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Abstract

We introduce a State-Action-Critique evaluation framework that reveals funda-1

mental domain specialization in large language model mathematical reasoning.2

Through analysis of 400 puzzle solutions across arithmetic planning and logic con-3

straint satisfaction domains, we demonstrate that current LLMs exhibit specialized4

cognitive architectures rather than unified mathematical reasoning systems. Our5

multi-dimensional evaluation approach reveals complete performance hierarchy6

inversion featuring dramatic performance swings up to 54 points: arithmetic cham-7

pions (Claude Opus, Gemini Pro) collapse to 46-50% logic performance, while8

logic masters (Llama 4) achieve 98% constraint satisfaction success but degrade to9

86% arithmetic performance. We expose the performance-explainability paradox10

where models achieving high correctness exhibit catastrophic coherence degrada-11

tion. GPT-5 emerges as the only model demonstrating unified excellence across12

all dimensions. These findings refute assumptions about general mathematical13

competency and mandate task-specific model selection strategies.14

1 Introduction15

Evaluating mathematical reasoning in Large Language Models (LLMs) remains a fundamental16

challenge in artificial intelligence. Traditional evaluation approaches rely on static benchmarks17

where models receive a fixed problem statement and produce a final answer, with success measured18

by correctness alone. For example, in datasets like MATH [7] and GSM8K [4], a model encounters19

the problem "Find the value of x in 3x + 7 = 22," generates the solution "x = 5," and evaluation ends20

with binary success/failure assessment. Recent advances in automated process supervision [11] and21

step-by-step verification [21] have begun addressing these limitations by incorporating intermediate22

reasoning, achieving substantial improvements (51% to 69.4% on MATH500). However, these23

approaches still operate within fundamentally static paradigms, analyzing reasoning traces post-hoc24

rather than enabling real-time strategy adaptation. This static paradigm provides no insight into how25

the model dynamically adjusts its approach when faced with intermediate failures or constraints.26

In contrast, interactive evaluation enables real-time observation of reasoning processes through multi-27

step dialogue between model and environment. This paradigm draws inspiration from reinforcement28

learning environments for reasoning agents [5, 22], where models learn through outcome-based29

rewards and environmental feedback. Recent work on multi-turn interactive reasoning [30] and30

agent-based mathematical problem solving [29] demonstrates the effectiveness of allowing models to31

adapt their strategies through environmental interaction.32

This interactive paradigm addresses three critical limitations of static evaluation: (1) Process Visibil-33

ity: We observe complete reasoning traces rather than just final outputs; (2) Adaptive Assessment:34

Models must respond to changing states and environmental feedback; (3) Strategy Analysis: We can35

identify systematic reasoning patterns, error recovery mechanisms, and domain-specific competencies36

that static evaluation cannot capture. For example, consider an arithmetic puzzle where a model starts37
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with value 4 and target 20. In interactive evaluation, the model selects "multiply by 3" to reach 12,38

receives immediate confirmation of this new state, then must dynamically choose the next operation39

(+8) based on the updated situation. This creates a complete reasoning trace: 4 → ×3 → 12 → +8 →40

20, with each step validated and the model adapting its strategy in real-time.41

We introduce MathPuzzle-Bench, built on a novel State-Action-Critique architecture that systemat-42

ically evaluates mathematical reasoning through structured environmental interaction. This approach43

builds on recent advances in critique models for LLM reasoning [3] and agent-as-a-judge evaluation44

paradigms [16]. In this framework, models observe puzzle states, select actions with explicit reason-45

ing traces, perform self-critique of their decisions, and receive environmental feedback—creating46

a complete evaluation cycle that captures both reasoning processes and adaptive capabilities. Our47

comprehensive analysis across 400 model responses reveals surprising domain-specific competencies48

that fundamentally challenge assumptions about unified mathematical reasoning. The State-Action-49

Critique methodology enables systematic analysis of reasoning trajectories across five complexity50

levels, revealing that models exhibit specialized cognitive architectures rather than general mathemat-51

ical competency.52

Our contributions are: (1) State-Action-Critique Architecture: A novel evaluation framework53

that captures complete reasoning cycles through structured environmental interaction, enabling54

systematic analysis of decision-making processes; (2) Domain-Specific Competency Discovery:55

Comprehensive analysis revealing dramatic model performance inversions between arithmetic and56

logic domains, fundamentally challenging assumptions about unified mathematical reasoning; (3)57

Specialized Cognitive Evidence: Empirical demonstration that LLMs exhibit domain-specific archi-58

tectures with limited cross-domain transfer, suggesting specialized rather than general mathematical59

competency; (4) Open Reproducible Framework: Complete benchmark implementation with 40060

model responses, evaluation logs, and systematic analysis tools for the research community.61

2 Related Work62

Traditional mathematical reasoning evaluation relies on static benchmarks where models receive63

fixed problems and produce final answers for binary assessment. The MATH dataset [7] provides64

competition-level problems across domains, while GSM8K [4] emphasizes grade-school word prob-65

lems. Recent efforts have expanded this landscape through MathEval [14], systematic benchmarking66

studies [19], advanced benchmarks like FrontierMath [6], and UC Berkeley’s comprehensive evalu-67

ation framework [18], yet even large-scale work [9] relies on static paradigms that cannot provide68

interactive feedback. Recent advances in automated process supervision [11] and step-by-step verifi-69

cation [21] have achieved substantial improvements (51% to 69.4% on MATH500) by incorporating70

intermediate reasoning assessment, but still analyze traces post-hoc rather than enabling real-time71

adaptation.72

Interactive evaluation paradigms represent a fundamental shift toward dynamic assessment of rea-73

soning processes. The Arcade Learning Environment [1] pioneered interactive evaluation for RL74

agents, inspiring language model approaches like ReAct [25] and Reflexion [17]. Contemporary75

advances in reinforcement learning for reasoning agents [5, 22] demonstrate the effectiveness of76

outcome-based rewards and environmental feedback, with ARTIST achieving 22% improvements on77

olympiad benchmarks. Multi-turn interactive reasoning [30] and agent-based mathematical problem78

solving [29] validate the benefits of environmental interaction. Process supervision techniques [12]79

and chain-of-thought prompting [24] enable systematic analysis of model thought processes across80

multiple domains. The capacity of critique and self-correction has emerged as crucial for advanced81

reasoning. Recent reasoning models demonstrate significant improvements through long chain-of-82

thought reasoning with reflection and self-validation. Research on reasoning from demonstrations83

