
Robot Trains Robot: Automatic Real-World Policy
Adaptation and Learning for Humanoids

Kaizhe Hu∗ Haochen Shi∗ Weizhuo Wang Yao He C. Karen Liu† Shuran Song†
∗Equal contribution †Equal advising

Stanford University
hukaizhe@stanford.edu, hshi74@stanford.edu

Abstract—Simulation-based reinforcement learning (RL) has
significantly advanced humanoid locomotion tasks, yet direct
real-world RL from scratch or starting from pretrained policies
remains rare, limiting the full potential of humanoid robots. Real-
world training, despite being crucial for overcoming the sim-to-
real gap, faces substantial challenges related to safety, reward
design, and learning efficiency. To address these limitations, we
propose Robot-Trains-Robot (RTR), a novel framework where
a robotic arm teacher actively supports and guides a humanoid
student robot. The RTR system provides protection, schedule,
reward, perturbation, failure detection, and automatic resets,
enabling efficient long-term real-world training with minimal hu-
man intervention. Furthermore, we propose a novel RL pipeline
that facilitates and stabilizes sim-to-real transfer by optimizing
a single dynamics-encoded latent variable in the real world.
We validate our method through two challenging real-world
humanoid tasks: fine-tuning a walking policy for precise speed
tracking and learning a humanoid swing-up task from scratch,
illustrating the promising capabilities of real-world humanoid
learning realized by RTR-style systems.

I. INTRODUCTION

Recent advances in training reinforcement learning (RL)
policies using massive parallel simulation environments have
yielded remarkable results in humanoid locomotion tasks [12,
13, 32, 31, 52]. These methods demonstrate the ability to
deploy on physical humanoid robots in a zero-shot manner
or via real-world adaptation.

Nevertheless, learning directly in the real world remains
arguably the most effective way to optimal performance, as it
bypasses the inevitable sim-to-real gap [44]. This is especially
critical for complex systems like humanoid robots, where
discrepancies between simulation and real-world dynamics can
significantly hinder policy capability. Despite these benefits,
real-world learning on humanoids, either from scratch or fine-
tuning, remains highly challenging due to several key factors:

• Safety: Real-world RL can produce unexpected and dan-
gerous actions during exploration, easily breaking the
fragile balance of the humanoid. Current approaches typi-
cally suspend humanoid robots from fixed gantries during
real-world rollout, inevitably constraining the range of
data collection. Such passive protection mechanisms also
influence learning efficiency, as the robot will be fre-
quently dragged by the gantry and fall before the policy
stabilizes.

• Reward Design: Many useful reward signals easily avail-
able in simulation, such as global velocity or external

✓ Real-World Learning

✓ Sim2Real Adaptation

Robot Student

Robot Teacher

✓ Safe Exploration

✓ Learning Curriculum

✓ Informative Reward

✓ Adversarial Perturb

✓ Failure Detection

✓ Auto Reset

✓ Compliance Control

Fig. 1: Robot Trains Robot (RTR). We propose RTR for
automatic real-world policy adaptation and learning with a
robot arm as the teacher and a humanoid robot as the student.

forces, are difficult or impossible to measure directly
on physical robots themselves, complicating real-world
reward design.

• Learning Efficiency: Real-world training requires fre-
quent resets, which incur high human labor costs. Poor
sample efficiency of the learning algorithm further com-
pounds these issues, as real-world data collection is
inherently costly and constrained.

These considerations highlight the need for a comprehen-
sive and practical system tailored explicitly for real-world
humanoid learning. To address these challenges, we propose
a novel real-world policy adaptation and learning paradigm:
Robot-Trains-Robot (RTR), where a teacher robot (a robot
arm with force feedback) trains another student robot (a
humanoid robot). Specifically:

• To address safety concerns, RTR utilizes a robot arm
with force-torque sensing to actively support and deliver
interactive force feedback to the humanoid robot via com-
pliance control, allowing extensive yet safe exploration

across diverse behaviors.
• To gather crucial reward information, RTR uses real-time

measurements from the teacher to derive proxy reward
signals that would otherwise be difficult to obtain in the
real world.

• To improve learning efficiency, RTR uses an automatic
curriculum to provide procedural guidance, dynamically
adjusting training difficulty, and deliberately perturb-
ing the robot to enhance robustness. The RTR system
also enables failure detection, automatic resets, and an
asynchronous data collection and policy update pipeline,
significantly reducing manual intervention and enabling
high-throughput data collection.

Additionally, to further improve sample efficiency, we pro-
pose a novel sim-to-real fine-tuning algorithm. Our approach
consists of a three-stage process: First, we train a dynamics-
aware policy in simulation via domain randomization, embed-
ding environment physics information into the policy via a
latent encoder and FiLM [29] layers. Next, we optimize a
universal latent vector across diverse simulated environments,
providing a robust initialization for subsequent real-world
training. Finally, leveraging the RTR hardware, we efficiently
refine the dynamics latent in the real world using PPO [38],
substantially improving the policy performance and robustness
in the real world.

We evaluate our system and method through two challeng-
ing real-world humanoid tasks: fine-tuning a walking policy
for precise speed tracking, and learning a humanoid swing-
up behavior from scratch. Given a desired velocity command,
RTR effectively doubles the zero-shot walking speed with only
30 minutes of real-world training. In the swing-up task, the
humanoid successfully learns to achieve a periodical swing-
up motion from scratch within 15 minutes of real-world inter-
action. While we implement the RTR system with an open-
source small-sized humanoid ToddlerBot [39], the proposed
paradigm is readily generalizable to full-scale humanoids.
Contemporary industrial robotics arms are capable of lifting
and interacting with payloads up to 600 kg [35], suggesting the
broad applicability of RTR across a wide range of humanoid
platforms.

In summary, our contributions include: (1) A comprehensive
real-world learning system that provides crucial protection,
guidance, automation, and informative feedback tailored for
real-world humanoid learning. (2) An efficient RL paradigm
leveraging dynamics-aware latent optimization for rapid and
stable real-world policy adaptation. (3) Empirical validation
of our approach through two challenging tasks highlighting
RTR’s efficiency and capability to support and generalize
across diverse real-world learning scenarios.

II. RELATED WORKS

To address the sim-to-real gap [44] and improve policy
performance in the real world, there are three mainstream
approaches: zero-shot sim-to-real transfer, policy pretraining
in simulation followed by real-world adaptation, and direct
real-world RL from a random initialization.

Zero-shot Sim-to-real Transfer. Directly deploying a
simulation-pretrained policy into the real world is prone to
failures due to the sim-to-real gap. Pretraining in simulation
with extensive domain randomization has emerged as an
effective strategy across both manipulation [27, 44, 50] and
locomotion [9, 36, 5, 43] tasks. This approach has notably
succeeded even in challenging contexts such as dexterous ma-
nipulation involving rich contact interactions [26, 2, 3, 4, 22]
and complex humanoid locomotion characterized by inherently
unstable dynamics [6, 7, 11, 32, 52]. However, inappropriate
domain randomization may produce policies that either fail
to adapt effectively to real conditions or become overly
conservative, thus limiting performance.

