasks that require stitching
trajectories through dynamic programming (c.f. [48]). An example of such tasks are the D4RL
antmaze settings, in particular those in the antmaze-medium and antmaze-large environments.
The data for antmaze tasks consists of many episodes of an Ant agent [46] running along arbitrary

7

paths in a maze. The agent is tasked with using this data to learn a point-to-point navigation policy
from one corner of the maze to the opposite corner, where rewards are given by a sparse signal that
is 1 when near the desired end location in the maze – at which point the episode is terminated –
and 0 otherwise. The undirected, extremely sparse reward nature of antmaze tasks make them very
challenging, especially for the large maze sizes.

Table 1 and Appendix B.2 present our results. To the best of our knowledge, the antmaze domains
are considered unsolved, with few prior works reporting non-zero results on the large mazes [11, 48].
As can be seen, MSG obtains results that far exceed the prior state-of-the-art results reported by [48].
While some works that use specialized hierarchical approaches have reported strong results as
well [49], it is notable that MSG is able to solve these challenging tasks with standard architectures
and training procedures, and this shows the power that ensembling can provide – as long as the
ensembling is performed properly!

RL Unplugged In addition to the D4RL benchmark, we evaluate MSG on the RL Unplugged
benchmark [25]. Our results are presented in Figure 1. We compare to results for Behavioral Cloning
(BC) and two state-of-the-art methods in these domains, Critic-Regularized Regression (CRR) [7]
and MuZero Unplugged [47]. Due to computational constraints when using deep ensembles, we
use the same network architectures as we used for D4RL experiments. The networks we use are
approximately 1

60 -th the size of those used by the BC, CRR, and MuZero Unplugged baselines
in terms of number of parameters. We observe that MSG is on par with or exceeds the current
state-of-the-art on all tasks with the exception of humanoid.run, which appears to require the larger
architectures used by the baseline methods. Experimental details can be found in Appendix C.

Benchmark Conclusion Prior work has demonstrated that many offline RL approaches that per-
form well on Gym domains, fail to succeed on much more challenging domains [48]. Our results
demonstrate that through uncertainty estimation with deep ensembles, MSG is able to very signifi-
cantly outperform prior work on very challenging benchmark domains such as the D4RL antmazes.

5.2 Ensemble Ablations

= 0 = 4 = 8 = 4 = 8 = 4 = 8
0.00

0.25

0.50

0.75

1.00

Ensemble Size 1 Ensemble Size 4 Ensemble Size 16 Ensemble Size 64

antmaze-medium-diverse-v0

= 0 = 4 = 8 = 4 = 8 = 4 = 8
0.00

0.25

0.50

0.75

1.00

Ensemble Size 1 Ensemble Size 4 Ensemble Size 16 Ensemble Size 64

antmaze-medium-play-v0

= 0 = 4 = 8 = 4 = 8 = 4 = 8
0.00

0.25

0.50

0.75

1.00

Ensemble Size 1 Ensemble Size 4 Ensemble Size 16 Ensemble Size 64

antmaze-large-diverse-v0

= 0 = 4 = 8 = 4 = 8 = 4 = 8
0.00

0.25

0.50

0.75

1.00

Ensemble Size 1 Ensemble Size 4 Ensemble Size 16 Ensemble Size 64

antmaze-large-play-v0

Figure 2: Ensemble size ablation on the antmaze
medium and large domains with varying β ∈ {−4,−8}
and α ∈ {0, 0.1, 0.5, 1} (colored blue, red, yellow, and
green respectively). We observe the general trend that
bigger ensembles lead to better performance.

Independence in Ensembles Ablation In
Section 3, through theoretical arguments and toy
experiments we demonstrated the importance of
training using “Independent" ensembles. Here,
we seek to validate the significance of our theo-
retical findings using offline RL benchmarks, by
comparing Independent targets (as in MSG),
to Shared-LCB and Shared-Min targets. Our
results are presented in Appendices A.3 and B.3,
with a summary in Figures 3 and 4.

In the Gym domains (Appendix A.3), with en-
semble size N = 4, Shared-LCB significantly
underperforms MSG. In fact, not using ensem-
bles at all (N = 1) outperforms Shared-LCB.
With ensemble size N = 4, Shared-Min is
on par with MSG. When the ensemble size is
increased to N = 64 (Figure 7), we observe
the performance of Shared-Min drops signif-
icantly on 7/12 D4RL Gym settings. In con-
strast, the performance of MSG is stable and
does not change.

