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Abstract
With the rise of large foundation models, split
inference (SI) has emerged as a popular compu-
tational paradigm for deploying models across
lightweight edge devices and cloud servers, ad-
dressing data privacy and computational cost con-
cerns. However, most existing data reconstruction
attacks have focused on smaller CNN classifica-
tion models, leaving the privacy risks of founda-
tion models in SI settings largely unexplored. To
address this gap, we propose a novel data recon-
struction attack based on guided diffusion, which
leverages the rich prior knowledge embedded in
a latent diffusion model (LDM) pre-trained on a
large-scale dataset. Our method performs iterative
reconstruction on the LDM’s learned image prior,
effectively generating high-fidelity images resem-
bling the original data from their intermediate rep-
resentations (IR). Extensive experiments demon-
strate that our approach significantly outperforms
state-of-the-art methods, both qualitatively and
quantitatively, in reconstructing data from deep-
layer IRs of the vision foundation model. The
results highlight the urgent need for more robust
privacy protection mechanisms for large models
in SI scenarios. Code is available at: https:
//github.com/ntuaislab/DRAG

1. Introduction
The rapid development of deep learning has revolution-
ized various aspects of daily life—from AI assistants to
autonomous vehicles. However, the substantial computa-
tional resources required by these emerging models often
hinder their deployment on edge devices. Therefore, offload-
ing intensive computation to cloud servers has become a
popular alternative. Following this paradigm, split inference
(SI) (Kang et al., 2017) has emerged as one of the most
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promising solutions, as it balances computational and pri-
vacy concerns. This approach enables efficient utilization of
cloud resources, reduces the computational burden on local
devices, and facilitates the integration of complex models
into everyday technologies by partitioning neural network
computations between edge devices and cloud servers, with
data processed locally before being sent to the server.

Despite its advantages, recent studies (He et al., 2019; Dong
et al., 2022; Li et al., 2023; Xu et al., 2024; Sa et al., 2024)
have uncovered significant privacy risks associated with
SI, particularly in the form of data reconstruction attacks
(DRA). In DRA, adversaries attempt to reconstruct clients’
input data by exploiting the exchanged intermediate repre-
sentations (IR) between clients and servers, posing serious
threats that break users’ privacy.

However, the growing adoption of more powerful models,
such as Vision Transformers (ViT) (Dosovitskiy et al., 2021),
raises concerns about the effectiveness of existing defenses.
ViTs have demonstrated superior performance across vari-
ous vision tasks and are widely used in modern applications.
Despite this, the privacy implications of deploying these
models in SI settings remain underexplored.

In this paper, we address this gap by investigating privacy
leaks in vision transformers in the context of SI. We propose
a novel attack based on guided diffusion that effectively uti-
lizes the prior knowledge captured by large latent diffusion
models (LDM) (Rombach et al., 2022) pre-trained on large-
scale datasets (e.g., Stable Diffusion) to reconstruct input
data from deep-layer IR. Leveraging this prior knowledge,
we successfully invert IR back to the original input data
across various natural image datasets, revealing a critical
privacy vulnerability in the SI framework. Additionally,
we evaluate our attack on models equipped with existing
defenses (Singh et al., 2021; Vepakomma et al., 2020) and
show that input data can still be successfully reconstructed
from deep-layer IR despite the defenses. Our key contribu-
tions are summarized as follows:

• We propose DRAG, a novel attack that exploits the
prior knowledge captured by LDMs to reconstruct in-
put data from deep-layer IR.

• Our attack can reconstruct high-quality images from
widely used vision foundation models, specifically
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CLIP (Radford et al., 2021) and DINOv2 (Oquab et al.,
2024), demonstrating that the privacy threat exists even
in widely used general-purpose vision encoders.

• We explore defense strategies tailored for vision trans-
formers to mitigate the threat of privacy leakage.

2. Related Work
2.1. Split Inference

Split inference (SI) (Kang et al., 2017) is a method aimed at
speeding up inference and/or reducing power consumption
in endpoint devices while ensuring data privacy. It has been
widely studied in various applications, including computer
vision tasks such as image classification, detection, and
segmentation, as well as natural language processing tasks
such as language understanding (Matsubara et al., 2022). In
recent years, SI has also attracted attention for its role in
generative AI, including LLMs and text-to-image generation
(Ohta & Nishio, 2023).

Unlike the traditional cloud-based inference approaches that
require transmitting raw data to servers, SI preserves privacy
by sending only transformed, non-trivially interpretable IR
to the cloud. Specifically, the model f is partitioned into
two parts: the client model fc : X → H that maps input
data x from space X to IR space H, and the server model
fs : H → Y that maps IR to output space Y . The client
model is deployed on the edge device, while the server
model operates in the cloud. During inference, the private
data x∗ is first processed at the edge by fc, producing the
“smashed” data h∗ = fc(x

∗). This IR is then transmitted to
the cloud, where the server completes the computation by
inferring y∗ = fs(h

∗). This approach, which provides a cer-
tain degree of privacy preservation for users, also leverages
the abundant computational resources of cloud servers to
accelerate inference, making it a feasible solution for appli-
cations requiring both privacy and low-latency predictions.

2.2. Data Reconstruction Attack (DRA)

In the context of SI, an adversary may extract private infor-
mation by reconstructing the original input x∗ from h∗, as
illustrated in Figure 1. Following He et al. (2019), we cate-
gorize existing DRAs based on the adversary’s knowledge
of the client model as follows:

White-box attacks assume complete knowledge of the ar-
chitecture and parameters of the client model. This as-
sumption has become more reasonable with the rise of large
models leveraging frozen, publicly available vision encoders
(Liu et al., 2023; Chen et al., 2023). The early work of He
et al. (2019) framed reconstruction as regularized Maximum
Likelihood Estimation (rMLE), which optimizes a candidate
input to match the target IR, with Total Variation (Rudin

Figure 1: Privacy threats in split inference.

et al., 1992) serving as an image prior. Singh et al. (2021)
improved reconstruction quality by adding a deep image
prior (Ulyanov et al., 2018) in their Likelihood Maximiza-
tion (LM) method. More recently, Li et al. (2023) intro-
duced GAN-based Latent Space Search (GLASS), which
constrains reconstructions using StyleGAN2 (Karras et al.,
2020b). This method yields high-fidelity images that suc-
cessfully evade several defenses (He et al., 2019; Singh et al.,
2021; Titcombe et al., 2021; Mireshghallah et al., 2020; Li
et al., 2021; Osia et al., 2020).

