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Abstract 
We argue that the relative success of large language models (LLMs) is not a reflection on the 
symbolic vs. subsymbolic debate but a reflection on employing an appropriate bottom-up 
strategy of a reverse engineering of language at scale. However, and due to their subsymbolic 
nature whatever knowledge these systems acquire about language will always be buried in 
millions of weights none of which is meaningful on its own, rendering such systems utterly 
unexplainable. Furthermore, and due to their stochastic nature, LLMs will often fail in making the 
correct inferences in various linguistic contexts that require reasoning in intensional, temporal, 
or modal contexts. To remedy these shortcomings we suggest employing the successful bottom-
up strategy employed in LLMs but in a symbolic setting, resulting in explainable, language-
agnostic, and ontologically grounded language models. 
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1. Introduction 

To arrive at a scientific explanation there are 

generally two approaches we can adopt, a top-down 

approach or a bottom-up approach (Salmon, 1989). 

However, for a top-down approach to work, there 

must be a set of established general principles that 

one can start with, which is clearly not the case when 

it comes to language and how our minds externalize 

our thoughts in language. In retrospect, therefore, it is 

not surprising that decades of top-down work in 

natural language processing (NLP) failed to produce 

satisfactory results since most of this work was 

inspired by theories that made questionable 

assumptions where, for example, an innate universal 

grammar was assumed (Chomsky, 1957), or that we 

metaphorically build our linguistic competence based 

on a set of idealized cognitive models (Lakoff, 1987), 

or that natural language could be formally described 

using the tools of formal logic (Montague, 1973). In a 

similar vein, it is perhaps for the same reason that 
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decades of top-down work in ontology and knowledge 

representation (Lenat and Guha, 1990 and Sowa, 

1995) also faltered since most of this work amounted 

to pushing, in a top-down manner, metaphysical 

theories of how the world is supposedly structured 

and represented in our minds, and again without any 

agreed upon general principles to start with. On the 

other hand, unprecedented progress has been made 

in only a few years of NLP work that employed a data-

driven bottom-up strategy, as exemplified by recent 

advances in large language models (LLMs) that are 

essentially a massive experiment of a bottom-up 

reverse engineering of language at scale (e.g., ChatGPT 

and GPT-4)2. 

1.1. Issues with LLMs 

Despite their relative success, LLMs do not tell us 

anything about how language works since these 

models are not really models of language but are 

statistical models of regularities found in language3. In 

2 GPT stands for ‘Generative Pre-trained Transformer’, an 
architecture that OpenAI built on top of the transformer 
architecture (Vaswani, A. et. al., 2017). 
3 In looking inside the neural network (NN) of an LLM one does 
not find concepts, meanings, linguistic structures, etc. but 
weights associated with neural connections, which is exactly 
what one will find in an object recognition or any other NN. 



fact, and due to their subsymbolic nature, whatever 

‘knowledge’ these models acquire about language will 

always be buried in millions of weights 

(microfeatures) none of which is meaningful on its 

own, rendering these models utterly unexplainable 

(Guizzardia and Guarino, 2024). Besides 

unexplainability, LLMs are also oblivious to truth 

(Borji, 2023), since for LLMs all text (factual or non-

factual), is treated equally. Finally, and while LLMs 

have been shown to do poorly in a number of tasks 

that require high-level reasoning such as planning 

(Valmeekam et. al., 2023), analogies (Lewis and 

Mitchell, 2024) and formal reasoning (Arkoudas, 

2023) what concerns here is the failure of LLMs in 

making the right inferences in various linguistic 

contexts. As an illustration of the kinds of failures in 

deep language understanding we consider here three 

linguistic contexts involving copredication, intension 

and prepositional attitudes. 

Example 1. Show the entities and the relations that are 
implicit in the following text: “I threw away the 
newspaper I was reading because they fired my 
favorite columnist”. 
 
Example 2. Since Madrid is the capital of Spain, can I 
replace one for the other in the following: “Maria thinks 
Madrid was not always the capital of Spain”? 
 