Real-world Adaptation. A popular approach to bridging
the sim-to-real gap is to leverage real-world data. These meth-
ods typically rely on a robust pretrained policy to safely gener-
ate on-policy data, facilitating targeted exploration within task-
specific distributions. Some adaptation methods use real-world
data to adjust simulation parameter distributions, aligning
simulated policy behaviors more closely with real-world expe-
riences [1, 34, 15]. Other approaches employ online adaptation
techniques to fine-tune latent representations [37, 18, 30, 19],
a residual policy [42, 12], or the original policy directly
[51, 20, 46]. Additionally, some studies incorporate online
human corrections for policy refinement [17, 23]. Notably,
due to humanoids’ inherent instability, it is challenging to
maintain safety during real-world adaptation. Consequently,
fewer studies focus on humanoids [12, 19], highlighting the
need for a specialized system to support safe and effective
humanoid adaptation.

Our proposed dynamics latent tuning pipeline is the most
similar to context-based meta-RL methods [8, 33], where a
latent vector is extracted from past observations or phys-
ical parameters and used to pivot the policy to adapt to
different tasks or environments during meta-pretraining. The
latent could then be optimized in the real world for rapid
policy adaptation. While these methods have shown success
in quadruped locomotion tasks [49, 28], they implicitly rely
on the inherent stability of quadrupeds to safely initiate real-
world interaction. For humanoids, any initial performance gap
risks falls or hardware damage. Although early attempts have
deployed such methods on humanoids [48], they rely on a
simple platform and a scripted policy for initial data collection,
which is impractical for more complex humanoid systems.
In contrast to previous works, RTR combines a carefully
designed hardware setup with a simulation-optimized initial
latent, enabling the real-world application of this category of
algorithms on humanoid robots.

Real-world RL. For task scenarios that are difficult to simu-
late or have a large sim-to-real gap, directly training in the real
world is often more desirable. Some studies have successfully
adopted this approach across various setups, including tabletop
manipulation [16], dexterous manipulation [47], mobile ma-
nipulation [25], and quadruped locomotion [10, 40, 45, 41].
However, few studies have explored direct real-world RL with
humanoids due to several unresolved challenges: (1) maintain-

ing humanoid stability and preventing falls during early stages
of training, (2) ensuring safe and efficient reset mechanisms,
and (3) providing sufficient feedback and informative reward
signals. We propose RTR to address these challenges and
enable real-world reinforcement learning from scratch.

III. METHOD

A. Teacher-Student Hardware System

Teacher Setup. We use a 6-DoF UR5 arm to support the
humanoid robot. An ATI mini45 force-torque (F/T) sensor
is mounted on the arm’s end-effector to measure interaction
forces. Four elastic ropes connect the arm’s end effector to the
humanoid’s shoulders. The elasticity of the rope is crucial, as it
enables smoother force transmission and avoids abrupt force
changes commonly seen in rigid connections or non-elastic
ropes. For walking experiments, we additionally provide a
programmable treadmill to ensure the robot stays within the
reach of the robot arm. This treadmill is equipped with a
position encoder and a microcontroller to provide closed-loop
control of the moving speed. As shown in Figure 2, a mini
PC connects to the arm, F/T sensor, and treadmill via Ethernet
cables, while communicating with the student robot via WiFi.
This mini PC bears several functionalities: (1) sending control
signals to the arm and the treadmill to ensure they assist the
learning of the humanoid properly, and (2) collecting data from
the F/T sensor and the treadmill to tailor the curriculum, reset
timing, and gather reward information for the robot.

Student Setup. We use the open-source humanoid Tod-
dlerBot [39] for its compact size (0.56 m, 3.4 kg), dexterity
(30 degrees of freedom), availability (costs less than 6, 000
USD), and robustness. The UR5 arm, with a 5 kg payload,
provides adequate capacity to support the robot. As safety is a
major concern in real-world learning, verifying our algorithm
on a lightweight yet versatile platform like ToddlerBot enables
unattended operation without risk of damaging itself or the sur-
rounding environment. Moreover, hardware reliability for the
humanoid is equally important—we find ToddlerBot’s motors
are resistant enough to overheating and capable of continuous
operation over extended periods (> 1 hour), making the robot
well-suited for our real-world learning tasks.

B. Real-world Adaptation

Real-world adaptation, which fine-tunes a simulation-
pretrained policy in the real world, is critical for improving
performance on demanding locomotion tasks. In this section,
we apply our real-world adaptation pipeline to fine-tune a
walking policy for precise speed tracking, while our setup is
suitable for adapting a range of locomotion tasks like running
and whole-body trajectory following.

On the teachers’ side, we introduce an automatic curriculum
that dynamically adjusts the supporting force and enables
rapid horizontal compliant arm following. On the students’
side, we propose a general-purpose sim-to-real adaptation
algorithm based on domain randomization and dynamics latent
optimization. We first present our three-stage student learning

algorithm, as illustrated in Figure 3, and then describe the
teacher’s policy during real-world adaptation.

Dynamics-conditioned Policy Training. In the first stage,
we train a dynamics-aware policy π(s, z) that conditions on
both the current observation s and a dynamics latent z in
N = 1000 domain randomized simulation environments (more
details in Appendix A). Specifically, for the i-th environment,
we encode environment-specific physical parameters µ(i) into
a latent representation z(i) using a multi-layer perceptron
(MLP) encoder fϕ: z(i) = fϕ(µ

(i)). This dynamics latent
is then incorporated into the standard PPO actor network
through Feature-wise Linear Modulation (FiLM) layers [29].
Concretely, let h(i)j denote the hidden latents of the j-th layer
within the actor network after activation function, we modulate
these latents using FiLM as follows:

γ
(i)
j , β

(i)
j = FiLMj(z

(i)), h
(i)
j ← γ

(i)
j ⊙ h

(i)
j + β

(i)
j , (1)

where γ
(i)
j and β

(i)
j are scaling and shifting parameters

generated by the FiLM layers from the latent vector z(i), and⊙
represents element-wise multiplication. The encoder network
fϕ and the FiLM-modulated policy network π(s, z) are jointly
trained with PPO in randomized domains with parameters µ(i),
allowing the policy to leverage latent dynamics information
effectively and adapt to various simulation environments.
Empirically, we find that the learning rate of the FiLM layers
is critical: a rate that is too small causes the policy to ignore
the dynamics latent, while a rate that is too large leads to
instability. An ablation study of this effect is provided in
Appendix B.

Universal Latent Optimization. A practical challenge
arises when deploying the dynamics-aware policy in the real
world: the initial latent representation z for the real world
is unknown, as the environment-specific parameters µ are un-
available. Therefore, we propose the second stage to optimize a
universal latent z∗ starting from z̄, the average of all the latent
vectors of the training environments. Formally, we freeze the
policy network and FiLM layer parameters and optimize z∗

using PPO, aiming for robust performance across all domain-
randomized simulation environments:

z∗ = argmax
z

∑
i

Eτ∼π(·|z), Ti
[J(τ)] (2)

where Ti denotes the transition distribution for the i-th
environment, J denotes the optimization objective of the PPO
algorithm, i.e., the expected cumulative reward under policy π,
and the expectation is taken over the joint distribution induced
by the policy and the environment dynamics. The resulting
latent z∗ provides a robust initial condition suitable for real-
world deployment.

Real-world Finetuning. In this stage, we freeze the actor
network and FiLM layer parameters and fine-tune the latent in
the real world using z∗ as the initial solution. Meanwhile, we
train the critic from scratch since some privileged observations
are unavailable in the real world, resulting in a different

WorkstationHumanoid

Admitance Control

Speed PD

Control

F/T Sensor

Treadmill
(Optional)

Mini PC

Robot Teachers

Robot Students

Automatic

Speed Adaptation

Real-World

Transit ions

F/T Readings

F/T Readings

IMU Readings

Latest Policy

Robot Arm

Support, Curriculum,

Reset, Perturbation, etc.