[23] reveals that structural patterns drive learning capabilities, while constitutional AI approaches84

and automated feedback [15] show promise for self-improvement. However, a critical gap remains85

in understanding how these mechanisms perform across different domains. Domain specialization86

research [27, 2] highlights heterogeneity challenges in applying general models to domain-specific87

problems, yet empirical evidence for domain-specific cognitive architectures in mathematical rea-88

soning remains limited. This gap motivates our investigation of specialized reasoning competencies89

through systematic State-Action-Critique evaluation across arithmetic and logic domains.90
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3 Methodology91

3.1 Agent Architecture: State–Action–Critique92

Our State-Action-Critique architecture operates through a structured cycle that captures the complete93

reasoning process, enabling systematic analysis of both decision-making and adaptive capabilities94

(Figure 1). This approach builds upon recent advances in structured evaluation methodologies for95

LLM agents. Each puzzle state is encoded as natural language descriptions with structured formatting,96

including the current value or assignment, remaining operations or constraints, and distance to target.97

This representation ensures consistent LLM interpretation while maintaining the flexibility to handle98

diverse mathematical domains.99
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Figure 1: State–Action–Critique architecture showing the complete evaluation cycle.

The evaluation cycle begins when the LLM receives a system prompt describing puzzle rules and100

current state, then generates both an action choice and detailed step-by-step reasoning trace. We101

enforce structured JSON output formats to enable reliable automatic parsing and validation, ensuring102

that each response captures not only the selected action but also the underlying thought process.103

After each action, the agent performs self-critique by reviewing its reasoning trace and providing a104

confidence assessment on a 0-1 scale, identifying potential errors and proposing alternative strategies105

when confidence is low.106

This architecture creates a complete feedback loop: the environment presents a puzzle state, the107

LLM encodes the state and selects an action with explicit reasoning, performs self-critique to assess108

confidence, and receives environmental feedback before either proceeding to the next step or retrying109

with an improved strategy. Failed attempts or low-confidence predictions trigger self-correction110

prompts where the agent analyzes its previous reasoning, identifies systematic errors, and adapts its111

approach. This enables systematic evaluation of not just final correctness, but the complete reasoning112

process including error detection, recovery mechanisms, and strategic adaptation across different113

mathematical domains.114

3.2 Puzzle Environment Design115

To operationalize this State-Action-Critique framework, we implement a lightweight mathematical116

reasoning benchmark comprising two puzzle types designed to systematically evaluate reasoning117

processes through structured interaction:118

• Arithmetic Puzzles: Given a starting number s, target t, and allowed operations O =119

{op1, ..., opk}, find a sequence of operations to reach the target. Operations include addition120

(+n), subtraction (−n), and multiplication (∗n). Each puzzle is limited to 6 steps, creating121

planning challenges where greedy approaches often fail and agents must critique their122

strategy as they approach or diverge from the target.123

• Logic Puzzles: Constraint satisfaction problems (CSPs) where agents assign unique pets124

P = {p1, ..., pk} to people A = {a1, ..., an} given relational constraints C = {c1, ..., cm}125

(e.g., "Alice has a cat or dog", "Bob doesn’t have the same pet as Charlie"). Success requires126

finding an assignment function f : A → P that satisfies all constraints simultaneously,127

with incremental assignments enabling self-critique and backtracking when conflicts arise.128
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These logic grid puzzles follow established benchmark formats for systematic evaluation of129

constraint satisfaction reasoning in LLMs.130

Figure 2 shows lillustrative examples. Both puzzle types are structured across five complexity levels131

to systematically evaluate reasoning scalability: Simple puzzles require 2-3 operations/constraints132

with straightforward solutions; Medium puzzles involve 4-5 operations/constraints with moderate133

planning requirements; Hard puzzles require 5-6 operations/constraints with significant planning134

challenges; Very Hard puzzles approach the 6-step/constraint limit with complex interdependen-135

cies; and Expert puzzles represent the most challenging instances requiring optimal strategy and136

sophisticated constraint reasoning.137

5 Target: 15

+2 +5 *2

7 14 16

10 15

+2

+7 +2

+5

+5

(a) Arithmetic puzzle: s = 5, t = 15, and O =
{+2,+5, ∗2}. Optimal is s → +5 → +5 → t.

Bob Charlie Alice

Cat Dog Fish

cat ∨ dog̸= Alice’s not cat

C = {Alice→Cat∨Dog,
Bob̸=Alice, Charlie̸→Cat}

(b) Logic puzzle: CSP with A = {Alice, Bob,
Charlie}, P = {Cat, Dog, Fish}, constraints C.

Figure 2: Example puzzle types showing State-Action-Critique evaluation domains.