Black-box attacks require only query access to fc, typically
utilizing inverse networks trained on input-output pairs (He
et al., 2019). Recent work has enhanced this approach by
incorporating diffusion models (Chen et al., 2024), which
offer better reconstruction quality.

Query-free attacks operate without access to fc. Instead,
they use a collection of IRs to construct surrogate models f ′

c

that approximate fc, followed by applying reconstruction
techniques to these surrogates. Beyond He et al. (2019),
previous works (Pasquini et al., 2021; Erdoğan et al., 2022;
Gao & Zhang, 2023; Xu et al., 2024) assume the adversary
participates in the model training process to enhance the
effectiveness of subsequent reconstruction attacks.

Existing evaluations focused on CNN architectures like
ResNet18 (He et al., 2016). ViTs process images funda-
mentally differently through patch tokenization and atten-
tion mechanisms, and their vulnerability to reconstruction
attacks remains largely unexplored. Our analysis reveals
that ViTs exhibit token order invariance, a feature absent in
CNNs, which significantly affects attack effectiveness.

2.3. Diffusion Models

In recent years, diffusion models (Ho et al., 2020; Song
et al., 2020) have demonstrated remarkable capabilities in
generating realistic images by iteratively refining noise into
coherent visuals. Conditional generation has been signifi-
cantly advanced through methods such as classifier guidance
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(Dhariwal & Nichol, 2021) and classifier-free guidance (Ho
& Salimans, 2021), which incorporate class information to
guide the generation process. Specifically, classifier guid-
ance (Dhariwal & Nichol, 2021) estimates the conditional
distribution pt(y|x) while maintaining a fixed unconditional
distribution pt(x), enabling conditional generation through
the Bayes rule: pt(x|y) ∝ pt(x) pt(y|x). Universal Guid-
ance Diffusion (UGD) (Bansal et al., 2024) further expands
the scope of conditional generation by integrating various
neural networks to incorporate diverse conditions, such as
object bounding boxes, segmentation masks, face identities,
and stylistic attributes.

While classifier guidance seeks to adapt a fixed uncondi-
tional model pt(x) by developing an appropriate conditional
distribution pt(y|x), another line of research (Chung et al.,
2023; Yang et al., 2024) assumes the availability of a pre-
defined conditional distribution p0(y|x). This assumption
positions diffusion models as promising tools for solving
inverse problems.

Moreover, LDMs (Rombach et al., 2022) have further ad-
vanced diffusion models by enabling the generation of di-
verse, high-resolution, high-quality images within a latent
space, thus improving computational efficiency. Subsequent
work (Ramesh et al., 2022; Zhang et al., 2023) has extended
control mechanisms within the latent diffusion framework,
allowing more precise and hierarchical image manipulation.

3. Methodology
3.1. Threat Model

Following previous work (He et al., 2019; Singh et al., 2021;
Dong et al., 2022; Li et al., 2023), we consider an honest-
but-curious server in SI that seeks to reconstruct x∗ from
h∗. Given the prevalence of frozen foundation models in
downstream applications, we assume white-box access to
the client model fc, providing the adversary with complete
architectural and parameter knowledge. Under this threat
model, we formulate the problem using two complementary
approaches: (1) optimization-based and (2) learning-based.

Optimization Based. The adversary aims to find input data
x′ whose corresponding IR closely matches h∗ by solving
the following optimization problem:

x′ = argmin
x∈X

dH(fc(x),h
∗) + λRI(x), (1)

where dH measures the distance between the IRs, I is the
image manifold which x′ lies on, RI represents the regu-
larization term ensuring perceptually realistic, and λ ≥ 0
controls the weight of regularization. Ultimately, the adver-
sary’s goal is to achieve x′ ≈ x∗.

Learning Based. The adversary may attempt to infer x∗ by

training an inverse network f−1
c to invert h∗ back to input

space X : x′ = f−1
c (h∗), where f−1

c is trained by paired
data (x, fc(x)) using a public dataset Dpublic:

f−1
c = argmin

f−1
c

E
[
||f−1

c (fc(x))− x||2
]

(2)

The following subsections detail our reconstruction ap-
proach, as illustrated in Figure 2.

3.2. Data Reconstruction Attack using Guided Diffusion

In this section, we propose leveraging guided diffusion for
data reconstruction attacks. Based on a noise predictor ϵθ
and its corresponding noise scheduler {(αt, σt)}Tt=1, un-
conditional DDIM sampling (Song et al., 2020) transitions
sample x from timestep t to t− 1 as follows:

xt−1 =
√
αt−1

(
xt −

√
1− αt ϵθ(xt)√

αt

)
+

√
1− αt−1 − σ2

t ϵθ(xt)

+ σt ϵt, (3)

where ϵt ∼ N (0, I) denotes Gaussian noise sampled from a
standard normal distribution. For conditional image genera-
tion, classifier guidance (Dhariwal & Nichol, 2021) modifies
the score function by adding the gradient of a classifier’s
log-probability to the predicted noise:

ϵθ(xt, y) = ϵθ(xt)− w
√
1− αt∇xt

log pθ(y|xt), (4)

where y denotes the target condition, and w controls the
strength of guidance. Extending classifier guidance, UGD
(Bansal et al., 2024) replaces the classification loss with a
general, differentiable loss L(xt, y). For data reconstruc-
tion, we define the objective function as:

L(xt, y) = dH(fc(xt),h
∗). (5)

Notably, directly feeding xt to fc for guidance computation
is unreliable, as fc is typically trained only on clean images.
To address this, Chung et al. (2023) and Bansal et al. (2024)
estimate the guidance using the unique posterior mean x̂0,
a single-step denoised sample:

L(x̂0, y) = dH(fc(x̂0),h
∗), (6)

where x̂0 is computed using Tweedie’s formula with a single
forward pass through the noise predictor ϵθ:

x̂0 =
xt −

√
1− αt ϵθ(xt)√

αt
. (7)

Diffusion Spherical Guidance (DSG) (Yang et al., 2024)
reduces the number of denoising steps required by guided
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Figure 2: Illustration of DRAG (Data Reconstruction Attack using Guided Diffusion). The diffusion model serves as an
image prior, constraining the solution space of x in optimization-based DRAs. Moreover, DRAG can be extended by
incorporating the Inverse Network (He et al., 2019): we first obtain an initial estimate xcoarse = f−1

c (h∗), then refine it by
diffusion-denoising process. We refer to this enhanced variant as DRAG++.

diffusion. It also enhances generation quality. DSG aligns
ϵt with the guidance gt = ∇xt

L(x̂0, y) through:

ϵt ← r · UNIT((1− w)σt ϵt + wr · UNIT(gt)). (8)

where r =
√
nσt depends on n, the dimension of xt, and

UNIT is the operator that normalizes a vector to have unit
norm. In our proposed method, we adhere to Equation (8)
for guided diffusion.

