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Abstract

Equilibrium learning in adversarial games is an important topic widely examined
in the fields of game theory and reinforcement learning (RL). Pursuit-evasion game
(PEG), as an important class of real-world games from the fields of robotics and
security, requires exponential time to be accurately solved. When the underlying
graph structure varies, even the state-of-the-art RL methods require recomputa-
tion or at least fine-tuning, which can be time-consuming and impair real-time
applicability. This paper proposes an Equilibrium Policy Generalization (EPG)
framework to effectively learn a generalized policy with robust cross-graph zero-
shot performance. In the context of PEGs, our framework is generally applicable to
both pursuer and evader sides in both no-exit and multi-exit scenarios. These two
generalizability properties, to our knowledge, are the first to appear in this domain.
The core idea of the EPG framework is to train an RL policy across different graph
structures against the equilibrium policy for each single graph. To construct an
equilibrium oracle for single-graph policies, we present a dynamic programming
(DP) algorithm that provably generates pure-strategy Nash equilibrium with near-
optimal time complexity. To guarantee scalability with respect to pursuer number,
we further extend DP and RL by designing a grouping mechanism and a sequence
model for joint policy decomposition, respectively. Experimental results show that,
using equilibrium guidance and a distance feature proposed for cross-graph PEG
training, the EPG framework guarantees desirable zero-shot performance in various
unseen real-world graphs. Besides, when trained under an equilibrium heuristic
proposed for the graphs with exits, our generalized pursuer policy can even match
the performance of the fine-tuned policies from the state-of-the-art PEG methods.
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1 Introduction

Real-world environments are variable, and the dynamics for real-world games can be time-evolving.
As an important class of real-world games, pursuit-evasion games (PEGs) can model a variety of real-
world problems (e.g., in robotics and security domains [30; 31; 8]). Typically with a team of pursuers
and an adversarial evader, PEGs can be formulated with complex graph structures, where nodes
and edges can be temporarily removed or added as the game proceeds. An intelligent game agent
should be robust to such changes. In other words, an ideal pursuer or evader policy should be robust
to different map or graph inputs. Classical differential game [23; 38] and dynamic programming
[32; 14] methods, while accurate, require recomputation under potential changes to game dynamics.
In view of this gap, recent works on graph-based PEGs [17; 18; 34; 35] employ deep reinforcement
learning (RL) to obtain a more flexible policy. Among the state-of-the-art methods, Grasper (see [17])
can pretrain a generalized multi-agent pursuer policy robust to different initial conditions (e.g., exit
positions). Given an actual game situation, subsequent fine-tuning through game-theoretic approaches
like PSRO [16] can be used to improve the policy without recomputing from scratch.

However, the state-of-the-art methods still exhibit two practical limitations. First, real-time applica-
bility remains questionable due to the requirement of computationally intensive policy fine-tuning.
Recent work [40] points out that existing methods may struggle to adapt to rapid changes in urban
settings (e.g., traffic jams, emergencies, and unexpected social events). To make it worse, when
the graph structure significantly changes, the pretrained policy will lose the guarantee to be a good
starting point for subsequent tuning. Second, existing training processes heavily rely on certain
behavior patterns of the opponent policy, which impairs the robustness of the methods. For example,
Grasper requires the evader to consistently follow the shortest path to the chosen exits. As a result,
the method is not applicable to no-exit PEGs and not general enough for both sides of the players.
Besides, such simplifications can make the RL policy more exploitable by an intelligent opponent.

For the first problem, we expect the trained policy to exhibit desirable zero-shot performance across
different graph structures. For the second problem, we expect the training process to be generally
applicable and take strong adversaries into account. Therefore, we ask the following question:

Is there a general RL framework that can train generalized PEG policies with robust zero-shot
performance in unseen graph structures?

This paper provides a positive answer to this question through the following major contributions:

• We propose Equilibrium Policy Generalization (EPG), a novel reinforcement learning
framework that enables zero-shot generalization in Markov PEGs across different graph
structures. For the first time, we show that reinforcement learning on a corpus of graphs with
equilibrium policies serving as adversaries (and also guidance) can lead to a generalized
pursuer (or evader) policy with robust zero-shot performance in unseen real-world graphs.

• For no-exit graphs, we present a dynamic programming (DP) algorithm to efficiently
construct an oracle that generates the single-graph equilibrium policies in Markov PEGs.
We prove that the proposed algorithm can compute pure-strategy Nash equilibrium under
a near-optimal Õ(|S|) time complexity. We further extend this algorithm with a grouping
mechanism for scalability with respect to pursuer number.

• We design a decentralized network architecture with a novel shortest path distance feature as
state inputs to represent cross-graph multi-agent PEG policies. Through ablation studies, we
verify that the distance feature, along with our reinforcement learning loss, plays an important
role in cross-graph EPG training. Source code can be found in our supplementary material
(with DP implementation and test files) and at https://github.com/Cahemgco/EPG_code.

• For graphs with exits, we provide a heuristic approach based on bipartite graph matching
as an effective substitute for an exact equilibrium oracle. Directly utilizing this heuristic
and approximate equilibrium oracle, we verify that the EPG framework still guarantees a
strong zero-shot performance that matches or outperforms the fine-tuned results from the
state-of-the-art methods like Grasper [17].
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2 Preliminaries

2.1 Markov Game and Nash Equilibrium

To formulate PEG solving, we introduce two-player zero-sum Markov games and Nash equilibrium.

Two-player zero-sum Markov game. An infinite-horizon two-player zero-sum Markov game is
represented by a tuple (S,A,B,P, r, γ), where S is the state space, A is the action space of the
max-player (i.e., the team of pursuers in a PEG) who aims to maximize the cumulative reward, B is
the action space of the min-player (i.e., the evader in a PEG) who aims to minimize the cumulative
reward, P ∈ [0, 1]

|S||A||B|×|S| is the transition probability matrix, r ∈ [0, 1]
|S||A||B| is the reward

vector, and γ ∈ (0, 1) is the discount factor.

Policy and value function. Following common notations, we denote by (µ, ν) the joint policy
of the two players, where µ is the policy of the max-player (pursuers) and ν is the policy of the
min-player (evader). µ(s) ∈ ∆(A) (resp., ν(s) ∈ ∆(B)) is the max-player’s (resp., min-player’s)
action distribution at state s ∈ S, and µ(s, a) (resp., ν(s, b)) is the probability of selecting action
a ∈ A (resp., b ∈ B). Define value functions V µ,ν(s) = E [

∑∞
t=0 γ

tr(st, at, bt) |s0 = s;µ, ν ] and
Qµ,ν(s, a, b) = E [

∑∞
t=0 γ

tr(st, at, bt) |s0 = s, a0 = a, b0 = b;µ, ν ] as in single-agent MDPs.

Nash equilibrium. A Nash equilibrium (NE) in a game is a joint policy where each individual
player cannot benefit from unilaterally deviating from his/her own policy. Specifically, in a two-player
zero-sum MG, an NE (µ∗, ν∗) satisfies V µ,ν∗ ≤ V µ∗,ν∗ ≤ V µ∗,ν for any µ and ν at all states.
As is well known, every MG with finite states and actions has at least one NE, and all NEs in a
two-player zero-sum MG share the same Nash value V ∗(s) = V µ∗,ν∗

(s) = maxµminνV
µ,ν(s) =

minνmaxµV
µ,ν(s) [26]. In two-player zero-sum games, Nash equilibrium can be viewed as the

optimal joint policy since both players cannot be exploited by their worst-case opponents. Besides, if
(µ1, ν1) and (µ2, ν2) are both NEs, then (µ1, ν2) and (µ2, ν1) are NEs as well [25]. To guarantee the
optimality, it suffices to find an equilibrium policy for each player.

2.2 Graph-Based Pursuit-Evasion Game

In the context of pursuit-evasion games (PEGs), the transition is usually considered as deterministic,
with P ∈ {0, 1}|S||A||B|×|S|. As we have mentioned, the max-player is the team of multi-agent
pursuers, and the min-player is the single-agent evader. A general target in PEGs is to approximate
the Nash equilibrium under the formulation of two-player zero-sum games.