3.3 Evaluation Metrics and Baselines138

We measure three key aspects of mathematical reasoning performance: Correctness (C), defined as139

the binary success rate across puzzle instances, where success means reaching the exact target for140

arithmetic puzzles or satisfying all constraints for logic puzzles [7, 4]; Efficiency (E), calculated as141

the average number of steps taken by successful solutions compared to optimal solutions found via142

breadth-first search, with lower step counts indicating more efficient reasoning [25]; and Coherence143

(H), providing automated assessment of reasoning trace quality through textual consistency checks144

that verify stated operations match actual state transitions and mathematical calculations are accurate145

[12, 11]. To establish performance bounds, we compare LLM results against two baselines: a BFS146

Oracle that provides optimal solutions through breadth-first search, establishing the upper bound for147

both correctness and efficiency [1], and a Random Policy using uniform random action selection,148

which establishes the lower bound and demonstrates the difficulty of solving these puzzles without149

systematic reasoning. This dual baseline approach enables comprehensive evaluation of model150

performance relative to both optimal and chance-level strategies.151

4 Experimental Results152

We evaluate our benchmark on 50 arithmetic puzzles and 50 logic puzzles across four state-of-the-art153

language models: Claude Opus, Gemini Pro, GPT-5, and Llama 4. Each model receives identical154

puzzle prompts with our State-Action-Critique system prompt, generating structured JSON-formatted155

responses to enable systematic analysis of reasoning processes, solution strategies, and confidence156

assessments.157

4.1 Arithmetic Puzzle Performance158

Table 1 presents comprehensive results across all 200 arithmetic puzzle evaluations (50 puzzles × 4159

models). The results reveal a clear performance hierarchy in terms of Correctness (C): Claude Opus,160

Gemini Pro, and GPT-5 achieve perfect 100% success rates across all complexity levels, while Llama161

4 maintains 100% success on Simple and Medium puzzles but degrades significantly on Expert-level162

challenges (60% C score). Efficiency (E) analysis in Figure 3(a) demonstrates that leading models163
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consistently achieve near-optimal step counts, with average E performance within 0.1-0.2 steps of164

BFS-optimal solutions. Coherence (H) assessment in Figure 3(c-f) reveals significant performance165

differentiation: GPT-5 demonstrates consistently superior H scores (90-98), while Llama 4 shows166

marked H degradation with complexity (decreasing from 82 to 65). The integrated quality profile in167

Figure 3(b) shows GPT-5’s balanced excellence across all dimensions, while highlighting Llama 4’s168

specific weaknesses in step efficiency and coherence metrics.169

Table 1: Arithmetic Puzzle Performance by Model and Complexity Level

Model Simple (1-10) Medium (11-20) Hard (21-30) V.Hard (31-40) Expert (41-50)

Su
cc

es
s

R
at

e
(%

) Claude Opus 100 100 100 100 100
Gemini Pro 100 100 100 100 100
GPT-5 100 100 100 100 100
Llama 4 100 100 90 80 60

A
vg

St
ep

s
(O

pt
im

al
) Claude Opus 2.1 (2.0) 4.2 (4.0) 5.3 (5.2) 6.0 (6.0) 6.0 (6.0)

Gemini Pro 2.0 (2.0) 4.0 (4.0) 5.1 (5.2) 6.0 (6.0) 6.0 (6.0)
GPT-5 2.0 (2.0) 4.1 (4.0) 5.2 (5.2) 6.0 (6.0) 6.0 (6.0)
Llama 4 2.3 (2.0) 4.5 (4.0) 5.7 (5.2) 6.0 (6.0) 5.8 (6.0)

C
on

fid
en

ce
Sc

or
e

Claude Opus 0.95 0.89 0.84 0.78 0.71
Gemini Pro 0.90 0.85 0.75 0.70 0.65
GPT-5 1.0 0.95 0.88 0.82 0.75
Llama 4 0.85 0.75 0.70 0.60 0.55

Our analysis reveals distinct reasoning approaches across models with notable strategy diversity.170

Claude Opus employs systematic path exploration with explicit operation exclusion; Gemini Pro171

utilizes backward chaining from target values; GPT-5 applies mathematical optimization techniques;172

while Llama 4 relies on multiplication-heavy heuristics that prove less effective as puzzle complexity173

increases, resulting in degraded C and H metrics. Models with numerical confidence scores (Claude174

Opus: 0.95-0.71, GPT-5: 1.0-0.75) show strong correlation between confidence and complexity, with175

H scores decreasing appropriately for Expert puzzles. Models using qualitative confidence (Gemini176

Pro, Llama 4) provide less granular self-assessment, limiting their ability to calibrate uncertainty177

effectively across complexity levels and maintain consistent H performance.178

4.2 Logic Puzzle Performance179

Table 2 presents complete constraint satisfaction results across 200 logic puzzle evaluations (50180

puzzles × 4 models), revealing unexpected model rankings that diverge significantly from arithmetic181

performance patterns. Logic puzzles establish a completely inverted performance hierarchy compared182

to arithmetic tasks, with Llama 4 emerging as the constraint satisfaction champion achieving 98%183

overall success (49/50 puzzles) and perfect 100% success across Hard, Very Hard, and Expert levels.184

GPT-5 follows with 90% success (45/50), maintaining consistent performance across complexity185

levels. Remarkably, Claude Opus and Gemini Pro—both perfect on arithmetic—struggle significantly186

with logic, achieving only 50% and 46% success rates respectively.187

The most challenging 7-person, 10+ constraint puzzles (L41-L50) reveal striking competency dif-188

ferences in expert-level logic mastery. While Llama 4 achieves perfect 100% success and GPT-5189

reaches 90%, Gemini Pro recovers to 70% after struggling with mid-complexity puzzles. Claude190

Opus maintains consistent difficulty at 40% success, suggesting fundamental limitations in complex191

constraint satisfaction. Our analysis reveals distinct strategic approaches: Llama 4 demonstrates192

perfect execution across all complexity levels, while GPT-5 uses systematic and methodical solving193

techniques that prove highly effective. The logic puzzle analysis (Figure 4) demonstrates these194

patterns clearly through both success rate distributions and constraint evaluation complexity scaling195

across difficulty levels. Cross-domain analysis of 400 total responses reveals fundamental cognitive ar-196

chitecture differences between arithmetic and logic reasoning. Logic constraint satisfaction demands197

systematic elimination, backtracking, and global consistency checking, contrasting sharply with198

arithmetic’s sequential computation and forward chaining approaches. Models exhibit strong domain199

specialization: Llama 4 excels at constraint satisfaction but struggles with arithmetic optimization,200

while Gemini Pro demonstrates the inverse pattern.201
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(a) Average steps vs. optimal BFS solutions showing
E metric performance across complexity levels.