Parameters

Command

Information

 Interaction

Fig. 2: System Setup. We illustrate the system architecture and component interactions. The system consists of two groups:
robot teachers and robot students. The teachers include a robot arm with an F/T sensor, a mini PC, and an optional treadmill
for locomotion tasks; the students include a humanoid robot and a workstation for policy training. The four types of lines
represent physical interaction, data transmission, control commands, and neural network parameters, respectively.

observation space from the simulation. For the walking task,
the reward is designed to encourage tracking of the target
velocity and is defined as follows:

r = exp
(
−σ · (v − vtarget)2

)
, (3)

where v and vtarget are the current and target robot velocity,
respectively, and σ = 100 is a reward-shaping hyperparameter.
Since the humanoid is walking on a treadmill, its torso remains
relatively stationary in the global frame - state estimation
or motion capture yields a near-zero velocity. Therefore, we
approximate v with the speed of the treadmill.

Real-world Teachers. The robot teachers include the robot
arm with an F/T sensor, a mini PC, and a treadmill. They
together provide guidance, schedule, reward, failure detection,
and automatic resets. (1) Guidance: Leveraging feedback
from the F/T sensor, we employ admittance control [24, 14]
for the robot arm. The arm remains compliant along the XY
axes to accommodate the relative movement generated by the
humanoid (Figure 3). This configuration allows the humanoid
to move freely in the XY direction while maintaining an
upright posture. (2) Schedule: To gradually reduce assistance,
we implement a scheduling strategy where the arm’s height
linearly decreases by 0.02m in 5 × 104 environment steps,
diminishing the supporting force to near zero at the end of
training. (3) Reward: We also implement a PD feedback
control loop on the treadmill’s velocity, based on force along

the X axis by the F/T sensor and the humanoid’s torso
pitch angle. This feedback loop helps the robot maintain an
upright walking posture and ensures that the treadmill speed
reflects the humanoid’s walking speed. We further use this
tracking speed to provide reward signal as in Equation (3).
(4) Failure Detection and Automatic Resets: Moreover, RTR
automatically detects the failure case if the humanoid’s torso
pitch exceeds a threshold or the F/T sensor reads a large force
along the X or Y axis, prompting the system to step running
and the arm to lift the humanoid to reset the training.

C. Real-world Learning from Scratch

While sim-to-real learning is effective for humanoid loco-
motion, it struggles with tasks involving hard-to-simulate ob-
jects like deformable ones. RTR is also suitable for direct real-
world training in such cases. To demonstrate this flexibility,
we introduce a challenging real-world RL task—learning a
swing-up behavior (Figure 5)—which is difficult to simulate
due to complex cable dynamics.

Three-stage Training. Inspired by Lei et al. [20], we use a
three-stage training pipeline: (1) train the actor and critic from
scratch using PPO while collecting 50,000 steps of suboptimal
transition data; (2) pre-train the critic using offline RL; and (3)
initialize a new actor while loading the pretrained critic, and
continue training both networks jointly. The reward is designed
to maximize the amplitude of the dominant periodic force

𝜇 ! 𝑓" 𝜇

𝑖 = 0,… ,𝑁
𝑎#
(!)

Stage 1

Stage 2

Stage 3

Si
m

 w
/ D

R
R

ea
l W

or
ld

𝑧 !

𝑧
Mean

Copy
𝑧∗

Train in Stage 1 Freeze

s#:#()
!

s#:#()
!

s#:#()
*+,-

FiLM! 𝑧

FiLM! 𝑧

FiLM! 𝑧

Critic

Critic

Critic

Train in Stage 2 Train in Stage 3

𝑎#
(!)

X

Z

Actor

Actor

Actor 𝑎#
(*+,-)

Fig. 3: Sim-to-real Fine-tuning Algorithm. We illustrate our sim-to-real finetuning process. First, we train a dynamics-aware
policy in simulation via domain randomization (DR), encoding environment physics into a latent vector. Next, we optimize a
universal latent across diverse simulation environments to initialize real-world training. Finally, we refine the latent and train
a new critic in the real world. Orange denotes trainable components in three stages; blue indicates frozen ones.

TABLE I: We evaluate the walking baselines in this table. The humanoid’s task is to track the treadmill speed (0.15 m/s). To
assess walking stability, torso pitch and roll (radian) are measured by the humanoid’s IMU, and end-effector (EE) force (N) by
the F/T sensor. Unless otherwise specified, Finetune z, XY Compliant, and Z Schedule are assumed if not otherwise specified.

Method Torso Roll ↓ Torso Pitch ↓ EE Force X ↓ EE Force Y ↓ EE Force Z ↓

Freeze π(s) 0.124 ± 0.012 0.102 ± 0.034 1.217 ± 0.134 1.235 ± 0.065 3.431 ± 0.606
Finetune ∆π(s) 0.102 ± 0.032 0.096 ± 0.031 1.007 ± 0.025 1.078 ± 0.136 2.316 ± 0.486
Freeze π(s, z) 0.110 ± 0.021 0.064 ± 0.014 1.672 ± 0.174 1.088 ± 0.186 3.654 ± 0.988
Z Fixed (High) 0.151 ± 0.030 0.126 ± 0.011 1.064 ± 0.143 0.993 ± 0.279 2.402 ± 0.732
Z Fixed (Low) 0.199 ± 0.113 0.112 ± 0.053 1.254 ± 0.133 0.882 ± 0.104 3.237 ± 1.196
XY Fixed 0.170 ± 0.030 0.156 ± 0.027 1.175 ± 0.130 0.864 ± 0.100 2.299 ± 0.820
RTR (ours) 0.093 ± 0.020 0.053 ± 0.044 0.943 ± 0.202 0.754 ± 0.122 0.954 ± 0.445

measured by the force sensor during the swinging. Specifically,
we applied the Fast Fourier Transform (FFT) on the most
recent 1, 000 force readings along the x-axis to obtain the force
spectrum in the frequency domain and retrieve the dominant
frequency, denoted as νx. We then extract the force amplitude
at this frequency, Âνx

, and define the reward as:

r = exp
(
−α · (Âνx −Atarget)2

)
, (4)

where α = 0.005 and Atarget ≈ mgθ0 is derived under the
small-angle approximation of a pendulum swing. m = 3.5 kg
is the mass and θ0 = 30◦ is the maximum angular displace-
ment expected.

Real-world Teachers. The robot arm guides the humanoid’s
swing-up motion by either amplifying the swing or damp-
ing the swing. Both strategies are phase-aligned with the
humanoid’s current swing angle θt at the dominant force
frequency νx. (1) Guidance: To amplify the swing, i.e.,
increase the force amplitude at the dominant frequency, the
arm is given a position target xt = x0 + Aarm cos(θt). (2)
Perturbation: To dampen the swing, i.e., decrease the force
amplitude, the arm is given a phase-inverted position target
xt = x0−Aarm cos(θt), where Aarm = 0.05 m, and x0 denotes

the initial x-axis displacement of the arm. (3) Schedule: We
evenly divide each data batch into several bins and randomly
select a certain number of bins to apply either guidance or
perturbation. The arm maintains a fixed position in the rest
bins. The final training schedule includes a mixture of helping,
perturbing, and remaining static periods.