To formulate large-scale problems, a PEG can be represented with a graph G = ⟨V, E⟩, where V is the
set of nodes, and E is the set of undirected edges (which could indicate streets in an urban scenario).
When there are m pursuers, the state s can be represented by the locations of all m+ 1 agents, i.e.,
s = (sp, se), where sp = (v1p, v

2
p, · · · , vmp ) ∈ Vm, and se = ve ∈ V . The valid actions for each

agent are to move to any node within the current node’s neighborhood (including itself). To describe
the states where the pursuit has been successful, define a termination function f : Vm × V → {0, 1}.
When f(sp, se) = 1, the game is terminated, and a reward of +1 is received. Note that the discount
factor γ < 1 encourages the pursuers to capture the evader as soon as possible in the no-exit scenario.
If there are exits in the graph, then another termination function g : V → {0, 1} should be defined.
When g(se) = 1, the game is terminated as well, but a reward of −1 will be received.

3 Equilibrium Policy Generalization

As we have mentioned, existing PEG methods can have difficulty adapting to the changes of graph
structures or extending to different scenarios. Here, we propose a general reinforcement learning
framework called Equilibrium Policy Generalization (EPG) that facilitates cross-graph zero-shot
generalization for diverse PEG settings. The overall training pipeline is shown in Figure 1.

Intuitively, a training set (right) consisting of a variety of graphs with different structures is first
generated. For each graph Gi, an equilibrium policy (µ∗

i , ν
∗
i ) is derived from an equilibrium oracle.

Then, reinforcement learning (left) is conducted to learn a generalized policy, with the dynamics
constructed through each graph G and opponent ν∗ in the training set. Section 3.1 introduces a
detailed construction of the reinforcement learning process established upon soft actor-critic (SAC).
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Figure 1: Training pipeline of Equilibrium Policy Generalization

Section 3.2 presents a theoretically sound equilibrium oracle based on dynamic programming (DP).
Section 3.3 designs a multi-agent pursuer policy representation specified for cross-graph PEG tasks.

3.1 Reinforcement Learning with Equilibrium Adversary

SAC [12; 6] is a well-known off-policy reinforcement learning framework that maximizes expected
return regularized under a policy entropy term. Specifically, the value function in discrete-action
SAC [6] is defined as V (s) = Ea∼π(s) [Q(s, a)− α log π(s, a)]. The losses of the value network Qϕ

and the policy network πθ are computed as JQ(ϕ) = Es,a

[
1
2 (Qϕ(s, a)− (r + γEs′ [V (s′)]))

2
]

and
Jπ(θ) = Es,a∼πθ(s) [α log πθ(s, a)−Q(s, a)], respectively. Besides, the temperature α under target
entropy H is adaptively updated under loss J(α) = Es,a

[
−α

(
log π(s, a) +H

)]
. Here, we use

SAC as the foundation algorithm to introduce the RL pipeline in Equilibrium Policy Generalization.

In order to train a generalized policy, our reinforcement learning process goes through the different
PEG graphs in the training set. The major difference between our method and the common multi-task
learning methods is that we use the equilibrium ν∗ as the opponent policy to construct an adversarial
environment for each graph. As is shown in Figure 1, the equilibrium opponent offers an action b that
directly serves to generate the transition (s, a, b, r, s′) in the current PEG graph G. To our knowledge,
this is a novel approach not yet considered in the game RL domain. Because ν∗ is hardly exploitable
by any strategy, reinforcement learning against such a policy avoids overly exploiting a specific
behavior pattern and makes the training process generally focus on cross-graph policy robustness.
Since a truly robust policy should not perform poorly against the corresponding equilibrium opponent
in any of the graphs, we can use this necessary condition to exclude the weak strategies from the entire
policy space. Cross-graph reinforcement learning can be regarded as an efficient way of fulfilling
such exclusions. When the training set is diverse enough, only a small area in the parameter space
will be left after RL training, where we expect to derive a policy with robust zero-shot generalization.

However, since the equilibrium opponent is hardly exploited and the PEG is a sparse reward environ-
ment, the original SAC algorithm can suffer from inefficient exploration even under a single graph.
To deal with this problem, the equilibrium µ∗ can also be used as a policy guidance for the training
process. Specifically, we regard µ∗ as a reference policy and append an additional KL-divergence term
DKL (µ

∗, π) to the original policy loss. When µ∗ is a pure strategy, it holds that DKL (µ
∗(s), π(s)) =

− log π(s, a∗), where a∗ is the deterministic action of µ∗(s). In this case, the divergence-regularized
policy loss can be computed as Jπ(θ) = Es,a∼πθ(s) [−β log πθ(s, a

∗) + α log πθ(s, a)−Q(s, a)],
where β is a hyperparameter that keeps a balance between policy guidance and reinforcement learning.

As is shown in Figure 1, a global state s is sampled under a randomly selected graph G from the
training set. The reference policy µ∗ and the model πθ generate a deterministic action a∗ and a
strategy π(s), respectively. The divergence-regularized policy loss Jπ(θ) is then computed, and πθ is
updated through gradient descent. For transition generation, a joint action (a, b) under s is sampled
and sent into the graph to compute the reward r and the subsequent state s′. In the training phase, a is
sampled randomly, and (r, s′) is used to train the value network Qϕ under JQ(ϕ). In the testing phase,
a is sampled from the learned policy πθ, and (r, s′) is used for trajectory generation and evaluation.
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3.2 Single-Graph Equilibrium Oracle Construction

As our EPG framework requires the equilibrium policy (µ∗, ν∗) for each graph G in the training set,
equilibrium oracles should be provided to guarantee applicability in PEGs. In this section, we present
effective methods to construct accurate or approximate equilibrium oracles for different scenarios.

3.2.1 Dynamic Programming for No-Exit Markov PEGs

Determining whether the pursuers can always capture the evader in a no-exit PEG is proved to
be an EXPTIME-complete problem (see [11]). This result suggests that an accurate equilibrium
oracle could incur a time complexity of Ω(|S|), where |S| is the number of all game states, which is
exponential in the agent number m+ 1. For sequential PEGs under no-exit graphs, [32] proposes an
efficient method to compute the minimum steps for the pursuers to capture the evader. The idea is to
iteratively expand the set of states where the pursuit is guaranteed to be successful under the optimal
strategy. During the O(|S|) state expansion, the equilibrium policy is also generated. For Markov
games, however, the method is not applicable since the moves for both players are simultaneous.

On the other hand, the classical marking algorithm (see [8]) can have a worst-case time complexity of
O(|S|2) in practical Markov PEGs. Even when the pursuer number is small (e.g., two or three), the
algorithm cannot scale with the number of nodes in the graph, which can be large in the real world.
In view of this gap, we first show how to apply the idea of state expansion to simultaneous games and
provide a more efficient dynamic programming (DP) algorithm for Markov PEGs.

Algorithm 1: Dynamic programming (DP) for Markov PEGs in no-exit graphs
Input: graph G = ⟨V, E⟩, pursuer number m, and termination function f : Vm × V → {0, 1}

1 Initialize an empty queue Q and an array D =∞
2 for pursuer state (positions) sp ∈ Vm do
3 for evader state se ∈ V do
4 if f(sp, se) = 1 then
5 D(sp, se)← 0
6 Push (sp, se) into Q
7 end
8 end
9 end

10 while Q is not empty do
11 Pop the first element (sp, se) from Q
12 for evader neighbor ne ∈ Neighbor(se),∄n′

e ∈ V, (ne, n
′
e) ∈ E,D(sp, n

′
e) > D(sp, se) do

13 for pursuer neighbor np ∈ Neighbor(sp) ⊂ Vm, D(np, ne) =∞ do
14 D(np, ne)← D(sp, se) + 1
15 Push (np, ne) into Q
16 end
17 end
18 end
19 for global state (sp, se) ∈ Vm × V do

20 µ(sp, se)← argmin
neighbor np of sp

{
max

neighbor ne of se
D(np, ne)

}
21 ν(sp, se)← argmax

neighbor ne of se

{
min

neighbor np of sp
D(np, ne)

}
22 end

Output: pursuer policy µ : Vm × V → Vm and evader policy ν : Vm × V → V

The proposed DP algorithm is shown in Algorithm 1. Intuitively, D(sp, se) is the minimum number of
pursuit steps under the optimal pure strategy and is computed through a new form of state expansion
(lines 10-18) using a queue Q. Based on D(·), a joint policy (µ, ν) is generated through minimax
computation (lines 19-22). When a pure-strategy Nash equilibrium exists, the following theorem
shows that the computed D(·) induces the Nash value, and the joint policy must be an exact Nash
equilibrium. That is to say, the DP algorithm can generate the optimal pure strategies for both players.
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Theorem 1 (Near-optimality of DP policy). If there exists a pure-strategy Nash equilibrium in the
no-exit PEG, then the DP algorithm induces the Nash value V ∗(s = (sp, se)) = γD(sp,se) and the
corresponding Nash equilibrium (µ∗, ν∗) = (µ, ν).