Example 3. Suppose Devon knows that if someone is a 
client, then s/he is a student, and suppose that Olga is a 
client. Then what does Devon know? 
 
The first example involves a phenomenon called 

copredication (see Asher and Pustejovsky, 2005) 

which occurs when the same entity is used in the same 

context to refer to more than one semantic 

(ontological) type. All LLMs tested4 failed in 

recognizing that ‘newspaper’ in the text is used to 

simultaneously refer to three entities: (i) the physical 

object I threw away; (ii) the content of the newspaper 

I was reading; and (iii) the ‘editorial board’ of the 

newspaper that did the firing of the columnist. Note 

that the failure of the LLMs was more acute when the 

LLMs were asked to draw a graph showing all entities 

and relations implied by the text since to show all the 

relations in the text all the different types of entities 

must be extracted. Here all LLMs tested showed the 

same newspaper (physical) object doing the firing of 

the columnist. 
In example 2 all LLMs we tested approved replacing 

‘the capital of Spain’ by ‘Madrid’ resulting in ‘Maria 
thinks that Madrid was not always Madrid’. It is worth 

 

4 Our experiments were conducted on GPT-4o (chat.openai.com). 

noting that the LLMs tested were consistently oblivion 
to intension. For example, in ‘Perhaps Socrates was not 
the tutor of Alexander the Great’, ‘Socrates’ and ‘the 
tutor of Alexander the Great’ were also deemed 
replaceable (since they are extensionally equal) resulting 
in ‘Perhaps Socrates was not Socrates’. These results 
were expected since neural networks (deep or 
otherwise), that are the computing architecture behind 
all LLMs, are purely extensional models and are based 
on the ‘empiricist theory of abstraction’ where their 
similarity semantics has no notion of ‘object identity’ 
(Lopes, 2023). 

Finally, example 3 illustrates failures of LLMs in 
making the correct inferences in modal (belief) contexts: 
the response of the LLMs tested was that ‘Devon knows 
that Olga is a student’ which is clearly the wrong 
inference since inferring K(Devon, student(Olga)) from 
K(Devon, client(Olga)student(Olga)) requires K(Devon, 
client(Olga)), i.e., it requires Devon knowing that Olga is 
a client. We have collected many other tests that we 
make available elsewhere for the sake of saving space.5 

1.2. LLMs: A Glass Half Empty, Half Full 

So where do we stand now? On one hand, LLMs have 

clearly proven that one can get a handle on syntax and 

quite a bit of semantics in a bottom-up reverse 

engineering of language at scale; yet on the other hand 

what we have are unexplainable models that do not 

shed any light on how language actually works. 

Moreover, it would seem that due to their purely 

extensional and statistical nature, LLMs will always 

fail in making the correct inferences in many linguistic 

contexts. Since we believe the relative success of LLMs 

is not a reflection on the symbolic vs. subsymbolic 

debate but is a reflection on a successful bottom-up 

reverse engineering strategy, we think that combining 

the advantages of symbolic and ontologically 

grounded representations with a bottom-up reverse 

engineering strategy is a worthwhile effort. In fact, the 

idea that word meaning can be extracted from how 

words are actually used in language is not exclusive to 

linguistic work in the empirical tradition, but in fact it 

can be traced back to Frege. 

In the rest of the paper we will (i) first argue that 

current word embeddings that are the genesis of 

modern-day large language models can be 

constructed in a symbolic setting instead of being the 

result of statistical cooccurrences; (ii) we will show 

that symbolic vectors perform better than current 

embeddings on a well-known word similarity 

benchmark; (iii) we will discuss how our symbolic 

5 https://shorturl.at/ejmH8 



vectors can be used to discover the ontological 

structure that is implicit in our ordinary language. 

2. Concerning 'the Company a Word 
Keeps' 

The genesis of modern LLMs is the distributional 

semantics hypothesis which states that the more 

semantically similar words are, the more they tend to 

occur in similar contexts – or, similarity in meaning is 

similarity in linguistic distribution (Harris, 1954). 