In the challenging antmaze domains (Appendix
B.3), for both ensemble sizes N = 4 and N = 64, Shared-LCB and Shared-Min targets completely
fail to solve the tasks, while for both ensemble sizes MSG exceeds the prior state-of-the-art (Table 1),
IQL [48].

8

antmaze-medium-play-v0 antmaze-medium-diverse-v0 antmaze-large-play-v0 antmaze-large-diverse-v00

20

40

60

80

100

CQL
F-BRC

IQL
No Ens. (N=1)

MSG Deep Ens. (N=64)
MSG Deep Ens. (N=4)

MSG Multi-Head Ens. (N=64)
MSG Multi-Head Ens. (N=4)

MSG MIMO Ens. (N=64)
MSG MIMO Ens. (N=4)

MSG Batch Ens. (N=64)
MSG Batch Ens. (N=4)

Shared-LCB Deep Ens. (N=64)
Shared-LCB Deep Ens. (N=4)

Shared-Min Deep Ens. (N=64)
Shared-Min Deep Ens. (N=4)

Figure 3: Summary of D4RL antmaze benchmark results (full results presented in Appendix B). For each
method, we report the mean across random seeds for the best hyperparameter. Numerical results for all
experiments are available in the supplementary material.

Independence in Ensembles Conclusion Our experiments corroborate the theoretical results in
Section 3, demonstrating that Independent targets are critical to the success of MSG. These results
are particularly striking when one considers that the implementations for MSG, Shared-LCB, and
Shared-Min differ by only 2 lines of code.

Ensemble Size Ablation An important ablation is to understand the role of ensemble size in MSG.

In the Gym domains, Figure 5 demonstrates that increasing the number of ensembles from 4 to 64
does not result in a noticeable change in performance.

In the antmaze domains, we evaluate MSG under ensemble sizes {1, 4, 16, 64}. Figure 2 presents our
results. Our key takeaways are as follows:

• For the harder antmaze-large tasks, there is a clear upward trend as ensemble size increases.

• Using a small ensemble size (e.g. N = 4) is already quite good, but more sensitive to hyperparam-
eter choice especially on the harder tasks.

• Very small ensemble sizes benefit more from using α > 0 3. However, across the board, using
α = 0 is preferable to using too large of a value for α – with the exception of N = 1 which cannot
take advantange of the benefits of ensembling.

• When using lower values of β, lower values of α should be used.

Ensemble Size Conclusion In domains such as D4RL Gym where offline datasets are qualitatively
similar to imitation learning datasets, larger ensembles do not result in noticeable gains. In domains
such as D4RL antmaze which contain more data diversity, larger ensembles significantly improve the
performance of agents.

5.3 Efficient Ensembles

Thus far we have demonstrated the significant performance gains attainable through MSG. An
important concern however, is that of parameter and computational efficiency: Deep ensembles of
Q-networks result in an N -fold increase in memory and compute usage, both in the policy evaluation
and policy optimization phases of actor-critic training. While this might not be a significant problem
in offline RL benchmark domains due to small model footprints4, it becomes a major bottleneck
with larger architectures such as those used in language and vision domains. To this end, we
evaluate whether recent advances in “Efficient Ensemble" approaches from the supervised learning
literature transfer well to the problem of offline RL. Specifically, the efficient ensemble approaches we
consider are: Multi-Head Ensembles [26, 50, 51], MIMO Ensembles [27], and Batch Ensembles [28].
For a description of these efficient ensembling approaches please refer to Appendix E. A runtime
comparison of different ensembling approaches can be viewed in Table 2.

D4RL Gym Domains Appendix A.4 presents our results in the D4RL Gym domains with ensemble
size N = 4 (summary in Figure 4). Amongst the considered efficient ensemble approaches, Batch
Ensembles [28] result in the best performance, which follows findings from the supervised learning
literature [17].

3As a reminder, α is the weight of the CQL-style regularizer loss discussed in Section 4.2.
4All our experiments were ran on a single Nvidia P100 GPU.

9

D4RL Antmaze Domains Appendix B.4 presents our results in the D4RL antmaze domains for
both ensemble sizes of N = 4 and N = 64 (summary in Figure 3). As can be seen, compared to
MSG with deep ensembles (separate networks), the efficient ensemble approaches we consider are
very unreliable, and fail for most hyperparameter choices.

Efficient Ensembles Conclusion We believe the observations in this section very clearly motivate
future work in developing efficient uncertainty estimation approaches that are better suited to the
domain of reinforcement learning. To facilitate this direction of research, in our codebase we have
included a complete boilerplate example of an offline RL agent, amenable to drop-in implementation
of novel uncertainty-estimation techniques.