The detailed proof of Theorem 1 is based on mathematical induction and reserved in Appendix A.1.
Actually, Algorithm 1 efficiently solves the Bellman minimax equation (see [39]) under the existence
of a pure-strategy Nash equilibrium. Note that the update condition D(sp, se) =∞ guarantees that
every state (sp, se) is pushed into and popped from Q at most once. Therefore, the time complexity
of Algorithm 1 is a near-optimal Õ(|S|), where Õ hides the logarithm factors required for picking
each (np, ne) through preserving data structures like balanced trees. Also note that the computation
of µ(s) and ν(s) can be reserved online and thus does not affect the overall time complexity.

Algorithm 1 suggests that the Nash value admits an efficient estimation when the PEG only admits
a one-sided termination function. Compared to direct value iteration (see [14]), the DP algorithm
can exactly compute the equilibrium policy within finite iterations. The existence of pure-strategy
Nash equilibrium implies that a successful pursuit is guaranteed for all s ∈ S (i.e., D(s) <∞). For
example, the optimal strategy in any tree-form G is a pure-strategy Nash equilibrium if we regard
adjacency as the condition of a successful pursuit. Even when this assumption does not globally hold
in a PEG, Algorithm 1 still induces a near-optimal pursuit strategy for the states with finite D(·).

3.2.2 Heuristic Approach for Multi-Exit PEGs and Grouping Extension of DP Approach

For PEGs with exits, it can be more difficult to design a DP-like equilibrium oracle with rigorous
guarantees due to the existence of the other termination function g. Nevertheless, we observe that the
cooperative behaviors among pursuers can be approximately abstracted as one-to-one exit allocation.
Based on this observation, we provide an equilibrium heuristic featuring bipartite graph matching to
approximately generate equilibrium policies. The detailed construction is reserved in Appendix B
due to space limitations. Compared to the DP approach in no-exit scenarios, the heuristic approach
computes the current policy for each state independently and can be directly executed during RL
training, with a time complexity polynomial in the pursuer number for any current state. Note that
the polynomial time guarantee also implies its scalability with respect to agent number.

In order to facilitate the scalability of the DP approach in no-exit graphs with many pursuers, here we
further extend DP with a grouping mechanism to trade optimality for applicability. Note that the DP
algorithm is directly applicable when there are two or three pursuers. For a large pursuer number m,
we can express it as the summation of twos and threes. For example, if there are m = 6 pursuers, we
have that 6 = 2 + 2 + 2 and can thus group them into three sub-teams, each with two pursuers. For
the pursuer side, we can simply use the exact 2-pursuer policies under an arbitrary grouping result to
construct a 6-pursuer policy, which is empirically strong due to the optimality of the DP algorithm.

For the evader side, we expect that it should not be easily exploited by the grouping-based pursuers.
However, it does not know the exact result of grouping. Therefore, we follow minimax criteria to
construct the evader policy at any current state s. We use sg = (s1g = (s1p, se), · · · , skg = (skp, se)) ∈
Sg to denote the in-team states for the global state s under any possible grouping result with k sub-
teams. Then, we compute s∗ = argminsg∈Sg

{
maxki=1 D(sig)

}
, where D(sig) = D(sip, se) is the

computed result from the DP algorithm. The evader policy is to follow the DP policy ν∗(sj∗), where
j = argmaxki=1 D(si∗). Intuitively, the DP-based evader always considers the worst-case grouping
and ensures that it is hard for at least one sub-team to capture it in this case. While introducing an
extra online time complexity, the grouping mechanism avoids the exponentially growing complexity
of running Algorithm 1 and makes the DP approach applicable to the scenarios with many pursuers.

3.3 Cross-Graph Representation of PEG Policy

To represent a generalized PEG policy, the network architecture should be capable of encoding the
meaningful state information across different graph structures. Besides, since the policy should be
applicable to the team of homogeneous pursuers, it is appealing to design a decentralized architecture
with shared parameters. Such a network architecture can be robust to the change of agent number and
allow for decentralized execution when necessary. Under the principle of sequential decision-making,
a joint policy can be decomposed as π(a1, a2, · · · , am|s) =

∏m
l=1 π(al|s, a1, · · · , al−1), where

(s, a1, · · · , al−1) indicates the global state after the first l − 1 < m pursuers take actions (ai)i∈[l−1].
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Figure 2: Sequence model with cross-graph policy representation

With the above-mentioned considerations, we present a sequence model with an attention-based
architecture (see Figure 2) to represent the cross-graph joint policy. For a team of pursuers with
m agents, the sequence model queries the policy network m times under a fixed adjacent matrix
M ∈ {0, 1}n×n (n = |V|) for the current graph. The input is composed of a state feature sf that
describes the current global state and the information of node index c for the current acting agent. To
uniformly capture the state information across different graphs, we use the shortest path distances
to the m+1 agents (including the evader) and the exits (if existing) as the initial feature of each node
v ∈ V . The state feature sf is composed of the normalized features of all n nodes. The shortest path
is an important and well-examined concept in graph theory [2], and the distance between any two
nodes can be preprocessed using the O(n3) Floyd algorithm. In Appendix A.2, we further prove that
the input (sf , c) is dense enough to identify the current global state in sequential decision-making.

Given the state feature input sf , we borrow the ideas from the existing works on robot exploration
[3; 19] to construct a policy network (on the right of Figure 2). We first embed sf into Rd×n and send
it into an encoder composed of multiple self-attention [29] layers, where d is the embedding dimension.
Each layer takes the output h of the last layer as the input and outputs h′ using a masked attention:

qi = WQhi, ki = WKhi, vi = WV hi, uij =
qTi kj√

d
, wij = euij∑n

t=1 euit
, h′

i =
n∑

j=1

min {wij ,Mij} vj ,

where WQ,WK ,WV ∈ Rd×d are the weights to be learned. Theoretically, it requires Diameter(G)
layers to globally broadcast the local information of a node since M is the adjacent matrix. However,
in contrast to using a low-level node feature with indicators (see Grasper [17]), using a high-level
distance feature allows the node itself to encode long-term information. With the shortest path distance
feature, we can use a fixed number of attention layers (6 in practice) for information transmission.

Denote by ĥ the output of the encoder, and recall that c is the node index corresponding to the current
acting agent. We further use a decoder without masking to gather global information. Specifically,
the decoder uses ĥc to query in the output features ĥ of all nodes, with the keys equal to the values:
q = WQĥc, ki = WK ĥi, vi = WV ĥi, uj =

qT kj√
d
, wj = euj∑n

t=1 eut
, h̃c =

∑n
j=1 wjvj . The decoder

output h̃c is further concatenated with ĥc and projected into Rd. Then, it is used as a query for a
pointer network [33], which takes the features of the neighbor nodes ĥne for the current agent as the
keys and values. The pointer network directly outputs the attention vector w as the current policy
(i.e., π(a|s) = wa) since the number of the neighbors aligns with the number of the valid actions.