This is usually summarized by a saying that is 

attributed to the British linguist John R. Firth that “you 

shall know a word by the company it keeps”. When 

processing a large corpus, this idea can be used by 

analyzing co-occurrences and contexts of use to 

approximate word meanings by word embeddings 

(vectors or tensors), that are essentially points in 

multidimensional space. Thus, at the root of LLMs is a 

bottom-up reverse engineering of language strategy 

where, unlike top-down approaches, “reverse 

engineers the process and induces semantic 

representations from contexts of use” (Boleda, 2020). 

But nothing precludes this idea from being carried out 

in a symbolic setting. In other words, the ‘company a 

word keeps’ can be measured in several ways, other 

than the correlational and statistical measures that 

underlie modern word embeddings. 

2.1. Symbolic Dimensions of Meaning 

In discussing possible models of the world that can be 

employed in computational linguistics Hobbs (1985) 

once suggested that there are two alternatives: (i) on 

one extreme we could attempt building a “correct” 

theory that would entail a full description of the 

world, something that would involve quantum 

physics and all the sciences; (ii) on the other hand, we 

could have a promiscuous model of the world that is 

isomorphic to the way we talk it about in natural 

language (emphasis is ours). Since the first option is a 

project that is most likely impossible to complete, 

what Hobbs is clearly suggesting here is a reverse 

engineering of language to discover how we actually 

use language to talk about the world we live in. This is 

also not much different from Frege’s Context Principal 

that suggests “never ask for  the meaning of words in 

isolation” (Dummett, 1981) but that a word gets its 

meanings from analyzing all the contexts in which the 

word can appear (Milne, 1986). Again, what this 

suggests is that the meaning of words is embedded (to 

use a modern terminology) in all the ways we use 

these words in how we talk about the world. While 

Hobbs’ and Frege’s observations might be a bit vague, 

the proposal put forth by Fred Sommers (1963) was 

very specific. Again, Sommers suggests that “to know 

the meaning of a word is to know how to formulate 

some sentences containing the word” and this would 

lead, like in Frege’s case, to the conclusion that a 

complete knowledge of some word w would be all the 

ways w can be used. For Sommers, the process of 

understanding the meaning of some word w starts by 

analyzing all the properties P that can sensibly be 

said of w. Thus, for example, [delicious Thursday] is not 

sensible while [delicious apple] is, regardless of the 

truth or falsity of the predication. Moreover, and since 

[delicious cake] is also sensible, then there must be a 

common type (perhaps food?) that subsumes both 

apple and cake. This idea is similar to the idea of type 

checking in strongly typed polymorphic programming 

languages. For example, the types in an expression 

such as ‘x + 3’ will only unify (or the expression will 

only ‘make sense’) if/when x is an object of type 

number (as opposed to a tuple, for example). As it was 

suggested in (Saba, 2007), this type of analysis can 

thus be used to ‘discover’ the ontology that seems to 

be implicit in the language, as will be discussed below. 

First, however, we describe how a bottom-up reverse 

engineering of language can be done in a symbolic 

setting. 

2.2. Symbolic Reverse Engineering of 
Language 

The procedure we have in mind assumes a 
Platonic universe where all concepts, physical or 
abstract, including states, activities, properties 
(tropes) (Moltmann, 2013), processes, events, etc. are 
considered entities that can be defined by a number of 
language-agnostic primitives (Smith, 2005) that we 
call the ‘dimensions of meaning’. We consider here the 
following dimensions: AGENTOF, OBJECTOF, HASPROP, 
INSTATE, PARTOF, INSTATE, INPROCESS, and OFTYPE. For 
every word w in the language, and for every 
dimension D, a reverse-engineering process is 
conducted to compute a set wD = {(x, t) | D(w, x)} 
where t is a weight in [0,1]. Here are example sets 
computed for ‘book’ along four dimensions of 
meaning along with the masking prompt that queries 
what an LLM has ‘learned’ about how we talk about 
books: 