To enhance reconstruction quality, we refine the guidance
gt using gradient clipping and the historical guidance vec-
tor obtained during the reconstruction process, employing
methods such as the Adam optimizer (Kingma & Ba, 2015).
These techniques reduce the number of steps required to
reconstruct the images. Since fc is typically non-convex,
a single guidance step may not lead to high-performance
reconstruction. To address this, we employ self-recurrence
(Bansal et al., 2024), projecting xt−1 back to xt via a small-
step DDPM diffusion (Ho et al., 2020), repeating the denois-
ing and diffusion process k times:

xt =
√
αt/αt−1 · xt−1 +

√
1− αt/αt−1 · ϵ. (9)

We refer to this approach as DRAG—Data Reconstruction
Attack using Guided Diffusion. Algorithm 1 outlines our
proposed attack in detail. Note that the problem differs from
previous works in three key aspects, introducing additional
challenges: (1) the client model fc is typically assumed to
be non-convex, (2) defensive mechanisms may be deployed,
forcing attackers to operate in adversarial settings, (3) clients
can embed randomness into fc, further complicating the
problem, as detailed in Section 5.5.

3.3. Extending DRAG with Inverse Networks

To enhance the performance and efficiency of DRAG, we
integrate an auxiliary Inverse Networks (He et al., 2019).
This network accelerates DRAG by providing a coarse re-
construction from the target IR, serving as a more effective
initialization. Specifically, we train the inverse network
f−1
c : H → X on an auxiliary dataset sourced from pub-

licly available data Dpublic, to project the IR back to the
image space and obtain xcoarse. This coarse reconstruction
is further projected onto an editable manifold by adding
random noise at a small timestep t = sT :

xt =
√
αt ·xcoarse +

√
1− αt · ϵ,where ϵ ∼ N (0, I) (10)

where the strength parameter s satisfies 0 ≤ s ≤ 1. We
refer to this enhanced method as DRAG++.

3.4. Adapting to Latent Diffusion Models

As LDMs perform diffusion and denoising processing in
the latent space Z instead of the data space X , we adapt
our approach when leveraging LDMs as the image prior by
replacing the noisy sample xt with the noisy latent zt. The
mapping betweenX andZ is provided by the corresponding
latent autoencoder E and D. All other components of the
method remain unchanged.

4. Experimental Setups
In this section, we first introduce the details of our exper-
imental settings, including datasets, target victim models,
compared methods, evaluation metrics, and attacker models.
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Algorithm 1 DRAG

// Noise ϵ is sampled from N (0, I) for every usage
s← { .m = 0, .v = 0, .i = 0 }
zT ∼ N (0, I)
for t = T to 1 do

for n = 1 to k do
x̂0 ← D(TWEEDIESESTIMATION(zt))
gt ← ∇zt

(dH(fc(x̂0),h
∗) + λℓ2Rℓ2(x̂0))

gt ← CLIPNORM(gt, cmax)
gt, s← STATEUPDATE(gt, s)
zt−1 ← GUIDEDSAMPLING(gt)
zt ←

√
αt/αt−1 · zt−1 +

√
1− αt/αt−1 · ϵ

end for
end for
return D(z0)

// Refine gt via momentum such as Adam
function STATEUPDATE(gt, s)
s.m← β1 · s.m+ (1− β1) · gt

s.v← β2 · s.v + (1− β2) · g2
t

s.i← s.i+ 1
m̂, v̂← s.m/

(
1− βi

1

)
, s.v/

(
1− βi

2

)
gt ← m̂/

(√
v̂ + 10−8

)
return gt, s

end function

function GUIDEDSAMPLING(gt)
ϵt ← r · UNIT((1− w)σt ϵ+ wr · UNIT(gt))
return DDIM(zt, ϵθ(zt), ϵt)

end function

4.1. Datasets

To evaluate our proposed methods, we sample 10 im-
ages from the official validation splits of each dataset: (1)
MSCOCO (Lin et al., 2014), (2) FFHQ (Karras et al., 2019),
and (3) ImageNet-1K (Deng et al., 2009), constructing a
collection of diverse natural images. All images are center-
cropped and resized to 224×224 to match the input dimen-
sions of the target model. We use ImageNet-1K image clas-
sification as the primary task to quantitatively assess model
utility. To simulate realistic conditions where the client and
adversary have non-overlapping datasets, we randomly split
the official training split of ImageNet-1K into two distinct,
equal-sized and non-overlapping subsets: a private portion
Dprivate and a public portion Dpublic. The target model f is
fine-tuned exclusively on Dprivate, while the inverse network
f−1
c , as proposed in Section 3.3, is trained solely on Dpublic.

4.2. Target Models

We aim to reconstruct data from the widely used CLIP-ViT-
B/16, CLIP-RN50 (Radford et al., 2021), and DINOv2-Base

(Oquab et al., 2024), vision encoder, known for its strong
adaptability and zero-shot capabilities across vision tasks
(Rao et al., 2022; Mokady et al., 2021). The reconstruction
is performed after layers l = {0, 3, 6, 9, 12} for CLIP-ViT-
B/16 and DINOv2-Base, while for CLIP-RN50, the attack is
conducted after blocks l = {1, 2, 3, 4, 5}. We evaluated the
attack in three configurations: (1) the model is frozen at the
pre-trained checkpoint, (2) protected by DISCO (Singh et al.,
2021), and (3) protected by NoPeek (Vepakomma et al.,
2020). The details of these two defenses can be found in
Appendix D. These two defenses, highlighted in GLASS (Li
et al., 2023), have demonstrated superior privacy-preserving
performance compared to other defenses.