IV. EXPERIMENTS

A. Real-world Adaptation with Simulation Pretraining: Walk

Overview. We consider the task of walking on a treadmill
while accurately tracking the treadmill’s speed to demonstrate
RTR ’s real-world adaptation capability. During training and
evaluation, the reward is defined as the treadmill’s speed,
with the treadmill speed controlled via feedback from IMU
and force readings. During testing, performance is measured
by walking stability at a fixed treadmill speed of 0.15 m/s
(Table I). We conduct ablation studies to answer three key
questions: (Q1) Does arm compliance control help? (Q2) Does
arm schedule help? (Q3) Is fine-tuning z∗ more data efficient
in real-world adaptation?

Arm Compliance. As shown on the left of Figure 4, we
compare RTR with the baseline XY Fixed + Z Schedule, where

0.0 5.5
Steps (x1e4)

0.00

-0.01

-0.02A
rm

Z
Po

si
tio

n

5

Z Schedule

Z Low (Hard)

Z High (Easy)

Fig. 4: Walking Ablation. This experiment aims to evaluate the effectiveness of arm feedback control and latent vector
finetuning. We present the linear velocity tracking rewards during training and evaluation, with the arm schedule shown at the
bottom center. All variants are tested under the same condition: the arm uses an XY Compliant policy with Z fixed at a ∆
position of −0.02 m. We conduct each experiment with three random seeds and show the mean and standard deviation in the
plot. Unless otherwise specified, Finetune z, XY Compliant, and Z Schedule are assumed.

(a) Swing-up Task (b) Swing-up Ablations (c) Arm Schedules

Y

Fig. 5: Swing-up Ablation. We illustrate the swing-up setup and experiment results. (a) The humanoid is suspended from a
robot arm and uses its legs to build momentum and maximize rope angle. (b) We compare helping and perturbing arm schedules
against a fixed-arm baseline and also evaluate helping without a pretrained critic. Each experiment is run with three random
seeds, and plots show the mean and standard deviation. (c) We show three arm schedules, where helping and perturbing occur
during the middle phase, with the arm fixed at the beginning and end.

the arm remains stationary and cannot adapt to the humanoid’s
XY movement during walking. We observe that the arm
often drags the humanoid back and impairs policy adaptation.
During evaluation, compliance control is re-enabled to ensure
a fair comparison.

Arm Schedule. We compare our linearly decreasing arm
height schedule with two alternative scheduling strategies: XY
Compliant + Z High (Easy) and XY Compliant + Z Low
(Hard). The different arm schedules are illustrated in the lower
center of Figure 4. Z High (Easy) trains the humanoid at
a relatively high delta arm height (0 m) and evaluates it at
a low delta arm height (−0.02 m). As shown on the left

of Figure 4, the training curve goes up very quickly during
training because the robot takes advantage of the arm support,
and then it collapses during evaluation when the arm height is
lower due to the large training and evaluation gap. For Z Low
(Hard), the training and evaluation arm heights are the same,
so the policy should ideally overfit to the arm height. However,
due to the high initial task difficulty, the policy frequently falls
in the early stage, leading to poor data quality for finetuning
and slower reward improvement compared to our method.

Fine-tuning Latent. We compare RTR with two fine-tuning
strategies: fine-tuning π(s) and fine-tuning ∆π(s) (Figure 4).
Directly fine-tuning π(s) initially progresses well but quickly

collapses. In fine-tuning ∆π(s), the base policy π(s) is frozen,
and a residual policy is initialized and trained from π(s)
with the last layer weights reset to zero. We find that RTR
achieves better data efficiency than both baselines. All methods
use the same arm policy, XY Compliant + Z Schedule. For
reference, we also show that without fine-tuning π(s) or
π(s, z), the reward gradually decreases as the arm lowers and
the task difficulty increases. We additionally compare RTR
with RMA [18] in Appendix F.

B. Real-world Learning from Scratch: Swing-up

Overview. To demonstrate the effectiveness of RTR for real-
world learning from scratch, we consider training a swing-up
behavior with RL in the real world. The objective is to achieve
the maximum swing height within a 20-second time window.
To simplify the task, we constrain the action space to hip pitch,
knee pitch, and ankle pitch and enforce symmetry between the
left and right legs. We perform ablation experiments to answer
two key questions: (Q1) Does active arm involvement help in
the training schedule? (Q2) Does critic pretraining help?

Analysis. As shown in Figure 5, both the helping and
perturbing arms outperform the fixed arm, with the helping
achieving the best performance. We conclude that helping
allows the critic to learn what good states look like during
the helping interval (1e4 – 2e4 steps), enabling the policy
to quickly reach those states afterward. Pretraining the value
function with offline data also accelerates early-stage learning
- the model without a pretrained critic exhibits the slowest
improvement.

V. CONCLUSION

We present a comprehensive real-world learning system,
RTR, which enables protection, guidance, schedule, reward,
perturbation, failure detection, and automatic resets for hu-
manoid learning. We introduce an efficient RL paradigm based
on dynamics-aware latent optimization, enabling rapid and sta-
ble policy adaptation in the real world. Looking ahead, we aim
to extend RTR to larger humanoid robots, handle increasingly
complex tasks, and further improve data efficiency, allowing
more effective collection and utilization of real-world data for
humanoid learning.

VI. LIMITATION

Although RTR can autonomously execute the training cur-
riculum in the real world, the curriculum itself remains
task-specific and requires manual design and tuning. Future
work should explore more generalizable approaches to real-
world curriculum generation. Additionally, our reward design
is constrained by the limitations of available hardware and
sensors—for example, RTR lacks access to ground reaction
force measurements, which are readily available in simulation
but absent in our real-world setup, while instrumenting a
force plate beneath the treadmill is a potential workaround.
Developing comprehensive real-world sensing methodologies
represents a promising direction for advancing continuous
robot learning in real-world environments.

REFERENCES

[1] Yevgen Chebotar, Ankur Handa, Viktor Makoviychuk,
Miles Macklin, Jan Issac, Nathan Ratliff, and Dieter
Fox. Closing the Sim-to-Real Loop: Adapting Simulation
Randomization with Real World Experience. In 2019
International Conference on Robotics and Automation
(ICRA), pages 8973–8979, May 2019. doi: 10.1109/
ICRA.2019.8793789.

[2] Tao Chen, Megha Tippur, Siyang Wu, Vikash Kumar, Ed-
ward Adelson, and Pulkit Agrawal. Visual dexterity: In-
hand reorientation of novel and complex object shapes.
Science Robotics, 8(84):eadc9244, November 2023. doi:
10.1126/scirobotics.adc9244.

[3] Yuanpei Chen, Chen Wang, Li Fei-Fei, and Karen Liu.
Sequential Dexterity: Chaining Dexterous Policies for
Long-Horizon Manipulation. In 7th Annual Conference
on Robot Learning, August 2023.

[4] Yuanpei Chen, Chen Wang, Yaodong Yang, and Karen
Liu. Object-Centric Dexterous Manipulation from Hu-
man Motion Data. In 8th Annual Conference on Robot
Learning, September 2024.

[5] Xuxin Cheng, Kexin Shi, Ananye Agarwal, and Deepak
Pathak. Extreme Parkour with Legged Robots. In
2024 IEEE International Conference on Robotics and
Automation (ICRA), pages 11443–11450, May 2024. doi:
10.1109/ICRA57147.2024.10610200.

