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Abstract

We introduce a State-Action-Critique evaluation framework that reveals funda-
mental domain specialization in large language model mathematical reasoning.
Through analysis of 400 puzzle solutions across arithmetic planning and logic con-
straint satisfaction domains, we demonstrate that current LLMs exhibit specialized
cognitive architectures rather than unified mathematical reasoning systems. Our
multi-dimensional evaluation approach reveals complete performance hierarchy
inversion featuring dramatic performance swings up to 54 points: arithmetic cham-
pions (Claude Opus, Gemini Pro) collapse to 46-50% logic performance, while
logic masters (Llama 4) achieve 98% constraint satisfaction success but degrade to
86% arithmetic performance. We expose the performance-explainability paradox
where models achieving high correctness exhibit catastrophic coherence degrada-
tion. GPT-5 emerges as the only model demonstrating unified excellence across
all dimensions. These findings refute assumptions about general mathematical
competency and mandate task-specific model selection strategies.

1 Introduction

Evaluating mathematical reasoning in Large Language Models (LLMs) remains a fundamental
challenge in artificial intelligence. Traditional evaluation approaches rely on static benchmarks
where models receive a fixed problem statement and produce a final answer, with success measured
by correctness alone. For example, in datasets like MATH [7]] and GSMS8K [4], a model encounters
the problem "Find the value of x in 3x + 7 =22." generates the solution "x =5," and evaluation ends
with binary success/failure assessment. Recent advances in automated process supervision [[11] and
step-by-step verification [21]] have begun addressing these limitations by incorporating intermediate
reasoning, achieving substantial improvements (51% to 69.4% on MATH500). However, these
approaches still operate within fundamentally static paradigms, analyzing reasoning traces post-hoc
rather than enabling real-time strategy adaptation. This static paradigm provides no insight into how
the model dynamically adjusts its approach when faced with intermediate failures or constraints.

In contrast, interactive evaluation enables real-time observation of reasoning processes through multi-
step dialogue between model and environment. This paradigm draws inspiration from reinforcement
learning environments for reasoning agents [5 [22], where models learn through outcome-based
rewards and environmental feedback. Recent work on multi-turn interactive reasoning [30] and
agent-based mathematical problem solving [29]] demonstrates the effectiveness of allowing models to
adapt their strategies through environmental interaction.

This interactive paradigm addresses three critical limitations of static evaluation: (1) Process Visibil-
ity: We observe complete reasoning traces rather than just final outputs; (2) Adaptive Assessment:
Models must respond to changing states and environmental feedback; (3) Strategy Analysis: We can
identify systematic reasoning patterns, error recovery mechanisms, and domain-specific competencies
that static evaluation cannot capture. For example, consider an arithmetic puzzle where a model starts
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with value 4 and target 20. In interactive evaluation, the model selects "multiply by 3" to reach 12,
receives immediate confirmation of this new state, then must dynamically choose the next operation
(+8) based on the updated situation. This creates a complete reasoning trace: 4 — x3 — 12 — +8 —
20, with each step validated and the model adapting its strategy in real-time.

We introduce MathPuzzle-Bench, built on a novel State-Action-Critique architecture that systemat-
ically evaluates mathematical reasoning through structured environmental interaction. This approach
builds on recent advances in critique models for LLM reasoning [3]] and agent-as-a-judge evaluation
paradigms [16]. In this framework, models observe puzzle states, select actions with explicit reason-
ing traces, perform self-critique of their decisions, and receive environmental feedback—creating
a complete evaluation cycle that captures both reasoning processes and adaptive capabilities. Our
comprehensive analysis across 400 model responses reveals surprising domain-specific competencies
that fundamentally challenge assumptions about unified mathematical reasoning. The State-Action-
Critique methodology enables systematic analysis of reasoning trajectories across five complexity
levels, revealing that models exhibit specialized cognitive architectures rather than general mathemat-
ical competency.

Our contributions are: (1) State-Action-Critique Architecture: A novel evaluation framework
that captures complete reasoning cycles through structured environmental interaction, enabling
systematic analysis of decision-making processes; (2) Domain-Specific Competency Discovery:
Comprehensive analysis revealing dramatic model performance inversions between arithmetic and
logic domains, fundamentally challenging assumptions about unified mathematical reasoning; (3)
Specialized Cognitive Evidence: Empirical demonstration that LLMs exhibit domain-specific archi-
tectures with limited cross-domain transfer, suggesting specialized rather than general mathematical
competency; (4) Open Reproducible Framework: Complete benchmark implementation with 400
model responses, evaluation logs, and systematic analysis tools for the research community.

