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Abstract

Gaussian process upper confidence bound (GP-
UCB) is a theoretically promising approach for
black-box optimization; however, the confidence
parameter [3 is considerably large in the theorem
and chosen heuristically in practice. Then, ran-
domized GP-UCB (RGP-UCB) uses a random-
ized confidence parameter, which follows the
Gamma distribution, to mitigate the impact of
manually specifying /. This study first general-
izes the regret analysis of RGP-UCB to a wider
class of distributions, including the Gamma distri-
bution. Furthermore, we propose improved RGP-
UCB (IRGP-UCB) based on a two-parameter
exponential distribution, which achieves tighter
Bayesian regret bounds. IRGP-UCB does not re-
quire an increase in the confidence parameter in
terms of the number of iterations, which avoids
over-exploration in the later iterations. Finally,
we demonstrate the effectiveness of IRGP-UCB
through extensive experiments.

1. Introduction

Bayesian optimization (BO) (Mockus et al., 1978) has be-
come a widely-used framework for expensive black-box op-
timization problems. To reduce the number of function eval-
uations, BO sequentially observes the noisy function value
using an acquisition function computed from a Bayesian
model. BO has been applied to many different fields, includ-
ing automatic machine learning (Snoek et al., 2012; Kan-
dasamy et al., 2018b), materials informatics (Ueno et al.,
2016), and drug design (Korovina et al., 2020; Griffiths &
Hernandez-Lobato, 2020).

Theoretical guarantees for BO have also been studied exten-
sively (e.g., Srinivas et al., 2010; Russo & Van Roy, 2014).

"Department of Computer Science, Nagoya Institute of Tech-
nology, Aichi, Japan *RIKEN AIP, Tokyo, Japan. Correspondence
to: Masayuki Karasuyama <karasuyama@nitech.ac.jp>.

Proceedings of the 40" International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

The Gaussian process upper confidence bound (GP-UCB)
(Srinivas et al., 2010), which achieves a strong theoreti-
cal guarantee for cumulative regret bounds, is a seminal
work in this field. Based on this versatile framework for
the analysis, while maintaining the theoretical guarantee,
GP-UCB has been extended to various problems, which in-
clude multi-objective BO (Paria et al., 2020; Zuluaga et al.,
2016), multi-fidelity BO (Kandasamy et al., 2016; 2017),
parallel BO (Contal et al., 2013; Desautels et al., 2014),
high-dimensional BO (Kandasamy et al., 2015), and cas-
cade BO (Kusakawa et al., 2022).

However, the choice of a confidence parameter (3, which
controls the exploitation-exploration trade-off, is a practical
challenge for GP-UCB-based methods, where ¢ is the itera-
tion of BO. Since the theoretical choice of 3, is considerably
large and increases with ¢, particularly in the later iterations,
GP-UCB with the theoretical 3; causes over-exploration,
which reduces the optimization performance. Therefore, in
practice, f3; is often specified manually using some heuris-
tics, which strongly affects the performance of GP-UCB.
Since this is a common problem with GP-UCB-based meth-
ods, mitigating the effect of the manual specification of 3;
is an important task.

To resolve this issue, Berk et al. (2020) have proposed a
randomized GP-UCB (RGP-UCB), which uses a random-
ized confidence parameter (;, which follows the Gamma
distribution. Their experimental results demonstrated that
RGP-UCB performed better than the standard GP-UCB.
Although Berk et al. (2020) provided the regret analysis,
it appears to contain some technical issues, including an
unknown convergence rate (See Appendix C for details).
Therefore, the theoretical justification of RGP-UCB is still
an open problem.

This study demonstrates a generalized regret bound of RGP-
UCB, which holds for a wider class of distributions for (;
in the Bayesian setting, where an objective function f is
assumed to be a sample path from the GP. However, this
analysis requires an increase in (z, as E[(¢] ~ S, which im-
plies the over-exploration cannot be avoided. Furthermore,
this generalization does not provide us the choice of the
distribution of (;.
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| GP-UCB (Srinivas et al., 2010) |

RGP-UCB IRGP-UCB (proposed)

BCR (discrete)
BCR (continuous)
Sufficient condition of BSR < 7

O(VTvrlogT)
O(VThrlogT)
VrlogT/T S

O(WT~rlogT)
O(VThrlogT)
VrlogT/T $n

*O(VTr)
O(VTyrlogT)
* /T S n/v/—logn

Table 1. Summary of Bayesian regret of GP-UCB-based algorithms. The first and second rows show the BCR bounds for discrete and
continuous input domains, respectively, where 7 is the maximum information gain defined in Section 2. The third row shows the
sufficient conditions to achieve that BSR is lower than the predefined accuracy n € (0, 1) for both continuous and discrete input domains,
where < represents an inequality ignoring factors except for 7" and 7. Star means better bounds than known results with respect to 7.
Note that the results in the right two columns are derived in this paper.

The aforementioned analyses motivated us to propose an
improved RGP-UCB (IRGP-UCB), in which (; follows a
two-parameter exponential distribution. First, we show
the sub-linear Bayesian cumulative regret (BCR) bounds
of IRGP-UCB in the Bayesian setting for both finite and
infinite input domains. In particular, when the input do-
main is finite, the BCR for IRGP-UCB achieves the better
convergence rate, which shows a O(y/logT) multiplicative
factor improvement from the known bounds, where 7' is the
entire time horizon. Furthermore, IRGP-UCB achieves a
tighter convergence rate with respect to 7" for the Bayesian
simple regret (BSR) than existing analyses for both finite
and infinite domains. More importantly, these analyses also
reveal that the increase in (; for IRGP-UCB is unnecessary.
Therefore, the over-exploration of the original GP-UCB is
theoretically alleviated via randomization using the two-
parameter exponential distribution. A key finding in our
proof is a direct upper bound of E[max f(x)]. We show
that E[max f ()] can be bounded by the expectation of the
UCB with our random non-increasing confidence parameter,
which enables us to derive tighter Bayesian regret bounds
than known results.

Our main contributions are summarized as follows:

* We provide the Bayesian regret bounds for RGP-UCB,
which holds for a wider class of distributions for ¢; and
achieves the same convergence rate as GP-UCB.

* We propose yet another randomized variant of GP-
UCB called IRGP-UCB, which sets the confidence
parameter (; using the two-parameter exponential dis-
tribution. A notable advantage of IRGP-UCB is that
increases in the confidence parameter in proportion to
t are unnecessary.

* We show Bayesian regret bounds for IRGP-UCB,
which achieves the better convergence rate, in which
O(v/log T') multiplicative factor is improved from
known results. This result suggests that the over-
exploration of GP-UCB is theoretically alleviated.

* We provide the upper bound for E[max f(x)] along
the way of the proof, which enables us to improve the
Bayesian regret bounds.

The theoretical results are summarized in Table 1. Finally,
we demonstrate the effectiveness of IRGP-UCB through a
wide range of experiments.

1.1. Related Work

This study considers BO with the Bayesian setting, where
the objective function f is assumed to be a sample path from
the GP. Various BO methods have been developed in the
literature, for example, expected improvement (EI) (Mockus
et al., 1978), entropy search (ES) (Hennig & Schuler, 2012),
and predictive entropy search (PES) (Hernandez-Lobato
et al., 2014). Although the regret analysis of EI for the
noiseless and frequentist setting, in which f is an element
of reproducing kernel Hilbert space, is provided in (Bull,
2011), the Bayesian setting has not been considered. Further,
although the practical performance of ES and PES has been
shown repeatedly, their regret analysis is an open problem.

GP-UCSB is one of the prominent studies for theoretically
guaranteed BO methods. Srinivas et al. (2010) showed the
high probability bound for cumulative regret. Although
Bayesian regret analysis for GP-UCB has not been shown
explicitly, Paria et al. (2020) have shown the BCR bound
for a multi-objective extension of GP-UCB, which contains
that of the original single-objective GP-UCB as the special
case. For completeness, we show the BCR bound of GP-
UCB in Section 2.4. Although many studies (e.g., Srinivas
et al., 2010; Chowdhury & Gopalan, 2017; Janz et al., 2020)
considered the frequentist setting, this study concentrates
on the Bayesian setting.