[6] Zipeng Fu, Qingqing Zhao, Qi Wu, Gordon Wetzstein,
and Chelsea Finn. HumanPlus: Humanoid Shadowing
and Imitation from Humans. In 8th Annual Conference
on Robot Learning, September 2024.

[7] Xinyang Gu, Yen-Jen Wang, Xiang Zhu, Chengming Shi,
Yanjiang Guo, Yichen Liu, and Jianyu Chen. Advancing
Humanoid Locomotion: Mastering Challenging Terrains
with Denoising World Model Learning. In Robotics:
Science and Systems XX. Robotics: Science and Systems
Foundation, July 2024. ISBN 9798990284807. doi:
10.15607/RSS.2024.XX.058.

[8] Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter
Abbeel, and Sergey Levine. Meta-reinforcement learning
of structured exploration strategies, 2018. URL https:
//arxiv.org/abs/1802.07245.

[9] Huy Ha, Yihuai Gao, Zipeng Fu, Jie Tan, and Shuran
Song. UMI-on-Legs: Making Manipulation Policies Mo-
bile with Manipulation-Centric Whole-body Controllers.
In 8th Annual Conference on Robot Learning, September
2024.

[10] Sehoon Ha, Peng Xu, Zhenyu Tan, Sergey Levine, and Jie
Tan. Learning to Walk in the Real World with Minimal
Human Effort. In Proceedings of the 2020 Conference
on Robot Learning, pages 1110–1120. PMLR, October
2021.

[11] Tuomas Haarnoja, Ben Moran, Guy Lever, Sandy H.
Huang, Dhruva Tirumala, Jan Humplik, Markus
Wulfmeier, Saran Tunyasuvunakool, Noah Y. Siegel,
Roland Hafner, Michael Bloesch, Kristian Hartikainen,

https://arxiv.org/abs/1802.07245
https://arxiv.org/abs/1802.07245

Arunkumar Byravan, Leonard Hasenclever, Yuval Tassa,
Fereshteh Sadeghi, Nathan Batchelor, Federico Casarini,
Stefano Saliceti, Charles Game, Neil Sreendra, Kushal
Patel, Marlon Gwira, Andrea Huber, Nicole Hurley,
Francesco Nori, Raia Hadsell, and Nicolas Heess.
Learning agile soccer skills for a bipedal robot with
deep reinforcement learning. Science Robotics, 9(89):
eadi8022, April 2024. doi: 10.1126/scirobotics.adi8022.

[12] Tairan He, Jiawei Gao, Wenli Xiao, Yuanhang Zhang,
Zi Wang, Jiashun Wang, Zhengyi Luo, Guanqi He, Nikhil
Sobanbab, Chaoyi Pan, Zeji Yi, Guannan Qu, Kris Kitani,
Jessica Hodgins, Linxi ”Jim” Fan, Yuke Zhu, Changliu
Liu, and Guanya Shi. ASAP: Aligning Simulation
and Real-World Physics for Learning Agile Humanoid
Whole-Body Skills, February 2025.

[13] Tairan He, Wenli Xiao, Toru Lin, Zhengyi Luo, Zhenjia
Xu, Zhenyu Jiang, Jan Kautz, Changliu Liu, Guanya Shi,
Xiaolong Wang, Linxi Fan, and Yuke Zhu. HOVER:
Versatile Neural Whole-Body Controller for Humanoid
Robots, March 2025.

[14] Yifan Hou, Zeyi Liu, Cheng Chi, Eric Cousineau, Naveen
Kuppuswamy, Siyuan Feng, Benjamin Burchfiel, and
Shuran Song. Adaptive Compliance Policy: Learning
Approximate Compliance for Diffusion Guided Control,
March 2025.

[15] Peide Huang, Xilun Zhang, Ziang Cao, Shiqi Liu,
Mengdi Xu, Wenhao Ding, Jonathan Francis, Bingqing
Chen, and Ding Zhao. What Went Wrong? Closing the
Sim-to-Real Gap via Differentiable Causal Discovery. In
Proceedings of The 7th Conference on Robot Learning,
pages 734–760. PMLR, December 2023.

[16] Suning Huang, Zheyu Zhang, Tianhai Liang, Yihan Xu,
Zhehao Kou, Chenhao Lu, Guowei Xu, Zhengrong Xue,
and Huazhe Xu. MENTOR: Mixture-of-Experts Network
with Task-Oriented Perturbation for Visual Reinforce-
ment Learning, October 2024.

[17] Yunfan Jiang, Chen Wang, Ruohan Zhang, Jiajun Wu,
and Li Fei-Fei. TRANSIC: Sim-to-Real Policy Transfer
by Learning from Online Correction. In 8th Annual
Conference on Robot Learning, September 2024.

[18] Ashish Kumar, Zipeng Fu, Deepak Pathak, and Jitendra
Malik. RMA: Rapid Motor Adaptation for Legged
Robots, July 2021.

[19] Ashish Kumar, Zhongyu Li, Jun Zeng, Deepak Pathak,
Koushil Sreenath, and Jitendra Malik. Adapting Rapid
Motor Adaptation for Bipedal Robots. In 2022 IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems (IROS), pages 1161–1168, October 2022. doi:
10.1109/IROS47612.2022.9981091.

[20] Kun Lei, Zhengmao He, Chenhao Lu, Kaizhe Hu, Yang
Gao, and Huazhe Xu. Uni-O4: Unifying Online and
Offline Deep Reinforcement Learning with Multi-Step
On-Policy Optimization. In The Twelfth International
Conference on Learning Representations, October 2023.

[21] Yongyuan Liang, Tingqiang Xu, Kaizhe Hu, Guangqi
Jiang, Furong Huang, and Huazhe Xu. Make-An-

Agent: A Generalizable Policy Network Generator with
Behavior-Prompted Diffusion. In The Thirty-eighth
Annual Conference on Neural Information Processing
Systems, November 2024.

[22] Toru Lin, Kartik Sachdev, Linxi Fan, Jitendra Malik,
and Yuke Zhu. Sim-to-Real Reinforcement Learning for
Vision-Based Dexterous Manipulation on Humanoids,
February 2025.

[23] Jianlan Luo, Charles Xu, Jeffrey Wu, and Sergey Levine.
Precise and Dexterous Robotic Manipulation via Human-
in-the-Loop Reinforcement Learning, March 2025.

[24] J. Maples and J. Becker. Experiments in force control
of robotic manipulators. In 1986 IEEE International
Conference on Robotics and Automation Proceedings,
volume 3, pages 695–702, April 1986. doi: 10.1109/
ROBOT.1986.1087590.

[25] Russell Mendonca, Emmanuel Panov, Bernadette Bucher,
Jiuguang Wang, and Deepak Pathak. Continuously Im-
proving Mobile Manipulation with Autonomous Real-
World RL. In Proceedings of The 8th Conference
on Robot Learning, pages 5204–5219. PMLR, January
2025.

[26] OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek
Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron,
Alex Paino, Matthias Plappert, Glenn Powell, Raphael
Ribas, Jonas Schneider, Nikolas Tezak, Jerry Tworek,
Peter Welinder, Lilian Weng, Qiming Yuan, Wojciech
Zaremba, and Lei Zhang. Solving Rubik’s Cube with
a Robot Hand, October 2019.