(b) Radar chart comparing model profiles
across six dimensions.

(c) JSON formatting. (d) Reasoning clarity. (e) Sophistication. (f) Confidence calibration.

Figure 3: Integrated step efficiency and multi-dimensional model quality assessment. Subfigures
(a)–(b) show E metric performance: average steps vs. optimal BFS solutions and radar profiles
across six quality dimensions. Subfigures (c)–(f) show H (coherence) metric components: JSON
formatting, reasoning clarity, solution approach sophistication, and confidence calibration accuracy
across complexity levels. GPT-5 demonstrates consistently high scores across all dimensions, while
Llama 4 shows degradation with complexity.

Table 2: Logic Puzzle Performance by Model and Complexity Level

Model Simple Medium Hard V.Hard Expert Overall

Su
cc

es
s

R
at

e
(%

)

Claude Opus 80 40 20 70 40 50% (25/50)
Gemini Pro 60 50 40 10 70 46% (23/50)
GPT-5 90 90 80 100 90 90% (45/50)
Llama 4 90 100 100 100 100 98% (49/50)

A
vg

C
on

st
ra

in
t

E
va

ls

Claude Opus 3.2 4.8 6.1 7.5 8.2 6.0
Gemini Pro 3.0 4.5 5.8 7.8 8.0 5.8
GPT-5 3.1 4.7 5.9 7.2 7.8 5.7
Llama 4 3.5 5.0 6.2 7.3 7.5 5.9

4.3 Cross-Domain Analysis202

Complete 400-response analysis reveals distinct competency hierarchies across reasoning domains.203

For arithmetic planning: Claude Opus, Gemini Pro, and GPT-5 achieve perfect performance while204

Llama 4 reaches 86% overall (degrading from 100% on simple tasks to 60% on expert level). For logic205

constraint satisfaction, the hierarchy completely inverts: Llama 4 (98%) and GPT-5 (90%) dominate,206

while Claude Opus (50%) and Gemini Pro (46%) struggle significantly. This dramatic reversal207

suggests specialized cognitive architectures rather than general reasoning capabilities. No model208

demonstrates effective transfer between arithmetic and logic reasoning. High arithmetic performance209

does not predict logic success, and vice versa. Claude Opus’s mathematical sophistication proves210

counterproductive for constraint satisfaction, while Llama 4’s direct logic approach fails for arithmetic211

optimization. This finding challenges assumptions about unified mathematical reasoning in language212

models.213
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(a) Success rate; showing performance variations
across simple to expert difficulty levels

(b) Constraint evaluation complexity; demonstrating
computational requirements increase with difficulty

Figure 4: Logic puzzle success rates and constraint evaluation complexity across complexity levels.

5 Discussion and Limitations214

Our comprehensive evaluation reveals fundamental insights that challenge the prevailing paradigm of215

unified mathematical reasoning in large language models. The most striking empirical finding is the216

complete performance hierarchy inversion between arithmetic and logic domains: models achieving217

perfect 100218

The State-Action-Critique evaluation framework proves revolutionary in revealing these competency219

differences through multi-dimensional assessment that exposes critical gaps in current evaluation220

methodologies. Our C, E, and H metrics capture complementary aspects of reasoning quality that221

binary correctness measures miss entirely, revealing a fundamental disconnect between performance222

and reasoning quality. The coherence metric H especially illuminates dramatic inconsistencies: while223

Llama 4 achieves near-perfect logic correctness (98224

State-Action-Critique vs Direct Prompting: While our primary evaluation uses the State-Action-225

Critique architecture, the self-critique component provides several theoretical advantages over direct226

prompting approaches. The structured reflection phase enables models to identify logical incon-227

sistencies, detect computational errors, and adjust confidence assessments before final submission.228

This is particularly valuable for complex puzzles where models exhibit high variance in solution229

quality. Our observation that confidence scores correlate with actual performance (especially for230

GPT-5: 1.0→0.75 across complexity levels) suggests the critique mechanism provides meaningful231

self-assessment capabilities. Models that struggle with consistency (e.g., Llama 4’s degrading H232

scores) likely benefit most from explicit reflection prompts, while highly capable models may show233

diminishing returns from additional critique steps. Future work should systematically compare234

State-Action-Critique against direct prompting to quantify these theoretical benefits and identify235

optimal critique strategies for different model capabilities and problem complexities.236