Berk et al. (2020) attempted to alleviate the GP-UCB hy-
perparameter tuning issue through randomization using the
Gamma distribution. Note that our result shown in Theo-
rem 4.1 differs from (Berk et al., 2020). We believe that
these differences come from several technical issues in the
proof in (Berk et al., 2020) (See Appendix C for details).
In addition, the final convergence rate in (Berk et al., 2020)
includes the variables whose convergence rate is not proved.
In contrast, our Theorem 4.1 fully clarifies the convergence
rate without those unproved variables. Moreover, Theo-
rem 4.1 is generalized to a wider class of distributions for
confidence parameters that contain the Gamma distribution.
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In addition, the two-parameter exponential distribution used
in IRGP-UCB is not considered in (Berk et al., 2020).

Another standard BO method with a theoretical guarantee
is Thompson sampling (TS) (Russo & Van Roy, 2014; Kan-
dasamy et al., 2018a). TS achieves the sub-linear BCR
bounds by sequentially observing the optimal point of the
GP’s posterior sample path. Although TS does not re-
quire any hyperparameter, TS is often deteriorated by over-
exploration, as discussed in (Shahriari et al., 2016).

Wang et al. (2016) have shown the regret analysis of the GP
estimation (GP-EST) algorithm, which can be interpreted
as GP-UCB with the confidence parameter defined using
m, an estimator of E[max f(x)]. Their analysis requires an
assumption 1 > E[max f ()], whose sufficient condition
is provided in (Wang et al., 2016, Corollary 3.5). How-
ever, this sufficient condition does not typically hold, as
discussed immediately after the corollary in (Wang et al.,
2016). Furthermore, the final convergence rate contains 1m
itself, whose convergence rate is not clarified. In contrast,
our Lemma 4.2 shows the bound for E[max f(x)] under
common regularity conditions. Wang & Jegelka (2017)
have shown the regret analysis of max-value entropy search
(MES). However, it is pointed out that their proof contains
several technical issues (Takeno et al., 2022b).

2. Background
2.1. Bayesian Optimization

We consider an optimization problem x* =
arg max,cy f(a), where f is an unknown expensive-to-
evaluate objective function, X' C R< is an input domain,
and d is an input dimension. BO sequentially observes the
noisy function value aiming to minimize the number of
function evaluations. Thus, at each iteration ¢, we can query
x; and obtain y; = f(x;) + €, where ¢, ~ N(0,0?) is
i.i.d. Gaussian noise with a positive variance o2 > 0.

We assume that f is a sample path from a GP (Rasmussen
& Williams, 2005) with a zero mean and a stationary kernel
function k : X x X — R denoted as f ~ GP(0,k). At
each iteration ¢, a dataset D;_; = {(=;,y;)}!_] is already
obtained from the nature of BO. Then, the posterior distri-
bution p(f | D;—1) is a GP again. The posterior mean and
variance of f () are derived as follows:

p—1(z) = ke (z) " (K + 021%1)71%71,
o (@) = k(z, @) — ki1 (@) T (K +0°T;_1)  ky 1 (2),

where k;_1(x) = (k(:c,wl)7...,k(w,wt,1))T € R71L,
K ¢ RO-Dx(=D g the kernel matrix whose (i, j)-
element is k(z;, x;), I,_1 € RE“VX(E=D s the iden-
tity matrix, and y,_; = (y1,...,%:1)' € R*~!. Here-
after, we denote that the probability density function (PDF)

p(+ | Di—1) = pe(+), the probability Pr(- | Dy—1) = Pr.(+),
and the expectation E[- | D;_1] = E,[-] for brevity.

2.2. Preliminaries for Regret Analysis

When X is infinite (continuous), the following regularity
assumption is used in most analyses (e.g., Srinivas et al.,
2010; Kandasamy et al., 2018a; Paria et al., 2020):

Assumption 2.1. Let X C [0, 7]¢ be a compact and convex
set, where r > 0. Assume that the kernel k satisfies the
Sfollowing condition on the derivatives of a sample path f.
There exists the constants a,b > 0 such that,

. L> < aexp <_ (ﬁ)) o j € [d],

where [d] = {1,...,d}.

Pr <sup 3
Tj

reX

Our analysis also requires this assumption.

The convergence rates of regret bounds are characterized
by maximum information gain (MIG) (Srinivas et al., 2010;
Vakili et al., 2021). MIG ~7 is defined as follows:

Definition 2.1 (Maximum information gain). Let f ~
GP(0,k). Let A = {a;}, C X. Let f 4 = (f(a))),_,,
€4 = (ei);il, where Yi,e; ~ N(0,02), and y, =
fu+ea€RT. Then, MIG ~yr is defined as follows:

yr = argmax I(y4;fa),
ACX;|Al=T

where I is the Shanon mutual information.

MIG is known to be sub-linear for commonly used kernel
functions, e.g., vy = O((log T)d“) for RBF kernels and

v = O(TTdﬂl (logT )ﬁ) for Mateérn-v kernels (Srini-
vas et al., 2010; Vakili et al., 2021).

2.3. Bayesian Regret Analysis

In this paper, we evaluate the performance of BO methods
by Bayesian regret (Russo & Van Roy, 2014; Kandasamy
et al., 2018a; Paria et al., 2020). The BSR! and BCR are
defined as follows:

BSRy :=E[f(z*) — max EDIE (1)

where the expectation is taken with all randomness, in-
cluding f, ¢, and the randomness of BO algorithms. We

!This definition of BSR only requires that some observed input,
which may be unknown due to the noise, achieves low regret. We
define BSR using the input recommended by the algorithm and
show its convergence in Appendix A.
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discuss the convergence of BSR by analyzing the BCR.
That is, if BCR is sub-linear, BSR converges to zero since
BSRt < %BCRT. Furthermore, we evaluate a required
number of function evaluations to achieve BSRy < n,
where 1 > 0 represents the desired accuracy of a solution.

According to (Russo & Van Roy, 2014), Bayesian regret
bounds directly provide high probability bounds. Assume
BCRy = O(h(T)) with some non-negative function h.
Then, the direct consequence of Markov’s inequality im-
plies that 37| f(x*) — f(z:) = O (h(T)/8) holds with
probability 1 — J, where 6 € (0, 1). Thus, the improvement
of the convergence rate of BCR for T" shows that of high-
probability bound although the rate for ¢ is worse compared
to log(1/0) (Srinivas et al., 2010).

The existing Bayesian regret analyses typically use the tech-
nique called regret decomposition (Russo & Van Roy, 2014).
This approach decomposes BCR as follows:

T

BCRy = ZJE [f(@") — up(@e)] + E [ug (i) — )],
t=1

)

where u;(x) = p—1(x) + Btl/zat,l(a:). If we use fixed
constant for {3, },>1 (e.g., Vt > 1, 8; = 2), bounding the
first term Zthl E [f(xs) — us(xy)] is difficult. Thus, in
existing analyses, {f; };>1 is scheduled so that 3; o logt.
Since [3; remains in the upper bound, the regret decompo-
sition using u:(x) deteriorates the final convergence rate,
as we will show an example of GP-UCB in Theorem 2.1.
IRGP-UCB avoids this problem by randomizing the confi-
dence parameters, as shown in Section 4.

2.4. GP-UCB

The GP-UCB (Srinivas et al., 2010) selects the next evalua-
tion by maximizing UCB as follows:

x; = argmax py—1 () + 6,51/20,5,1(:2).
xreX
Although BCR bound for the standard GP-UCB has not
been shown explicitly, sub-linear regret bounds of GP-UCB
can be shown in nearly the same way as (Paria et al., 2020):
Theorem 2.1 (Informal: BCR of GP-UCB). Suppose that
f ~GP(0,k), where k(x,x) = 1. Assume that X is finite
or Assumption 2.1 holds. Then, by running GP-UCB with
Bt o< log(t), BCR can be bounded as follows:

BCRy = O(\/TBr7r),
which implies sub-linearity when v = o(T/logT).

See Appendix B for the proof?. In the theorem, the confi-
dence parameter 3; must be scheduled as 3; o log(t).

