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Figure 1: Recoloring of region-based abstraction. The original image is on the left; on the right, we show results from our method using three

different palettes.

ABSTRACT

We propose a method to assign vivid colors to regions of an
oversegmented image. We restrict the output colors to those found
in an input palette, and seek to preserve the recognizability of
structure in the image. Our strategy is to match the color distances
between the colors of adjacent regions with the color differences
between the assigned palette colors; thus, assigned colors may be
very far from the original colors, but both large local differences
(edges) and small ones (uniform areas) are maintained. We use
the widest path algorithm on a graph-based structure to obtain a
spanning tree over the set of regions, then traverse the tree to assign
colors in a greedy fashion. Our method produces vivid recolorings
of region-based abstraction using arbitrary palettes. We demonstrate
a set of stylizations that can be generated by our algorithm.

Keywords: Non-photorealistic rendering, Image stylization, Recol-
oring, Abstraction.

Index Terms: 1.3.3 [Picture/Image Generation]—; 1.4.6 [Segmen-
tation]

1 INTRODUCTION

Color plays an important role in image aesthetics. In representational
art, artists employ colors that match the perceived colors of objects in
the depicted scene. Conversely, abstraction provides the freedom to
use arbitrary colors. Figure 2 shows a modern vector illustration of a
lion, an example of Fauvism by André Derain, and an abstraction of
the Eiffel Tower by Robert Delaunay. The artists have expressed the
image content with vivid colors disconnected from the object colors.
We aim to generate colorful images, recoloring an image using an
arbitrary input palette. Our proposed method uses a subdivision of
the image into distinct segments, assigning each segment a palette
color in such a way as to preserve visibility of key structures.

Our goal is to present different recoloring possibilities by assign-
ing colors to each region of an oversegmented input image. We aim
to maintain the image contrast and preserve strong edges so that the
content of the scene remains recognizable. It is important to convey
textures and small features, often too delicate to be preserved by
existing abstraction methods. We would like to be able to create
wild and vivid abstractions through use of unusual palettes.
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Figure 2: Colorful representational images. A modern vector illustration of a
lion; a Fauvist painting by André Derain; an abstraction of the Eiffel Tower
by Robert Delaunay.

Manual recoloring of oversegmented images would be tedious.
The images contain hundreds or thousands of segments; clicking
on every segment would take a long time, even leaving aside the
cognitive and interaction overhead of making selections from the
palette. We provide an automatic assignment of colors to regions.
The assignment can be used as is, could be used in a fast manual
assessment loop (for example, if an artist wanted to choose a suitable
palette for coloring a scene), or could be a good starting point for a
semi-automatic approach where a user made minor modifications to
the automated results.

This paper presents an automatic recoloring approach for a region-
based abstraction. The input is a desired palette and an overseg-
mented image. The method assigns a color from the palette to each
region; it is based on the widest path algorithm [18], which organizes
the regions into a tree based on the weight of the edges connecting
them. We use color differences between adjacent regions both to
order the regions and to select colors, trying to match the difference
magnitude between the assigned palette colors and the original re-
gion colors. The use of color differences allows structures in the
image to remain recognizable despite breaking the link between the
original and depicted color.

Our main contributions are the following:

* We designed a recoloring method for an oversegmented image,
creating multiple abstractions colored with just one palette.
Our method creates wild and high contrast images.

¢ Various styles can be created by our method. We experiment
with color blending between regions and produce smooth im-
ages. In addition, we generate new colorings from a palette by
applying different metrics and color spaces.

The remainder of the paper is organized as follows. In Section 2,
we briefly present related work. We describe our algorithm in Sec-



tion 3. Section 4 shows results and provides some evaluation, and
Section 5 gives some possible variations of the method. Finally, we
conclude in Section 6 and suggest directions for future work.

2 PREVIOUS WORK

Although there is an existing body of work on recoloring pho-
tographs [5, 8, 10, 12, 16, 20, 23, 27, 30] and researchers have in-
vestigated recoloring in the context of non-photorealistic render-
ing [2,7,19,24,26,31, 32], there is room for further exploration.
Existing recoloring methods little address region-based abstractions.
The closest approach to ours, by Xu and Kaplan [29], used opti-
mization to assign black or white to each region of an input image.
Below, we review some of the previous research on recoloring meth-
ods in NPR and color palette selection. These approaches can be
broadly classified into example-based recoloring and palette-based
recoloring.