 
book . HASPROP 
Everyone likes to read a [MASK] book. 
=> {(popular, 0.9), (educational, 0.8), (famous, 0.8), ... } 
 
book . OBJECTOF 
Everyone I know enjoyed [MASK] ‘The Prince’. 
=> {(reading, 0.9), (writing, 0.8), (editing, 0.8), ... } 
 
book . AGENTOF 
Das Kapital has [MASK] many people over the years. 
=> {(influenced, 0.9), (inspired, 0.8), (changed, 0.8), ... } 



book . PARTOF 
Hamlet should be part of every [MASK]. 
=> {(collection, 0.9), (archive, 0.8), (library, 0.8), ... } 
 
book . INSTATE 
I was told that my book is now in [MASK]. 
=> {(print, 0.9), (circulation, 0.8), (review, 0.8), ... } 
 
What the above says is the following (i) in ordinary 

spoken language we speak of a ‘book’ that is popular, 

educational, famous, etc.; (ii) we speak of reading, 

writing, editing, etc. a ‘book’; (iii) we speak of ‘book’ 

that may change, influence, inspire, etc.; and (iv) we 

speak of a b ‘book’ that is part of a collection, an 

archive, or a library; and (v) a book can be in review, in 

print, in circulation, etc. The nominalization process 

can be conducted using the copular ‘is’ as shown in 

table 1. For example, ‘John is famous’ can be restated 

as ‘John has the property of fame’; ‘Jim is sad’ as ‘Jim is 

in a state of sadness’; etc. (see [Smith, 2005] for more 

on the relationship between the copular and abstract 

entities and [Moltmann, 2013] for more on abstract 

objects.) What should be noted here is that even with 

the simple conceptual structure discovered thus far 

one can generate plausible text, such as the following: 

 
(1) enjoyed the interesting reading of the new book                     
(2) completed a boring reading of a controversial book  

 

Table 1: From propositions to relations and entities 

 
The sensible (and meaningful) fragment in (1) can be 

generated because a book can be ‘read’ and described 

by ‘new’, and readings can be ‘interesting’ and the 

object of enjoyment; and similarly for (2) where a 

reading of a controversial book can be boring and the 

object of a completion, etc. Note, however, that text 

generation in this case is not a function of ‘predicting’ 

the most likely continuation, but a function of 

plausible filling in of subjects, objects, agents, 

descriptions, etc. to any propositional structure. 

2.3. Symbolic Embeddings 

The process we described thus far results in symbolic 

word embeddings as the one shown in figure 2 below. 

In figure 2(a) we show the symbolic embedding for 

 

6 https://kaggle.com/datasets/julianschelb/wordsim353-crowd 

‘boy’ and ‘lad’ along the HASPROP dimension. Thus, in 

ordinary spoken language it is sensible to speak of a 

‘handsome boy’ and a ‘funny boy’ as well as a ‘clever 

lad’ and a ‘talented lad’. We note here that in this 

process generic descriptions are removed using a 

function that computes the information content of 

some adjectives, where the information content of an 

adjective adj is inversely proportional to the set of 

types of adj can sensibly be applied to. For example, 

‘beautiful’ will have a low information content score 

since ‘beautiful’ can sensibly be said of many concepts, 

both physical and abstract (e.g., car, movie, poem, 

night, girl, …) while ‘tasty’ can sensibly be said of ‘food’ 

and just a few others. The symbolic embeddings in 

figure 2(b) are those of ‘automobile’ and ‘car’ along 

the OBJECTOF dimension. Note now that word 

similarity along these symbolic dimensions can be 

computed using cosine similarity as well as weighted 

Jaccard similarity where max and min can be used in 

fuzzy union and fuzzy intersection. We are currently 

experimenting with the optimal number of 

dimensions using a number of word similarity 

benchmarks, including the WordSim353 dataset 

(Finkelstein, Lev. et al., 2001)6. 