™t is worth noting that the convergence rate for a in Assump-

Algorithm 1 IRGP-UCB
Require: Input space X', Parameters s and A\ for (;, GP
prior 4 = 0 and k&
1: D() < (Z)
2: fort=1,... do
3: Fit GP to D;_;
4 Generate (; by Eq. (3)
5: Ty — argmaxg ey the—1(x) + Ctl/Qat,l(:c)
6
7

Observe Yt — f(ﬂ:t) + € and Dt — thl U ([Et7 yt)
: end for

3. Algorithm

Algorithm 1 shows a simple procedure of IRGP-UCB. The
difference from the original GP-UCB is that (; is a ran-
dom variable, not a constant. Using generated (;, the next
evaluation is chosen as follows:

T; = arg n)1(ax pe—1(x) + Ctl/zat_l (x).
xe
Our choice of the distribution of (; is a two-parameter ex-
ponential distribution (e.g., Beg, 1980; Lam et al., 1994),
whose PDF is written as follows:

)\exp()\(C — 5)) if ¢ > s,
0 otherwise,

p(C58, ) {

where A is a rate parameter. This can be seen as a distribu-
tion of the sum of s and Z ~ Exp(\). Thus, the sampling
from the two-parameter exponential distribution can be eas-
ily performed using an exponential distribution as follows:

(t < s+ Z, where Z ~ Exp(\). 3)

The theoretical choice of s and A\ will be shown in Section 4.

4. Regret Analysis

First, we show the Bayesian regret analysis for a general
RGP-UCB, which is not restricted to the two-parameter
exponential distribution. Next, we show the tighter Bayesian
regret bounds for IRGP-UCB.

4.1. Regret Bound for General RGP-UCB

Here, we provide a generalized theoretical analysis for RGP-
UCB, which holds for a wider class of distributions.

Theorem 4.1 (Informal: BCR of RGP-UCB). Suppose that
f~GP(0,k), where k(x,x) = 1. Assume that X is finite
or Assumption 2.1 holds. Let {(; }+>1 be a sequence of non-
negative random variables, which satisfies E[(;] = O(logt)

tion 2.1 is tightened in our proof compared with the proofs in
(Paria et al., 2020; Kandasamy et al., 2018a). This is applied to all
subsequent regret analyses for a continuous domain. See details
for Appendixes B and H.
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and Elexp(—(;/2)] = O(1/t?). By running RGP-UCB
with (;, BCR can be bounded as follows:

BCRr = O(v/TyrE[¢r]),
which implies sub-linearity when v = o(T/logT).

See Appendix D for the proof, in which we also rectify the
technical issues in (Berk et al., 2020) listed in Appendix C.
A notable difference between Theorem 4.1 and (Berk et al.,
2020, Theorem 3) is that Theorem 4.1 is applicable to a
wider class of distributions of (;, not only Gamma distribu-
tion proposed in (Berk et al., 2020). Roughly speaking, The-
orem 4.1 only requires that the distribution has the parame-
ters that can control the distribution so that E[(;] = O(log1t)
and E[exp(—(;/2)] = O(1/t?). This condition can be satis-
fied by many distributions, such as Gamma, two-parameter
exponential, and truncated normal distributions, as shown in
Appendix D.2. See Appendix D.2 for a detailed discussion.

Although Theorem 4.1 achieves sub-linear BCR bounds,
the implication of Theorem 4.1 is restricted. In the proof,
¢; must behave similar to S, that is, E[(;] «x f; and
Elexp(—(:/2)] o« exp(—p¢/2). Therefore, based on
this theorem, over-exploration of the GP-UCB cannot be
avoided. Furthermore, this theorem does not specify a dis-
tribution, that is suitable for the randomization of GP-UCB.

4.2. Regret Bounds for IRGP-UCB

First, for completeness, we provide a modified version of
the basic lemma derived in (Srinivas et al., 2010):

Lemma 4.1. Suppose that f is a sample path from a GP
with zero mean and a stationary kernel k and X is finite.
Pick § € (0,1) and t > 1. Then, for any given D;_;,

Pr, (f(2) < (@) + 5y 00 a(w), Vo € X) > 15,
where Bs = 21og(|X|/(26)).

See Appendix E.1 for the proof. This lemma differs
slightly from (Srinivas et al., 2010, Lemma 5.1), since, in
Lemma 4.1, the iteration ¢ is fixed, and S5 does not depend
on t.

Based on Lemma 4.1, we show the following key lemma to
show the improved convergence rate:

Lemma 4.2. Let f ~ GP(0, k), where k is a stationary
kernel and k(x,x) = 1, and X be finite. Assume that ¢
follows a two-parameter exponential distribution with s =
21og(|X'|/2) and X\ = 1/2. Then, the following inequality
holds:

E[f(2")] < E |maxp1 (@) + ¢ *ora (@) |

forallt > 1.

Proof. We here show the short proof of Lemma 4.2 although
detailed proof is shown in Appendix E.2. From the tower
property of the expectation, it suffices to show the following
inequality:

Ee[f(2*)] < Ee |max ey (x) + ¢ o (x)

Since this inequality only considers the expectation given
D;_1, we can fix D;_; in the proof. Furthermore, from
Lemma 4.1, we can obtain the following inequality:

F1-9) < gleagut_l(w) + 85011 (@),

where Fi(-) .= Pr; (f(x.) < -) is a cumulative distribution
function of f(x.), and F, ! is its inverse function. Then,
substituting U ~ Uni(0, 1) into ¢ and taking the expecta-
tion, we obtain the following inequality:

E:[f(2.)] < By [maxpi (@) + 5/ o1 (@)

which can be derived in a similar way to inverse transform
sampling. Hence, 5[1/2 = 2log(|X|/2) — 2log(U) results
in a random variable, which follows the two-parameter ex-

ponential distribution. Consequently, we can obtain the
desired bound. O

Lemma 4.2 shows a direct upper bound of the expectation
of f(x*). A remarkable consequence of Lemma 4.2 is an
upper bound of BCR as follows:

[M]=

BCRr = ) E[f(z") — vi(xs)] + E [vi(2:) — f(z1)]

~
Il
-

M=

E v () — f(ze)]

o~
Il

1

where v () == pp—1(x) + (:/20,&,1 (). This upper bound
eliminates the first term, which cannot be bounded without
increasing the confidence parameter in the conventional
regret decomposition Eq. (2). Importantly, E[¢;] = 2 + s
is a constant since s and A for ¢ does not depend on ¢ in
Lemma 4.2. Thus, using Lemma 4.2, we can obtain the
tighter BCR bound for the finite input domain:

Theorem 4.2 (BCR bound for finite domain). Let f ~
GP(0, k), where k is a stationary kernel and k(xz,x) =1,
and X be finite. Assume that (; follows a two-parameter
exponential distribution with s = 2log(|X|/2) and \ =
1/2 for any t > 1. Then, by running IRGP-UCB with (;,
BCR can be bounded as follows:

BCRy < /C1CoTyr,

where Cy = 2/log(1 + 0~ 2) and Cy =2 + s.
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See Appendix F for detailed proof.

Theorem 4.2 has two important implications. First, Theo-
rem 4.2 shows the convergence rate O(1/T+yr), in which
multiplicative v/TogT factor is improved compared with
O(V/T~rlogT) achieved by GP-UCB (Srinivas et al.,
2010), RGP-UCB, and TS (Russo & Van Roy, 2014). Sec-
ond, more importantly, IRGP-UCB does not need to sched-
ule the parameters of (;, i.e., s and A, in contrast to GP-UCB
and RGP-UCB. Therefore, through randomization, IRGP-
UCB essentially alleviates the problem that the well-known
B¢ o log(t) strategy results in a practically too large con-
fidence parameter. Further, over-exploration in the later
iterations can be avoided. The IRGP-UCB is the first GP-
UCB-based method that enjoys the above technical and
practical benefits.

On the other hand, note that the dependence +/log | X| re-
mains as with the prior works (Srinivas et al., 2010; Russo &
Van Roy, 2014; Kandasamy et al., 2018a; Paria et al., 2020).
In BO, we are usually interested in the case that the total
number of iterations 7' < |X|. Thus, /log | X| is dominant
compared with y/log T’ factor improvement.

It is worth noting that our key lemma (Lemma 4.2) mainly
requires Lemma 4.1 only, which is expected to be satisfied in
a wide range of exploration problems in which a GP is used
as a surrogate model. Therefore, we conjecture that the same
proof technique can be applicable to more advanced problem
settings, such as multi-objective BO (Paria et al., 2020), for
which further analyses are important future directions of our
results.

Next, we show the BCR bound for the infinite (continuous)
domain:

Theorem 4.3 (BCR bound for infinite domain). Let f ~
GP(0,k), where k is a stationary kernel, k(x,x) =
1, and Assumption 2.1 holds. Assume that (; follows
a two-parameter exponential distribution with s; =
2dlog(bdrt? (/log(ad) + /7/2)) — 2log2 and A = 1/2
for anyt > 1. Then, by running IRGP-UCB, BCR can be
bounded as follows:

2
BCRy < -+ VO Ty (2 + s1),
where Cy = 2/ log(1 + o~ 2).

See Appendix G for the proof. Unfortunately, in this
case, E[¢:] = O(logt) and the resulting BCR bound is
O(v/T~rlogT). This is because the discretization of input
domain X}, which is refined as |X;| = O(t??), is required
to obtain the BCR bound for the infinite domain. Since we
cannot avoid the dependence on |X| also in Theorem 4.2,
the resulting BCR bound in Theorem 4.3 requires the term
log(|X;|) = O(2dlog(t)).