Example based Recoloring (Color Transfer)

Recoloring methods were first proposed by Reinhard et al. [20],
where the colors of one image were transferred to another. They
converted input RGB signals to Ruderman et al.’s [21] perception-
based color space La S, then shifted and scaled the Lo space using
simple statistics.

Neumann and Neumann [16] extracted palette colors from an
arbitrary target image and applied 3D histogram matching. They
attempt to keep the original hues after style transformation: all
colors with the same starting hue should have the same hue after
transformation. However, the histogram lacks spatial information
and hence is not sufficient for accurate style cloning. They suggest
using image segmentation and smoothing the color histogram to
improve the result.

Levin et al. [10] introduced an interactive colorization method
for greyscale images. They used a quadratic cost function derived
from the color differences between a pixel and its neighborhood.
User scribbles indicate the desired color in the interior of the re-
gion and the colors propagate to the remaining pixels. Inspired by
Levin et al. [10], Yatziv and Sapiro [30] presented a method based
on luminance-weighted chrominance blending and fast geodesic
distance computations. Sykora et al. [26] developed LazyBrush for
coloring cartoons, integrating textures into images to create 3D-like
effects [25]. Casaca et al. [4] used Laplacian coordinates for im-
age division and used a color theme for fast colorization. Fang et
al. [7] proposed an interactive optimization method for colorizing
hand-drawn grayscale images.

Color compositing has been investigated by NPR researchers.
Compositing can be done using alpha blending [14] or the Kubelka-
Munk [9] equation (KM), useful in painterly rendering to predict
the reflectance of layers of pigment. The data-driven color com-
positing framework by Lu et al. [12] derived three models based on
optimized alpha blending, RBF interpolation, and KM optimization
to improve the prediction of compositing colors. Aharoni et al. used
a KM-based model for recoloring of styles such as watercolor paint-
ing [2], where overlapping stroke layers can produce natural-looking
painting effects.

Palette-based Recoloring

Early methods to extract color palettes used Gaussian mixture mod-
els or K-means to cluster the image pixels. Chang et al. [5] intro-
duced a photo-recoloring method by user-modified palettes, using
k-means clustering on image colors to obtain palettes. Tan et al. [27]
proposed a technique to decompose an image into layers to extract
the palette colors. Each layer of decomposition represents a coat
of paint of a single color applied with varying opacity throughout
the image. To determine a color palette capable of reproducing the
image, they analyzed the image in RGB-space geometrically in a
simplified convex hull.

Playful Palette [24] is a system for users to create rich palletes,
representing a palette as a set of blobs of color that blend together
to create gradients. Users manipulate the blobs to obtain the de-
sired range of colors. DiVerdi et al. [6] proposed an approximation
of image colors based on the Playful Palette. In this technique,
within an optimization framework, an objective function minimizes
the distance between the original image and that recolored one by
palette colors, based on the self organizing map. The approximation
algorithm is an order of magnitude faster than Playful Palette.

Specifically assigning colors to regions has been investigated by
previous researchers. Qu et al. [19] proposed a colorization tech-
nique for black and white manga using the Gabor wavelet filter; a
user scribbles on the drawing to connect the regions, and the algo-
rithm then assigns colors to different hatching patterns, halftoning,
and screening. Xu and Kaplan introduced artistic thresholding [29]
where an image is segmented, and each segment assigned either
black or white color through an optimization process. Lin et al. [11]
proposed a palette-based recoloring method with a probabilistic
model. They learn and predict the distribution of properties such as
saturation, lightness, and contrast for individual regions and neigh-
boring regions, then score pattern colorings using the predicted
distributions and color compatibility model of O’Donovan et al. [17].
Bohra and Gandhi [3] proposed an exemplar-based colorization
algorithm for grayscale graphic art from a reference image based
on color graph and composition matching. They retrieve palettes
using the spatial features of the input image. They aim to preserve
the artist’s intent in the composition of different colors and spatial
adjacency between colors in the image.

3 RECOLORING ALGORITHM

Our recoloring algorithm automatically assigns colors to regions of
an oversegmented image. The system takes as input a set of regions
and a color palette and assigns a color from the palette to each
region. The recolored image should convey recognizable objects
in the image. Edges are essential to the visibility of the structures.
Neighboring regions will be assigned distinct colors to express an
edge, and regions of similar colors will be assigned similar colors.
The human visual system is sensitive to brightness contrast; to help
preserve contrast in our recoloring, we take into account the regions’
relative luminances when selecting region colors.