6 Discussion & Future Work

Our work has highlighted the significant power of ensembling as a mechanism for uncertainty
estimation for offline RL. In this work we took a renewed look into Q-ensembles, and studied how to
leverage them as the primary source of pessimism for offline RL. Through theoretical analyses and
toy constructions, we demonstrated a critical flaw in the popular approach of using shared targets
for obtaining pessimistic Q-values, and demonstrated that it can in fact lead to optimistic estimates.
Using a simple fix, we developed a practical deep offline RL algorithm, MSG, which resulted in large
performance gains on established offline RL benchmarks.

As demonstrated by our experimental results, an important outstanding direction is to study how
we can design improved efficient ensemble approximations, as we have demonstrated that current
approaches used in supervised learning are not nearly as effective as MSG with ensembles that
use separate networks. We hope that this work engenders new efforts from the community of
neural network uncertainty estimation researchers towards developing efficient uncertainty estimation
techniques directed at reinforcement learning.

Acknowledgments and Disclosure of Funding

We would like to thank Yasaman Bahri for insightful discussions regarding infinite-width neural
networks. We would like to thank Laura Graesser for providing a detailed review of our work. We
would like to thank conference reviewers for posing important questions that helped clarify the
organization of this manuscript.

References
[1] Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In

Reinforcement learning, pages 45–73. Springer, 2012.

[2] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning:
Tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

[3] Aviral Kumar, Justin Fu, George Tucker, and Sergey Levine. Stabilizing off-policy q-learning
via bootstrapping error reduction. arXiv preprint arXiv:1906.00949, 2019.

[4] Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
arXiv preprint arXiv:2106.06860, 2021.

[5] Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

[6] Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online
reinforcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

[7] Ziyu Wang, Alexander Novikov, Konrad Zolna, Jost Tobias Springenberg, Scott Reed, Bobak
Shahriari, Noah Siegel, Josh Merel, Caglar Gulcehre, Nicolas Heess, et al. Critic regularized
regression. arXiv preprint arXiv:2006.15134, 2020.

10

[8] Seyed Kamyar Seyed Ghasemipour, Dale Schuurmans, and Shixiang Shane Gu. Emaq:
Expected-max q-learning operator for simple yet effective offline and online rl. In International
Conference on Machine Learning, pages 3682–3691. PMLR, 2021.

[9] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning
without exploration. In International Conference on Machine Learning, pages 2052–2062.
PMLR, 2019.

[10] Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement
learning. arXiv preprint arXiv:1911.11361, 2019.

[11] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for
offline reinforcement learning. arXiv preprint arXiv:2006.04779, 2020.

[12] Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum. Offline reinforcement
learning with fisher divergence critic regularization. In International Conference on Machine
Learning, pages 5774–5783. PMLR, 2021.

[13] Hado Van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel, Nicolas Sonnerat, and Joseph
Modayil. Deep reinforcement learning and the deadly triad. arXiv preprint arXiv:1812.02648,
2018.

[14] Jacob Buckman, Carles Gelada, and Marc G Bellemare. The importance of pessimism in
fixed-dataset policy optimization. arXiv preprint arXiv:2009.06799, 2020.

[15] Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline rl? In
International Conference on Machine Learning, pages 5084–5096. PMLR, 2021.

[16] Tengyang Xie, Ching-An Cheng, Nan Jiang, Paul Mineiro, and Alekh Agarwal. Bellman-
consistent pessimism for offline reinforcement learning. arXiv preprint arXiv:2106.06926,
2021.

[17] Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin,
Joshua V Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncer-
tainty? evaluating predictive uncertainty under dataset shift. arXiv preprint arXiv:1906.02530,
2019.

[18] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In International Conference on Machine Learning, pages 1587–1596.
PMLR, 2018.

[19] Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective
on offline reinforcement learning. In International Conference on Machine Learning, pages
104–114. PMLR, 2020.

[20] Jordi Smit, Canmanie T Ponnambalam, Matthijs TJ Spaan, and Frans A Oliehoek. Pebl:
Pessimistic ensembles for offline deep reinforcement learning. In Robust and Reliable Autonomy
in the Wild Workshop at the 30th International Joint Conference of Artificial Intelligence, 2021.

[21] Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline
reinforcement learning with diversified q-ensemble. Advances in Neural Information Processing
Systems, 34, 2021.

[22] Kimin Lee, Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Sunrise: A simple unified
framework for ensemble learning in deep reinforcement learning. In International Conference
on Machine Learning, pages 6131–6141. PMLR, 2021.

[23] Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin. Offline-to-online
reinforcement learning via balanced replay and pessimistic q-ensemble. In Conference on Robot
Learning, pages 1702–1712. PMLR, 2022.