As discussed above, our proof for BCR needs to refine the

discretization as |X;| = O(?¢) to bound the summation
of the discretization error. On the other hand, if we aim to
bound BSRy < 7, the discretization error at an iteration is
only required to be smaller than 7). Therefore, the refinement
of the discretization is not necessarily needed. Hence, we
can obtain the following corollaries for finite and infinite
input domains, respectively:

Corollary 4.1 (BSR bound for finite domain). Fix a re-
quired accuracy 11 > 0. Assume the same condition as in
Theorem 4.2. Then, by running IRGP-UCB, BSRr < 7
by at most T function evaluations, where T' is the smallest
positive integer satisfying the following inequality:

c.C
VO o,

where Cy == 2/log(1 + 07 2) and Cy =2 + s.

Corollary 4.2 (BSR bound for infinite domain). Fix a re-
quired accuracy n > 0. Assume the same condition as
in Theorem 4.3 except for s, = 2dlog(2bdr (1/log(ad) +
V7/2)/n) — 2log2.  Then, by running IRGP-UCB,
BSRr < n by at most T function evaluations, where T
is the smallest positive integer satisfying the following in-
equality:

Ci(2+ Sn)'YT < n
T -2’
where Cy = 2/ log(1 + o~ 2).

See Appendixes F and G for the proof, respectively. These
corollaries suggest that, for both finite and infinite domains,
an arbitrary accuracy solution can be obtained using finite
function evaluations, whose rate is shown by the inequalities.
In Corollary 4.2, s,, depends on 7 instead of ¢. Thus, in both
corollaries, the convergence rate of the left-hand side with
respect to T is O(y/yr/T), which is improved compared
with O(y/~r log T/T) achieved by GP-UCB, RGP-UCB,
and TS. This faster convergence rate is an essential improve-
ment derived based on Lemma 4.2. Therefore, IRGP-UCB
does not need to schedule (; if we require optimization
rather than cumulative regret minimization.

5. Experiments

We demonstrate the experimental results on synthetic and
benchmark functions and the materials dataset provided
in (Liang et al., 2021). As a baseline, we performed
EI (Mockus et al., 1978), TS (Russo & Van Roy, 2014),
MES (Wang & Jegelka, 2017), joint entropy search (JES)
(Hvarfner et al., 2022), and GP-UCB (Srinivas et al., 2010).
For the posterior sampling in TS, MES, and JES, we used
random Fourier features (Rahimi & Recht, 2008). For



Randomized Gaussian Process Upper Confidence Bound with Tighter Bayesian Regret Bounds

) |¢|=1000
0T rePuce
o GP-UCB
& % ]— RGP-UCB with Gamma
()
£
240*
3
8 301
z
o
201
10

25 50 5 100 125 150
Iteration

Figure 1. Confidence parameter of GP-UCB-based methods. For
GP-UCB, the solid line represents ;. For RGP-UCB and IRGP-
UCSB, the solid lines and shaded area represent the expectations
E[¢¢] and 95% credible intervals, respectively.
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Figure 2. Average and standard errors of simple regret.

Monte Carlo estimation in MES and JES, we used ten sam-
ples. We evaluate the practical performance of BO by simple
regret f(x*) — maxy<p f(2¢).

5.1. Synthetic Function Experiment

We use synthetic functions generated from GP(0, k), where
k is Gaussian kernel with a length scale parameter ¢ = 0.1
and the input dimension d = 3. We set the noise vari-
ance 02> = 10~%. The input domain consists of equally
divided points in [0,0.9], i.e., X = {0,0.1,...,0.9}% and
|X| = 1000. Figure 1 shows the theoretical confidence
parameters of GP-UCB, RGP-UCB with Gamma(k; =
log(|X[t?)/1og(1.5),0 = 1), and IRGP-UCB with a two-
parameter exponential distribution. We can see that the
confidence parameters for GP-UCB and RGP-UCB are con-
siderably large due to logarithmic increase, particularly in
the later iterations. In contrast, the confidence parameter of
IRGP-UCSB is drastically smaller than that of GP-UCB and
not changed with respect to the iteration. Therefore, we can
observe that IRGP-UCB alleviates the over-exploration.

Next, we report the simple regret in Figure 2. Ten synthetic

functions and ten initial training datasets are randomly gen-
erated. Thus, the average and standard error for 10 x 10 trials
are reported. The hyperparameters for GP are fixed to those
used to generate the synthetic functions. The confidence
parameters for GP-UCB, RGP-UCB, and IRGP-UCB are
set as in Figure 1. We can see that the regrets of GP-UCB,
RGP-UCB, TS, and JES converge slowly. We conjecture
that this slow convergence came from over-exploration. On
the other hand, EI, MES, and IRGP-UCB show fast conver-
gence. In particular, IRGP-UCB achieves the best average
in most iterations. These results suggest that IRGP-UCB
bridges the gap between theory and practice in contrast to
GP-UCB and RGP-UCB.

5.2. Benchmark Function Experiments

We employ three benchmark functions called Holder table
(d = 2), Cross in tray(d = 2), and Ackley (d = 4) functions,
whose analytical forms are shown at https://www.sfu.
ca/~ssurjano/optimization.html. For each
function, we report the average and standard error for 10
trails using ten random initial datasets Dy, where |Dg| = 2¢.
We set the noise variance 02 = 10~*. We used the Gaus-
sian kernel with automatic relevance determination, whose
hyperparameter was selected by marginal likelihood maxi-
mization per 5 iterations (Rasmussen & Williams, 2005).

In this experiment, since the input domain is continuous,
the theoretical choice of the confidence parameter contains
an unknown variable. Thus, we use the heuristic choice for
confidence parameters. For GP-UCB, we set the confidence
parameter as 3; = 0.2d log(2t), which is the heuristics used
in (Kandasamy et al., 2015; 2017). For RGP-UCB, we set
¢t ~ Gamma(k, 0 = 1) with k, = 0.2dlog(2t) since
E[¢;] must have the same order as 3; (note that E[(;] =
0k¢). For IRGP-UCB, we set s = d/2 and A = 1/2. Note
that )\ is equal to the theoretical setting, and s captures the
dependence on d, as shown in Corollary 4.2.

Figure 3(a) shows the results. In the Holder table function,
JES shows faster convergence until 40 iterations. However,
the regrets of all baseline methods stagnate in [10~1, 10°].
In contrast, the regret of IRGP-UCB converges to 10~3 un-
til 60 iterations. In the Cross in tray function, IRGP-UCB
showed rapid convergence at approximately 50 iterations. In
the Ackley function, IRGP-UCB constantly belonged to the
top group and showed minimum regret after 125 iterations.
Since the input dimension is relatively large, TS and JES,
which depends on the sampled maxima x., deteriorate by
over-exploration. Throughout the experiments, IRGP-UCB
outperforms TS, GP-UCB, and RGP-UCB, which achieves
sub-linear BCR bounds, and EI and MES, which are prac-
tically well-used. This result supports the effectiveness of
randomization using the two-parameter exponential distri-
bution.
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Figure 3. Average and standard errors of simple regret.

5.3. Real-World Dataset Experiments

This section provides the experimental results on the ma-
terials datasets provided in (Liang et al., 2021). In the
perovskite dataset (Sun et al., 2021), we optimize environ-
mental stability with respect to composition parameters for
halide perovskite (d = 3 and | X| = 94). In the PSHT/CNT
dataset (Bash et al., 2021), we optimize electrical conduc-
tivity with respect to composition parameters for carbon
nanotube polymer blend (d = 5 and |X| = 178). In the
AgNP dataset (Mekki-Berrada et al., 2021), we optimize
the absorbance spectrum of synthesized silver nanoparticles
with respect to processing parameters for synthesizing trian-
gular nanoprisms (d = 5 and |X'| = 164). See (Liang et al.,
2021) for more details about each dataset.