[27] Xue Bin Peng, Marcin Andrychowicz, Wojciech
Zaremba, and Pieter Abbeel. Sim-to-Real Transfer of
Robotic Control with Dynamics Randomization. In
2018 IEEE International Conference on Robotics and
Automation (ICRA), pages 3803–3810, May 2018. doi:
10.1109/ICRA.2018.8460528.

[28] Xue Bin Peng, Erwin Coumans, Tingnan Zhang, Tsang-
Wei Lee, Jie Tan, and Sergey Levine. Learning agile
robotic locomotion skills by imitating animals, 2020.
URL https://arxiv.org/abs/2004.00784.

[29] Ethan Perez, Florian Strub, Harm de Vries, Vincent
Dumoulin, and Aaron Courville. Film: Visual reasoning
with a general conditioning layer, 2017. URL https:
//arxiv.org/abs/1709.07871.

[30] Haozhi Qi, Ashish Kumar, Roberto Calandra, Yi Ma,
and Jitendra Malik. In-Hand Object Rotation via Rapid
Motor Adaptation. In 6th Annual Conference on Robot
Learning, August 2022.

[31] Ilija Radosavovic, Sarthak Kamat, Trevor Darrell, and
Jitendra Malik. Learning Humanoid Locomotion over
Challenging Terrain, October 2024.

[32] Ilija Radosavovic, Tete Xiao, Bike Zhang, Trevor Darrell,
Jitendra Malik, and Koushil Sreenath. Real-world hu-
manoid locomotion with reinforcement learning. Science
Robotics, 9(89):eadi9579, April 2024. doi: 10.1126/
scirobotics.adi9579.

[33] Kate Rakelly, Aurick Zhou, Deirdre Quillen, Chelsea

https://arxiv.org/abs/2004.00784
https://arxiv.org/abs/1709.07871
https://arxiv.org/abs/1709.07871

Finn, and Sergey Levine. Efficient off-policy meta-
reinforcement learning via probabilistic context variables,
2019. URL https://arxiv.org/abs/1903.08254.

[34] Allen Z. Ren, Hongkai Dai, Benjamin Burchfiel, and
Anirudha Majumdar. AdaptSim: Task-Driven Simulation
Adaptation for Sim-to-Real Transfer. In Proceedings of
The 7th Conference on Robot Learning, pages 3434–
3452. PMLR, December 2023.

[35] Research Nester. Industrial robotic arm market
size, share, growth trends, regional share, compet-
itive intelligence, forecast report 2025–2037, March
2025. URL https://www.researchnester.com/reports/
industrial-robotic-arm-market/6763. Accessed: 2025-04-
28.

[36] Nikita Rudin, David Hoeller, Philipp Reist, and Marco
Hutter. Learning to Walk in Minutes Using Massively
Parallel Deep Reinforcement Learning. In Proceedings
of the 5th Conference on Robot Learning, pages 91–100.
PMLR, January 2022.

[37] Gerrit Schoettler, Ashvin Nair, Juan Aparicio
Ojea, Sergey Levine, and Eugen Solowjow. Meta-
Reinforcement Learning for Robotic Industrial Insertion
Tasks. In 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 9728–9735,
October 2020. doi: 10.1109/IROS45743.2020.9340848.

[38] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. Proximal policy optimization
algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

[39] Haochen Shi, Weizhuo Wang, Shuran Song, and C. Karen
Liu. ToddlerBot: Open-Source ML-Compatible Hu-
manoid Platform for Loco-Manipulation, February 2025.

[40] Laura Smith, Ilya Kostrikov, and Sergey Levine. A Walk
in the Park: Learning to Walk in 20 Minutes With Model-
Free Reinforcement Learning, August 2022.

[41] Laura Smith, Yunhao Cao, and Sergey Levine. Grow
your limits: Continuous improvement with real-world rl
for robotic locomotion, 2023. URL https://arxiv.org/abs/
2310.17634.

[42] Yu Sun, Wyatt L. Ubellacker, Wen-Loong Ma, Xiang
Zhang, Changhao Wang, Noel V. Csomay-Shanklin,
Masayoshi Tomizuka, Koushil Sreenath, and Aaron D.
Ames. Online Learning of Unknown Dynamics for
Model-Based Controllers in Legged Locomotion. IEEE
Robotics and Automation Letters, 6(4):8442–8449, Oc-
tober 2021. ISSN 2377-3766, 2377-3774. doi: 10.1109/
LRA.2021.3108510.

[43] Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen,
Yunfei Bai, Danijar Hafner, Steven Bohez, and Vincent
Vanhoucke. Sim-to-Real: Learning Agile Locomotion
For Quadruped Robots. In Robotics: Science and Systems
XIV, volume 14, June 2018. ISBN 978-0-9923747-4-7.

[44] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider,
Wojciech Zaremba, and Pieter Abbeel. Domain random-
ization for transferring deep neural networks from simu-
lation to the real world. In 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),

pages 23–30, September 2017. doi: 10.1109/IROS.2017.
8202133.

[45] Philipp Wu, Alejandro Escontrela, Danijar Hafner, Pieter
Abbeel, and Ken Goldberg. DayDreamer: World Models
for Physical Robot Learning. In Proceedings of The
6th Conference on Robot Learning, pages 2226–2240.
PMLR, March 2023.

[46] Haoyu Xiong, Russell Mendonca, Kenneth Shaw, and
Deepak Pathak. Adaptive Mobile Manipulation for
Articulated Objects In the Open World, January 2024.

[47] Kelvin Xu, Zheyuan Hu, Ria Doshi, Aaron Rovinsky,
Vikash Kumar, Abhishek Gupta, and Sergey Levine.
Dexterous Manipulation from Images: Autonomous
Real-World RL via Substep Guidance. In 2023 IEEE
International Conference on Robotics and Automation
(ICRA), pages 5938–5945, May 2023. doi: 10.1109/
ICRA48891.2023.10161493.

[48] Wenhao Yu, Visak CV Kumar, Greg Turk, and C. Karen
Liu. Sim-to-real transfer for biped locomotion, 2019.
URL https://arxiv.org/abs/1903.01390.

[49] Wenhao Yu, Jie Tan, Yunfei Bai, Erwin Coumans, and
Sehoon Ha. Learning fast adaptation with meta strat-
egy optimization, 2020. URL https://arxiv.org/abs/1909.
12995.

[50] Zhecheng Yuan, Tianming Wei, Shuiqi Cheng,
Gu Zhang, Yuanpei Chen, and Huazhe Xu. Learning
to Manipulate Anywhere: A Visual Generalizable
Framework For Reinforcement Learning, October 2024.

[51] Yunchu Zhang, Liyiming Ke, Abhay Deshpande, Ab-
hishek Gupta, and Siddhartha Srinivasa. Cherry-Picking
with Reinforcement Learning. In Robotics: Science
and Systems XIX, volume 19, July 2023. ISBN 978-
0-9923747-9-2.

[52] Ziwen Zhuang, Shenzhe Yao, and Hang Zhao. Humanoid
Parkour Learning. In 8th Annual Conference on Robot
Learning, September 2024.

https://arxiv.org/abs/1903.08254
https://www.researchnester.com/reports/industrial-robotic-arm-market/6763
https://www.researchnester.com/reports/industrial-robotic-arm-market/6763
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2310.17634
https://arxiv.org/abs/2310.17634
https://arxiv.org/abs/1903.01390
https://arxiv.org/abs/1909.12995
https://arxiv.org/abs/1909.12995

APPENDIX

A. Walking

Following the RL training setup in Shi et al. [39], both
the base policy π(st) and the dynamics-aware policy π(st, z)
output at as joint position setpoints for proportional-derivative
(PD) controllers based on the observable state st:

st = (ϕt, ct,∆qt, q̇t,at−1,ωt,θt) , (5)

where ϕt is a phase signal, ct represents velocity commands,
∆qt denotes the position offset relative to the neutral pose q0,
at−1 is the action from the previous time step, ωt represents
the torso’s angular velocity, and θt is the torso orientation in
euler angles.