We concentrate on color differences between adjacent regions,
seeking to match the original color distances without preserving the
colors themselves. Neighbouring regions with large differences will
be assigned distant colors, preserving the boundary, while similar-
colored regions will be assigned similar output colors or even the
same color.

We use a graph structure to organize the segmented image, where
each region is a node and edges link adjacent regions. To simplify
color assignment, we will construct a tree over the graph, with a sub-
sequent tree traversal assigning colors to nodes based on the color of
the parent node. Assigning colors along tree paths, rather than using
the full graph, increases opportunities for unusual color transitions
across unimportant region boundaries, allowing irregular recolorings
as in the inspirational artwork of Figure 2. We assign weights to the
edges reflecting their priority, with large regions, regions of very sim-
ilar color, and regions of very different color receiving high priority.
Both small regions and regions with intermediate color differences
receive lower priority. Once weights have been assigned, we find
the tree within the graph that maximizes the weight of the minimum-
weight edges, a construction that corresponds to the widest path
problem.

Our algorithm has two main steps. First, we create a tree by
applying the widest path algorithm [18] on the region graph. Then
we assign colors to regions by traversing the tree beginning from
its root. For each region in the graph, we choose the color from
the palette that best matches the color difference with its parent.



Before starting, we apply histogram matching between the regions’
color differences and the palette color differences. The histogram
matching allows us to best convey the image content while using
the full extent of an arbitrary input palette, even one that has a color
distribution very different from that of the input image.

We show a flowchart of our recoloring approach in Figure 3. The
input is (a) an oversegmented image and (b) a palette to use in the
recoloring. We compute (c) the adjacency graph of the segments and
aggregate the differences between adjacent colors into the set {AQ}.
The widest path algorithm (d) gives us a tree linking all nodes of the
adjacency graph. We next compute (e) the set of differences between
palette colors, yielding {AP}. We match the histogram (f) of {AQ}
to that of {AP} and (g) assign colors to all regions by traversing the
widest-path tree, resulting in (h) the fully recolored image.

3.1 Tree Creation

Before we explain the recoloring proper, we will describe tree cre-
ation. We will employ the widest path algorithm to create a tree
over the input oversegmentation. Later, we will traverse the tree and
assign a color to each region, matching the edge’s target color dif-
ference with the color difference with its parent’s color. In practice,
it is possible to combine the tree creation and traversal, since the
widest-path algorithm involves a best-first traversal of the tree as it is
being built. Prior to color assignment, we apply histogram matching
to align the regions’ color differences with the palette’s for better
use of palette colors.

Pollack [18] introduced the widest path problem. Consider a
weighted graph consisting of nodes and edges G = (V,E), where
an edge (u,v) € E connects node u to v. Let w(u,v) be the weight,
called capacity, of edge (u,v) € E; capacity represents the maxi-
mum flow that can pass from u to v through that edge. The minimum
weight among traversed edges defines the capacity of a path. For-
mally, the capacity C(u,v) of a path between nodes u and v is given
by

Clu,v) = min(w(u, @), w(a,b), .. w(d,v)), )

where w(u,a),w(a,b),..,w(d,v) are the edge weights along the path.
The widest path between u and v is the path with the maximum
capacity among all possible paths.

In a single-source widest path problem, we calculate for each
node ¢ € V a value B(t), the maximum path capacity among all the
paths from source s to ¢. The value B(t) is the width of the node. The
union of widest paths from the source to each node is a tree, which
we use to order the color assignment process. We can choose any
node as the source; our implementation uses the region containing
the image centre.

The widest path algorithm can be implemented as a variant of
Dijkstra’s algorithm, building a tree outward from the source node s
to every node in the graph. All nodes of the graph ¢ € V are given an
initial width value; the source node s will be assigned B(s) = +oo
and all other nodes v # s will have B(v) = —co. A priority queue
holds the nodes; at each step of the algorithm, we take the node with
the highest current width from the queue and process it, stopping
when the queue is empty. Suppose the node u is on top of the queue
with a width B(u). For every outgoing edge (u,v), we update the
value of the neighbour node v as follows:

B(v) < max{B(v),min{B(u),w(u,v)}} 2)

where w(u,v) is the edge weight between nodes « and v. If the value
B(v) was changed, node u will be set as its parent node and v will
be added to the queue. When the algorithm terminates, all non-root
nodes in the graph will have been assigned a parent, thus providing
a tree rooted at s.