We set the initial dataset size |Dy| = 2 as with (Liang et al.,
2021). Since the dataset size is small at earlier iterations
and the dataset contains fluctuations from real-world ex-
periments, we observed that hyperparameter tuning could
be unstable. Thus, we optimized the hyperparameters of
the RBF kernel in each iteration to avoid repeatedly obtain-
ing samples using an inappropriate hyperparameter. The
other settings matched those used in the benchmark function
experiments.

Figure 3(b) shows the results. In the perovskite dataset,

IRGP-UCB constantly belonged to the top group and
showed the best performance after 20 iterations. In the
P3HT/CNT dataset, EI converged to the smallest value after
60 iterations. On the other hand, IRGP-UCB shows faster
convergence during the first 20 iterations. In the AgNP
dataset, IRGP-UCB found the optimal point until 42 itera-
tions in all the trials earliest. In this experiment, heuristic
methods, EI, MES, and JES, showed worse performance
and required at least 60 function evaluations to find the opti-
mal point. Consequently, we can observe the effectiveness
of IRGP-UCB against real-world datasets.

6. Conclusion

First, by showing the generalized BCR bounds for RGP-
UCSB, this study showed that randomization without inge-
nuity does not improve the regret bounds. Then, this study
proposed an improved randomized GP-UCB (IRGP-UCB)
using the two-parameter exponential distribution, whose
Bayesian regret bound is tighter than known results. Fur-
thermore, IRGP-UCB does not require an increase in the
confidence parameter with respect to the number of itera-
tions. Lemma 4.2, which directly bounds the expectation
of the maximum value, plays a key role in the proof. Ad-
ditionally, we demonstrated the practical effectiveness of
IRGP-UCB through extensive experiments, including the
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application to the materials dataset.

Several directions for future works can be considered. First,
whether we can show the tighter BCR bounds for the con-
tinuous domain is of interest. Second, since the Bayesian
regret analysis of TS depends on the usual UCB, we may
improve the BCR bound of TS using randomized UCB. Last,
we may be able to extend IRGP-UCB to the other various
practical settings, where the usual UCB-based methods have
been extended, e.g., multi-objective BO (Paria et al., 2020;
Zuluaga et al., 2016; Suzuki et al., 2020), multi-fidelity BO
(Kandasamy et al., 2016; 2017; Takeno et al., 2020; 2022a),
parallel BO (Contal et al., 2013; Desautels et al., 2014),
high-dimensional BO (Kandasamy et al., 2015), cascade
BO (Kusakawa et al., 2022), and robust BO(Bogunovic
et al., 2018; Iwazaki et al., 2021; Inatsu et al., 2022).
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A. BSR with Recommended Input

When the observation is contaminated by the noise, we cannot know the observed input, which minimizes BSR defined

in Eq. (1). Thus, it is required that the algorithm explicitly returns low regret input. Then, we can consider the following
variant of BSR:

BSRy = E[f(a*) — f(d&1)],

where &, is a recommendation point from the algorithm. To bound this BSR, we can consider the following two options for
the recommendation:

&y = argmax fi;1(x),
reX
&= argmax pi—1(x).

ze{x,..., Tio1}

Although we here consider the finite input domain for simplicity, it can be extended to the infinite domain in the same way
as our proof of Corollaries 4.2. Then, the BSR defined by the both &; can be bounded as follows:

BSRy = E[f(z*) — f(@r)]

=Ep, , [Ef[f(®)|Dr-1] — pr—1(@r)]

<Ep,_, {Ef [f(@*)|Dr_1] — % HT—l(iBt)] (VL <t <T,pp_a(@r) < pr_q(z))
t=1

-2 > Ep,, [lEf [f(@")[Dr_1] —Ef [f(a;t)\DT_IH

el

1
T
1

tge

IN

[f(:c*) - f(wtﬂ

t

BCRr.

Il
—

T

Consequently, we can show the upper bound of this variant of BSR, which is the same as that of the BSR defined in Eq. (1).

B. Proof for BCR Bound of GP-UCB

Srinivas et al. (2010) provided the high-probability bounds for cumulative regret, not BCR bounds. On the other hand,
although Paria et al. (2020) have shown BCR bounds for the GP-UCB-based multi-objective BO method, they did not
provide explicit proof for standard single-objective BO. Thus, although the following result is an almost direct consequence
of Theorem 2 in (Paria et al., 2020), we here provide the explicit proof for standard GP-UCB for completeness. On the other
hand, for the case of (i), the bound with respect to a is tightened as O (log(log(a))) compared with O(log(a)) (Kandasamy
et al., 2018a; Paria et al., 2020), which is mainly based on Lemma H.1.

Theorem B.1. Suppose that f ~ GP(0, k), where k is a stationary kernel and k(x,x) = 1.
(i) When X is a finite set, GP-UCB with 3; = 2log(|X|t?//2) achieves the following BCR bound:

2
e
BCRr < 3 +/CiTBryr,

where Cy := 2/ log(1 + o~ 2).

(ii) When X is an infinite set, let Assumption 2.1 holds. Then, GP-UCB with 3, = 2dlog(bdrt*(1/log(ad) + /7/2)) +
2log(t?/\/27) achieves the following BCR bound:

2
BCRy < -+ VOB,
where Cy = 2/ log(1 + o~ 2).
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Proof. First, we show the proof of (i). For regret analysis of BCR, regret decomposition (Russo & Van Roy, 2014) with
. 1/2 : .
Ui(x) = pi—1(x) + ;' “or—1(x) is used as follows:

T
=Y E[f(@") = Us(a") + Up(@") = Us(a:) + Us(@) — f(1)]

T

T
< Y Elf(@") = U]+ )_E[Ui(z:) — f(=1)]- (- Uil@") = Uy(ay) < 0)

t=1 t=1

R] RZ

First, we consider R;. We use the following fact for a Gaussian random variable Z ~ N (m, 52) with m < 0:

S m2
B{Z)] < <o {2} @

where Z = max{0, Z}. This fact has been frequently used in this literature (Russo & Van Roy, 2014; Kandasamy et al.,
2018a; Paria et al., 2020). Then, we can extend R as follows:

Ry

Il
M=

Ep,_, [Ec[f(2") — Up(z”)]]

o~
Il
—

M=

Ep, ., [E(f(z") — Ui(2")) ,]] (- fl&") = Ulx") < (f(=") = Ui(z")) )

IA
ST
A

> Eo., [B[(f@) - Ui@)),]] - ( (fa") = Ui(a"), < 3 (f(@) - Ut<:c>)+)
lxeXx

t

R < i;EDt 1 {at\_/%z) o {_itH (" Eq. (4))
T
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Then, we bound R- as follows:

T
Ry, = Z]E[Ut(wt) — f(@)]

T

= ZEDt—l [Et[Ut(mt) - f(xt)H

t=1

Z Ep, ,[U(®t) — p—1(z1)]
t=1

I
M=

E {ﬁtI/QUt—l(xt)}

H
Il

1

T
=K Z ﬁtl/Qatl(a:t)]
s
T
<E Z Be Z o | (xy) (.- Cauchy-Schwarz inequality)
=1 =1

IN

(B <B2<-- < PBr).

Then, from Lemma 5.4 in (Srinivas et al., 2010), \/2?21 o? 1 (x¢) < +/Ciyr with probability 1. Thus, we obtain
Ry </ CITBryT. (6)

Consequently, by combining Eqs. (5) and (6), we obtain the theorem for (i).

Next, we consider (ii). Purely for the sake of analysis, we use a set of discretization X; C X for¢ > 1. Forany ¢ > 1, let
X, C X be a finite set with each dimension equally divided into 7, = bdrt*(y/log(ad) + /7/2). Thus, |X;| = 7{. In
addition, we define [x]; as the nearest points in X; of x € X.

Then, BCR can be decomposed as follows:

T
BCRr = Y E[f(a*) — f([="])) + f([=*]) = Un([="),) + Ui([2"]:) = Un(@e) + Us(ar) — f (1))

;1
<D Ef(@) = f(l2"]) + f([27]) = Ui([z"]e) + Unle) = f(@0)],

where E [Uy([*];) — Uy(,)] < 0 since &; = arg max,¢ y U; (). Furthermore, we obtain the following:

T

Y Elf(z) - f(lz"))] <

t=1 t

M=

B | sup (@) - (21,

1 xrzeX

T
1
< Z 7 (.- Lemma H.2)
t=1
w2 =1 w2
<% O
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The remaining terms 23:1 E[f([x*]:) — Ui([x*]¢) + Uy(2¢) — f(;)] can be bounded as with the case (i) by setting
By = 2log(|X;[t?/v/2m). That is,

T 2
D_E[f([e)) ~ Un[e)) + Uilae) — f(@0)] < & + VO Thrr
t=1
By substituting |X;| = (bdrt?(y/log(ad) + ﬁ/2))d, we conclude the proof. O

C. Technical Issues of Proof in (Berk et al., 2020)

The proofs of Theorems 1, 2, and 3 in (Berk et al., 2020) appear to contain many technical issues. We enumerated them
using the notation in (Berk et al., 2020) as follows:

* Lemma 1 does not necessarily hold since a([x¢],) can be smaller than «([x*],) although a(x;) > a(x*).