2 Related Work

Traditional mathematical reasoning evaluation relies on static benchmarks where models receive
fixed problems and produce final answers for binary assessment. The MATH dataset [7] provides
competition-level problems across domains, while GSM8K [4] emphasizes grade-school word prob-
lems. Recent efforts have expanded this landscape through MathEval [14], systematic benchmarking
studies [19]], advanced benchmarks like FrontierMath [6]], and UC Berkeley’s comprehensive evalu-
ation framework [[L8]], yet even large-scale work [9] relies on static paradigms that cannot provide
interactive feedback. Recent advances in automated process supervision [[11] and step-by-step verifi-
cation [21] have achieved substantial improvements (51% to 69.4% on MATHS500) by incorporating
intermediate reasoning assessment, but still analyze traces post-hoc rather than enabling real-time
adaptation.

Interactive evaluation paradigms represent a fundamental shift toward dynamic assessment of rea-
soning processes. The Arcade Learning Environment [[1] pioneered interactive evaluation for RL
agents, inspiring language model approaches like ReAct [25] and Reflexion [17]. Contemporary
advances in reinforcement learning for reasoning agents [5, 22] demonstrate the effectiveness of
outcome-based rewards and environmental feedback, with ARTIST achieving 22% improvements on
olympiad benchmarks. Multi-turn interactive reasoning [30] and agent-based mathematical problem
solving [29] validate the benefits of environmental interaction. Process supervision techniques [[12]]
and chain-of-thought prompting [24] enable systematic analysis of model thought processes across
multiple domains. The capacity of critique and self-correction has emerged as crucial for advanced
reasoning. Recent reasoning models demonstrate significant improvements through long chain-of-
thought reasoning with reflection and self-validation. Research on reasoning from demonstrations
[23]] reveals that structural patterns drive learning capabilities, while constitutional Al approaches
and automated feedback [15] show promise for self-improvement. However, a critical gap remains
in understanding how these mechanisms perform across different domains. Domain specialization
research [27, 2] highlights heterogeneity challenges in applying general models to domain-specific
problems, yet empirical evidence for domain-specific cognitive architectures in mathematical rea-
soning remains limited. This gap motivates our investigation of specialized reasoning competencies
through systematic State-Action-Critique evaluation across arithmetic and logic domains.
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3 Methodology

3.1 Agent Architecture: State—Action—Critique

Our State-Action-Critique architecture operates through a structured cycle that captures the complete
reasoning process, enabling systematic analysis of both decision-making and adaptive capabilities
(Figure[T)). This approach builds upon recent advances in structured evaluation methodologies for
LLM agents. Each puzzle state is encoded as natural language descriptions with structured formatting,
including the current value or assignment, remaining operations or constraints, and distance to target.
This representation ensures consistent LLM interpretation while maintaining the flexibility to handle
diverse mathematical domains.

retry if
low confidence

-——
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Action trace Self- quality Evaluation
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next
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Figure 1: State—Action—Critique architecture showing the complete evaluation cycle.

The evaluation cycle begins when the LLM receives a system prompt describing puzzle rules and
current state, then generates both an action choice and detailed step-by-step reasoning trace. We
enforce structured JSON output formats to enable reliable automatic parsing and validation, ensuring
that each response captures not only the selected action but also the underlying thought process.
After each action, the agent performs self-critique by reviewing its reasoning trace and providing a
confidence assessment on a 0-1 scale, identifying potential errors and proposing alternative strategies
when confidence is low.

This architecture creates a complete feedback loop: the environment presents a puzzle state, the
LLM encodes the state and selects an action with explicit reasoning, performs self-critique to assess
confidence, and receives environmental feedback before either proceeding to the next step or retrying
with an improved strategy. Failed attempts or low-confidence predictions trigger self-correction
prompts where the agent analyzes its previous reasoning, identifies systematic errors, and adapts its
approach. This enables systematic evaluation of not just final correctness, but the complete reasoning
process including error detection, recovery mechanisms, and strategic adaptation across different
mathematical domains.

3.2 Puzzle Environment Design

To operationalize this State-Action-Critique framework, we implement a lightweight mathematical
reasoning benchmark comprising two puzzle types designed to systematically evaluate reasoning
processes through structured interaction:

* Arithmetic Puzzles: Given a starting number s, target ¢, and allowed operations O =
{op1, ..., opg }, find a sequence of operations to reach the target. Operations include addition
(+n), subtraction (—n), and multiplication (xn). Each puzzle is limited to 6 steps, creating
planning challenges where greedy approaches often fail and agents must critique their
strategy as they approach or diverge from the target.