In our application, one possibility for edge weight is to use the
difference in color values between the two regions. This would
ensure that the widest path tree linked dissimilar regions, resulting

in good edge preservation. However, regions of similar color could
easily be divided. We want to preserve small color distances as well,
so we need to assign a large edge weight to small color differences.
Distances intermediate between large and small are of the least
importance. Hence, we base our edge weight on the difference from
the median color distance, as follows.

We calculate the color distances across each edge in the adjacency
graph; call the set of color distances {AQ}, with

{AQ} ={Dc(ciscj)} = {Aqij}, i#j, riuri€R  (3)

where c¢; and c; are the colors of regions r; and r;, and D, is the
function computing the color distance. Compute the median value
Ag from the distances in {AQ}.

We also want to take into account the size of the region, such
that larger regions have greater importance; we prefer that a larger
region have higher priority and thus influence the smaller regions
that are processed afterwards, compared to the converse. Depending
on the oversegmentation, action may not be necessary; the process
is intended to improve results on oversegmentations with a dramatic
variation in region size.

We compute for each region a factor b, the ratio of the region’s
size (in pixels) to the average region size. Then, when we traverse
an edge, we use the b of the destination region to determine the
weight. In our implementation, we compute and store a single edge
weight; there is no ambiguity about the factor b because we only
ever traverse a given edge in one direction, moving outward from
the source node.

To summarize: when traversing an edge, the edge weight is the
distance between its target color difference and the median color
difference, multiplied by a factor of (1 5) for the destination region:

w(ri,rj) = (14b)|Dc(ci cj) — Agl. 4)

The factor (1 + b) takes size into account, but ensures the region’s
color differences can still affect the traversal order even for very
small regions (b near zero). Note that the function D, depends on
the colorspace used. A simple possibility is Euclidean distance in
RGB, but more perceptually based color distances are possible. We
discuss color distance metrics in section 5.2.

3.2 Histogram Matching

We plan to match color differences in the output to the color differ-
ences in the input. However, the input palette can have an arbitrary
set of colors, and we want to make use of the full palette, which
might not happen with direct matching. For example, imagine a
low-contrast image recolored with a palette of more varied colors.
The smallest palette difference might be quite large; if so, the muted
areas of the original will be matched with difference zero, result-
ing in loss of detail in such regions. A narrow palette applied to
a high-contrast image will have similar problems in the opposite
direction.

To adapt the palette usage to the input image color distribution,
we apply histogram matching to color differences. We emphasize
that we are not matching the colors themselves, but the distributions
of differences. Histogram matching is applied between the region
color differences (the distribution of values in {AQ}, computed in
Section 3.1) and the pairwise color differences of the palette (call
this dataset {AP}).

The histogram matching gives a new target color difference for
each graph edge; call this target Aq’(u, v) for the edge linking regions
u and v. The matching ensures that the distribution of values {Aq'}
is the same as the distribution of values in {AP}. The values Aq’ are
then used for color assignment, selecting color pairs from the palette
which correspond to the same place in the distribution: medium
palette differences where medium image color differences existed,
small differences where the original image color differences were
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Figure 3: Recoloring algorithm pipeline.

small, with the largest palette differences reserved for the largest
differences in the original image. The idea is illustrated in Figure 4,
which shows an example of cumulative distribution functions for
the original region color differences, the palette color differences,
and the region color differences after matching. In this case, the
image had smaller differences than the palette, so the target region
differences are heightened.
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Figure 4: Histogram matching color distances: cdfs of the original image
(AQ), the palette (AP), and the target color differences (Aq').

Figure 5 shows the input image with average region colors and
the recolored images before and after histogram matching. The
bar graphs under each image show the proportion of each color
in the image. We can see that the histogram matching used the
palette colors more evenly, increasing contrast and highlighting more
details. For example, strong edges on the leaf boundary became
distinguishable from the nearby regions, and the markings on the
lizard became more prominent.