* To treat f(x;) as the random variable, which follows A/ (j1;(x), o?(x)), the conditioning by D is required. However,

they do not perform the conditioning in most equations, such as Egs. (11) and (12).
 From Eq. (13) to the next equations, the term | Xg;s| is eliminated. This term is imperatively required.

* In Egs. (11), (12), (16), and (17), variables such as o;_;([x;],) are random variables that depend on D; and [x¢],.
However, these random variables are taken out from the expectation.

* From Eq.(17) to Eq. (19), a discretization for x; is eliminated.
* In Eq. (18), an approximately equal sign = is used, which is inappropriate for theoretical proof.

* The convergence rate of the term F~1(1 — 1/T) in the resulting bound is not clarified.

Hence, Theorems 1, 2, and 3 in (Berk et al., 2020) are not shown using their proofs. Furthermore, even if Theorem 3 holds,
it would be insufficient to show the sub-linear BCR bound.

D. Proof of Theorem for RGP-UCB

Here, we rectify and generalize the theorems in (Berk et al., 2020). First, we show the generalized theorem, which shows
the upper bound using the expectation and MGFs of {(; },>1. Next, we provide some examples of the distributions, which
can achieve the sub-linear regret bound by appropriately controlling the parameters.

D.1. Generalized BCR Bounds for RGP-UCB

The following theorem shows the upper bound of BCR for setting {(;}:>1 as arbitrary non-negative random variables:

Theorem D.1. Let f ~ GP(0,k), where k is a stationary kernel k and k(x,x) = 1. Let {(;}+>1 be a sequence of
non-negative random variables and their MGFs be M (-), where M;(—1/2) < oo at least.

(i) When X is a finite set, by running RGP-UCB with (;, BCR can be bounded as follows:

T

T
BCRr < %ZMt(—l/Q) + ;E[Q]CW%

where Cy := 2/ log(1 + o~ 2).
(ii) When X is an infinite set, let Assumption 2.1 holds. By running RGP-UCB with (;, BCR can be bounded as follows:

T
BCRT<—+ Zn My(=1/2) + clemT,
t:l =

where Cy := 2/log(1 + 0~2) and 7, = bdrt?(\/log(ad) + \/7/2).
15
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Proof. The procedure of the proof is similar to the proof for the standard GP-UCB shown in Appendix B. BCR can be
decomposed by Vi(x) = pi—1(x) + Ctl/zat,l(:c) as follows:

[M]=

BCRr = ) E[f(z") — Vi(z") + Vi(z") — Vi(z:) + Vi(ze) — f(24)]
" .
<Y E[f(x) = Vi@ + Y _E[Vi(z:) — f(z)] . (. Vi(z") = Vi(x1) < 0)
=Ry =R

Then, we derive the upper bounds of Ry and R, respectively.

First, we consider R;. We use the following fact for Gaussian random variables Z ~ N (m, 52) with m < 0:

S m2
B[Z,] < ey {—22} @

where Z; := max{0, Z}. This fact is frequently used in the literature (Russo & Van Roy, 2014; Kandasamy et al., 2018a;
Paria et al., 2020). Then, we can extend R; as follows:

Ry =
t;l
< E[(f@) - Vi), (- f@) = Vila") < (f(=") — Vila")) )
T
<YE lz (f(a) - vt<x>)+] ( (f") ~ Vi), < 3 (f(=) - vt<x>)+>
t=1 rcX reX

Y Y (B [(@) = Vi), 1 P, |

t=1xeX

Here, (f(z) — Vi(x)) | Di—1, ¢ follows N(—gj/zat_l (x),02_(x)). Thus, by using Eq. (7), we can obtain the following:

S

R <Y Y Ep, .q [”t\‘/%@ exp {—%H (. Eq. (7))

t=1xcX
y Z
<2l >k o {-$1] (- or1 (@) < oo() = 1)
T
= \|/% 2 M (—1/2). (. Definition of MGF) (8)

16
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Second, we expand Rj as follows:

Ry = ZE Vi(e) — f(2)]

=1
T
=E l ¢/ atl(mt)]
=1
T T
<E Z e Z o7 ()] - (.- Cauchy-Schwarz inequality)
=1 t=1

Then, as with Lemma 5.4 in (Srinivas et al., 2010), Z;‘FZI o? () < /Ciyr with probability 1, where C; =
2/1og(1 + 0~2). Hence,

T
Ry <E |\|> G| VCiyr
=1

VCiT (. Jensen’s inequality)

IN
&=
(]
L

= | S El)yCrr. ©

Consequently, combining Eqgs. (8) and (9), we can obtain the theorem for (i).

Then, we consider the case (ii). As with the proof of Theorem B.1, purely for the sake of analysis, we used a set of
discretization X; C X fort > 1. For any ¢t > 1, let &; C X be a finite set with each dimension equally divided into
7 = bdrt? (y/log(ad) + /7/2). Thus, | X;| = 7{'. In addition, we define [x]; as the nearest points in X; of z € X.

Then, we decompose BCR as follows:

BCRr = ) E[f(z") — f([&"]:) + f([2"]:) = Vi([2"]o) + Vi([="]e) — Vilze) + Vi(:) — (=)

[M]=

~
Il

1

<

Ef(z") = f([="]e) + f([z"]e) = Vi[2™]e) + V(@) — flz0)]

N

o~
Il

1

17
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Table 2. PDFs, MGFs, and expectations for distributions of ¢, where I is the Gamma function, and ¢ and ¢ are PDF and cumulative
distribution function of standard normal distribution, respectively.

PDF MGF: M (—1/2) Expectation
E=1.-¢C/0 _
Gamma: (k, ) CF(W (14+6/2)* k0
Two-parameter exponential: (s, \) e MC=5) for ¢ > s >0 wize 2 s+1/A
Truncated normal: (m, s> = 1) | o((c=m)/s) o—m/24+1/8 B(3/2)—B(~1/2)
with truncation [m — s, m + s sH—a(-D XM msSCSmts (1) —d(—1) m

where E [V, ([z*];) — Vi(x;)] < 0since @, = arg max, ¢ Vi (). Furthermore, we obtain the following:

T

Y Elf(@) — f(l27])] <

t=1 t

M=

| sup f(@) - /(lal)|

xrzcX

1

(" Lemma H.2)

(%e-%)

The remaining terms ZZ;I E[f([x*]:) — Vi([®*]¢) + Vi(@:) — f(2)] can be bounded as with the case (i). That s,

IA
M=
B~

H
Il
—

IA
c:‘ﬂw

T T T
1
SBLf(")) ~ Villa"h) + Vitw) — F(@n)] < <= ST IMIM(-1/2) + [ G DBl
t=1 Vor t=1
By substituting |X;| = (7;)%, we conclude the proof. O

D.2. Example of Distributions for Sub-linear BCR Bounds

Next, we show examples of the distributions that can achieve sub-linear regret bound using Theorem D.1. Here, we discuss
the case (ii) for infinite X'. The derivation for case (i) can be obtained easily by replacing |X;| = (7;)? with | X|.

Theorem D.1 shows that BCR can be bounded by the expectation and MGF. Roughly speaking, if we can control MGF
as M;(—1/2) = O(1/(t?|x;|)) and the expectation E[¢;] = O(logt) by scheduling the parameter of the distribution of ¢,
we can obtain sub-linear regret bounds, which is similar to Theorem B.1. This is because we can bound the first term by
\/% SOr_, 1/t = w2/(6v/2x) if the following inequality holds:

IM(-1/2) < .

This inequality can be rewritten as,

Mi(1/2) € s

Furthermore, the expectation E[(;] = O(logt) is required to bound the second term.