4.3. Baseline and Metrics

We compare our method with previous optimization-based
DRAs: rMLE (He et al., 2019), LM (Singh et al., 2021)
and GLASS (Li et al., 2023). Implementation details are
provided in Appendix C. To quantify privacy leakage across
these attacks, we evaluated reconstruction performance us-
ing three complementary metrics: MS-SSIM (Wang et al.,
2003), LPIPS (Zhang et al., 2018), and image similarity
measured by DINO ViT-S/16 (Caron et al., 2021). These
metrics capture both low-level fidelity and high-level se-
mantic similarity, better reflecting privacy risks by aligning
with human perceptual judgment compared to pixel-wise
measures such as MSE or PSNR (Horé & Ziou, 2010).

4.4. Attacker Models

We use Stable Diffusion v1.5 (SDv1.5) as our image
prior. GLASS (Li et al., 2023) employs two publicly avail-
able checkpoints: StyleGAN2-ADA (Karras et al., 2020a)
trained on FFHQ and StyleGAN-XL (Sauer et al., 2022)
trained on ImageNet-1K. Assuming the attacker knows
the target image distribution, GLASS selects StyleGAN2-
ADA for FFHQ images and StyleGAN-XL otherwise. This
domain-specific selection inherently advantages GLASS by
matching priors to true data distribution, while our diffusion-
based approach uses a single, domain-agnostic prior.

For the architecture of the inverse network, we adopt the
decoder architecture from He et al. (2022) to reconstruct im-
ages from the tokenized representations produced by ViTs.

4.5. Distance Metrics and Regularization

We use token-wise cosine distance as the distance metric dH
for the data reconstruction process in ViT-family models:

dH(h1,h2) = 1− 1

N

N∑
i=1

⟨h1[i, :],h2[i, :]⟩
||h1[i, :]|| · ||h2[i, :]||

, (11)

where N denotes the number of tokens. For CLIP-RN50,
the MSE loss is adopted. To prevent the latent zt from
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Table 1: Reconstruction performance of optimization-based attacks across target models and split points without defenses.
Bold indicates the best scores, while underlined indicate the second-best.

CLIP-ViT-B/16 DINOv2-Base CLIP-RN50

Method Split Point MS-SSIM ↑ LPIPS ↓ DINO ↑ MS-SSIM ↑ LPIPS ↓ DINO ↑ Split Point MS-SSIM ↑ LPIPS ↓ DINO ↑
rMLE

Layer 0

0.8888 0.0709 0.9712 0.9162 0.0504 0.9630

Block 1

0.6832 0.1543 0.9111
LM 0.9638 0.0237 0.9903 0.9698 0.0227 0.9850 0.9769 0.0150 0.9919

GLASS 0.8700 0.1466 0.8289 0.9147 0.1076 0.8369 0.9052 0.0785 0.8485
DRAG 0.9588 0.0489 0.9259 0.9567 0.0440 0.9284 0.9316 0.0476 0.9454

rMLE

Layer 3

0.8612 0.0914 0.9706 0.8371 0.1641 0.9302

Block 2

0.5741 0.2618 0.9053
LM 0.9742 0.0206 0.9923 0.9682 0.0250 0.9890 0.9313 0.0382 0.9868

GLASS 0.9091 0.0556 0.9623 0.9340 0.0488 0.9580 0.7829 0.2185 0.7563
DRAG 0.9500 0.0372 0.9715 0.9570 0.0323 0.9728 0.9151 0.0604 0.9539

rMLE

Layer 6

0.6888 0.2608 0.8875 0.6566 0.2562 0.9111

Block 3

0.6745 0.2233 0.8986
LM 0.8604 0.0784 0.9734 0.7334 0.1676 0.9768 0.9028 0.0596 0.9769

GLASS 0.7113 0.1352 0.9326 0.7444 0.1495 0.9333 0.6785 0.2405 0.7877
DRAG 0.9028 0.0465 0.9784 0.9196 0.0455 0.9782 0.9118 0.0528 0.9662

rMLE

Layer 9

0.4957 0.5131 0.7159 0.5855 0.4374 0.7663

Block 4

0.4888 0.4198 0.7776
LM 0.6681 0.2138 0.9063 0.5281 0.3839 0.9555 0.5855 0.2576 0.9012

GLASS 0.3852 0.4310 0.6740 0.5404 0.3230 0.8467 0.4872 0.3568 0.7315
DRAG 0.7974 0.0967 0.9652 0.8483 0.0820 0.9719 0.7896 0.0898 0.9622

rMLE

Layer 12

0.3884 0.5900 0.6524 0.4375 0.5680 0.6079

Block 5

0.3980 0.5006 0.6739
LM 0.2560 0.6024 0.4248 0.3640 0.6190 0.8878 0.4432 0.3409 0.7614

GLASS 0.2396 0.5790 0.4553 0.4456 0.4076 0.7297 0.2917 0.4223 0.6811
DRAG 0.6735 0.1857 0.9331 0.7581 0.1443 0.9463 0.5206 0.2231 0.9001

deviating too far from the domain of the noise predictor
ϵθ, we introduce ℓ2 regularization on x̂0 to Equation (6)
to ensure it remains within the range [−1, 1] during the
reconstruction process:

Rℓ2(x̂0) =
λℓ2

CHW
· x̂2

0. (12)

5. Experimental Results
In this section, we first compare the reconstruction perfor-
mance of DRAG with prior methods on frozen, pre-trained
foundation models. Next, we evaluate DRAG++, which
integrates an auxiliary inverse network (IN) to improve
reconstruction performance. Subsequently, we evaluate
the generalization ability of DRAG on out-of-distribution
data. We then examine its robustness against two defenses,
DISCO and NoPeek. Finally, we analyze the reconstruction
performance when applying the token shuffling defense, a
mechanism intrinsic to ViTs. Complete experimental results
can be found in Appendix A, and further experiments on
the effects of key hyperparameters appear in Appendix B.