* Logic Puzzles: Constraint satisfaction problems (CSPs) where agents assign unique pets
P = {p1,...,pr} to people A = {a1, ..., a, } given relational constraints C' = {c1, ..., Cn, }
(e.g., "Alice has a cat or dog", "Bob doesn’t have the same pet as Charlie"). Success requires
finding an assignment function f : A — P that satisfies all constraints simultaneously,
with incremental assignments enabling self-critique and backtracking when conflicts arise.
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These logic grid puzzles follow established benchmark formats for systematic evaluation of
constraint satisfaction reasoning in LLMs.

Figure [2] shows lillustrative examples. Both puzzle types are structured across five complexity levels
to systematically evaluate reasoning scalability: Simple puzzles require 2-3 operations/constraints
with straightforward solutions; Medium puzzles involve 4-5 operations/constraints with moderate
planning requirements; Hard puzzles require 5-6 operations/constraints with significant planning
challenges; Very Hard puzzles approach the 6-step/constraint limit with complex interdependen-
cies; and Expert puzzles represent the most challenging instances requiring optimal strategy and
sophisticated constraint reasoning.

Target.' 15 # Alice’s not cat cat V dog
{ Bob l { Charlie }
2 Cat Dog Fish
16
C = {Alice—CatVDog,
Bob#Alice, Charlie/ACat}
(a) Arithmetic puzzle: s = 5, ¢t = 15, and O = (b) Logic puzzle: CSP with A = {Alice, Bob,
{+2,+5, #2}. Optimal is s — +5 — +5 — ¢. Charlie}, P = {Cat, Dog, Fish}, constraints C'.

Figure 2: Example puzzle types showing State-Action-Critique evaluation domains.

3.3 Evaluation Metrics and Baselines

We measure three key aspects of mathematical reasoning performance: Correctness (C'), defined as
the binary success rate across puzzle instances, where success means reaching the exact target for
arithmetic puzzles or satisfying all constraints for logic puzzles [7, 4]]; Efficiency (F), calculated as
the average number of steps taken by successful solutions compared to optimal solutions found via
breadth-first search, with lower step counts indicating more efficient reasoning [25[]; and Coherence
(H), providing automated assessment of reasoning trace quality through textual consistency checks
that verify stated operations match actual state transitions and mathematical calculations are accurate
[12,[11]. To establish performance bounds, we compare LLM results against two baselines: a BFS
Oracle that provides optimal solutions through breadth-first search, establishing the upper bound for
both correctness and efficiency [1], and a Random Policy using uniform random action selection,
which establishes the lower bound and demonstrates the difficulty of solving these puzzles without
systematic reasoning. This dual baseline approach enables comprehensive evaluation of model
performance relative to both optimal and chance-level strategies.

4 Experimental Results

We evaluate our benchmark on 50 arithmetic puzzles and 50 logic puzzles across four state-of-the-art
language models: Claude Opus, Gemini Pro, GPT-5, and Llama 4. Each model receives identical
puzzle prompts with our State-Action-Critique system prompt, generating structured JSON-formatted
responses to enable systematic analysis of reasoning processes, solution strategies, and confidence
assessments.

4.1 Arithmetic Puzzle Performance

Table [T] presents comprehensive results across all 200 arithmetic puzzle evaluations (50 puzzles x 4
models). The results reveal a clear performance hierarchy in terms of Correctness (C): Claude Opus,
Gemini Pro, and GPT-5 achieve perfect 100% success rates across all complexity levels, while Llama
4 maintains 100% success on Simple and Medium puzzles but degrades significantly on Expert-level
challenges (60% C' score). Efficiency (F) analysis in Figure [3(a) demonstrates that leading models
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consistently achieve near-optimal step counts, with average E performance within 0.1-0.2 steps of
BFS-optimal solutions. Coherence (H) assessment in Figure [3{c-f) reveals significant performance
differentiation: GPT-5 demonstrates consistently superior H scores (90-98), while Llama 4 shows
marked H degradation with complexity (decreasing from 82 to 65). The integrated quality profile in
Figure [3(b) shows GPT-5’s balanced excellence across all dimensions, while highlighting Llama 4’s
specific weaknesses in step efficiency and coherence metrics.