 
Figure 1: We speak of a ‘book’ (i) that influence, change, 
convince; (ii) that is edited, read, written; (iii) that can be 
popular, controversial, famous; (iv) that is part of a library, 
an archive, etc. 
 

3. The Ontology of the Language of 
Thought? 

The reverse engineering process we have described 

above would result in symbolic embeddings along 



various dimensions, as the ones shown in figure 2. As 

a result of this, however, we could then analyze the 

subset relations between these embeddings to 

discover the ontological structure that seems to be 

implicit in our ordinary language. To illustrate, 

consider the following: 

(3) car . objectOf  
       = {(driving, 0.9), (repairing, 0.8), (buying, 0.8), ... } 
(4) book . objectOf 
       = {(reading, 0.9), (writing, 0.8), (buying, 0.8), ... }    
(5) person . AGENTOF  
       = {(reading, 0.9),(writing, 0.8), (driving, 0.8), ... } 
(6) person. HASPROP 
       = {(popularity, 0.9), (fame, 0.8), (beautiful, 0.8), .. } 
(7) car. hasProp 
       = {(popularity, 0.9), (fame, 0.8), (beautiful, 0.8), .. }  
(8) book . HASPROP  
       = {(popularity, 0.9), (fame, 0.8), (beautiful, 0.8), .. }  
 
Note that car can be the object of ‘buying’ and so can 

be a book and this means that car and book must, at 

some level of abstraction, share the same parent 

(perhaps ‘artifact’?) Note also that a car as well as a 

book and a person can be popular. An analysis along 

these lines would result in the following: 

 
(9)    read(person, book) 
(10) write(person, book) 
(11) buy(person, T1 = car  book … ) 
(12) drive(person, car)  
(13) beautiful(T2 = person  car  book … ) 

 
What the above says is the following: in ordinary 

spoken language we speak of people reading and 

writing books (9 and 10); we speak of people buying 

cars and books, and thus of buying objects that are of 

some type that subsumes both cars and books (11); 

we speak of people driving cars (12); and we speak of 

beautiful people, cars, and books (and thus beautiful 

seems to be a property that can sensibly be said of 

concepts that are at very high level of generality). As 

suggested by Sommers (1963) this type of analysis 

that can be fully automated with the help of LLMs can 

help us discover what he called ‘the Tree of Language’ 

– which is essentially the ontology that seems to be 

underneath our ordinary language. This might also be 

what Hobbs (1985) was seeking when he suggested 

building a model of the world that isomorphic to the 

we talk about it in natural language. 

4. Concluding Remarks 

Large language models (LLMs) have shown 

impressive capabilities that pioneers in artificial 

intelligence and natural language processing would 

marvel at. 

                (a) 

                                                         (b) 

 
Figure 2: (a) the symbolic embeddings of ‘boy’ and ‘lad’ along 

the HASPROP dimension (with a weighted Jaccard similarity of 

0.876) and (b) those of ‘automobile’ and ‘car’ along the 

OBJECTOF dimension (the weighted Jaccard similarity is 0.91) 

 

However, we believe that LLMs are not the answer to 

the language understanding problem nor to reasoning 

in general and in particular commonsense reasoning. 

Due to their paradigmatic unexplainability LLMs will 

also not shed any light on how language works and 

how we externalize our thoughts in language. Since, in 

our opinion, the relative success of LLMs is not due to 

their subsymbolic nature but due to applying a 

successful bottom-up reverse engineering strategy, 

we suggested here applying the same strategy but in a 

symbolic setting, something that has been argued for 



by logicians dating back to Frege. By combining the 

successful bottom-up strategy and symbolic and 

ontological methods we arrive at explainable and 

ontologically grounded language models that can be 

used in problems requiring commonsense reasoning.  

We are still in the early stage of this work, but we 

currently have the tools to realize the dream of Frege 

and Sommers and perhaps shed some light on the 

‘language of thought’ Fodor (1998) – the internal 

language that we use to construct and process our 

thoughts. 
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