5.1. Reconstruction from Frozen Foundation Models

Table 1 presents quantitative reconstruction results, while
Figure 3 visualizes results on CLIP-ViT-B/16, highlighting
qualitative differences. Our approach consistently outper-
forms prior methods in reconstructing data from deeper
layers. Although rMLE and LM achieve competitive perfor-
mance at shallow split points, their reconstruction quality

degrades beyond layer 9 and layer 12, respectively. In con-
trast, DRAG outperforms the others at deeper split points
across the evaluated metrics.

Compared to GLASS, which also utilizes a data-driven im-
age prior and achieves strong performance on the FFHQ
dataset, our method attains comparable performance on
FFHQ and generalizes robustly to MSCOCO and ImageNet.
Despite employing a GAN trained on ImageNet, GLASS
reconstructs images from ImageNet with evident artifacts at
deep split points. In contrast, DRAG maintains high-fidelity
outputs free from such distortions.

5.2. Enhancing DRAG with Inverse Networks

We evaluate DRAG++ on CLIP-ViT-B/16 by comparing its
performance to the inverse network (IN) and the original
DRAG method. As shown in Table 2, DRAG++ achieves
higher reconstruction performance in terms of LPIPS and
DINO at split points beyond layer 3. While IN attains higher
MS-SSIM, DRAG++ demonstrates notable improvements in
LPIPS and DINO, with only a slight sacrifice in MS-SSIM
compared to IN. This result suggests that the combined
approach enhances perceptual quality in reconstruction.

5.3. Distribution Shift

We evaluate the generalization capability of DRAG and
DRAG++ through two extended experiments in an out-of-
distribution setting. In the first experiment, we reconstruct
aerial images from the UCMerced LandUse dataset (Yang
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Figure 3: Reconstruction results for CLIP-ViT-B/16 across split points without defenses.

Table 2: Reconstruction performance comparison between
inverse network alone and DRAG++ on CLIP-ViT-B/16.

Split Point Method MS-SSIM ↑ LPIPS ↓ DINO ↑

Layer 0
IN 0.9907 0.0112 0.9937

DRAG 0.9588 0.0489 0.9259
DRAG++ 0.9608 0.0485 0.9234

Layer 3
IN 0.9763 0.0351 0.9458

DRAG 0.9500 0.0372 0.9715
DRAG++ 0.9504 0.0349 0.9719

Layer 6
IN 0.9120 0.1799 0.7869

DRAG 0.9028 0.0465 0.9784
DRAG++ 0.9093 0.0457 0.9785

Layer 9
IN 0.8188 0.2993 0.7130

DRAG 0.7974 0.0967 0.9652
DRAG++ 0.8224 0.0875 0.9700

Layer 12
IN 0.7443 0.3618 0.6660

DRAG 0.6735 0.1857 0.9331
DRAG++ 0.7257 0.1685 0.9492

& Newsam, 2010), using f−1
c trained on ImageNet-1K. As

shown in Figure 4, DRAG and DRAG++ successfully recon-
struct these images, demonstrating their robustness across
different domains. In the second experiment, we replace the
diffusion model with a domain-specific model trained on
the LSUN-bedroom dataset (Yu et al., 2015). We compare
this configuration while keeping the other attack settings un-
changed. The results shown in Table 3 indicate that DRAG
achieves the best performance at layer 12 and ranks as the
runner-up at layers 3, 6, and 9, further demonstrating its
robustness even in an out-of-distribution setting.

5.4. Reconstruction from Privacy-Guarded Models

We evaluate attacks on models protected by the DISCO and
NoPeek defenses, using various hyperparameter configu-
rations to generate target models, as detailed in Table 4.

Table 3: Reconstruction performance using diffusion model
trained on out-of-distribution data for CLIP-ViT-B/16.

Split Point Method MS-SSIM ↑ LPIPS ↓ DINO ↑

Layer 0

rMLE 0.8888 0.0709 0.9712
LM 0.9638 0.0237 0.9903

GLASS 0.8700 0.1466 0.8289
DRAG† 0.9692 0.0275 0.9591

Layer 3

rMLE 0.8612 0.0914 0.9706
LM 0.9742 0.0206 0.9923

GLASS 0.9091 0.0556 0.9623
DRAG† 0.9488 0.0427 0.9722

Layer 6

rMLE 0.6888 0.2608 0.8875
LM 0.8604 0.0784 0.9734

GLASS 0.7113 0.1352 0.9326
DRAG† 0.8244 0.1574 0.9438

Layer 9

rMLE 0.4957 0.5131 0.7159
LM 0.6681 0.2138 0.9063

GLASS 0.3852 0.4310 0.6740
DRAG† 0.5379 0.3937 0.8154

Layer 12

rMLE 0.3884 0.5900 0.6524
LM 0.2560 0.6024 0.4248

GLASS 0.2396 0.5790 0.4553
DRAG† 0.3958 0.4938 0.7245

† Based on diffusion model trained on LSUN bedroom dataset.

Since Config-III and Config-VI represent the most challeng-
ing settings for adversaries, we highlight the results under
these configurations in Table 5 and Figure 5. Our attack
is effective against weak defenses. Comprehensive results
across all configurations are presented in Appendix A.2 and
Figure 9.

For the DISCO defense, we assume the adversary lacks
knowledge of the pruning model or the mask applied to
h∗, as pruning is a dynamic, auxiliary component that can
be decomposed from fc. The pruned channels mislead the

7
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Figure 4: Reconstruction results on out-of-distribution aerial images from the UCMerced LandUse dataset.

Table 4: Defense parameters for DISCO and NoPeek.

Defense Config Defense Parameters

DISCO
I ρD = 0.95, rp = 0.1
II ρD = 0.75, rp = 0.2
III ρD = 0.95, rp = 0.5

NoPeek
IV ρN = 1.0
V ρN = 3.0
VI ρN = 5.0

reconstruction process, leading to failures in the most chal-
lenging setting, Config-III. However, since pruned channels
generally have smaller absolute values than their unpruned
counterparts, this discrepancy can be exploited by adaptive
attacks. Specifically, the adversary can filter out channels
with low mean absolute values when calculating dH, thereby
mitigating the misleading influence of pruned channels. Our
experimental results also show that DRAG performs the
best after the adaptive attack filters out the pruned channels.

For the NoPeek defense, we observe that dH is significantly
lower than in unprotected models during the optimization
process, consistent with a part of the findings in Li et al.
(2023). Despite this, DRAG still reconstructs the target
images with higher fidelity compared to the previous works.