In simulation, the critic observation space includes more
privileged information to provide better accuracy for the value
function, we have:

s+t =
(
ϕt, ct,∆qt, q̇t,at−1, eqt,vt,ωt,θt,mt, ref t, ṽt, θ̃t

)
,

(6)
where eqt is the error of the current motor position to a

reference motor position, vt is the linear velocity of the robot
in the world frame, ref t is the reference motor pose, while
ṽt and θ̃t are the linear and angular velocity of the random
perturbation applied to the robot.

In the real world, as some of the privileged observations in
the simulation are hard to acquire, we leverage the RTR sys-
tem’s force information, and augment the real-world privileged
observation as:

sr+t = (ϕt, ct,∆qt, q̇t,at−1,qt,vt,ωt,θt,Ft, τ t) , (7)

where qt is the joint position of the humanoid, vt is the linear
velocity of the torso measured by a motion tracking system,
and Ft and τ t are the force and torque measured by the force-
torque sensor mounted on the robot arm teacher.

B. Swing-up

For the swing-up task, the observation space is defined the
same as Equation 5. We also include more information to form
the task’s privileged observation space:

s+t = (ϕt, ct,∆qt, q̇t,at−1,ωt,θt,Ft, τt,xt) (8)

where Ft, τt,xt are the force reading, torque reading, and
arm end effector position, respectively.

In this section, we discuss details regarding the FiLM layers
in our sim-to-real adaptation pipeline. As shown in Equa-
tion (1), the FiLM layer introduces a scaling and shifting effect
to each layer of the hidden network, altering the behavior of
the policy network inherently.

One key consideration for the FiLM layer during training
is its learning rate, as it decides how fast the FiLM layer will
change compared to the policy network. In our implementa-
tion, we train the FiLM layers along with the policy network
from scratch, as we find that initializing the policy network

from a pretrained model hinders the effect of the FiLM layer
over the policy. Recall that:

γ
(i)
j , β

(i)
j = FiLMj(z

(i)), h
(i)
j ← γ

(i)
j ⊙ h

(i)
j + β

(i)
j

We initialize all the FiLM layers with all-zero weights and
all-zero or all-one bias, such that at the start of the training,
we have: γ(i)j = 1.0, β

(i)
j = 0.0, which means the FiLM layers

do not affect the network output. As the FiLM layers are
trained simultaneously with the policy, they are in a competing
condition: the policy network is learning to gain better overall
performance given the current FiLM distribution, while the
FiLM layers are trained to make use of the environment’s
latent and maximize the performance in each of the different
environments.

We find that a small learning rate for the FiLM layers
causes the policy to behave similarly to training without the
modulation, limiting its ability to generalize across latent
conditions and adapt to different environments. On the other
hand, if the learning rate is too large, it will lead to unstable
training and lower performance.

We propose a metric to measure the effectiveness for the
dynamics latent conditioned π(s, z) to utilize the environment
information embedded in the latent z. Specifically, we compare
the performance of the policy given the true latent z computed
from the dynamics encoder z(i) = fϕ(µ

(i)) and give an all-
zero latent. We find that the performance of an all-zero latent
could be even comparable to that given the real z when the
FiLM learning rate is small, but it will gradually decrease
to near zero when the learning rate increases and the policy
starts to learn to use the latent information. On the other hand,
the overall performance of the policy will decrease nearly
monotonously when the FiLM learning rate increases. We plot
the performance curves at different learning rates in Figure 6.
For each learning rate, we run seven trials and plot the mean
and standard deviation of the performance. We find that the
learning rate of 5e−5 is a good trade-off between performance
and the ability to utilize latent information, while 1e − 5
is too small, leading to nearly identical zero latent and true
latent performance, and 1e− 4 is too large and leads to poor
performance.

C. Domain Randomization

Following the domain randomization settings in [39], we
slightly increase the domain randomization range to encourage
the policy network to better use the dynamics information from
the latent. We list the randomized parameters and their range
in Table II. We use the encoder-decoder architecture from [21]
to encode the physics parameters to a 1024-dimensional latent
before sending it to the FiLM layers, though we only use the
encoder in our implementation.

D. Arm Control Policy

We implement our appliance arm controller based on the
open-sourced code of Hou et al. [14].

1 2 3 4 5 6 7 8 9 10
Learning Rate (x1e-5)

0

50

100

150

200

250

300

350

M
ea

n
R

ew
ar

d

Train Reward Eval Reward
Eval Reward w/ zero zEval Reward w/ zero z

Fig. 6: FiLM learning rate ablation. This experiment aims to evaluate the effect of FiLM layer learning rates. All experiments
are run under seven seeds. Vertical bars indicate standard deviation.

TABLE II: We randomize the following environment parameters for the walking task.

Parameter Names Friction Damping Armature Friction Loss Body Mass EE Mass

Randomize Range [0.5, 2.0] [0.5, 2.0] [0.5, 2.0] [0.5, 2.0] [−0.3, 0.3] [0.0, 0.1]

For the walking task, we enable appliance control along the
XY axis while setting the Z-height directly. We use a stiffness
of [100, 50] along the two axis, while setting the damping to
[0.5, 0.5] and inertia to [0.03, 0.03], making the arm slightly
more compliant on the Y-axis.

For the swing task, we disable the appliance control for
the arm since it makes the phase tracking lag behind. We
use position control to let the arm follow the helping or
perturbing movement described in Section III-C. During both
helping and perturbing modes, each real-world data collection
period is evenly divided into 5 bins. In helping mode, 3 bins
are randomly selected from the last 4 to apply assistance. In
perturbing mode, 1 bin is randomly selected from the first 4
to apply the perturbation.

E. Treadmill Control Policy

During the walking task, the robot is walking on the
treadmill while the treadmill adjusts its speed dynamically to
keep the robot in a good position. We use a PD controller for
the treadmill speed v:

v = vbase + k1pFx + k2pψ (9)

where vbase = 0.1 m/s is the default treadmill speed, Fx is
the force reading along the x-axis and ψ is the robot’s torso
pitch. k1p = 0.2 and k2p = −5 are the proportional gain. We
set a treadmill speed limit of 0.24 m/s to assure the safety of
the humanoid platform.

F. Online Learning Hyperparameters

During real-world adaptation for walking, we collect a batch
of 1024 steps of data before updating the policy on them over

20 epochs using the PPO algorithm with a clipping ratio of
0.2. Both the actor and critic networks are optimized with a
learning rate of 1×10−4. To encourage exploration, we apply
an entropy coefficient of 0.005.

For training the swing-up task from scratch, we also collect
1024 samples before starting to update the policy. The actor
is optimized with a learning rate of 2 × 10−3 and the critic
is optimized with a learning rate of 2 × 10−5. To encourage
exploration, we apply an larger entropy coefficient of 0.04.
Each PPO update is performed over 20 epochs with a clipping
ratio of 0.2.