After the first query through the policy network, an action a1 for the first agent is sampled from
π(a|s), and the state is updated as s′ = (s, a1). The subsequent queries follow the same process
described above. Under the decomposition of sequential decision-making, while the process generates
the joint action (ai)i∈[m] sequentially, it is equivalent to a direct sampling from the joint policy. Note
that querying the policy model is practically efficient, especially with the help of GPUs. When the
graph structure changes, we simply rerun the Floyd algorithm, instead of the Õ(nm+1) DP algorithm.

7



Table 1: Performance of RL pursuer / evader against DP oracle in no-exit PEGs with 2 pursuers

Graph Structure Pursuit Success Rate ↑ Evasion Timestep ↑
DP - DP RLp - DP SPS - DP DP - DP DP - RLe

Grid Map 1.00 1.00 1.00 12.29± 2.06 11.88± 2.39
Scotland-Yard Map 1.00 0.99 0.17 15.13± 2.77 12.57± 2.96

Downtown Map 1.00 0.99 0.17 14.22± 3.27 11.83± 3.12
Times Square 1.00 0.98 0.14 16.47± 3.23 14.68± 3.11

Hollywood Walk of Fame 1.00 0.62 0.02 25.56± 5.03 20.00± 4.99
Sagrada Familia 1.00 0.66 0.04 21.88± 4.82 17.89± 4.59

The Bund 1.00 0.60 0.13 25.26± 6.17 20.59± 5.59
Eiffel Tower 1.00 0.97 0.81 23.42± 6.48 18.47± 6.12

Big Ben 1.00 0.91 0.13 27.89± 6.35 21.58± 6.38
Sydney Opera House 1.00 0.74 0.13 26.92± 5.89 22.37± 6.16

4 Experiments

In this section, we verify that our EPG framework can train a generalized policy with robust zero-shot
performance under unseen graph structures. Using 76 procedurally generated maps in the Dungeon
environment [5], we construct a heterogeneous training set by discretizing each map into small-
scale (100-node) and large-scale (500-node) graphs. The policy training follows the cross-graph
reinforcement learning pipeline in Section 3.1. In no-exit scenarios with 2 or 3 pursuers, we directly
use the DP algorithm (Algorithm 1) in Section 3.2 as an accurate equilibrium oracle. When there
are more pursuers, we use the grouping extension of the DP approach to construct an approximate
equilibrium oracle. In multi-exit scenarios, we use the heuristic approach to construct the approximate
oracle. Besides, we use the sequence policy model in Section 3.3 to represent either pursuer or evader
policy. For the evader side, the policy model is reduced to a single policy network, with µ∗ and ν∗

exchanged in Figure 1. The training time costs are reported in Appendix C.3. We test the zero-shot
performance of the learned pursuer or evader policy under unseen graphs without further fine-tuning.

4.1 Performance Tests in Real-World No-Exit Graphs

In no-exit graphs, the DP policy generated by Algorithm 1 is the optimal pure strategy for both players
when the pursuit is guaranteed for all states. With this theoretical guarantee, we can use the DP oracle
to construct the adversarial opponent and benchmark the zero-shot performance of the RL pursuer or
evader. Our test graphs include Grid Map (a 10× 10 grid), Scotland-Yard Map (from the board game
Scotland-Yard), Downtown Map (a real-world location from Google Maps), and 7 famous real-world
spots (from Times Square to Sydney Opera House). The real-world graph structures for testing are
illustrated in Figure 8. We set the termination function f(s) to be 1 when half of the pursuers are
simultaneously adjacent to the evader. This moderate success condition guarantees pursuit for all
synthetic and real-world graphs described in the main paper when the pursuer number is more than 1.

We first evaluate the zero-shot performance of the trained RL policies against the accurate DP oracle
in no-exit PEGs with 2 pursuers. The result under each graph is averaged over 500 tests, each of
which is forced to terminate after 128 steps (corresponding to the length of an episode). The pursuit
is guaranteed to be successful under the DP pursuer, while the DP evader attempts to avoid capture by
maximizing the termination (evasion) timesteps. As is shown in Table 1, when we use the RL pursuer
trained through EPG to replace the DP pursuer, the pursuit success rates are still kept over 0.6. In
comparison, if we simply use a shortest path strategy (SPS) to directly approach the DP evader, the
success rates can be sensitive to graph structures and low on average. On the other hand, when we use
the RL evader to replace DP, the evasion timesteps do not drop significantly. The results demonstrate
that our RL policies generalize well across graphs against the unexploitable DP opponent policies.

Now we evaluate the zero-shot performance of the trained RL policies against different opponents.
Besides the DP opponent, we show the results of our RL pursuer against our RL evader in Table 2.
The success rate of RL - RL is always 1 and thus omitted. Furthermore, we include the results of
the approximately best-responding (BR) policies directly trained against our RL policies on the test
graphs. Ideally, such results could reflect the worst-case performance of our RL policies. However,
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Table 2: Performance comparison of RL pursuer / evader against different opponents

Graph Structure Pursuit SR ↑ Evasion Timestep ↑
RL - BR RL - DP RL - RL BR - RL DP - RL

Grid Map 1.00 1.00 14.34± 5.08 11.67± 2.60 11.88± 2.39
Scotland-Yard Map 1.00 0.99 17.82± 7.31 13.12± 3.65 12.57± 2.96

Downtown Map 0.99 0.99 17.65± 8.72 13.81± 5.83 11.83± 3.12
Times Square 0.95 0.98 20.29± 9.65 16.20± 5.16 14.68± 3.11
Walk of Fame 0.67 0.62 34.34± 20.18 20.22± 9.60 20.00± 4.99

Sagrada Familia 0.76 0.66 26.87± 11.00 18.83± 6.30 17.89± 4.59
The Bund 0.56 0.60 30.66± 17.27 21.91± 10.58 20.59± 5.59

Eiffel Tower 0.98 0.97 28.41± 16.80 19.28± 10.48 18.47± 6.12
Big Ben 0.94 0.91 33.24± 18.71 23.07± 12.91 21.58± 6.38

Sydney Opera House 0.80 0.74 32.94± 14.72 25.78± 16.79 22.37± 6.16

the BR policies are generally hard to train in practice, possibly because the EPG policies are fairly
strong. We record their best results during 20000 training episodes. As is shown in Table 2, while the
BR policies are better at exploiting our RL policies in comparison with our RL opponent policies,
they show no advantage in comparison with DP. Therefore, considering the results in Table 1, we can
say that EPG policies have robust cross-graph zero-shot performance under unseen graph structures.

4.2 Ablation Study and Extended Evaluations

Here we analyze the important aspects of our cross-graph policy training. We use 10 unseen Dungeon
maps and their corresponding graphs as a testing set. We conduct the ablation study by comparing
the termination timesteps of different pursuer policies against the DP evader in no-exit PEGs.
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Figure 3: Termination timesteps of pursuer policies under training set (left) and testing set (right)

As is shown in Figure 3 (error bars representing standard deviations), when we remove the equilibrium
guidance from our framework, it is less efficient to train the generalized pursuer policy under the
remaining SAC loss (orange). This phenomenon verifies that the policy exploration of SAC itself can
have low efficiency under the sparse reward environment with an equilibrium adversary. When we
remove the original SAC loss, the training becomes a kind of supervised learning, and the learned
policy suffers from a clear performance decline due to the lack of the reward signal (blue). Therefore,
it is reasonable to combine equilibrium guidance with reinforcement learning against an equilibrium
adversary for effective policy generalization (black). If we directly use the 2-dimensional position
and the agent indicators to replace the shortest path distances as the feature of each node, the learned
policy suffers from a significant performance decline and cannot guarantee its zero-shot performance
(red). This verifies that our distance feature is suitable for cross-graph generalization of PEG policies.