5.5. Token Shuffling (and Dropping) Defense

ViTs naturally exhibit an adaptive computation capability,
enabling reduced inference time by discarding redundant
tokens in the intermediate layers. Previous work (Yin et al.,
2022) investigates strategies for dropping tokens in interme-
diate layers. From a privacy protection perspective, shuffling
(and dropping) patch tokens hinders data reconstruction for
attackers, as the distance metrics dH is sensitive to the token
order. For tasks where token order is irrelevant (e.g., clas-
sification), shuffling patch tokens offers a straightforward
defense against DRA. Additionally, this method is easy to
implement, as it only requires memory copying.

Next, we evaluate the privacy risk against the token-
shuffling (and dropping) defense. To simulate a token-

Table 5: Performance under DISCO (Config-III) and
NoPeek (Config-VI) for CLIP-ViT-B/16 at layer 12.

Method MS-SSIM ↑ LPIPS ↓ DINO ↑
Config-III

rMLE 0.1686 0.8128 0.1129
LM 0.1638 0.7079 0.1654

GLASS 0.1479 0.6225 0.3878
DRAG 0.0788 0.7449 0.3201

Config-III - w/ adaptive attacks

rMLE 0.2101 0.7822 0.2072
LM 0.1696 0.6953 0.1818

GLASS 0.2402 0.5401 0.4862
DRAG 0.4557 0.3778 0.7557

Config-VI

rMLE 0.2270 0.7048 0.3747
LM 0.1783 0.7917 0.2099

GLASS 0.1950 0.7248 0.3141
DRAG 0.4469 0.3836 0.8096

dropping scenario, we propose the following protocol: the
client shuffles the patch tokens and randomly drops rdrop N
patch tokens before sending them to the server, where rdrop
is the proportion of the dropped tokens. In practice, the
client may combine multiple strategies, such as selectively
dropping tokens across different layers of the client model
fc to reduce the inference time and privacy leaks.

As noted in Darcet et al. (2024), tokens retain information
about their original positions, which can be inferred by a
classifier. Based on this observation, we train a 2-layer MLP
classifier to predict the probability that a token h[i, :] was
originally at position argmax pθ(h[i, :]). Once trained, the
classifier enables us to reorder the patch tokens by solving
an assignment problem, maximizing the joint probability
using the Hungarian algorithm (Kuhn, 1955).

We present the reconstruction results under three configu-
rations: (1) patch tokens are randomly permuted, and the
adversary is unaware of the permutation; (2) the adversary

8
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(a) Config-III. (b) Config-III, with adaptive attack. (c) Config-VI.

Figure 5: Reconstruction results for CLIP-ViT-B/16 at layer 12 with DISCO (Config-III) and NoPeek (Config-VI).

(a) rdrop = 0.0, w/o reordering tokens. (b) rdrop = 0.0, w/ reordering tokens. (c) rdrop = 0.5, w/ reordering tokens.

Figure 6: Reconstruction results for CLIP-ViT-B/16 at layer 12 with token shuffling defense.

uses a token position classifier to reorder the tokens; and
(3) the client drops 50% of the patch tokens before sending
them to the server, leaving the adversary to infer their correct
placement. Experiments are conducted on CLIP-ViT-B/16
splitting at layer 12. The token position classification model
achieves 21.40% top-1 accuracy in predicting token posi-
tions, with an average ℓ1 distance of 2.34 from the correct
position on ImageNet-1K. As shown in Figure 6a and Fig-
ure 6b, both rMLE and LM fail to reconstruct the target
images, whereas the normal configuration succeeds. For
GLASS and DRAG, reconstruction performance is degraded
in the shuffled scenarios, but some reconstructed images still
retain key features of the original inputs.

6. Conclusion
This work reveals significant privacy risks in SI with large vi-
sion foundation models like CLIP-ViT and DINOv2, extend-
ing beyond previous attacks on CNN models like ResNet18.
We propose a novel data reconstruction attack leveraging
LDMs pre-trained on large-scale datasets. Our method gen-
erates high-fidelity images from IR and outperforms state-
of-the-art approaches in reconstructing data from deep-layer
IR. These findings highlight the need for stronger defenses
to protect privacy when deploying transformer-based mod-
els in SI settings.
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A. Report
A.1. Reconstructing from Frozen Foundation Models

Besides Table 1, we provide a figure in Figure 7 that visualizes the performance of each attack. Additionally, we present
the attack success rate (ASR), which is defined as the proportion of images for which the reconstruction metrics exceed a
specified threshold, as shown in Figure 7.

Figure 8 illustrates the performance of attacks on the same target images at different split points for CLIP-ViT-B/16. An
image from each dataset was chosen for evaluation.
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(d) ASR at layer 12, CLIP-ViT-B/16.
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(e) ASR at layer 12, DINOv2-Base.
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(f) ASR at block 5, CLIP-RN50.
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Figure 7: Reconstruction quality metric and attack success rate (ASR) across target models without defenses.

Figure 8: Reconstruction results for CLIP-ViT-B/16 across split points without defenses. The same images are used as
evaluation targets to compare the performance of previous attacks.
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A.2. Reconstructing from Privacy Guarded Models

Table 6 provides the model utility, which is measured by classification accuracy on ImageNet-1K. The complete quantitative
results for Section 5.4, conducted on CLIP-ViT-B/16 and DINOv2-Base, as presented in Table 7 and Figure 9.

Table 6: Model utility under privacy defenses, measured by ImageNet-1K classification accuracy.

Defense Config Parameters CLIP-ViT-B/16 DINOv2-Base

w/o Defense 79.87% 83.81%

DISCO
I ρD = 0.95, rp = 0.1 79.20% 83.51%
II ρD = 0.75, rp = 0.2 79.02% 83.46%
III ρD = 0.95, rp = 0.5 78.04% 82.85%

NoPeek
IV ρN = 1.0 79.28% 83.43%
V ρN = 3.0 78.67% 83.39%
VI ρN = 5.0 77.88% 83.22%

(a) Config-I. (b) Config-II. (c) Config-III.

(d) Config-I, with adaptive attacks. (e) Config-II, with adaptive attacks. (f) Config-III, with adaptive attacks.

(g) Config-IV. (h) Config-V. (i) Config-VI.