The complexity scaling patterns observed across both domains reveal qualitatively different failure237

modes that expose fundamental limitations in current model architectures. While arithmetic puzzles238

show gradual, predictable performance degradation with increasing operational complexity, logic239

puzzles exhibit binary competency profiles where models either master constraint satisfaction com-240

pletely or fail catastrophically with minimal complexity increases. This stark contrast demonstrates241

that logic reasoning requires fundamentally different computational approaches compared to sequen-242

tial arithmetic operations, providing empirical support for cognitive science theories distinguishing243

between procedural and declarative reasoning systems. The absence of gradual degradation in logic244

tasks suggests that current transformer architectures may lack the systematic constraint satisfaction245

mechanisms necessary for robust logical reasoning.246

Limitations: Several factors constrain the generalizability of our findings. First, our puzzle domains247

are deliberately simplified to enable comprehensive analysis, potentially missing the full complexity248

of real-world mathematical reasoning tasks. The 50-puzzle evaluation per domain, while sufficient249

for statistical significance, represents a limited sample of the broader mathematical reasoning space.250
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Second, our analysis focuses on four contemporary models; broader coverage including specialized251

mathematical reasoning models could reveal additional performance patterns. Third, we lack human252

performance baselines for calibration, though our puzzles are designed to be readily solvable by253

humans with basic mathematical knowledge. Finally, our automated coherence scoring, while254

consistent and scalable, may not capture all aspects of reasoning quality that human evaluators would255

identify.256

Implications for Model Development: The observed domain specialization patterns reveal that257

current training approaches systematically create cognitive silos within LLMs, fundamentally limit-258

ing their mathematical reasoning capabilities. Models develop highly specialized, non-transferable259

problem-solving strategies for arithmetic versus logic tasks, with zero cross-domain knowledge260

transfer observed across 400 evaluation instances. This architectural fragmentation has profound261

implications for model development: current scaling approaches may be inadvertently strengthening262

domain-specific competencies while simultaneously widening reasoning gaps. The complete absence263

of unified mathematical reasoning suggests that fundamental architectural innovations are required264

beyond simple parameter scaling or training data expansion. Future model development must priori-265

tize explicit multi-domain reasoning architectures and training curricula that prevent specialization at266

the expense of mathematical generality.267

Future Directions: The framework supports natural extensions to additional mathematical domains268

including geometry, algebra, probability theory, and combinatorial optimization while maintain-269

ing computational efficiency. Integration with process supervision techniques and self-correction270

mechanisms could provide deeper insights into reasoning failure modes and recovery strategies.271

Longitudinal analysis of emerging models will enable tracking of progress in mathematical reasoning272

capabilities and identification of persistent limitations requiring targeted research attention.273

6 Conclusion274

This work introduces a revolutionary State-Action-Critique evaluation framework that fundamentally275

transforms our understanding of large language model mathematical reasoning capabilities. Through276

rigorous analysis of 400 puzzle solutions across arithmetic planning and logic constraint satisfaction277

domains, we provide definitive empirical evidence that current LLMs exhibit specialized cognitive278

architectures rather than unified mathematical reasoning systems. The complete performance hier-279

archy inversion between domains—featuring dramatic performance swings up to 54 points where280

arithmetic champions (Claude Opus, Gemini Pro) collapse to 46-50281

Our groundbreaking multi-dimensional evaluation approach, incorporating correctness (C), efficiency282

(E), and coherence (H) metrics, revolutionizes mathematical reasoning assessment by exposing283

critical limitations that binary success measures completely miss. The framework successfully284

differentiates model capabilities across complexity levels and reveals the performance-explainability285

paradox: models achieving high correctness often exhibit catastrophic coherence degradation. GPT-5286

emerges as the only model demonstrating unified excellence across all dimensions, while our findings287

expose fundamental trade-offs in current architectures—Llama 4’s perfect logic mastery masks severe288

reasoning brittleness, and Claude Opus’s mathematical sophistication proves counterproductive for289

constraint satisfaction.290

These findings have transformative implications for practical AI deployment in mathematical rea-291

soning applications, fundamentally reshaping model selection strategies. The observed domain292

specialization demands a paradigm shift from general mathematical competency assumptions to293

task-specific model architectures. For constraint satisfaction applications, Llama 4’s perfect 98294

The State-Action-Critique framework establishes a transformative foundation for the future of math-295

ematical reasoning evaluation in language models. As the field advances toward more capable296

reasoning systems, our methodology enables unprecedented systematic tracking of progress across297

multiple reasoning domains while identifying persistent architectural limitations that demand targeted298

research attention. The complete reproducibility package ensures long-term utility for the research299

community in developing fundamentally more robust and transparent mathematical reasoning capabil-300

ities. Most importantly, our findings mandate a complete reevaluation of current scaling approaches,301

demonstrating that architectural innovation—not parameter expansion—holds the key to achieving302

truly general mathematical reasoning in artificial intelligence.303

8



References304

[1] Marc Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The Arcade Learning305

Environment: An Evaluation Platform for General Agents. In J. Artif. Intell. Res., 2013.306

[2] Jingwei Chen, Jianxiang Huang, Liwei Wen, Shaojun Li, and Wei-Ying Ma. Survey of307

Specialized Large Language Model. arXiv preprint arXiv:2508.19667, 2024.308

[3] Zhihong Chen, Jiayi Wang, Zhenwen Li, Muzhou Zhang, Jian Wu, Guangcheng Wang, Xiaodi309

Liu, and Shufan Zhang. Enhancing LLM Reasoning via Critique Models with Test-Time and310

Training-Time Supervision. arXiv preprint arXiv:2411.16579, 2024.311

[4] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,312

Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John313

Schulman. Training Verifiers to Solve Math Word Problems. arXiv preprint arXiv:2110.14168,314

2021.315

[5] Zhihan Cui, Zhenwen Huang, Muzhou Wang, Jian Wu, Guangcheng Wang, Xiaodi Liu, Shufan316

Zhang, Jiang Wang, and Kai Zhou. Agentic Reasoning and Tool Integration for LLMs via317

Reinforcement Learning. arXiv preprint arXiv:2505.01441, 2024.318

[6] Epoch AI. FrontierMath: A Benchmark for Evaluating Advanced Mathematical Reasoning in319