We have also conducted some extended evaluations under no-exit PEGs. We consider the scenario
with 6 pursuers and use the proposed grouping mechanism to construct an approximate DP oracle.
The corresponding results are provided in Table 5, showing even higher success rates of RL pursuit in
comparison with Table 1. In Appendix E, we further show that our RL pursuers can have a zero-shot
performance even better than DP when the pursuit is not globally guaranteed. Additionally, while
the pursuer policy is trained on a graph set with an average node number of 152.24, we find that it
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Figure 4: Zero-shot performance in 8-exit PEGs during training (left) and testing (mid & right)

can directly generalize to large-scale graphs possibly with more than 1000 nodes (Appendix F.1).
Besides, we find that our policies significantly outperform the PSRO policies directly trained on the
test graphs (Appendix F.2). These results further demonstrate the versatility of our EPG framework.

4.3 Performance Comparisons in Graphs with Exits

Since the state-of-the-art approaches in graph-based PEGs (including Grasper [17] and multi-task
PSRO (MT-PSRO) [18]) deal with multi-exit PEGs, we also apply our EPG framework to the same
problem setting of 5 pursuers, 1 evader, and 8 exits described in the paper of Grasper [17]. As is
mentioned in Section 3.2, we design an equilibrium heuristic based on bipartite graph matching (see
Appendix B) to construct an approximate equilibrium oracle. As is shown in Figure 4 (left), our
EPG framework steadily trains the RL pursuers under different hyperparameters β ∈ {0.01, 0.1}
when using the heuristic approach. Mere supervised learning (green) without SAC loss can no longer
guarantee a steady improvement in unseen graphs, though it can simply work in the no-exit scenario.

Since [17] also uses Grid Map and Scotland-Yard Map as two fixed testing graphs, it is direct to
evaluate the zero-shot performance of our RL pursuers under the same game rules. The comparative
methods of Grasper, MT-PSRO, and MT-PSRO with augmentation (MT-PSRO-Aug) all train their
policies given the graph structure. Nevertheless, Figure 4 (mid & right; with results from [17]) shows
that our zero-shot performance (the dashed lines) under the unseen graphs (0.637 for Grid Map and
0.652 for Scotland-Yard Map) significantly outperforms their zero-shot performance (the starting
points), which is with respect to unseen initial conditions. Even after a 10-minute fine-tuning process
using PSRO [16], only Grasper in the Scotland-Yard Map can match the zero-shot performance of
our policy. This result further demonstrates the generalization capability of our EPG framework.

5 Conclusion

This paper proposes Equilibrium Policy Generalization (EPG), a novel reinforcement learning
framework for training generalized PEG policies with robust zero-shot performance across graph
structures. Established upon the idea of constructing adversary and guidance with equilibrium
policies, EPG features a general cross-graph RL pipeline applicable to both pursuer and evader sides
in both no-exit and multi-exit scenarios. For no-exit PEGs, we propose a dynamic programming
(DP) algorithm as an equilibrium oracle and theoretically prove that it generates pure-strategy Nash
equilibrium with near-optimal time complexity. We further extend DP with a grouping mechanism
and equip RL with a sequence model to facilitate scalability. Experiments and ablation studies verify
that our EPG framework can effectively train a generalized pursuer or evader policy with robust
zero-shot performance in unseen real-world graphs. When trained with a matching-based equilibrium
heuristic that we propose for multi-exit PEGs, the RL pursuer policy exhibits a strong zero-shot
performance that matches or outperforms the fine-tuned results from the state-of-the-art methods.

Although this paper focuses on pursuit-evasion games and thus introduces handcrafted DP/heuristic
equilibrium oracles, the EPG framework is in principle applicable to any other game scenario through
the use of general and approximate oracles like PSRO. One limitation of this work is that we only
focus on the case where both players have perfect information of the game state. It can be interesting
to further examine whether the perfect-information equilibrium oracles are still beneficial for robust
policy learning under an imperfect-information or partially observable game setting.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the abstract and Section 1, we emphasize the major contribution of proposing
the Equilibrium Policy Generalization (EPG) framework.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In Section 5, we discuss the limitation of this work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: For the two theoretical results (Theorem 1 and Proposition 1), we provide their
proofs in Appendix A.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In Appendices C and D, we include all the information needed to reproduce
our main experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the data and code as well as the instructions in the Supplementary
Material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In Appendices C and D, we specify all the training and test details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report error bars for all the learning curves and the termination timesteps
in the tables.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
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A Omitted Proofs

A.1 Proof of Theorem 1

Proof. For no-exit PEGs, the Nash value satisfies the following Bellman minimax equation:

V ∗(s) =

 max
µ(s)∈∆(A)

min
b∈B

∑
a∈A

µ(s, a)

(
r(s, a, b) + γ

∑
s′∈S

P(s, a, b, s′)V ∗(s′)

)
, f(s) = 0

1, f(s) = 1

Since the transition is deterministic and a non-zero reward is received only when a termination state
is reached, we can simplify the Bellman equation as follows:

V ∗(s) =

{
max

µ(s)∈∆(A)
min
b∈B

∑
a∈A

µ(s, a)γV ∗(s′ = P(s, a, b)), f(s) = 0

1, f(s) = 1

The equilibrium policy for the max-player satisfies:

µ∗(s) ∈ argmax
µ(s)∈∆(A)

{
min
b∈B

∑
a∈A

µ(s, a)V ∗(s′ = P(s, a, b))

}

When there is a pure-strategy Nash equilibrium in the game, the argmax has a pure-strategy solution,
and the Bellman equation can be further simplified:

V ∗(s) = γ max
a∈A

min
b∈B

V ∗(s′ = P(s, a, b)) (1)

Note that the Nash value has the form of V ∗(s) = γd(d ∈ N). Therefore, we consider using
mathematical induction. We assume that V ∗(s) = γD(s) holds for all states s that satisfies either
V ∗(s) = γd or D(s) = d when d < k (γd > γk). We want to prove that V ∗(s) = γD(s) holds for
all states s that satisfies either V ∗(s) = γk or D(s) = k. Clearly, our initialization guarantees that
the proposition holds for k = 0. Our update condition D(np, ne) =∞ guarantees that every state
s ∈ S is pushed into and popped from Q at most once. Note that the following proof reverses the
notations of s and s′ in (1) to better align with s = (sp, se) in Algorithm 1.

Now, we prove the first half of the proposition. For an arbitrary state s′ = (np, ne) that satisfies
V ∗(s′) = γk, the simplified Bellman equation (1) guarantees that there exists a = sp ∈ A(np) and
b = se ∈ B(ne) such that V ∗(s′) = γV ∗(s = P(s′, a, b)). Therefore, there exists s = (sp, se)
such that V ∗(s) = γk−1. According to the first half of the induction hypothesis, we have that
D(s) = k − 1 <∞, which implies that the algorithm once pushed s′ into Q. Besides, the Bellman
equation guarantees that ∀b′ ∈ B(ne), V

∗(P(s′, a, b′)) ≥ V ∗(P(s′, a, b)) = V ∗(s) = γk−1 > γk.
By induction hypothesis, D(sp, n

′
e) ≤ D(sp, se) holds for any neighbor n′

e of ne. Therefore, the
algorithm must enumerate ne when popping s = (sp, se). If we have D(np, ne) =∞ at the moment,
then np will be enumerated in the inner loop, and we will have D(np, ne) = D(sp, se) + 1 = k.
Now we complete the proof by showing that D(np, ne) <∞ implies D(np, ne) = k. Actually, if
k < D(np, ne) <∞, then D(s′) must be computed by adding 1 to some D(s′′) ≥ k. Since s′′ must
be popped from Q no later than s, it is contradictory to the fact that D(s′′) > D(s) = k − 1. If
D(np, ne) < k, then the second half of the induction hypothesis implies that V ∗(s′) = γD(np,ne),
which is contradictory to the fact that V ∗(s′) = γk.