Figure 9: Reconstruction results for CLIP-ViT-B/16 under various defense configurations.
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Table 7: Performance of the optimization-based attack against various defenses, split at layer 12.

CLIP-ViT-B/16 DINOv2-Base
Config Method MS-SSIM ↑ LPIPS ↓ DINO ↑ MS-SSIM ↑ LPIPS ↓ DINO ↑

Config-I

rMLE 0.1957 0.7881 0.1768 0.3840 0.5993 0.4710
LM 0.1749 0.6690 0.1965 0.3953 0.5112 0.7031
GLASS 0.2138 0.5568 0.4783 0.3881 0.4222 0.6667
DRAG 0.3309 0.4793 0.6497 0.7392 0.1602 0.9370

Config-II

rMLE 0.1706 0.8145 0.1101 0.3840 0.5993 0.4710
LM 0.1800 0.6838 0.1872 0.3953 0.5112 0.7031
GLASS 0.2050 0.5627 0.4433 0.3881 0.4222 0.6667
DRAG 0.2704 0.5264 0.6015 0.7392 0.1602 0.9370

Config-III

rMLE 0.1686 0.8128 0.1129 0.2469 0.6571 0.2463
LM 0.1638 0.7079 0.1654 0.3198 0.5770 0.4781
GLASS 0.1479 0.6225 0.3878 0.2699 0.4884 0.5310
DRAG 0.0788 0.7449 0.3201 0.5703 0.2880 0.8432

Config-I
w/ adaptive

rMLE 0.4062 0.5088 0.6880 0.4481 0.5796 0.5597
LM 0.1765 0.6996 0.1962 0.4336 0.4916 0.8097
GLASS 0.2321 0.5443 0.4770 0.4526 0.3849 0.6962
DRAG 0.5930 0.2489 0.8772 0.7918 0.1218 0.9573

Config-II
w/ adaptive

rMLE 0.3837 0.5498 0.6229 0.3851 0.6160 0.4820
LM 0.1833 0.6816 0.2056 0.4155 0.4939 0.8124
GLASS 0.2157 0.5630 0.4528 0.4242 0.3967 0.6954
DRAG 0.6076 0.2347 0.8830 0.7783 0.1329 0.9489

Config-III
w/ adaptive

rMLE 0.2101 0.7822 0.2072 0.3993 0.5794 0.5063
LM 0.1696 0.6953 0.1818 0.4068 0.5104 0.7899
GLASS 0.2402 0.5401 0.4862 0.4052 0.3971 0.6792
DRAG 0.4557 0.3778 0.7557 0.7551 0.1467 0.9415

Config-IV

rMLE 0.2799 0.6604 0.4729 0.2428 0.6822 0.2546
LM 0.1834 0.7159 0.2271 0.2852 0.6868 0.7270
GLASS 0.1837 0.6707 0.3381 0.3499 0.4664 0.6782
DRAG 0.5526 0.2925 0.8778 0.6252 0.2216 0.9243

Config-V

rMLE 0.2348 0.6939 0.3863 0.2306 0.6653 0.3183
LM 0.1782 0.7377 0.2114 0.2546 0.7107 0.6272
GLASS 0.1715 0.6864 0.3043 0.3710 0.4447 0.6446
DRAG 0.4889 0.3369 0.8381 0.5235 0.2790 0.9106

Config-VI

rMLE 0.2270 0.7048 0.3747 0.2218 0.6821 0.3136
LM 0.1783 0.7917 0.2099 0.2410 0.7140 0.5797
GLASS 0.1950 0.7248 0.3141 0.3620 0.4339 0.6516
DRAG 0.4469 0.3836 0.8096 0.5010 0.2977 0.9093
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A.3. Execution Time

The execution times for each attack algorithm are provided in Table 8.

Table 8: Execution times for optimization-based attacks at deepest split points.

Method # of Iterations CLIP-ViT-B/16 DINOv2-Base CLIP-RN50

rMLE 20,000 6 min 42 s 7 min 13 s 6 min 04 s
LM 20,000 24 min 20 s 24 min 32 s 22 min 27 s
GLASS (StyleGAN2-ADA-FFHQ) 20,000 21 min 28 s 22 min 02 s 19 min 45 s
GLASS (StyleGAN-XL-ImageNet-1K) 20,000 1 hr 37 min 08 s 1 hr 37 min 02 s 1 hr 34 min 34 s
DRAG (SDv1.5) 4,000 32 min 52 s 33 min 04 s 32 min 40 s

B. Extended Experiments
B.1. Scaling Reconstruction Schedule

Increasing T or k improves reconstruction performance by allowing more refinement steps, especially in the deeper layer.
However, it also raises computational overhead. Figure 10a and Figure 10b visualizes the attack performance for different
values of T and k. Since T = 250 and k = 16 provides a satisfactory balance between performance and efficiency, we
adopt it as the default hyperparameter setting.

B.2. Guidance Strength w

The guidance strength w balances feature matching and image prior during sampling. Increasing w enhances guidance by
focusing more on minimizing the distance dH, but this may compromise the realistic property RI as defined in Equation (1).
Conversely, an excessively low w results in an unsuccessful attack due to insufficient guidance. Figure 10c presents the
relationship between w and reconstruction performance.

B.3. Importance of the Optimizer

Figure 10d compares the performance of attacks on IR from layer 12 with and without the Adam optimizer. The figure
demonstrates that smoothing gradients with non-convex optimization techniques significantly enhances attack performance,
especially at the deeper layer.

C. Baseline Attacks
rMLE. (He et al., 2019) first proposed an optimization-based reconstruction attack that reconstructs x∗ by optimizing a
zero-initialized x to minimize dH(fc(x),h

∗). To improve reconstruction quality, the method incorporates Total Variation
regularization (Rudin et al., 1992) as an image prior:

x′ = argmin
x∈X

dH(fc(x),h
∗) + λTVRTV(x). (13)

LM. (Singh et al., 2021) enhances reconstruction quality by applying a deep image prior (Ulyanov et al., 2018) to regularize
x. Rather than updating x, they re-parameterize it as the output of a CNN-based image synthesis model fθ(ϵ), where the
fixed input ϵ ∼ N (0, I) remain constant during optimization, while the model parameters θ are optimized:

x′ = argmin
θ

dH(fc(fθ(ϵ)),h
∗) + λTVRTV(x). (14)

Since ViTs divide images into non-overlapping patches, directly optimizing x often yields visible artifacts at patch boundaries.
To alleviate this, we add the patch-smoothness prior Rpatch from Hatamizadeh et al. (2022) to both the rMLE and LM
objectives when reconstructing images from ViTs:

Rpatch(x) =

H
P −1∑
k=1

∥x[:, P · k, :, :]− x[:, P · k − 1, :, :]∥2 +
W
P −1∑
k=1

∥x[:, :, P · k, :]− x[:, :, P · k − 1, :]∥2, (15)
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where P denotes the patch size of the ViT model.