[24] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for
deep data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

11

[25] Caglar Gulcehre, Ziyu Wang, Alexander Novikov, Thomas Paine, Sergio Gómez, Konrad Zolna,
Rishabh Agarwal, Josh S Merel, Daniel J Mankowitz, Cosmin Paduraru, et al. Rl unplugged: A
collection of benchmarks for offline reinforcement learning. Advances in Neural Information
Processing Systems, 33, 2020.

[26] Stefan Lee, Senthil Purushwalkam, Michael Cogswell, David Crandall, and Dhruv Batra. Why
m heads are better than one: Training a diverse ensemble of deep networks. arXiv preprint
arXiv:1511.06314, 2015.

[27] Marton Havasi, Rodolphe Jenatton, Stanislav Fort, Jeremiah Zhe Liu, Jasper Snoek, Balaji
Lakshminarayanan, Andrew M Dai, and Dustin Tran. Training independent subnetworks for
robust prediction. arXiv preprint arXiv:2010.06610, 2020.

[28] Yeming Wen, Dustin Tran, and Jimmy Ba. Batchensemble: an alternative approach to efficient
ensemble and lifelong learning. arXiv preprint arXiv:2002.06715, 2020.

[29] Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

[30] P. Thomas, G. Theocharous, and M. Ghavamzadeh. High confidence off-policy evaluation. In
Proceedings of the 29th Conference on Artificial Intelligence, 2015.

[31] Yihao Feng, Tongzheng Ren, Ziyang Tang, and Qiang Liu. Accountable off-policy evaluation
with kernel bellman statistics. In International Conference on Machine Learning, pages 3102–
3111. PMLR, 2020.

[32] Bo Dai, Ofir Nachum, Yinlam Chow, Lihong Li, Csaba Szepesvári, and Dale Schuurmans.
Coindice: Off-policy confidence interval estimation. arXiv preprint arXiv:2010.11652, 2020.

[33] Alexander L Strehl, Lihong Li, and Michael L Littman. Reinforcement learning in finite mdps:
Pac analysis. Journal of Machine Learning Research, 10(11), 2009.

[34] Ilja Kuzborskij, Claire Vernade, Andras Gyorgy, and Csaba Szepesvári. Confident off-policy
evaluation and selection through self-normalized importance weighting. In International
Conference on Artificial Intelligence and Statistics, pages 640–648. PMLR, 2021.

[35] Georg Ostrovski, Marc G Bellemare, Aäron Oord, and Rémi Munos. Count-based exploration
with neural density models. In International conference on machine learning, pages 2721–2730.
PMLR, 2017.

[36] Mohammad Ghavamzadeh, Shie Mannor, Joelle Pineau, and Aviv Tamar. Bayesian reinforce-
ment learning: A survey. arXiv preprint arXiv:1609.04436, 2016.

[37] Mengjiao Yang, Bo Dai, Ofir Nachum, George Tucker, and Dale Schuurmans. Offline policy
selection under uncertainty. arXiv preprint arXiv:2012.06919, 2020.

[38] Ian Osband, Benjamin Van Roy, Daniel J Russo, Zheng Wen, et al. Deep exploration via
randomized value functions. J. Mach. Learn. Res., 20(124):1–62, 2019.

[39] Ilya Kostrikov and Ofir Nachum. Statistical bootstrapping for uncertainty estimation in off-
policy evaluation. arXiv preprint arXiv:2007.13609, 2020.

[40] Ping Li, Jinde Cao, and Zidong Wang. Robust impulsive synchronization of coupled delayed
neural networks with uncertainties. Physica A: Statistical Mechanics and its Applications,
373:261–272, 2007.

[41] Radford M Neal. Bayesian learning for neural networks, volume 118. Springer Science &
Business Media, 2012.

[42] Nick Pawlowski, Andrew Brock, Matthew CH Lee, Martin Rajchl, and Ben Glocker. Implicit
weight uncertainty in neural networks. arXiv preprint arXiv:1711.01297, 2017.

[43] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable
predictive uncertainty estimation using deep ensembles. arXiv preprint arXiv:1612.01474,
2016.

12

[44] Shilin Zhu, Xin Dong, and Hao Su. Binary ensemble neural network: More bits per network or
more networks per bit? In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4923–4932, 2019.

[45] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. arXiv preprint arXiv:1806.07572, 2018.

[46] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[47] Julian Schrittwieser, Thomas Hubert, Amol Mandhane, Mohammadamin Barekatain, Ioannis
Antonoglou, and David Silver. Online and offline reinforcement learning by planning with a
learned model. arXiv preprint arXiv:2104.06294, 2021.