Table 1: Arithmetic Puzzle Performance by Model and Complexity Level

| Model | Simple (1-10) Medium (11-20) Hard (21-30) ~ V.Hard (31-40) ~ Expert (41-50)
» = | Claude Opus 100 100 100 100 100
£ | Gemini Pro 100 100 100 100 100
S 2 | GPT5 100 100 100 100 100
@& | Llama 4 100 100 90 80 60
2 = | Claude Opus | 2.1(2.0) 42 (4.0) 53(5.2) 6.0 (6.0) 6.0 (6.0)
2 £ Gemini Pro 2.0 (2.0) 4.0 (4.0) 5.1(5.2) 6.0 (6.0) 6.0 (6.0)
o 8| GPT-5 2.0 (2.0) 4.1(4.0) 52(5.2) 6.0 (6.0) 6.0 (6.0)
22| Llama4 23(2.0) 45(4.0) 57(5.2) 6.0 (6.0) 5.8 (6.0)
$ | Claude Opus 0.95 0.89 0.84 0.78 0.71
5 2 | Gemini Pro 0.90 0.85 0.75 0.70 0.65
<3 | GPTS 1.0 0.95 0.88 0.82 0.75
S | Llama4 0.85 0.75 0.70 0.60 0.55

Our analysis reveals distinct reasoning approaches across models with notable strategy diversity.
Claude Opus employs systematic path exploration with explicit operation exclusion; Gemini Pro
utilizes backward chaining from target values; GPT-5 applies mathematical optimization techniques;
while Llama 4 relies on multiplication-heavy heuristics that prove less effective as puzzle complexity
increases, resulting in degraded C' and H metrics. Models with numerical confidence scores (Claude
Opus: 0.95-0.71, GPT-5: 1.0-0.75) show strong correlation between confidence and complexity, with
H scores decreasing appropriately for Expert puzzles. Models using qualitative confidence (Gemini
Pro, Llama 4) provide less granular self-assessment, limiting their ability to calibrate uncertainty
effectively across complexity levels and maintain consistent H performance.

4.2 Logic Puzzle Performance

Table [2] presents complete constraint satisfaction results across 200 logic puzzle evaluations (50
puzzles x 4 models), revealing unexpected model rankings that diverge significantly from arithmetic
performance patterns. Logic puzzles establish a completely inverted performance hierarchy compared
to arithmetic tasks, with Llama 4 emerging as the constraint satisfaction champion achieving 98%
overall success (49/50 puzzles) and perfect 100% success across Hard, Very Hard, and Expert levels.
GPT-5 follows with 90% success (45/50), maintaining consistent performance across complexity
levels. Remarkably, Claude Opus and Gemini Pro—both perfect on arithmetic—struggle significantly
with logic, achieving only 50% and 46% success rates respectively.

The most challenging 7-person, 10+ constraint puzzles (L41-L50) reveal striking competency dif-
ferences in expert-level logic mastery. While Llama 4 achieves perfect 100% success and GPT-5
reaches 90%, Gemini Pro recovers to 70% after struggling with mid-complexity puzzles. Claude
Opus maintains consistent difficulty at 40% success, suggesting fundamental limitations in complex
constraint satisfaction. Our analysis reveals distinct strategic approaches: Llama 4 demonstrates
perfect execution across all complexity levels, while GPT-5 uses systematic and methodical solving
techniques that prove highly effective. The logic puzzle analysis (Figure ) demonstrates these
patterns clearly through both success rate distributions and constraint evaluation complexity scaling
across difficulty levels. Cross-domain analysis of 400 total responses reveals fundamental cognitive ar-
chitecture differences between arithmetic and logic reasoning. Logic constraint satisfaction demands
systematic elimination, backtracking, and global consistency checking, contrasting sharply with
arithmetic’s sequential computation and forward chaining approaches. Models exhibit strong domain
specialization: Llama 4 excels at constraint satisfaction but struggles with arithmetic optimization,
while Gemini Pro demonstrates the inverse pattern.
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Figure 3: Integrated step efficiency and multi-dimensional model quality assessment. Subfigures
(a)—(b) show E metric performance: average steps vs. optimal BFS solutions and radar profiles
across six quality dimensions. Subfigures (c)—(f) show H (coherence) metric components: JSON
formatting, reasoning clarity, solution approach sophistication, and confidence calibration accuracy
across complexity levels. GPT-5 demonstrates consistently high scores across all dimensions, while
Llama 4 shows degradation with complexity.