3.3 Color Assignment

The widest path algorithm provided a tree, and the histogram match-
ing provided palette-customized target distances for the edges. We
now traverse the tree and assign a color to each region along the
way. We begin by assigning the closet palette color to the tree’s root
node; recall that the root was the most central region in the image.
At each subsequent step, we assign a color from the palette P to the
current region & based on the palette color pg already assigned to
the parent region 3 and the target color difference Ag’ (¢, B). We
also consider the luminance difference between regions o and 3 so
as to help maintain larger-scale intensity gradients. Recall our in-
tention in preserving color differences: two regions with large color
differences should be assigned two very different colors, and regions
with a small color difference should get very similar colors, possibly

Figure 5: Histogram matching result. Left to right: original image, result
without histogram matching, and result using histogram matching.

the same color. Owing to histogram matching, “large” and “small”
are calibrated to the content of the particular image and palette being
combined.

Figure 6: Changing the source region locations. The starting region is
indicated by a dot.

We impose a luminance constraint on potential palette colors, in
an effort to respect the relative ordering of the regions’ luminances.
Suppose the luminances of two regions o and 8 are Ly and Lg,
where Ly < Lg. We then constrain the set of eligible palette colors
for region o such that only colors pg that satisfy Lp, < L, are
considered. A similar constraint is imposed if Ly > Lg.

For region « and its parent 3, we have the target edge difference
Aq/(a,B). Denote by pg the palette color already assigned to the
parent region 3. We choose the palette color py for region a so as
to minimize the distance D:

D =|Aq (&, B) — De(pa, pp)| ®)



Figure 7: Region recoloring results. Top row: visualization of palettes used. Images, top to bottom: starfish, Venice, lizard, lanterns, and rust.



where D, is the distance metric between two colors.

For colors with the lowest and highest luminance in the palette,
there may be no available colors satisfying the luminance constraint.
In such cases, the constraint is ignored and all palette colors are
considered.

Since the source region has no parent, the above process can not
be used to find its color. Instead, we assign the closest color from
the palette, as determined by the difference metric D.. The source
region itself is the region containing the centre of the image; while
the output is weakly dependent on the choice of starting region, we
do not view the starting region as a critical decision. Figure 6 shows
some examples of varied outcomes from moving the starting region.

4 RESULTS AND DISCUSSION

Figure 7 shows a variety of recolored images generated by our algo-
rithm using various palettes. We succeeded in maintaining strong
edges, and objects in the recolored abstractions remain recognizable.
Our algorithm retains textures and produces vivid recolored images
by selecting varied colors from the palette. It assigns the same colors
over flat regions and distinct colors to illustrate structures. We ran
our algorithm on a variety of images with different textures and con-
trasts. We obtained most of our palettes from the website COLRD
(http://colrd.com/); others we created manually by sampling from
colorful images.

In Figure 7, we present a set of examples from our recoloring
algorithm, which were generated with four different palettes. We
chose images presenting different features. The delicate features and
textures in the abstractions stay visible after recoloring despite the
input photographs having been radically altered by the recoloring.

In the starfish image, the structure and the patterns on the arms
become more prominent. The uniform colors of the background
become a vivid splash of colors, emphasizing the textureness of the
terrain. The algorithm has chosen the darkest colors to assign to the
shadows and the lightest ones to the surface of the creature.

The Venice canal is a crowded image composed of soft textures
and structures with hard edges. The algorithm is able to preserve rec-
ognizable objects such as the boats and windows. Even tiny letters
on the wall and pedestrians on the canal’s side are visible. The recol-
oring process preserved the buildings’ rigid structures; meanwhile,
it captured shadows and the water’s soft movements. In presenting
such features, adopting a highly irregular oversegmentation was
necessary.

The lizard image is an example of a low-contrast image with
textured areas covered by dull colors. The algorithm highlighted the
textures by assigning wild colors to the homogeneous regions on
the leaf. At the same time, substantial edges like the lizard’s body
patterns and the leaf edges are preserved naturally by our algorithm.

The next example shows a high-contrast input. The algorithm
assigned the darkest colors from each palette to the coat of the
man and separated it from the background using a very light color.
Further, the small features on the face and the Chinese characters
are mostly readable.

The rust image shows different textures on the wall and the grass,
plus soft textureless areas on the machinery. The brick patterns on
the wall, exaggerated in the color assignment, made the final images
more interesting than the original flat image. The high-frequency
details of the grass are retained. The smooth transition of colors on
the top right of the image portrays the shadows.