Rapad Motor Adaptation (RMA) [18] is a sim-to-real adap-
tation method that is similar to our approach. The training
of RMA consists of two stages: (1) A pretraining stage,
where the policy is trained in a simulated environment with
domain randomization. In this stage, the latent information is
encoded from the physics parameters by a projection layer,
and then concatenated with the observation before being sent
to the policy. (2) An adaptation stage, which is to address
the problem that the physics parameter of the real world is
unknown. During this stage, an adaptation module is trained
via supervised learning to reconstruct the latent z from the
past observations and actions.

Compared to RMA, our approach bears differences in each
stage: for the first stage, our method uses a FiLM layer to
modulate the policy network, which is a more flexible and
powerful way to utilize the latent information. In contrast,
RMA simply concatenates the latent information with the
observation. In the second stage, our method does not require
the adaptation module to reconstruct the latent z, but instead,
we optimize a universal latent z∗ that is shared across all the

TABLE III: We compare the performance for each stage of RTR (ours) and RMA [18] in this table

Ground Truth Adaptation Module (RMA) Universal Latent (RTR)

Concatenation (RMA) 210.32 ± 20.75 205.74 ± 15.63 207.32 ± 5.89
FiLM layer (RTR) 316.10 ± 11.30 10.32 ± 2.01 305.28 ± 5.47

TABLE IV: We compare RTR and RMA [18] in this table, extending the results from Table I.

Method Torso Roll ↓ Torso Pitch ↓ EE Force X ↓ EE Force Y ↓ EE Force Z ↓

RMA 0.167 ± 0.010 0.212 ± 0.006 1.172 ± 0.007 0.799 ± 0.028 2.548 ± 0.216
RTR (ours) 0.093 ± 0.020 0.053 ± 0.044 0.943 ± 0.202 0.754 ± 0.122 0.954 ± 0.445

environments. This could serve as a good initialization for
further training of the optimal real-world latent z∗real. On the
other hand, RMA tries to reconstruct the latent z from the
past observations and actions, which is prone to overfitting,
especially when facing the largely out-of-distribution real-
world dynamics.

In the following section, we set up simulation and real-
world experiments to compare our method with RMA. We try
to answer the following questions: (1) How does the FiLM
layer modulation affect the performance compared to RMA’s
simple concatenation? (2) How good is the adaptation module
compared to our approach to get a universal latent? For each
experiment, we conduct ablation studies and keep all other
parameters the same. We then evaluate the fully trained RMA
model in the real world to prove that our method is indeed a
better choice from each perspective for real-world adaptation.

G. RMA Implementation Details

We describe the details we use to implement the RMA
algorithm on our humanoid platform. During phase one train-
ing, we randomize the simulation environment using the same
parameter range as described in Appendix C, and the ran-
domized parameters are then concatenated to form a physics-
information vector. We drop the unchanged digits during the
encoding process.

The RMA algorithm is originally designed for a quadruped
robot that has relatively low DoFs. Compared with the original
implementation, we use a similar process to train a stage
one model that takes in the observation and the dynamics
latent and outputs the action. During stage two, we make the
following changes to adapt the algorithm to our hardware:
(1) We decrease the window length of past observations
and actions that used to predict the current dynamics latent
from 50 to 15, as the observation of the humanoid platform
has higher dimensions, and a too long horizon will cause
difficulty in training. This adjustment also aligns with the stack
frame length we use during training. (2) We change the 1D
convolution layers used to process the past states and actions
accordingly, since the context window size is reduced. The
new convolution layers now have kernel sizes of (5, 3, 3)
and stride steps of (1, 1, 1). Besides these changes, the RMA
training reuses the existing real-world learning pipeline, while

only optimizing the adaptation module in stage two instead of
the dynamics latent as in the implementation of RTR.

H. FiLM Latent Modulation

We first compare the effect of FiLM layer modulation used
by RTR with the concatenation approach used by the first
stage in RMA. To this end, we run three seeds for the RMA
to train a dynamics latent conditioned policy in 1024 parallel
simulation environments. While the FiLM layer-based policy
easily reaches an average evaluation return of higher than 300,
the concatenated policy can only reach a return of just over
200. We suspect that this is due to the high dimensionality
introduced by concatenation, which will hinder the policy
performance. The co-existence of the observation and the
dynamics latent in the MLP policy input is also likely to cause
the network to ignore the dynamics. The detailed results can
be found in the first column of Table III, where the “Ground
Truth” denotes that both methods have access to the dynamics
latent directly predicted from the encoder.

I. Adaptation Module Performance

During the second stage of RMA, an adaptation module is
trained to predict the dynamics latent from past observations.
While in RTR, a universal latent is trained across randomized
environments for initialization of a real-world learning stage.
We want to investigate which method could lead to a better
estimation of the real dynamics latent. In addition to the design
choice of concatenation or FiLM layer modulation studied in
the previous subsection, we conduct ablation studies to fully
compare the performance of both methods. The results can be
found in Table III.

In the first row of Table III, we use the stage one of
RMA to train a dynamics conditioned policy via directly
concatenating the dynamics latent to the observation, which
will lead to inferior performance than the FiLM layers. We
then use both universal latent optimization and the adaptation
module to predict the dynamics latent. The result shows that
both methods did pretty well to recover the latent, resulting in
a nearly identical performance to the true latent used in phase
one.

In the second row of Table III, we add the dynamics
conditioning to the policy via FiLM layers as in RTR. The
performance of the conditioned policy is higher than that of the

concatenated latent. We then compare the two methods’ ability
to estimate the dynamics latent for the FiLM layers. This time,
the RMA-style adaptation module failed to recover a feasible
dynamics latent for the FiLM layers, causing the performance
to stay at a low position, almost close to that of a random
policy. While the prediction error of the adaptation module is
decreasing, we suspect this is due to the FiLM layers being
more sensitive to the small changes of the dynamics layer, and
the adaptation module can’t fully close this gap from the past
observations and actions.

J. Real-World Performance

Finally, we run the RMA model in the real world and test its
performance using the same metrics as the main paper. While
our implementation of the RMA method successfully adapts
to the real world to produce a walking behavior somewhat
similar to the simulation, the walking gait of the RMA policy
is not that stable, and the humanoid often leans forward and
is frequently recovered by the RTR hardware. The metrics in
Table IV show that our method clearly outperforms RMA for
real-world adaptation.

In summary, during the first stage of training, the approach
of using the FiLM layer in RTR outperforms the concatenation
method used by RMA. During the second stage, our approach
of universal latent optimization could provide similar initial
latent compared to RMA, and is more stable when combined
with the FiLM layers. What’s more, our approach of universal
latent optimization leads to a third real-world tuning stage, and
has the ability to further boost the real-world performance with
the RTR hardware. The results in both simulation and real-
world experiments lead to the conclusion that the dynamics
latent optimization pipeline of RTR is better suited for sim-
to-real adaptation of humanoids than the approach used by
RMA.

	Introduction
	Related Works
	Method
	Teacher-Student Hardware System
	Real-world Adaptation
	Real-world Learning from Scratch

	Experiments
	Real-world Adaptation with Simulation Pretraining: Walk
	Real-world Learning from Scratch: Swing-up

	Conclusion
	Limitation
	Appendix
	Walking
	Swing-up
	Domain Randomization
	Arm Control Policy
	Treadmill Control Policy
	Online Learning Hyperparameters
	RMA Implementation Details
	FiLM Latent Modulation
	Adaptation Module Performance
	Real-World Performance