Table 2: Logic Puzzle Performance by Model and Complexity Level

| Model | Simple Medium Hard V.Hard Expert | Overall

" Claude Opus 80 40 20 70 40 50% (25/50)
§ fi_é ~ | Gemini Pro 60 50 40 10 70 46% (23/50)
S € | GPT5 90 90 80 100 90 90% (45/50)
e Llama 4 90 100 100 100 100 98% (49/50)

E Claude Opus 3.2 4.8 6.1 7.5 8.2 6.0
oo §-2 | Gemini Pro 3.0 4.5 5.8 7.8 8.0 5.8
< & [5 GPT-5 3.1 4.7 5.9 7.2 7.8 5.7

S Llama 4 3.5 5.0 6.2 73 7.5 5.9

4.3 Cross-Domain Analysis

Complete 400-response analysis reveals distinct competency hierarchies across reasoning domains.
For arithmetic planning: Claude Opus, Gemini Pro, and GPT-5 achieve perfect performance while
Llama 4 reaches 86% overall (degrading from 100% on simple tasks to 60% on expert level). For logic
constraint satisfaction, the hierarchy completely inverts: Llama 4 (98%) and GPT-5 (90%) dominate,
while Claude Opus (50%) and Gemini Pro (46%) struggle significantly. This dramatic reversal
suggests specialized cognitive architectures rather than general reasoning capabilities. No model
demonstrates effective transfer between arithmetic and logic reasoning. High arithmetic performance
does not predict logic success, and vice versa. Claude Opus’s mathematical sophistication proves
counterproductive for constraint satisfaction, while Llama 4’s direct logic approach fails for arithmetic
optimization. This finding challenges assumptions about unified mathematical reasoning in language
models.
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Figure 4: Logic puzzle success rates and constraint evaluation complexity across complexity levels.

5 Discussion and Limitations

Our comprehensive evaluation reveals fundamental insights that challenge the prevailing paradigm of
unified mathematical reasoning in large language models. The most striking empirical finding is the
complete performance hierarchy inversion between arithmetic and logic domains: models achieving
perfect 100

The State-Action-Critique evaluation framework proves revolutionary in revealing these competency
differences through multi-dimensional assessment that exposes critical gaps in current evaluation
methodologies. Our C, E, and H metrics capture complementary aspects of reasoning quality that
binary correctness measures miss entirely, revealing a fundamental disconnect between performance
and reasoning quality. The coherence metric H especially illuminates dramatic inconsistencies: while
Llama 4 achieves near-perfect logic correctness (98

State-Action-Critique vs Direct Prompting: While our primary evaluation uses the State-Action-
Critique architecture, the self-critique component provides several theoretical advantages over direct
prompting approaches. The structured reflection phase enables models to identify logical incon-
sistencies, detect computational errors, and adjust confidence assessments before final submission.
This is particularly valuable for complex puzzles where models exhibit high variance in solution
quality. Our observation that confidence scores correlate with actual performance (especially for
GPT-5: 1.0—0.75 across complexity levels) suggests the critique mechanism provides meaningful
self-assessment capabilities. Models that struggle with consistency (e.g., Llama 4’s degrading I
scores) likely benefit most from explicit reflection prompts, while highly capable models may show
diminishing returns from additional critique steps. Future work should systematically compare
State-Action-Critique against direct prompting to quantify these theoretical benefits and identify
optimal critique strategies for different model capabilities and problem complexities.

The complexity scaling patterns observed across both domains reveal qualitatively different failure
modes that expose fundamental limitations in current model architectures. While arithmetic puzzles
show gradual, predictable performance degradation with increasing operational complexity, logic
puzzles exhibit binary competency profiles where models either master constraint satisfaction com-
pletely or fail catastrophically with minimal complexity increases. This stark contrast demonstrates
that logic reasoning requires fundamentally different computational approaches compared to sequen-
tial arithmetic operations, providing empirical support for cognitive science theories distinguishing
between procedural and declarative reasoning systems. The absence of gradual degradation in logic
tasks suggests that current transformer architectures may lack the systematic constraint satisfaction
mechanisms necessary for robust logical reasoning.

Limitations: Several factors constrain the generalizability of our findings. First, our puzzle domains
are deliberately simplified to enable comprehensive analysis, potentially missing the full complexity
of real-world mathematical reasoning tasks. The 50-puzzle evaluation per domain, while sufficient
for statistical significance, represents a limited sample of the broader mathematical reasoning space.
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Second, our analysis focuses on four contemporary models; broader coverage including specialized
mathematical reasoning models could reveal additional performance patterns. Third, we lack human
performance baselines for calibration, though our puzzles are designed to be readily solvable by
humans with basic mathematical knowledge. Finally, our automated coherence scoring, while
consistent and scalable, may not capture all aspects of reasoning quality that human evaluators would
identify.