The above requirements can be satisfied not only by the Gamma distribution proposed in (Berk et al., 2020) but also
by many other distributions, such as two-parameter exponential and truncated normal distributions. Their PDFs, MGFs,
and expectations are listed in Table 2. Note that although we describe only those three distributions, we can use other
distributions, such as chi-squared distribution and truncated normal with other truncation, to obtain sub-linear regret bound
from Theorem D.1. Each scheduling of the parameter and resulting regret bound are shown as follows:

Gamma Distribution: If we use (; following Gamma distribution with k; and 0, we require the following:

1

(1+6/2)7F \Xt|t2

18
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Therefore, we obtain the following:

log(|X;[t%)
"= log(1+6/2)

The above derivation is mostly the same as the proof of Theorem 1 in (Berk et al., 2020). However, Berk et al. (2020)

bounded as 4/ Zthl E[(;] < +/TE[max;<7 (. This operation is correct, but the evaluation of E[max;< (] is slightly

complicated. To bound this term, Berk et al. (2020) used nearly equal, which is forbidden. On the other hand, we know the
expectation E[(;] = k.6 analytically. Let

log(|X:[2)
log(1+6/2)

_ dlog(bdrt? (y/log(ad) + /7/2)) + 2log(t)
N log(1+6/2) '

=

Consequently, since E[(;] = k.0 is monotone increasing, we obtain the following bound:

2

BCRT_F‘FGF-F

CivTE[(r] = + —— + V/C17TOkr.

™
6 6\/

Two-Parameter Exponential Distribution: If we use (; following two-parameter exponential distribution with s; and A,
we requires the following:

A 1
—st/2 < —st/2 <
At1/2° C A

where we bound < 1 so that the condition for A to maintain s; > 0 will be eliminated. Therefore, we obtain the

A
X172
following:

sy > 2log (\Xt|t2) .

Hence, by setting s; = 2log (| X;[t?) = 2d log(bdrt? (y/log(ad) + \/7/2)) +4log(t), since E[(;] = s; 4+ 1/X is monotone
increasing, we obtain the following bound:

2 2

0 7r 2
BCRy < — 4+ —— C1vTE —+— Ci T 1/X).
TS T oo VO [¢r] = 6+6ﬁ+\/ 1L (s +1/A)
Truncated Normal Distribution: For brevity, we use a truncated normal distribution with s> = 1 and truncation

[m — s, m + s]. We schedule m; so that the following inequality holds:

e—m/2+1/8q)(3/2) _ <I)(_1/2) < €_mt/2+1/8 < 1
o(1) — d(—1) EAK

where we bound % < 1 for simplicity. Then, we obtain the following condition:

my > 2log (|X:[t?) + 1/4.

Furthermore, the lower bound m; — s > 0 should be satisfied. Hence, by setting m; 2log (|Xt|t2) +1 =

2dlog(bdrt? (y/log(ad) + /7/2)) + 4log(t) + 1, since E[(;] = m; is monotone increasing, we obtain the following
bound:

2

l\.’)

BCRr < — —|—

+ v/ CiviTmr.
6 6\/27 17t T

CﬂtTE[CT] G\ﬁ
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E. Proofs of Lemmas 4.1 and 4.2
E.1. Proof of Lemma 4.1

The main difference between Lemma 4.1 and (Lemma 5.1 in Srinivas et al., 2010) is that Lemma 4.1 does not consider the
union bound for all ¢ > 1. That is, (Lemma 5.1 in Srinivas et al., 2010) bounds the following probability:

Pr (f(:c) < p1(x) + B %011 (z), Yo € XVt > 1) .
On the other hand, our Lemma 4.1 bounds the following probability with one fixed ¢:

Pry (f(w) < pi—1(x) + Bé/zat_l(a:),Va: € X) ,

where 5§/ % does not depend on ¢ as described below.

Assume the same condition as in Lemma 4.1, and thus, 85 = 21log(|X'|/(26)). Then, for all z € X and D;_1, we see that

Pre (£(2) > mua(@) + 501 ()) < .

where we use an elementary result of Gaussian distribution shown in Lemma H.3 in Appendix H. Then, we can obtain the
following bound:

Pro (f(@) > jus(@) + 55 Por-a(@). 3w € ) < 5 Pro (f(@) > s (@) + 55001 ()
rcX

<6,
Therefore,
Pro (f(2) < (@) + 8 %o 1 (@), Vo € X) = 1= Pr (f(@) > gy (@) + 800 1(2), 32 € X) 2135,

which concludes the proof.

E.2. Detailed Proof of Lemma 4.2

This section provides detailed proof of the following Lemma 4.2:

Lemma 4.2. Let f ~ GP(0, k), where k is a stationary kernel and k(x,x) = 1, and X be finite. Assume that  follows a
two-parameter exponential distribution with s = 2log(|X|/2) and A = 1/2. Then, the following inequality holds:

E[f(z")] <E {m; i1 (@) + cz/%tl(a:)} ,
forallt > 1.
Proof. 1t suffices to show that, for an arbitrary D;_,
Ee[f(2")|De-1] < By [;nea%ﬂt_l(w) + Ctl/zo—t—l(m):| )

since the claim of Lemma 4.2 can be rewritten as follows:

Ep, , [E:[f(2")]]

<Ep,_, [Et [Iglea%( we—1(x) + Cl/zat_l(m)H .

Then, fix the dataset D;_; and § € (0, 1). From Lemma 4.1, we can see that

Pry (f(m*) < gleagut—l(a:) + 551/2@_1(3;)> >1-4,

20
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where 85 = 21og(]X|/(26)). Note that the probability is taken only with f(x*) since D;_; is fixed. Using the cumulative
distribution function F,(-) := Pr,(f(z*) < -) and its inverse function F; !, we can rewrite

F, <g16a§ut1(w) + B;ﬂotl(w)) >1-9§
= max 1 (@) + 5 %00 (2) 2 (1),
since F; ' is a monotone increasing function. Since & € (0, 1) is arbitrary, we can see that
Pr <m€a§m_1(m) + 8120, () > F7Y(1 - U)> =1,
xr

where U ~ Uni(0, 1) and probability is taken by the randomness of U. Then, because of the basic property of the expectation
E[X] < E[Y]if Pr(X <Y) = 1, we can obtain,

Ey [rmneaig pre—1 () + 6(1/2@1(9:)} > Ey[F,H(1-U)]
= ]EU [Ff,_l(U)]y

where we use the fact that 1 — U also follows Uni(0, 1). Since F;"*(U) and f(z*) are identically distributed as with the
inverse transform sampling, we obtain

Ey {2133«( pre—1(®) + ﬂ}/gm_dw)} > E[f(z")].
Then, Sy can be decomposed as follows:

Bu = 2log(|X|/2) — 2log(U).

From the inverse transform sampling, —2log(U) ~ Exp(\ = 1/2). Hence, Sy follows a two-parameter exponential
distribution with s = 21log(|X’|/2) and A = 1/2. Therefore, we obtain the following:

E; Imnea))éut_l(w) + (20,4 (2)| > K, [f(z")].

F. Proof of Theorem 4.2

Using Lemma 4.2, we can obtain the proof of the following theorem for the finite input domain:

Theorem 4.2. Let f ~ GP(0, k), where k is a stationary kernel and k(x,x) = 1, and X be finite. Assume that (; follows a
two-parameter exponential distribution with s = 21og(|X|/2) and A = 1/2 for any t > 1. Then, by running IRGP-UCB
with (i, BCR can be bounded as follows:

BCRy < /C1C5Tr,

where Cy = 2/log(1 + 072) and Cy =2 + s.

Proof. From Lemma 4.2, we obtain

T
BCRy = Y E[f(z") — f(z1)]

21



Randomized Gaussian Process Upper Confidence Bound with Tighter Bayesian Regret Bounds

Then, we can easily derive the bound as follows:

T
BCRr < Y E[Vi(m:) — f(a1)]

o+
—

I
[M]=

Ep, ¢ [E[Vi(z:) — f(zt)|Di—1, Gl

\*
Il
_

I
M=

Ep, ,[E¢, [Vi(zt)] — pe—1(zt)]

o~
Il

1

Ep, 1|6 o0 1(z0)]

I
M=

o~
Il
1

T
=K ZC;/QUt_l(mt)
t=1
| T T
<E Z G Z op_1(xt) (.- Cauchy—Schwarz inequality)
L t=1 t=1
T
<E Z G| VCinr (. Lemma 5.4 in (Srinivas et al., 2010))
t=1

< Z E[¢:]vCivr (.- Jensen’s inequality)
t=1
= C1Co Ty, (. Definition of ¢;)
where Cy = E[(;] = 2 4 21og(]X'|/2). This concludes the proof. O

Corollary F.1. Assume the same condition as in Theorem 4.2. Fix a required accuracy n > 0. Then, BSRy < n by at most
T function evaluations, where T' is the smallest positive integer satisfying the following inequality:

c.C
VO <,

where Cy == 2/log(1 + 07 2) and Cy == 2 + 2log(|X|/2).