Then, we prove the second half of the proposition. For an arbitrary state s′ = (np, ne) that satisfies
D(s′) = k, the D(s) must be computed by adding 1 to some D(s) = k − 1, where s = (sp, se).
According to the first half of the induction hypothesis, we have V ∗(s) = γk. The algorithm guarantees
that D(sp, n

′
e) ≤ D(sp, se) = k−1 holds for any neighbor n′

e of ne. By induction hypothesis, it holds
that ∀b′ ∈ B(ne), V

∗(P(s′, a, b′)) ≥ V ∗(P(s′, a, b)) when a = sp ∈ A(np) and b = se ∈ B(ne).
Therefore, min

b∈B(ne)
V ∗(P(s′, a, b)) = γk−1 when a = sp ∈ A(np). If there exists a† = s†p ∈ A(np)

such that min
b∈B(ne)

V ∗(P(s′, a′, b)) > γk−1, then we let b† = argmin
b∈B(ne)

V ∗(P(s′, a†, b)) > γk−1
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and let s† = (s†p, s
†
e = b†). According to the first half of the induction hypothesis, D(s†p, n

′
e) ≤

D(s†p, s
†
e) < k−1 holds for any neighbor n′

e of ne. Since D(s†p, s
†
e) < D(sp, se), s† must be popped

from Q earlier than s, which means that D(s) = ∞ when s† is popped. Therefore, s′ = (np, ne)
must be enumerated when s† is popped, which is contradictory to the fact that D(s′) =∞ when s is
popped. Therefore, V ∗(s′) = γ max

a∈A
min
b∈B

V ∗(P(s′, a, b)) = γk.

For now, we have proved that V ∗(s) = γD(s). Therefore:

µ(sp, se) = argmin
neighbor np of sp

{
max

neighbor ne of se
D(np, ne)

}
⇒ µ(s) = argmax

a∈A
min
b∈B

V ∗(P(s, a, b))

ν(sp, se) = argmax
neighbor ne of se

{
min

neighbor np of sp
D(np, ne)

}
⇒ ν(s) = argmin

b∈B
max
a∈A

V ∗(P(s, a, b))

As there exists a pure-strategy Nash equilibrium (µ∗, ν∗), it is directly guaranteed that (µ, ν) is a
Nash equilibrium.

A.2 Proof of Proposition 1

Proposition 1 (Basic property of the shortest path distance feature). When the game is collision-free
with respect to the agents’ node indexes, the input (sf , c) is sufficient to reconstruct the global state
with the current agent order l for sequential decision-making.

Proof. Recall that the global state (sp, se) = sp = (v1p, v
2
p, · · · , vmp , ve), where m is the number of

pursuers.

Note that sf ∈ R(m+1)×n contains the normalized shortest path distances of all n = |V| nodes to all
m + 1 agents. Since the distance is zero only when the agent is at the node, sf (k, v) = 0 implies
v = vkp when k ≤ m and implies v = ve when k = m+ 1. Therefore, the global state (sp, se) can
be reconstructed by checking the zeros in sf .

When the game is collision-free with respect to the agents’ node indexes, there is at most one zero in
each column of sf . Since c is the index of the current pursuer agent, there must be exactly one zero
in the c-th column. Let vc be the c-th node in the graph. Since sf (l, vc) = 0, the current agent order l
can also be obtained by checking the zero in the c-th column of sf .
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B Equilibrium Heuristic for PEGs with Exits

In no-exit graphs, the termination function f(sp, se) is 1 when a number of pursuers are adjacent to
the evader. Since there is no termination condition about exits, the pursuers only care about how soon
they can capture the evader. In graphs with exits, however, the pursuers lose when g(sp, se) = 1, and
a successful pursuit requires strict overlapping rather than adjacency (see [17]). Therefore, to block
the exits around the evader is more reasonable than to block all possible actions of the evader and
capture it. For the evader, it is in turn reasonable to select an exit that cannot be blocked in time.

In the multi-exit scenario, a single pursuer is enough to block a single exit if it is at least as close as
the evader with respect to the shortest path distance. Also, it is theoretically impossible for multiple
pursuers to block the exit if none of them is as close, since the evader can simply follow the shortest
path towards the exit. Actually, if there exists one pursuer who can block the evader on its shortest
path in time, it directly implies that the pursuer has a path to the exit no longer than the evader’s, which
contradicts the premise. Therefore, the cooperative behaviors among pursuers can be approximately
abstracted as one-to-one exit allocation, which can be further formulated by bipartite graph matching.

With the above-mentioned considerations, we construct an equilibrium heuristic based on bipartite
graph matching to efficiently generate reasonable policies for both players in multi-exit PEGs. Given
the current state of the game, the heuristic algorithm can be described by the following four steps:

• Under the current state s, construct a bipartite graph Gb = ⟨(Vexit,Vpursuer), Eb⟩, where
the nodes in Vexit correspond to the exits in the PEG graph G and the nodes in Vpursuer
correspond to the pursuers. There is an edge eb ∈ Eb between an exit and a pursuer if
and only if the pursuer’s shortest path distance to the exit is not longer than the evader’s.
Intuitively, the existence of an exit-pursuer edge means that the pursuer can reach the exit
no later than the evader and thus block the exit in time.

• If a pursuer node has no related edges, which means it cannot block any exit, then it is
removed from Gb, and this pursuer’s current policy is to follow the shortest path towards
the evader. If an exit node has no related edges, which means it cannot be blocked by any
pursuer, then it is also removed from Gb. For the remaining exit nodes, sort them by their
distance to the evader in an ascending order.

• Compute the maximum k that guarantees the existence of a perfect matching in Gb for
the first k nodes {vi|i ≤ k} ⊆ Vexit. This can be simply fulfilled by running the O(m3)
(m = max {|Vexit| , |Vpursuer|}) Hungarian Algorithm for each k ≤ |Vexit|. Intuitively, the
existence of a perfect matching means that the closest k exits to the evader can be blocked
simultaneously.

• For the pursuers involved in the perfect matching, their current policies are to follow the
shortest path towards the matched exits. For any remaining pursuer indicated by v, the
current policy is to follow the shortest path towards the exit with the minimum index i that
satisfies (vi, v) ∈ Eb. For the evader, if at least one exit is removed from Gb, its current
policy is to follow the shortest path to the closest removed exit. Otherwise, its current policy
is to follow the shortest path to the closest exit that has not been occupied by any pursuer.

Note that the heuristic algorithm encourages the pursuers to increase the (lower-bound) steps for a
worst-case evader to reach an exit. This can be viewed as approximating the equilibrium policy via a
minimax mechanism. Besides, since the heuristic evader can flexibly switch to a better exit when the
game situation changes, it is also hard to exploit in practice.

Compared to the DP approach in no-exit scenarios, the heuristic approach can compute the current
policy for each state independently. At the price of being more exploitable in certain handcrafted
cases, the heuristic policy can be directly computed during RL training, with a time complexity
polynomial in the agent number for any current state. Since it avoids a preprocessing stage that
traverses the state space, the heuristic approach also guarantees a better applicability of our EPG
framework in multi-exit scenarios.
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C Training Details

C.1 Implementation Details

For the training of Q functions, which is not specified in Section 3.3, we employ the common
technique of double target networks to avoid overestimations [13]. When there are two or three
pursuers, we simply use centralized value networks to directly represent Q functions. In the scenarios
with more pursuers, we use value-decomposition networks [28] as a simple way to decompose
the joint Q functions. As the pursuers are homogeneous agents, we have a direct decomposition
Qϕ(s, a) =

∑m
i=1 Qϕ(s, ai), where m is the number of the pursuers.

In either the no-exit or multi-exit scenario, we use the same hyperparameter setting shown in Table 3
throughout the EPG training for either pursuer or evader policy. Note that the target entropy H in
SAC [6] is defined in the form of − log (1/ |A|) = log |A| multiplied by a predetermined coefficient.

Table 3: Hyperparameter setting

discount factor γ 0.99
embedding dimension d 128

number of attention heads 8
equilibrium guidance coefficient β 0.1
pursuer target entropy coefficient 0.05
evader target entropy coefficient 0.1

batch size 128
learning rate 10−5

update epoch 8

C.2 Learning Curves

Besides the 2-pursuer case shown in the main paper, we have also verified the EPG framework in the
3-pursuer no-exit scenario using the exact equilibrium oracle from the DP approach (Algorithm 1).
The learning curves of pursuer policy are shown in Figure 5.