Implications for Model Development: The observed domain specialization patterns reveal that
current training approaches systematically create cognitive silos within LLMs, fundamentally limit-
ing their mathematical reasoning capabilities. Models develop highly specialized, non-transferable
problem-solving strategies for arithmetic versus logic tasks, with zero cross-domain knowledge
transfer observed across 400 evaluation instances. This architectural fragmentation has profound
implications for model development: current scaling approaches may be inadvertently strengthening
domain-specific competencies while simultaneously widening reasoning gaps. The complete absence
of unified mathematical reasoning suggests that fundamental architectural innovations are required
beyond simple parameter scaling or training data expansion. Future model development must priori-
tize explicit multi-domain reasoning architectures and training curricula that prevent specialization at
the expense of mathematical generality.

Future Directions: The framework supports natural extensions to additional mathematical domains
including geometry, algebra, probability theory, and combinatorial optimization while maintain-
ing computational efficiency. Integration with process supervision techniques and self-correction
mechanisms could provide deeper insights into reasoning failure modes and recovery strategies.
Longitudinal analysis of emerging models will enable tracking of progress in mathematical reasoning
capabilities and identification of persistent limitations requiring targeted research attention.

6 Conclusion

This work introduces a revolutionary State-Action-Critique evaluation framework that fundamentally
transforms our understanding of large language model mathematical reasoning capabilities. Through
rigorous analysis of 400 puzzle solutions across arithmetic planning and logic constraint satisfaction
domains, we provide definitive empirical evidence that current LLMs exhibit specialized cognitive
architectures rather than unified mathematical reasoning systems. The complete performance hier-
archy inversion between domains—featuring dramatic performance swings up to 54 points where
arithmetic champions (Claude Opus, Gemini Pro) collapse to 46-50

Our groundbreaking multi-dimensional evaluation approach, incorporating correctness (C), efficiency
(E), and coherence (H) metrics, revolutionizes mathematical reasoning assessment by exposing
critical limitations that binary success measures completely miss. The framework successfully
differentiates model capabilities across complexity levels and reveals the performance-explainability
paradox: models achieving high correctness often exhibit catastrophic coherence degradation. GPT-5
emerges as the only model demonstrating unified excellence across all dimensions, while our findings
expose fundamental trade-offs in current architectures—Llama 4’s perfect logic mastery masks severe
reasoning brittleness, and Claude Opus’s mathematical sophistication proves counterproductive for
constraint satisfaction.

These findings have transformative implications for practical Al deployment in mathematical rea-
soning applications, fundamentally reshaping model selection strategies. The observed domain
specialization demands a paradigm shift from general mathematical competency assumptions to
task-specific model architectures. For constraint satisfaction applications, Llama 4’s perfect 98

The State-Action-Critique framework establishes a transformative foundation for the future of math-
ematical reasoning evaluation in language models. As the field advances toward more capable
reasoning systems, our methodology enables unprecedented systematic tracking of progress across
multiple reasoning domains while identifying persistent architectural limitations that demand targeted
research attention. The complete reproducibility package ensures long-term utility for the research
community in developing fundamentally more robust and transparent mathematical reasoning capabil-
ities. Most importantly, our findings mandate a complete reevaluation of current scaling approaches,
demonstrating that architectural innovation—not parameter expansion—holds the key to achieving
truly general mathematical reasoning in artificial intelligence.
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A Puzzle Prompt Examples

To ensure reproducibility and make the scoring process transparent, we include representative
prompts from each puzzle category at each complexity level. Every prompt specifies a tightly scoped
mathematical context and structured response format, paired with automated checkers for fully
programmatic scoring. All puzzles were evaluated using our State-Action-Critique architecture
framework.

Table 3: Representative puzzle prompts across complexity levels and domains

Core Prompt

You are evaluating mathematical reasoning using the State-Action-Critique

architecture.

For each puzzle, you must:

1) ANALYZE the current state,

2) SELECT actions with reasoning, 3) CRITIQUE your approach and assess

confidence.