We demonstrated strong edge preservation in all examples. Addi-
tionally, the image textures were preserved, and palette colors are
uniformly used to maintain a good contrast.

4.1 Comparison with Naive Methods

Figure 8 gives a comparison between our method and two naive al-
ternatives: closest color and random color. For “closest color”, each
segment is colored with the palette color closest to the segment’s

average color. For “random color”, each segment is randomly and
independently assigned a color from the palette. Using the closest
color preserves some image content, but the result shows large re-
gions of constant color; many of the palette colors are underused, an
issue that can worsen when there is a significant mismatch between
the original image color distribution and the palette, as in the up-
per example. Random assignment provides an even distribution of
palette colors, but the image content can become unrecognizable for
highly textured images, as in the lower example. Our method uses
the palette more effectively, showing local details and large-scale
content and exercising the full range of available colors.

Figure 8: A comparison with naive recoloring. Left to right: The original
image, the results from closest color, random color, and the proposed method.

4.2 Comparison with ColorArt

We next compare our recoloring method with ColorArt [3], an
optimization-based recoloring method for graphic art. This method
assigns colors to regions by solving a graph matching problem over
color groups in the reference and the template image. In searching
for a reference image, this algorithm uses the same number of color
groups as in the template image.

Figure 9 shows images generated by ColorArt on the right and
ours in the middle, both using the sunset palette. We created a
colorful leaf surrounded by a light background as in the input image,
showing the algorithm respects the changes in lightness. Moreover,
assignment of different colors on the leaf presented an interesting
texture. The leaf image generated by the ColorArt method has
reversed the image tones. In the sketch image, we preserved the
edges and showed a recognizable face in the image. In contrast, the
ColorArt algorithm had difficulty with the edges and the gradual
gradients, resulting in a somewhat incoherent output.

4.3 Recoloring with SLICO Oversegmentation

Our recoloring algorithm does not make any assumptions about
the input oversegmentation. Figure 10 shows results from an over-
segmantation from SLICO [1]. The starfish and ow!/ images have
approximately 2000 and 5000 segments, respectively.

Note that more irregular regions can better represent complex
image contours and textures, allowing the recolored abstractions
to better display the image content. In starfish, the structures and
shadows are represented by distinct colors that contrast between the
object and the background. The strong edges, such as the arms of the
starfish, are preserved; however, the thin features are not captured
by SLICO’s uniform regions, and the background terrain does not
present any significant information. In the ow/ image, the small
regions on the chest convey the feather textures, while regions such
as dark eyes kept their well-defined structures. Given a suitably
detailed oversegmentation, we can produce appealing results.



Figure 9: Comparison with ColorArt. Left: input; middle: our results; right:
ColorArt results.

Figure 10: Recoloring with SLICO oversegmentation.

4.4 Performance

We ran our algorithm on an Intel(R) Core(TM) i7-6700 with a 3.4
GHz CPU and 16.0 GB of RAM. The processing time increases with
the number of regions and edges in the graph. The time complexity
of single-source widest path is &'(m + nlogn) for m edges and n
vertices, using a heap-based priority queue in a Dijkstra search.

Table 1 shows the timing for creating the trees and color as-
signments of different images. For small images like the starfish,
containing about 1.4K regions, the recoloring algorithm takes about
0.007 seconds to construct the tree, while it takes about 0.3s for
larger images such as rust with 7.2K regions. With a palette of
10 colors, the color assignments take 0.05s and 1.2s to recolor the
starfish and rust respectively. The color assignment will take longer
for larger palettes and images with a larger number of regions. We
show the timing of tree creation and color assignments for all images
in the gallery.

Table 1: Timing results for images with varying numbers of regions.

Image Tree creation ~ Color assignment ~ Graph ~ Total # Regions
lanterns 0.003s 0.02s 0.064s  0.087s 1K
starfish 0.007s 0.05s 0.07s 0.127s 1.4K
lizard 0.015s 0.08s 0.1s 0.195s 1.9K
rust 0.3s 1.2s 0.9s 24s 7.2K
Venice 0.3s 1.4s 0.9s 2.6s 7.7K

4.5 Limitations

Although in our experience our method works well for most com-
binations of image and palette, there are cases where the output is
unappealing. When two similar regions are not neighbours, they
may receive different colors; e.g., a sky area may be broken up by
branches and different parts of the sky could be colored differently.
Even adjacent regions may not receive similar colors if their av-
erage colors differ, introducing spurious edges into regions with
slowly changing colors such as gradients or smooth surfaces. Out-
of-focus backgrounds and faces are common examples producing
such effects,

Figure 11 shows two failure examples. The woman’s face is
given an irregular, high-contrast color assignment, and her eyes look
sunken. The busy background has similar contrast levels to the face,
making the overall composition unappealing. In the Etretat results,
large regions of different colors appear in the sky, which does not
look attractive. Because the original regions have different average
colors, our algorithm is likely to separate them regardless of the
palette.