0 2500 5000 7500 10000 12500 15000 17500 20000
Episode

0

20

40

60

80

100

120

Te
rm

in
at

io
n 

Ti
m

es
te

p

Training Set
Testing Set

Figure 5: Pursuer learning curves in 3-pursuer no-exit PEGs

Figure 6 provides the learning curves of pursuer policy when trained with the grouping-extended
DP approach in the 6-pursuer scenario. Note that the difficulty of pursuit is not reduced when it
comes to 6 pursuers since a success pursuit requires 3 pursuers simultaneously adjacent to the evader.
Also note that our RL policy eventually demonstrates a better performance in the testing set than in
the training set. This shows the strong zero-shot generalizability of our approach in the 6-pursuer
scenario and also explains the strong performance of the RL pursuer in Table 5.

Figure 7 shows the training process of the evaders in 2-pursuer and 6-pursuer scenarios, respectively.
In contrast to pursuers, the evader aims to maximize the termination timesteps in no-exit scenarios.
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Figure 6: Pursuer learning curves in 6-pursuer no-exit PEGs
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Figure 7: Evader learning curves in 2-pursuer and 6-pursuer scenarios

Note that in our practical implementation, the pursuer side receives a positive reward of +30 when
capturing the evader, which aligns with the hyperparameters in Table 3. During training of the evader,
a reward of −30 is in turn received upon pursuit, which corresponds to the adversarial game setting.

C.3 Compute Resources and Time Costs

For no-exit graphs, EPG requires preprocessing the Nash value (or, equivalently, the array D in the
DP algorithm) for each graph contained in the training set. Since our DP algorithm has a near-optimal
time complexity, for a 2-pursuer 500-node graph, it only takes around 10 seconds to run Algorithm 1
without the last loop, using a single 12th Gen Intel Core i7-12700F CPU. For multi-exit graphs, the
matching-based heuristic algorithm is directly executed online and has no preprocessing requirement.

For the reinforcement learning process, Table 4 provides our recorded time for running 1000 EPG
episodes, using two NVIDIA A100-SXM4-40GB GPUs. Intuitively, the training time grows sublin-
early in the number of agents involved in the policy.

Table 4: Time requirement for 1000 EPG episodes

Game Scenario Training Object Time
2-pursuer no-exit PEG 2-pursuer policy 99 min
6-pursuer no-exit PEG 6-pursuer policy 180 min
2-pursuer no-exit PEG evader policy 75 min
6-pursuer no-exit PEG evader policy 75 min

5-pursuer 8-exit PEG [17] 5-pursuer policy 159 min
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D Experimental Details

D.1 Further Tests in Real-World Graphs

Figure 8 provides the illustrations of the real-world graphs used in Section 4.1.

Figure 8: Illustrations of Scotland-Yard Map, Downtown Map, and 7 famous real-world locations
(following the order in Tables 1 and 5)

Table 5: Performance of RL pursuer / evader against DP oracle in no-exit PEGs with 6 pursuers

Graph Structure Pursuit Success Rate ↑ Evasion Timestep ↑
DP - DP RL - DP SPS - DP DP - DP DP - RL

Grid Map 1.00 1.00 1.00 7.73± 2.75 6.28± 2.57
Scotland-Yard Map 1.00 0.98 0.00 10.28± 3.70 7.60± 2.77

Downtown Map 1.00 0.98 0.01 10.44± 3.37 7.77± 2.83
Times Square 1.00 0.99 0.01 18.06± 6.67 14.54± 4.84

Hollywood Walk of Fame 1.00 0.95 0.00 34.90± 16.32 24.15± 10.20
Sagrada Familia 1.00 0.96 0.00 27.11± 11.77 19.11± 5.90

The Bund 1.00 0.91 0.02 32.14± 16.98 22.01± 7.95
Eiffel Tower 1.00 0.99 0.21 26.15± 9.29 20.96± 7.70

Big Ben 1.00 0.96 0.00 32.61± 14.09 24.45± 9.77
Sydney Opera House 1.00 0.85 0.00 33.23± 13.56 24.60± 10.88

Table 5 presents the results of our further tests in the 6-pursuer no-exit PEGs under the real-world
graphs. As is shown in the table, the pursuit is still guaranteed by the grouped DP policy. This is
reasonable because every sub-team of 2 pursuers guarantees the eventual adjacency for half of the
pursuers (i.e., one pursuer). Besides, our MARL pursuer exhibits a high rate of success against the
DP-based evader under the grouping mechanism.

The shortest path strategy (SPS), however, has very low success rates against the DP-based evader in
the real-world graphs. This reflects the strength of our DP policies even under a grouping extension
that trades off the optimality. Besides, our RL evader maintains a stable performance against the DP
pursuer, with an acceptable decline of evasion steps as in the 2-pursuer case.

D.2 Test Details

As is stated in Section 4, our zero-shot testing graphs are differentiated from the 152 Dungeon training
graphs: Section 4.1 (Table 1) uses 10 unseen real-world graph structures. Section 4.2 (Figure 3)
uses 10 unseen Dungeon graphs. Section 4.3 (Figure 4) uses the 10 unseen Dungeon graphs (left,
zero-shot evaluations during training), Grid Map (mid), and Scotland-Yard Map (right).
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For the tests in no-exit PEGs, the initial positions for the agents in the testing graphs are randomly
generated under the restriction that the shortest path distance between the pursuers and the evader is
greater than 5. This restriction serves to rule out certain easy pursuits.

For multi-exit PEGs, we randomly generated 1000 initial positions for the exits and agents, strictly
following the descriptions and code from Grasper [17] for Grid Map and Scotland-Yard Map. For
example, the minimum length of the evader’s shortest path to any exit is set to 6 for the Grid Map and
5 for the Scotland-Yard Map. While [17] claims that they rule out the trivial cases that are either too
difficult or too simple, the specific restrictions on the initial conditions are related to their method
and hard to replicate. Therefore, we simply rule out the cases where it is clearly impossible for the
pursuers or the evader to win. For the evader, we require that its distance to the closest exit be no
greater than 10 (the time horizon of the game). For the pursuers, we require that, for any exit that the
evader can reach in 10 steps, there is at least one pursuer who is closer than or as close as the evader
with respect to the shortest path distance towards the exit.

All of the tests for the zero-shot performance of our RL policies are conducted after 30000 EPG
episodes (each with at most 128 transitions) within the training set that contains a total of 152 graphs.

D.3 Pursuit and Evasion Examples in No-Exit Graphs

Figures 9 and 10 use a PEG example in the 2-pursuer no-exit scenario to illustrate how our RL policy
succeeds in capturing the DP evader while SPS is stuck in a loop (from step 9 to step 29) under the
same initial condition. The graph is abstracted from a procedurally generated Dungeon map unseen
during the training process. The circles represent the pursuers, and the square represents the evader.

Figure 9: Successful pursuit against DP evader by RL pursuers

Figure 10: Failed pursuit against DP evader by shortest path strategy
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Figure 11 shows a pursuit-evasion example between 6 grouped DP pursuers and the RL evader trained
through EPG. The number of pursuers at the same node is explicitly shown on the circle when it is
more than one. While surrounded by the pursuers, the RL evader seeks to maximize the timesteps
before being captured by 3 adjacent pursuers (i.e., half of the pursuers).

Figure 11: DP pursuers versus RL evader in 6-pursuer no-exit graph

Figure 12 shows how the RL evader manages to evade SPS pursuers just like the DP evader. Although
the evader policy does not train against SPS, it manages to find how to create a loop that can make
similar pursuer strategies fail. The emergence of such behaviors could also reflect the generalization
capability of our EPG framework.

Figure 12: Shortest path strategy versus RL evader in 6-pursuer no-exit graph
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D.4 Pursuit Examples in Multi-Exit Graphs

While the time horizon for no-exit PEGs is 128, it is only set to 10 in multi-exit PEGs to align with
[17]. Therefore, we show more pursuit examples in graphs with exits from the Dungeon environment.
Figures 13, 14, and 15 provide three examples to show the zero-shot performance of our 5-pursuer
policy trained through EPG with equilibrium heuristic. The light stars represent the 8 exits.