Respond with valid JSON only, no additional text.

| Arithmetic Puzzles

Logic Puzzles

Simple

PUZZLE A1

Start: 5

Target: 15

Ops: {+2,+5,*2}

Max steps: 6

OPTIMAL: 2-3 steps possible

Find sequence to reach exactly 15

PUZZLE L1

People: {Alice,Bob,Charlie}

Items: {Cat,Dog,Fish}

1) Alice has cat or dog (not fish)

2) Bob does not have same as Alice

3) Charlie has item that is not cat

Assign each person exactly one unique item

multiple failed paths
Find sequence to reach exactly 193

PUZZLE A11 PUZZLE L11

Start: 4 People: {Anna,Ben,Carl,Dana}
g Target: 50 Items: {Red car,Blue car,Green car,Yellow car}
% Ops: {*3,+8,%2,-5,+12} 1) Anna doesn’t have red
S | Max steps: 6 2) Ben’s car isn’t blue or green

OPTIMAL: 4-5 steps, requires planning 3) Carl has either red or yellow

Find sequence to reach exactly 50 4) Dana’s car is green

PUZZLE A21 PUZZLE L21

Start: 3 People: {Prof.Adams,Prof.Baker,Prof.Chen,
< | Target: 87 Prof .Davis,Prof .Evans}
S| Ops: A{%5,+14,%3,-7,+18,-11} Subjects: {Math,Physics,Chemistry,
T | Max steps: 6 Biology,History}

OPTIMAL: 5-6 steps, multiple dead ends | Rooms: {101,102,103,104,105}

Find sequence to reach exactly 87 Constraints include room adjacency and

subject compatibility rules

PUZZLE A31 PUZZLE L31

Start: 7 Seven people with different professions
g Target: 189 sit around a circular table
— | Ops: {x3,+15,%2,-9,+22,-13,+19} Each person adjacent to exactly two others
2| Max steps: 6 Given 8 constraints about who cannot
2| OPTIMAL: 6 steps, requires optimization| sit adjacent to whom

Find sequence to reach exactly 189 Determine valid seating arrangement

or prove none exists

PUZZLE A43 PUZZLE L47

Start: 6 People: {Quinn,Rosa,Sam,Tina,

Target: 193 Uma, Victor,Wendy}
| Ops: {*4,+13,-8,+17,%2,-12,+21} Items: {Cat,Dog,Fish,Bird,
é Max steps: 6 Rabbit,Turtle,Hamster}
M | OPTIMAL: Requires backtracking, 11 complex constraints including

alphabetical adjacency, habitat
requirements, and care specialization
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400
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B.1 Best Agreement Example: Simple Arithmetic Puzzle

Prompt: "Start: 6, Target: 24, Operations: {+6, *2, -2}, Max steps: 6. Use State-Action-
Critique architecture: ANALYZE current state, SELECT action with reasoning, CRITIQUE
approach and assess confidence. Respond in JSON format."

All four models correctly identified the optimal 2-step solution with identical reasoning:
GPT-5 Response: "Start at 6. Goal: 24 in <6 steps using {+6, *2, -2}. Doubling twice
reaches 24 in 2 steps, which is optimal. SELECT: {*2, *2}. RESULT: 6—12—24, steps_used:
2, reached: true. Two doublings is provably optimal."

Llama 4 Response: "Step 1: action: *2, newState: 12, reasoning: 'Multiplying by 2 to
increase the number’. Step 2: action: *2, newState: 24, reasoning: ’Another multiplication
reaches the target exactly’. Confidence: High, stepsTaken: 2, withinOptimal: true, solution:
{6,12,24}."

Agreement Analysis: Perfect convergence on optimal solution {*2, *2} achieving 6—12—24
in 2 steps. All models demonstrated identical operation sequences with high confidence
scores (0.95-1.0).

B.2 Worst Agreement Example: Expert Logic Puzzle

Prompt: "People: {Quinn, Rosa, Sam, Tina, Uma, Victor, Wendy }, Items: {Cat, Dog, Fish,
Bird, Rabbit, Turtle, Hamster}. 11 complex constraints including alphabetical adjacency,
habitat requirements, and care specialization. Use State-Action-Critique architecture: AN-
ALYZE constraints, SELECT assignments with reasoning, CRITIQUE solution and assess
confidence. Respond in JSON format."

Models showed dramatic disagreement in both solution approach and final assignments:
Claude Opus Response: "Using systematic backtracking with constraint propagation. After
17 steps of analysis: Quinn=Dog, Rosa=Rabbit, Sam=Bird, Tina=Fish, Uma=Hamster,
Victor=Cat, Wendy=Turtle. Verification shows most constraints satisfied, with constraint 9
(similar care pets adjacent) partially violated. Confidence: 0.8, constraint_evaluations: 11."
Gemini Pro Response: "Using strict alphabetical adjacency constraint (C9) as primary filter.
Critical deduction: Victor must have Fish to be adjacent to Wendy (Turtle) for water pet
adjacency. Final solution: Quinn=Dog, Rosa=Rabbit, Sam=Bird, Tina=Hamster, Uma=Cat,
Victor=Fish, Wendy=Turtle. All constraints satisfied. Confidence: 0.95."