Our algorithm is at present strictly automated with no provi-
sion for direct user control beyond choice of palette and parameter
settings. While these parameters provide considerable scope for gen-
erating variant recolorings, so that a user would have a wide range
of results to choose from, direct control is not yet implemented.
One might imagine annotating the image to enforce specific color
selections or linking regions to ensure that their output colors are
always the same. While it would be straightforward to add some
control of this type, we have not yet implemented such features.

Figure 11: Failure cases. Above: woman; below: Etretat.

5 VARIATIONS

Previously, we strictly adhered to the palette colors. Another possi-
bility is to obtain intermediate colors; here, we apply spatial blending
to produce smooth color transitions. In the following subsection, we
show how different color spaces and distance metrics can generate
various results from the same palette.

5.1 Blending

In transferring the colors, we have intended to strictly preserve the
palette and not add colors. However, we can also blend the colors,
giving a more painterly style. Blending introduces new intermediate
shades of colors. We suggest cross-filtering the recolored image with
an edge-preserving filter such as CRGF [15]. This process smooths
the areas away from edges while maintaining strong edges.

The cross-filtering mask size will affect the outcome. Larger
masks will produce a stronger blending effect; small features will be
smoothed out, and the output image will become blurry in regions
lacking edges. Figure 12 illustrates examples of blending using
masks of sizes n = 20, 100, and 300. Blending with n = 20 only



Figure 13: Recoloring with different distance measures. Left to right: Input image, results from RGB, CMC, CIE94, CIE2000, and CIE76 color distances.

slightly modifies the image; for larger masks, the blending is more
apparent. At n =300 we can see a definite blurring in originally
smooth areas, although blurring does not happen across original
edges. Using a gray palette, can can obtain an effect resembling a
charcoal drawing with larger masks.

5.2 Color Spaces and Distance Metrics

‘We can employ different functions for our color distance function
D,. Different choices of color space and distance metric can affect
the recoloring results. Changing the distance metric will cause both
the widest-path tree and the color assignment to change.

We have experimented with computing color distances with the
Euclidean distance in RGB as well as using perceptually uniform
measures CIE94, CIEDE2000, CIE76, and CMC colorimetric dis-
tances [22,28].

Both CIE94 and CIEDE2000 are defined in the Lch color space.
However, CIE94 differences in lightness, chroma, and hue are calcu-
lated from Lab coordinates. CMC is quasimetric, designed based on
the Lch color model. The CIE76 metric uses Euclidean distance in
Lab space.

In Figure 13, we show different outcomes from different metrics
using two palettes. We can observe the strong edge and contrast
preservation, which is an apparent result of perceptual uniform met-
rics. More importantly, each metric gives a different variant, which
allows a user to choose from different results. We can get interesting
results from each metric. However, in our judgement, more attractive
results are obtained from RGB and CMC colorspaces; the delicate

features and image contrast are maintained, and objects are generally
preserved. CIE94 and CIE2000 metrics are also effective, but we
found that the CIE76 metric rarely creates interesting results.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we presented a graph-based recoloring method that
takes an oversegmented image and a palette as input, and then
assigns colors to each region. The result uses the palette colors
to portray the image content, but without attempting to match the
input colors. Designing our algorithm with the widest path allowed
us to maintain the image contrast and objects’ recognizability. We
demonstrated our results with different palettes. We achieved vivid
recoloring effects, effective for most combinations of input images
and palettes.

In the future, we would like to investigate non-convex palette
color augmentation, adding new colors extending an input palette
while matching the palette’s theme. We would like to extend the
color assignment to consider color harmony, scoring based on com-
patibility of colors and thus effecting the ability of certain colors
to be neighbors. Furthermore, we would like to be able to recolor
smoothly changing regions like the sky more uniformly. Adding
elements of user control would allow for better cooperation between
the present automated method and the user’s intent.
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