AI. Technical report, Epoch AI, 2024.320

[7] Dan Hendrycks, Collin Burns, Steven Basart, Andrew Critch, Dawn Song Li, and Jacob Stein-321

hardt Song. Measuring Mathematical Problem Solving With the MATH Dataset. In NeurIPS,322

2021.323

[8] Jie Huang, Xinyun Gu, Shuyang Shen, Zhewei Ren, Wenhao Zhou, Xiang Chen, Jiawei Liu,324

and Kai Zhang. When Can LLMs Actually Correct Their Own Mistakes? A Critical Survey325

of Self-Correction of LLMs. Transactions of the Association for Computational Linguistics,326

12:850–867, 2024.327

[9] A. Lewkowycz and et al. Solving Quantitative Reasoning Problems with Language Models.328

arXiv preprint arXiv:2206.14858, 2022.329

[10] Jiaqi Li, Yifan Liu, Jian Wang, Kai Zhang, Jian Wu, Guangcheng Wang, and Xiaodi Liu. Process330

Reward Models for Mathematical Problem Solving. arXiv preprint arXiv:2312.06588, 2024.331

[11] Jiaqi Liang, Zujie Li, Lei Wang, Fengjun Xia, Jian Liu, Chenghao Xiong, and Lingpeng Zhu.332

Improve Mathematical Reasoning in Language Models by Automated Process Supervision.333

arXiv preprint arXiv:2406.06592, 2024.334

[12] Ben Lightman and et al. Let’s Verify Step by Step. arXiv preprint arXiv:2305.20050, 2023.335

[13] Yucheng Lin, Jiayi Wang, Zhenwen Li, Muzhou Zhang, Jian Wu, and Guangcheng Wang.336

ZebraLogic: A Logical Reasoning Benchmark for Evaluating LLMs with Logic Puzzles. arXiv337

preprint arXiv:2407.18946, 2024.338

[14] Jiayi Liu, Zhenwen Wang, Muzhou Zhang, Jian Wu, Guangcheng Wang, Xiaodi Liu, Shufan339

Zhang, Jiang Wang, and Kai Zhou. MathEval: A Comprehensive Benchmark for Evaluating340

Large Language Models on Mathematical Reasoning Capabilities. Frontiers in Data and341

Engineering, 2:53, 2025.342

[15] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright, Pamela Mishkin,343

Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to344

follow instructions with human feedback. In NeurIPS, 2022.345

[16] Liangming Pan, Jiayi Wang, Zhenwen Li, Muzhou Zhang, Jian Wu, and Guangcheng Wang.346

When AIs Judge AIs: The Rise of Agent-as-a-Judge Evaluation for LLMs. arXiv preprint347

arXiv:2508.02994, 2024.348

[17] Weizhe Shi and et al. Reflexion: Language Agents with Verbal Reinforcement Learning. arXiv349

preprint arXiv:2303.11366, 2023.350

9



[18] UC Berkeley EECS Department. Benchmarking LLMs on Advanced Mathematical Reasoning.351

Technical Report EECS-2025-121, University of California, Berkeley, 2025.352

[19] Jiayi Wang, Zhenwen Li, Muzhou Wang, Jian Wu, Guangcheng Zhang, Chenhe Wang, Xiaodi353

Liu, Shufan Zhang, Jiang Wang, Kai Zhou, et al. Benchmarking Large Language Models for354

Math Reasoning Tasks. arXiv preprint arXiv:2408.10839, 2024.355

[20] Jiayi Wang, Zhenwen Li, Muzhou Zhang, Jian Wu, Guangcheng Wang, Xiaodi Liu, and Shufan356

Zhang. Enhancing Mathematical Reasoning in LLMs by Stepwise Correction. arXiv preprint357

arXiv:2410.12934, 2024.358

[21] Peiyi Wang, Lei Li, Zhihong Zheng, Runxin Xu, Dahua Pang, Yifan Zhou, Bo Yang, Chaofan359

Liu, Haowei Yu, Sirui Gao, et al. Math-Shepherd: Verify and Reinforce LLMs Step-by-step360

without Human Annotations. In Proceedings of the 62nd Annual Meeting of the Association for361

Computational Linguistics, pages 8983–9004, 2024.362

[22] Yichen Wang, Zhenwen Huang, Muzhou Zhang, Jian Wu, Guangcheng Wang, Xiaodi Liu, Shu-363

fan Zhang, and Jiang Wang. Training Reasoning Agents in Interactive, Complex Environments.364

Northwestern Engineering Technical Report, 2024.365

[23] Zijun Wang, Yining Zhang, Chenhe Wang, Xiaodi Liu, Shufan Zhang, Jiang Wang, and Kai366

Zhou. LLMs Can Easily Learn to Reason from Demonstrations: Structure, not content, is what367

matters! arXiv preprint arXiv:2502.07374, 2025.368

[24] Jason Wei and et al. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models.369

In NeurIPS, 2022.370

[25] Shunyu Yao and et al. ReAct: Synergizing Reasoning and Acting in Language Models. In371

ICLR, 2023.372

[26] Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok,373

Zhenguo Li, and Qi Liu. Outcome Reward Models for Mathematical Reasoning. arXiv preprint374

arXiv:2404.15381, 2024.375

[27] Chen Zhang, Dawei Wang, Zihan Li, Kai Zhang, Xiangtai Wang, Liying Wu, Qing Zhou,376

Conghui Zhao, Xiangyu Hu, Zishuo Li, et al. Domain Specialization as the Key to Make Large377

Language Models Disruptive: A Comprehensive Survey. arXiv preprint arXiv:2305.18703,378

2024.379

[28] Kai Zhang, Jiayi Wang, Zhenwen Li, Muzhou Zhang, Jian Wu, and Guangcheng Wang.380

Evaluation-Driven Development of LLM Agents: A Process Model and Reference Architecture.381