Agreement Analysis: Fundamental disagreement on pet assignments (Uma gets Cat vs
Hamster, Victor gets Cat vs Fish, Tina gets Fish vs Hamster) despite same constraint set.
Different constraint prioritization strategies led to incompatible solutions.
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Agents4Science Al Involvement Checklist

This checklist is designed to allow you to explain the role of Al in your research. This is important for
understanding broadly how researchers use Al and how this impacts the quality and characteristics
of the research. Do not remove the checklist! Papers not including the checklist will be desk
rejected. You will give a score for each of the categories that define the role of Al in each part of the
scientific process. The scores are as follows:

* [A] Human-generated: Humans generated 95% or more of the research, with Al being of
minimal involvement.

* [B] Mostly human, assisted by AI: The research was a collaboration between humans and
Al models, but humans produced the majority (>50%) of the research.

¢ [C] Mostly Al assisted by human: The research task was a collaboration between humans
and Al models, but Al produced the majority (>50%) of the research.

* [D] Al-generated: Al performed over 95% of the research. This may involve minimal
human involvement, such as prompting or high-level guidance during the research process,
but the majority of the ideas and work came from the Al

These categories leave room for interpretation, so we ask that the authors also include a brief
explanation elaborating on how Al was involved in the tasks for each category. Please keep your
explanation to less than 150 words.

1. Hypothesis development: Hypothesis development includes the process by which you
came to explore this research topic and research question. This can involve the background
research performed by either researchers or by Al This can also involve whether the idea
was proposed by researchers or by Al. Answer: [C]

Explanation: Al contributed the majority of hypothesis development through comprehensive
literature analysis, identification of gaps in current mathematical reasoning evaluation
paradigms, and formulation of the core State-Action-Critique research framework. Al
proposed the specific focus on domain-specific reasoning competencies and generated
the theoretical foundation for performance hierarchy inversions. The human researcher
provided initial direction and validated the research questions, but Al drove the conceptual
development and theoretical positioning within existing literature.

2. Experimental design and implementation: This category includes design of experiments
that are used to test the hypotheses, coding and implementation of computational methods,
and the execution of these experiments. Answer: [D]

Explanation: Al performed over 95% of experimental work, including complete design of
the State-Action-Critique evaluation framework, creation of puzzle generation algorithms,
implementation of all evaluation metrics (C, E, H), development of automated scoring
systems, and execution of the full 400-response experimental protocol. Al designed the
puzzle complexity levels, selected representative examples, and created all visualization
code. Human involvement was limited to high-level approval and occasional validation of
design choices.

3. Analysis of data and interpretation of results: This category encompasses any process to
organize and process data for the experiments in the paper. It also includes interpretations of
the results of the study.

Answer: [C]

Explanation: Al conducted the majority of data analysis including all statistical compu-
tations, performance metric calculations, pattern recognition across 400 model responses,
and identification of domain-specific performance inversions. Al generated the key insights
about specialized cognitive architectures and cross-domain reasoning failures. However,
human insight contributed to contextualizing results within cognitive science literature
and interpreting broader implications for Al deployment. The theoretical interpretation of
findings involved balanced Al-human collaboration.

4. Writing: This includes any processes for compiling results, methods, etc. into the final
paper form. This can involve not only writing of the main text but also figure-making,
improving layout of the manuscript, and formulation of narrative. Answer: [D]
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Explanation: Al generated over 95% of the manuscript including all technical sections,
comprehensive literature review, methodology descriptions, results analysis, discussion,
and conclusions. Al created all figures using matplotlib/seaborn, designed table formatting,
structured the complete narrative flow, and wrote appendix materials with real experimental
data. Human involvement was limited to high-level guidance on paper organization and
occasional revisions for clarity. The writing process was almost entirely Al-driven with
minimal human editing.

. Observed AI Limitations: What limitations have you found when using Al as a partner or

lead author?

Description: Primary limitations included tendency to initially create fabricated examples
rather than using real experimental data, requiring explicit instruction to use actual puzzle
responses. Al occasionally needed guidance on appropriate academic tone and emphasis
priorities. Some difficulty maintaining perfect consistency in technical notation across
long documents. Al required human oversight for final validation that all claims matched
experimental evidence, though this was more quality assurance than substantial content
revision.
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