Figure 13: Pursuit example one in 5-pursuer 8-exit graph

Figure 14: Pursuit example two in 5-pursuer 8-exit graph

Figure 15: Pursuit example three in 5-pursuer 8-exit graph

Intuitively, in the first example, the two pursuers on the right manage to block the two exits in time.
In the second example, the four pursuers near the evader manage to surround it from all directions. In
the third example, the yellow pursuer guards one nearby exit, while the red pursuer and the purple
pursuer cooperate to guard the other exit close to the evader.

29



E Can Zero-Shot RL Pursuers Outperform DP?

While our previous results demonstrate the optimality of the DP policies, which maintain the pursuit
success rate of 1 whenever possible, the mixed-strategy RL pursuers trained through EPG can actually
outperform the pure-strategy DP pursuers when the pursuit is not globally guaranteed. We use the
no-exit PEG results under two other real-world graph structures to show this.

E.1 Results in Scale-Free Graph

Figure 16: Illustration of Scale-Free Graph

Figure 16 provides an illustration of Scale-Free Graph, which is generated using Barabási-Albert
preferential attachment [1]. With a maximum degree of 21 and a diameter of 11, Scale-Free Graph
has very strong connectivity that can make evasion easier. As the pursuit is not guaranteed for 2
pursuers in this graph, we find that the DP pursuer policy only has a success rate of 0.1 against the
DP evader. With a success rate of 0.44, our RL policy clearly outperforms DP under this graph.

E.2 Results under Singapore Graph and Success Condition Shift

Figure 17: Illustration of Singapore Graph

Figure 17 provides an illustration of Singapore Graph, which is a high-level abstraction for the map
of Singapore. With a maximum degree of 13 and a diameter of 41, the connectivity of the Singapore
Graph is not as good as that of the Scale-Free Graph. While the pursuit is guaranteed for 2 pursuers
under the success condition that one pursuer is adjacent to the evader, it is no longer guaranteed when
we strengthen the condition to be both pursuers. In this case, the success rate of DP drops from 1 to
0.04, while the success rate of RL drops from 0.78 to 0.49. This comparative result suggests that the
RL policy trained through our EPG framework could be robust against certain shifts of game rules.
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Actually, we have further verified such robustness of our RL policy in the testing graphs that we used
in the main paper. Table 6 compares the percentages of successful pursuit maintained by DP and RL
pursuers after strengthening the success condition under the 10 graph structures. Compared with the
DP pursuer, the RL pursuer demonstrates a clear advantage of robustness, with the maintenance rates
over 60% (under 1000 tests for each graph) in 9 out of the 10 graphs.

Table 6: Percentages of successful pursuit maintained after success condition shift

Graph Structure DP pursuer RL pursuer
Grid Map 28.9% 90.6%

Scotland-Yard Map 27.9% 90.4%
Downtown Map 17.0% 84.6%

Times Square, New York 20.7% 68.4%
Hollywood Walk of Fame, LA 4.7% 93.6%

Sagrada Familia, Barcelona 1.7% 78.1%
The Bund, Shanghai 2.0% 65.9%
Eiffel Tower, Paris 9.1% 40.3%
Big Ben, London 6.3% 66.1%

Sydney Opera House, Sydney 8.6% 79.5%

F Additional Evaluations

F.1 Performance under Large-Scale Graphs

Here we conduct additional experiments to further show that our trained policy can directly generalize
to large-scale graphs. We increase both map range and discretization accuracy to derive significantly
larger graphs for the eight real-world locations in Table 1. Specifically, the larger graphs are generated
by doubling the discretization accuracy and increasing the map range. For Sydney Opera House, we
actually double the map range to create a graph with at least 1000 nodes.

Table 7: Performance comparison across different maps at original and large scales

Location Original Scale Large Scale
Node Number Success Rate Node Number Success Rate

Downtown Map 206 0.99 907 0.99
Times Square 171 0.98 768 0.89

Hollywood Walk of Fame 201 0.62 892 0.71
Sagrada Familia 231 0.66 899 0.57

The Bund 200 0.60 952 0.54
Eiffel Tower 202 0.97 616 0.82

Big Ben 192 0.91 675 0.78
Sydney Opera House 183 0.74 1074 0.83

The success rates of two RL pursuers against the DP evader under the original graphs and the large
graphs are compared in Table 7. While the node number increases significantly, the pursuit success
rates do not suffer from a significant decline under large-scale graphs. In scenarios like Hollywood
Walk of Fame and Sydney Opera House, they are even higher because of the structural changes.

Note that we do not fine-tune our policy on the larger graphs. We only adjust the termination function
to keep the difficulty of the real-world pursuit task under the new graphs close to the original one.
Specifically, one pursuer succeeds when its distance to the evader is no greater than 1 on the original
graph and when the distance is no greater than 2 on the larger graph. Since the discretization accuracy
doubles, the two conditions correspond to roughly the same real-world pursuit condition despite
some local structural changes. Under the new graphs with the new success condition, we rerun the
DP algorithm (Algorithm 1) to generate the optimized policies correspondingly.
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F.2 Performance against PSRO Policies

Besides DP, we also test the results of our EPG pursuer and evader policies against the PSRO [16]
policies directly trained on the testing graphs. As is shown in Table 8, our EPG policies guarantee to
capture the PSRO evader and survive significantly longer against the PSRO pursuers (except for Grid
Map). This further verifies the benefit of using EPG for cross-graph zero-shot generalization.

Table 8: Performance comparison between EPG and PSRO policies

Graph Structure Termination Timestep [Success Rate]
EPGp - PSROe PSROp - EPGe

Grid Map 14.04± 6.88 [1.00] 11.87± 2.39 [1.00]
Scotland-Yard Map 17.45± 9.17 [1.00] 25.48± 16.80 [1.00]

Downtown Map 14.14± 7.37 [1.00] 38.39± 30.50 [0.97]
Times Square, New York 17.72± 7.86 [1.00] 37.87± 29.94 [0.97]

Hollywood Walk of Fame, LA 30.93± 17.67 [1.00] 60.71± 39.21 [0.86]
Sagrada Familia, Barcelona 26.06± 12.43 [1.00] 39.50± 28.25 [0.97]

The Bund, Shanghai 24.76± 13.01 [1.00] 34.97± 24.75 [0.99]
Eiffel Tower, Paris 19.10± 10.69 [1.00] 25.24± 14.07 [1.00]
Big Ben, London 23.70± 13.00 [1.00] 53.67± 36.41 [0.90]

Sydney Opera House, Sydney 26.14± 12.81 [1.00] 67.23± 43.37 [0.77]

G Broader Impacts

As this work presents a general framework that leads to robust RL pursuer or evader policies with
desirable zero-shot performance across different real-world graphs, it can be directly applied to
real-world PEG solving under varying graph structures. The EPG framework in principle allows for
an arbitrary amount of pursuers, exits, and graph nodes and thus guarantees applicability to diverse
PEG settings in the real world. Since the inference time is negligible under GPUs, the trained policy
model guarantees real-time applicability even when the graph structure dynamically changes, as we
only need to recompute the shortest path distances as inputs.

From a security perspective, through our approach, a pursuit policy under urban streets can be readily
generated for any traffic conditions that may lead to quite different graph connectivity. When trained
under a more diverse set of graphs and a larger scale of parameters, a "large" policy model for general
security purposes can be obtained. Such a model can save a huge amount of computation for solving
different real-world PEGs. For example, while it can take hours to compute equilibrium policies in
500-node no-exit graphs with 3 pursuers through Algorithm 1, this time consumption is only required
during preprocessing and training through EPG rather than during execution.

Also, our trained models can efficiently generate reasonable pursuit and evasion examples that may
relate to real-world pursuit and evasion behaviors. This could help people better understand and
predict the motivations of both the pursuers and the evader. Besides, due to its generality, the EPG
training pipeline can also be extended for robust policy learning in other adversarial game domains.
The idea of constructing equilibrium adversaries through preprocessed or preconstructed (accurate or
approximate) oracles could have further impacts on subsequent reinforcement learning research.
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