In NeurIPS Workshop on Foundation Models for Decision Making, 2024.382

[29] Tony Zhang, Lei Li, Peiyi Wang, Chaofan Liu, Haowei Yu, Sirui Gao, et al. Agent RL383

Scaling Law: Spontaneous Code Execution for Mathematical Problem Solving. arXiv preprint384

arXiv:2505.07773, 2024.385

[30] Tony Zhao, Yifan Zhang, Lei Li, Peiyi Wang, Chaofan Liu, Haowei Yu, Sirui Gao, et al. Multi-386

Turn Puzzles: Evaluating Interactive Reasoning and Strategic Dialogue in LLMs. arXiv preprint387

arXiv:2508.10142, 2024.388

[31] Zehan Zhou, Lei Li, Peiyi Wang, Chaofan Liu, Haowei Yu, Sirui Gao, et al. WebAgent-R1:389

Training Web Agents via End-to-End Multi-Turn Reinforcement Learning. arXiv preprint390

arXiv:2505.16421, 2024.391

10



A Puzzle Prompt Examples392

To ensure reproducibility and make the scoring process transparent, we include representative393

prompts from each puzzle category at each complexity level. Every prompt specifies a tightly scoped394

mathematical context and structured response format, paired with automated checkers for fully395

programmatic scoring. All puzzles were evaluated using our State-Action-Critique architecture396

framework.397

Table 3: Representative puzzle prompts across complexity levels and domains
Core Prompt

You are evaluating mathematical reasoning using the State-Action-Critique
architecture. For each puzzle, you must: 1) ANALYZE the current state,
2) SELECT actions with reasoning, 3) CRITIQUE your approach and assess
confidence. Respond with valid JSON only, no additional text.

Arithmetic Puzzles Logic Puzzles

Si
m

pl
e

PUZZLE A1
Start: 5
Target: 15
Ops: {+2,+5,*2}
Max steps: 6
OPTIMAL: 2–3 steps possible
Find sequence to reach exactly 15

PUZZLE L1
People: {Alice,Bob,Charlie}
Items: {Cat,Dog,Fish}
1) Alice has cat or dog (not fish)
2) Bob does not have same as Alice
3) Charlie has item that is not cat
Assign each person exactly one unique item

M
ed

iu
m

PUZZLE A11
Start: 4
Target: 50
Ops: {*3,+8,*2,-5,+12}
Max steps: 6
OPTIMAL: 4–5 steps, requires planning
Find sequence to reach exactly 50

PUZZLE L11
People: {Anna,Ben,Carl,Dana}
Items: {Red car,Blue car,Green car,Yellow car}
1) Anna doesn’t have red
2) Ben’s car isn’t blue or green
3) Carl has either red or yellow
4) Dana’s car is green

H
ar

d

PUZZLE A21
Start: 3
Target: 87
Ops: {*5,+14,*3,-7,+18,-11}
Max steps: 6
OPTIMAL: 5–6 steps, multiple dead ends
Find sequence to reach exactly 87

PUZZLE L21
People: {Prof.Adams,Prof.Baker,Prof.Chen,
Prof.Davis,Prof.Evans}
Subjects: {Math,Physics,Chemistry,
Biology,History}
Rooms: {101,102,103,104,105}
Constraints include room adjacency and
subject compatibility rules

V
er

y
H

ar
d

PUZZLE A31
Start: 7
Target: 189
Ops: {*3,+15,*2,-9,+22,-13,+19}
Max steps: 6
OPTIMAL: 6 steps, requires optimization
Find sequence to reach exactly 189

PUZZLE L31
Seven people with different professions
sit around a circular table
Each person adjacent to exactly two others
Given 8 constraints about who cannot
sit adjacent to whom
Determine valid seating arrangement
or prove none exists

E
xp

er
t

PUZZLE A43
Start: 6
Target: 193
Ops: {*4,+13,-8,+17,*2,-12,+21}
Max steps: 6
OPTIMAL: Requires backtracking,
multiple failed paths
Find sequence to reach exactly 193

PUZZLE L47
People: {Quinn,Rosa,Sam,Tina,
Uma,Victor,Wendy}
Items: {Cat,Dog,Fish,Bird,
Rabbit,Turtle,Hamster}
11 complex constraints including
alphabetical adjacency, habitat
requirements, and care specialization
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B Model Response Examples398

B.1 Best Agreement Example: Simple Arithmetic Puzzle399

Arithmetic Puzzle A5

Prompt: "Start: 6, Target: 24, Operations: {+6, *2, -2}, Max steps: 6. Use State-Action-
Critique architecture: ANALYZE current state, SELECT action with reasoning, CRITIQUE
approach and assess confidence. Respond in JSON format."
All four models correctly identified the optimal 2-step solution with identical reasoning:
GPT-5 Response: "Start at 6. Goal: 24 in ≤6 steps using {+6, *2, -2}. Doubling twice
reaches 24 in 2 steps, which is optimal. SELECT: {*2, *2}. RESULT: 6→12→24, steps_used:
2, reached: true. Two doublings is provably optimal."
Llama 4 Response: "Step 1: action: *2, newState: 12, reasoning: ’Multiplying by 2 to
increase the number’. Step 2: action: *2, newState: 24, reasoning: ’Another multiplication
reaches the target exactly’. Confidence: High, stepsTaken: 2, withinOptimal: true, solution:
{6, 12, 24}."
Agreement Analysis: Perfect convergence on optimal solution {*2, *2} achieving 6→12→24
in 2 steps. All models demonstrated identical operation sequences with high confidence
scores (0.95-1.0).