Proof. This BCR bound in Theorem 4.2 immediately suggests that the following:

BCRyr C1Coryr
B < < .
SRrs == s\ =7

Therefore, if /C1Coyr /T < 1, then BSRy < 7. O

G. Proof of Theorem 4.3

Theorem 4.3. Let f ~ GP(0, k), where k is a stationary kernel, k(x,x) = 1, and Assumption 2.1 holds. Assume that (;
follows a two-parameter exponential distribution with s, = 2dlog(bdrt* (/log(ad) + /7 /2)) — 2log2 and A = 1/2 for
any t > 1. Then, by running IRGP-UCB, BCR can be bounded as follows:

2
BCRy < o+ VOTyr(2+ s1),
where Cy = 2/ log(1 + o~ 2).

22



Randomized Gaussian Process Upper Confidence Bound with Tighter Bayesian Regret Bounds

Proof. Purely for the sake of analysis, we used a set of discretization X; C X for¢ > 1. Forany ¢ > 1, let Xy C & be
a finite set with each dimension equally divided into 7, = bdrt*(y/log(ad) + \/7/2). Thus, |X;| = 7{. In addition, we
define [x], as the nearest points in X, of & € X.

Then, we decompose BCR as follows:

T

BCRy = ZIE

t=1

Fl@) = F(l@"]0) + £ (@")e) - max Vi) + max Vi(@) — Vilao) + Vilae) - f(wn].

Obviously, E [maxwe x, Vi(z) — Vt(a:t)] < 0 from the definition of x;. Furthermore, we observe the following:

E [f([:c*]t) ~ ma m(z)} <E [m; (@)~ max Vi)

which can be bounded above by 0 by setting s; = 21log(|X;|/2) and A = 1/2 from Lemma 4.2. Therefore, we obtain the
following:

T
BCRy < Y E[f(@") — f(["])) + Vi(a:) — f(w1)]
T

T
=Y E[f() - f([&"])] + D E [Vi(m) — ()] - (10)

t=1 t=1

First, we consider the first term ZtT:l E[f(x*) — f([x*];)]. From Lemma H.2, we can obtain the following:

T T
S E[f(@") - f(le])] < SE EEE J@) - f([mm}
t= t; 1
< Z 5] ( Lemma H.2 )

2 =1 w2
< Y == 11
<= > 5= (11)
t=1
where u; in Lemma H.2 corresponds to ¢2.

The second term is bounded as follows:

T T
S EVi(me) — flxo)] < | Y _E[GICir, (.- See the proof of Theorem 4.2) (12)

t=1 t=1
where
E[G:] = 2 + 2log(|Xi]/2)
= 2 + 2dlog(bdrt? (\/log(ad) + v/7/2)) — 2log2,
which is monotone increasing. Therefore, we obtain the following:

T

> EVi(me) — f(x0)] < VCiTyrEr],

t=1

where E[(r] = 2+ sp = 2+ 2dlog(bdrT?(y/log(ad) + /7 /2)) — 2log 2. Consequently, combining Egs. (10), (11), and
(12) concludes the proof. O
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Corollary G.1. Assume the same condition as in Theorem 4.3. Fix a required accuracy 1) > 0. Then, by running IRGP-UCB
with s, = 2dlog(2bdr (v/log(ad) + \/7/2) /1) — 2log2 and X\ = 1/2, BSRy < n by at most T function evaluations,
where T' is the smallest positive integer satisfying the following inequality:

Ci2+ syhr 1
T =2

where Cy = 2/ log(1 + o~ 2).
Proof. We obtain the upper bound of BSR via the upper bound of BCR as follows:

BCR
BSRy < — T

Let 7, = 2bdr(+/log(ad) + v/7/2) /1. Until the derivation of Eq. (10), the same derivation as in Theorem 4.3 can be
applied. That is,

BCRy < Y E[f(x*) = f([@*])] + D> E[Vi(a:) — f(me)] .

Then, for the first term, we can obtain the following

T T
> Elf@@) - £l <> 3 ( LemmaH.2)
t=1 t=1
<Ir
2

For the second term,

where, from the assumption, E[¢;] = 2 + sy for any ¢t > 1. Thus, we can derive the bound of BSR:

n Ci(2+ sy)r
B < = _
SRt < 5 + T

Hence, we obtain the smallest integer I’ that satisfies BSR < 7 by arranging the following inequality:

Ci(2 + Sn)’YT <7

+ T =

(VBN

H. Auxiliary Lemmas

For convenience, we here show the assumption again:

Assumption 2.1. Let X C [0, 7]¢ be a compact and convex set, where r > 0. Assume that the kernel k satisfies the following
condition on the derivatives of sample path f. There exists the constants a,b > 0 such that,

> L) < aexp (— (§)2> , for j € [d],

24
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where [d] = {1,...,d}.
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Then, from Assumption 2.1, we obtain several lemmas. First, we show the upper bound of the supremum of the partial
derivatives. This result is tighter than Lemma 12 in (Kandasamy et al., 2018a). Note that, in the proof of Lemma 12
in (Kandasamy et al., 2018a), there is a typo that Pr(L > t) is bounded above by aexp{t?/b?}, which should be
ad exp{—t2/b*}.

Lemma H.1. Ler f ~ GP(0,k) and Assumption 2.1 holds. Let the supremum of the partial derivatives Lyax =

SUP;e[q) SUPzex aanj . Then, E[Lax| can be bounded above as follows:

E[Lmax] < b(\/log(ad) + ﬁ/Q)

Proof. From the assumption, using union bound, we obtain the bound of the probability,

Pr (Luax > L) < iaexp (- <§>2> = adexp <— <§>2> . (13)

Then, using expectation integral identity, we can bound E[L,.y] as follows:

E[Lumax] = / Pr(Lmax > L)dL
0

§/wmin{1,ade’(L/b)2}dL (. Eq. (13))
0
= by/log(ad) + / - ade~ (/P dL
by/log(ad)
> 1
= by/log(ad) + abd / I —
og{ad) - abdv/w by/log(ad) \/2m(b?/2)
= by/log(ad) + abd\/7 <1 —d (bvbl;’\g/(;d)»

< by/log(ad) + ¥7 (.- Lemma H.3)

where ® is a cumulative distribution function of the standard normal distribution. O

e B/ 4L

Next, we show the bound for the difference of discretized outputs:

Lemma H.2. Let f ~ GP(0, k) and Assumption 2.1 holds. Let X; C X be a finite set with each dimension equally divided
into 7 = bdru, (\/log(ad) + \/7/2) for any t > 1. Then, we can bound the expectation of differences,

éE [sup fw) - f([w]t)] < i !

IR
TEX Ut

where [x]; is the nearest point in X; of x € X.
Proof. From the construction of X}, we can obtain the upper bound of L1 distance between x and [x]; as follows:

dr
sup [z — [z]

zEX tlh < bdru (v/log(ad) + \/7/2)
1
B bui (y/log(ad) + /7/2) .

Note that this discretization does not depend on any randomness and is fixed beforehand.

(14)
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Then, we obtain the following:

ZE[supf - 12|

xeX

M=

E |:Lmax sup ||$ - [w]tHl
reX

t=1

L

IN
M=
&

1 .
max] b (VIoz(ad) + /7/2) (. Eq. (14))

( Lemma H.l)

.
Il
-

1

Ut

M=

W
Il
_

We used the following useful lemma:
Lemma H.3 (in Lemma 5.2 of (Srinivas et al., 2010)). For ¢ > 0, the survival function of the standard normal distribution
can be bounded above as follows:

1—-®(c) < %exp(—cz/Z).

Proof. Let R ~ N(0,1). Then, we obtain the following:

Pr(R>c¢) = /OO \/12? exp(—r?/2)dr
= exp(—c?/2) /OO \/12? exp(—r?/2 + ¢%/2)dr

= exp(—c?/2) /OO \/L exp(—(r — ¢)?/2 — re + ¢)dr

= exp(— 2/2/
< exp(— 2/2/

= % exp(—c?/2).

exp —(r—¢)?/2 —c(r — ¢))dr

= exp(—(r — ¢)/2)dr (v ee=9 < Tsince r > ¢ > 0)
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