GLASS. (Li et al., 2023) proposed a scenario in which the adversary has knowledge of the data distribution and access
to auxiliary data for training a StyleGAN. Instead of directly updating x, the adversary updates the latent code z ∈ Z or
the style code w+ ∈ W+ to improve the quality of the generated image. In the first stage, the latent code z is randomly
initialized from a standard normal distribution, z ∼ N (0, I), and is then update as follow:

z′ = argmin
z∈Z

dH(fc(G(fmap(z))),h
∗) + λTVRTV(x) + λKLRKL(z), (16)

where RKL is the Kullback-Leibler divergence that regularize the latent code z. The updated latent code z′ is then transformed
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Figure 10: Hyperparameter sensitivity analysis for DRAG on CLIP-ViT-B/16.
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to the style code w+ = fmap(z
′), which is subsequently updated for fine-grained reconstruction:

w+ = argmin
w+

dH(fc(G(w+)),h∗) + λTVRTV(x). (17)

For class-conditioned GANs, we further optimize a zero-initialized class logits vector l ∈ R1000, which is normalized via
the softmax function to produce class probabilities p = softmax(l) during the forward pass w+ = fmap(z

′,Ep). Then p
are multiplied by the class embeddings E ∈ Rd×1000 to compute the class-specific latent code Ep.

D. Defensive Algorithms
D.1. Privacy Leakage Mitigation Methods

DISCO. (Singh et al., 2021) introduces a method to mitigate privacy leakage by pruning a subset of the IRs’ channels before
transmitting them to the server. Specifically, the pruning operation h′ = fp(h, rp) is performed using an auxiliary channel
pruning module fp, where the pruning ratio rp controls the proportion of pruned channels. This ratio can be dynamically
adjusted during model inference. The pruning module fp is trained in a min-max framework, where fp minimizes privacy
leakage by maximizing the reconstruction loss, and the inverse network f−1

c minimizes the reconstruction loss:

Lutil = E[ℓutil(fs(h
′), y)],

Lprivacy = E[||f−1
c (h′)− x||2],

min
fp

[max
f−1
c

−Lprivacy + ρD min
fc,fs

Lutil].
(18)

NoPeek. (Vepakomma et al., 2020) aims to mitigate privacy leakage by training models to minimize the mutual information
I(X;H) between the input data X and the intermediate representation H. Since directly calculating I(X;H) is challenging,
the authors propose using distance correlation (dCor) as a surrogate measure:

min
fc,fs

E[ρN · dCor(fc(x),x) + ℓutil(fs(fc(x)), y)]. (19)

While Vepakomma et al. (2020) assumes that users pre-train the target models f from scratch using distance correlation loss,
our experiments differ by applying the loss during model fine-tuning. This adaptation allows us to leverage pre-existing
model knowledge while still addressing privacy concerns.

D.2. Implementation of Defense Mechanisms

Since the target models are not pre-trained on ImageNet-1K, they lack classification heads tailored for the ImageNet-1K
classification task. While it is possible to directly initialize random classification heads and train with DISCO or NoPeek,
this approach significantly degrades accuracy. To address this, we prepare target models f through a two-stage process. First,
we perform linear probing by freezing the pre-trained backbone and training only the classification head on Dprivate. Then,
we fine-tune the entire model using the selected defense mechanism. This strategy helps preserve classification performance
during the defensive training phase.

To ensure the effectiveness and robustness of DRAG, we adopt an informed defender threat model, assuming the client has
full knowledge of DRAG. Under this assumption, defenders can design countermeasures by leveraging insights from the
methodology of DRAG. Specifically, for DISCO, we employ an inverse network with the same architecture as described in
Section 4.4. For NoPeek, we adopt the same distance metric dH as defined in Equation (11), which reflects how an informed
defender would calibrate a privacy-preserving model against DRAG.
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E. Implementation Details
We list the hyperparameters for various optimization-based and learning-based reconstruction attacks in Table 9 and Table 10,
respectively. The experiments were conducted on a server equipped with 384 GB RAM, two Intel Xeon Gold 6226R CPUs,
and eight NVIDIA RTX A6000 GPUs.

The implementation of rMLE (He et al., 2019), LM (Singh et al., 2021), DISCO (Singh et al., 2021) and NoPeek (Vepakomma
et al., 2020) are adapted from prior works.1

Table 9: Default hyperparameters for the optimization-based reconstruction attacks.

rMLE LM GLASS

Variable init. x = 0 - z ∼ N (0, I)
Optimizer Adam (lr = 0.05) Adam (lr = 0.01) Adam (lr = 0.01)
Num of iters (n) 20,000 20,000 20,000
Pretrained model - - StyleGAN2-ADA (FFHQ)

StyleGAN-XL (ImageNet-1K)
λTV 1.5 0.05 0
λpatch 0.001 0.001 0
λℓ2 0 0 0
λKL - - 1.0

DRAG DRAG++

Variable init. zT ∼ N (0, I) zt =
√
αt z0 +

√
1− αt ϵ, ϵ ∼ N (0, I)

Strength (s) 1.0 0.3
DDIM randomness (η) 1.0 1.0
Guidance strength (w) 0.2 0.2
Max grad norm (cmax) 0.02 0.02
Sampling steps (T ) 250 250
Self-recurrence (k) 16 16
λTV 0 0
λpatch 0 0
λℓ2 0.01 0.01

Table 10: Hyperparameters for inverse network training across all experiments.

Optimizer Adam (lr = 0.001)
LR Scheduler Cosine annealing (linear warm-up in 5000 iterations)
Number of iterations 100,000
Batch size 256
Mask ratio 0.25

1https://github.com/aidecentralized/InferenceBenchmark
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