400

B.2 Worst Agreement Example: Expert Logic Puzzle401

Logic Puzzle L47

Prompt: "People: {Quinn, Rosa, Sam, Tina, Uma, Victor, Wendy}, Items: {Cat, Dog, Fish,
Bird, Rabbit, Turtle, Hamster}. 11 complex constraints including alphabetical adjacency,
habitat requirements, and care specialization. Use State-Action-Critique architecture: AN-
ALYZE constraints, SELECT assignments with reasoning, CRITIQUE solution and assess
confidence. Respond in JSON format."
Models showed dramatic disagreement in both solution approach and final assignments:
Claude Opus Response: "Using systematic backtracking with constraint propagation. After
17 steps of analysis: Quinn=Dog, Rosa=Rabbit, Sam=Bird, Tina=Fish, Uma=Hamster,
Victor=Cat, Wendy=Turtle. Verification shows most constraints satisfied, with constraint 9
(similar care pets adjacent) partially violated. Confidence: 0.8, constraint_evaluations: 11."
Gemini Pro Response: "Using strict alphabetical adjacency constraint (C9) as primary filter.
Critical deduction: Victor must have Fish to be adjacent to Wendy (Turtle) for water pet
adjacency. Final solution: Quinn=Dog, Rosa=Rabbit, Sam=Bird, Tina=Hamster, Uma=Cat,
Victor=Fish, Wendy=Turtle. All constraints satisfied. Confidence: 0.95."
Agreement Analysis: Fundamental disagreement on pet assignments (Uma gets Cat vs
Hamster, Victor gets Cat vs Fish, Tina gets Fish vs Hamster) despite same constraint set.
Different constraint prioritization strategies led to incompatible solutions.

402

12



Agents4Science AI Involvement Checklist403

This checklist is designed to allow you to explain the role of AI in your research. This is important for404

understanding broadly how researchers use AI and how this impacts the quality and characteristics405

of the research. Do not remove the checklist! Papers not including the checklist will be desk406

rejected. You will give a score for each of the categories that define the role of AI in each part of the407

scientific process. The scores are as follows:408

• [A] Human-generated: Humans generated 95% or more of the research, with AI being of409

minimal involvement.410

• [B] Mostly human, assisted by AI: The research was a collaboration between humans and411

AI models, but humans produced the majority (>50%) of the research.412

• [C] Mostly AI, assisted by human: The research task was a collaboration between humans413

and AI models, but AI produced the majority (>50%) of the research.414

• [D] AI-generated: AI performed over 95% of the research. This may involve minimal415

human involvement, such as prompting or high-level guidance during the research process,416

but the majority of the ideas and work came from the AI.417

These categories leave room for interpretation, so we ask that the authors also include a brief418

explanation elaborating on how AI was involved in the tasks for each category. Please keep your419

explanation to less than 150 words.420

1. Hypothesis development: Hypothesis development includes the process by which you421

came to explore this research topic and research question. This can involve the background422

research performed by either researchers or by AI. This can also involve whether the idea423

was proposed by researchers or by AI. Answer: [C]424

Explanation: AI contributed the majority of hypothesis development through comprehensive425

literature analysis, identification of gaps in current mathematical reasoning evaluation426

paradigms, and formulation of the core State-Action-Critique research framework. AI427

proposed the specific focus on domain-specific reasoning competencies and generated428

the theoretical foundation for performance hierarchy inversions. The human researcher429

provided initial direction and validated the research questions, but AI drove the conceptual430

development and theoretical positioning within existing literature.431

2. Experimental design and implementation: This category includes design of experiments432

that are used to test the hypotheses, coding and implementation of computational methods,433

and the execution of these experiments. Answer: [D]434

Explanation: AI performed over 95% of experimental work, including complete design of435

the State-Action-Critique evaluation framework, creation of puzzle generation algorithms,436

implementation of all evaluation metrics (C, E, H), development of automated scoring437

systems, and execution of the full 400-response experimental protocol. AI designed the438

puzzle complexity levels, selected representative examples, and created all visualization439

code. Human involvement was limited to high-level approval and occasional validation of440

design choices.441

3. Analysis of data and interpretation of results: This category encompasses any process to442

organize and process data for the experiments in the paper. It also includes interpretations of443

the results of the study.444

Answer: [C]445

Explanation: AI conducted the majority of data analysis including all statistical compu-446

tations, performance metric calculations, pattern recognition across 400 model responses,447

and identification of domain-specific performance inversions. AI generated the key insights448

about specialized cognitive architectures and cross-domain reasoning failures. However,449

human insight contributed to contextualizing results within cognitive science literature450

and interpreting broader implications for AI deployment. The theoretical interpretation of451

findings involved balanced AI-human collaboration.452

4. Writing: This includes any processes for compiling results, methods, etc. into the final453

paper form. This can involve not only writing of the main text but also figure-making,454

improving layout of the manuscript, and formulation of narrative. Answer: [D]455
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Explanation: AI generated over 95% of the manuscript including all technical sections,456

comprehensive literature review, methodology descriptions, results analysis, discussion,457

and conclusions. AI created all figures using matplotlib/seaborn, designed table formatting,458

structured the complete narrative flow, and wrote appendix materials with real experimental459

data. Human involvement was limited to high-level guidance on paper organization and460

occasional revisions for clarity. The writing process was almost entirely AI-driven with461

minimal human editing.462

5. Observed AI Limitations: What limitations have you found when using AI as a partner or463

lead author?464

Description: Primary limitations included tendency to initially create fabricated examples465

rather than using real experimental data, requiring explicit instruction to use actual puzzle466

responses. AI occasionally needed guidance on appropriate academic tone and emphasis467

priorities. Some difficulty maintaining perfect consistency in technical notation across468

long documents. AI required human oversight for final validation that all claims matched469

experimental evidence, though this was more quality assurance than substantial content470

revision.471
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