[48] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. arXiv preprint arXiv:2110.06169, 2021.

[49] Anurag Ajay, Aviral Kumar, Pulkit Agrawal, Sergey Levine, and Ofir Nachum. Opal: Of-
fline primitive discovery for accelerating offline reinforcement learning. arXiv preprint
arXiv:2010.13611, 2020.

[50] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. Advances in neural information processing systems, 29:4026–4034, 2016.

[51] Linh Tran, Bastiaan S Veeling, Kevin Roth, Jakub Swiatkowski, Joshua V Dillon, Jasper Snoek,
Stephan Mandt, Tim Salimans, Sebastian Nowozin, and Rodolphe Jenatton. Hydra: Preserving
ensemble diversity for model distillation. arXiv preprint arXiv:2001.04694, 2020.

[52] Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. Advances in neural information processing systems, 32:8572–8583,
2019.

[53] Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee, Alexander A Alemi, Jascha Sohl-Dickstein,
and Samuel S Schoenholz. Neural tangents: Fast and easy infinite neural networks in python.
arXiv preprint arXiv:1912.02803, 2019.

[54] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[55] Raphael Fonteneau, Susan A Murphy, Louis Wehenkel, and Damien Ernst. Batch mode
reinforcement learning based on the synthesis of artificial trajectories. Annals of operations
research, 208(1):383–416, 2013.

[56] Greg Yang and Edward J Hu. Feature learning in infinite-width neural networks. arXiv preprint
arXiv:2011.14522, 2020.

[57] Lantao Yu, Tianhe Yu, Chelsea Finn, and Stefano Ermon. Meta-inverse reinforcement learning
with probabilistic context variables. arXiv preprint arXiv:1909.09314, 2019.

[58] Seyed Kamyar Seyed Ghasemipour, Shixiang Shane Gu, and Richard Zemel. Smile: Scalable
meta inverse reinforcement learning through context-conditional policies. Advances in Neural
Information Processing Systems, 32, 2019.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the pa-
per’s contributions and scope? [Yes] The abstract and introduction summarize the
organization and contents of the paper.

13

(b) Did you describe the limitations of your work? [Yes] The most important limitation
of using ensembles is their N -fold increase in computational cost. Section 5.3 frames
this problem and investigates a variety of approaches used in the supervised learning
literature. We demonstrate that while “Efficient Ensembles" perform well on the
simpler D4RL Gym domains, they fail on the D4RL antmaze domains. We believe this
section very clearly motivates future work in developing efficient uncertainty estimation
approaches that are better suited to the domain of reinforcement learning.

(c) Did you discuss any potential negative societal impacts of your work? [N/A] Our work
is focused on algorithmic advances in the field of offline reinforcement learning (RL).
The potential positive and negative impacts of offline RL methods are directly function
of the domain to which they are applied. In this work, we only apply our methods to
open-sourced, simulated benchmark domains which do not have societal implications.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] Section 3.1
sets up the stage for the introduction of Theorem 3.1.

(b) Did you include complete proofs of all theoretical results? [Yes] Please refer to
Appendix F.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] Please refer to
the supplementary material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] The offline datasets are provided by the benchmarks we used. We
have detailed all experimental details, with pointers to details in the respective sections.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] In Table 1 we report mean and standard deviation across
random seeds. For the summarized bar plots in Figures 3 and 4 we only plot the mean.
This is because for each bar in this summary plot, we report the results for the best
hyperparameter value (which for many settings, due to significant computational cost,
had 2 random seeds). However, in this work we have shown in exact detail the dense
hyperparameter searches we have done, and furthermore, in we have reported the result
for every single experiment individually (i.e. every combination of data setting, method,
hyperparameter, and random seed) (Figure 2, Appendix A, Appendix B). Reporting
results for each individual experiment demonstrate the trends, even in the settings
where each hyperparameter was ran with 2 seed. We have also included all of our
numerical results as .pkl files in our codebase.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No] We mentioned that all experiments
were done on Nvidia P100 GPU devices. We did not include the total amount of
compute we used.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] We cite the D4RL [24]
and RL Unplugged [25] benchmarks.

(b) Did you mention the license of the assets? [No]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We include out codebase, python notebooks, as well as .pkl files of experimental
results.

(d) Did you discuss whether and how consent was obtained from people whose data
you’re using/curating? [No] D4RL [24] and RL Unplugged [25] are established and
open-sourced offline RL datasets.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] The D4RL [24] and RL Unplugged [25] do
not contain such sensitive materials.

14

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

15

