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Abstract

Data Shapley is an important tool for data valuation, which quantifies the contribu-
tion of individual data points to machine learning models. In practice, group-level
data valuation is desirable when data providers contribute data in batch. However,
we identify that existing group-level extensions of Data Shapley are vulnerable to
shell company attacks, where strategic group splitting can unfairly inflate valuations.
We propose Faithful Group Shapley Value (FGSV) that uniquely defends against
such attacks. Building on original mathematical insights, we develop a provably
fast and accurate approximation algorithm for computing FGSV. Empirical exper-
iments demonstrate that our algorithm significantly outperforms state-of-the-art
methods in computational efficiency and approximation accuracy, while ensuring
faithful group-level valuation.

1 Introduction

As data become increasingly crucial in modern machine learning, quantifying its value has significant
implications for faithful compensation and data market design [29) [39]. The Shapley value, a
foundational concept from cooperative game theory [30], stands out as the unique valuation method
satisfying four desirable axioms for faithful data valuation [7,|14]. Consequently, it has been applied
to diverse applications, including collaborative intelligence [22,25] and copyright compensation [35],
and quantifying feature importance in explainable Al [26].

Many real-world scenarios demand evaluation of data os
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As group data valuation frameworks are increasingly used in real-world scenarios such as data
markets and copyright compensation, their robustness against adversarial manipulation becomes
important. Prior studies on attacks and defenses in data valuation have focused primarily on the
individual-level data valuation, such as the copier attack that duplicates existing data to unjustly
inflate value [6}[10]. In contrast, we identify a new vulnerability unique to group data valuation, which
has been largely unexplored in literature. Existing extensions of the Shapley framework to group
data valuation treat each pre-defined group as an atomic unit and then apply the standard Shapley
value formulation [[15 20} 35} 32]], which we refer to as Group Shapley Value (GSV). However, we
demonstrate—both theoretically and empirically—that this approach suffers from susceptibility to
strategic manipulation through partitioning. Consider the valuation of a fixed data group A. As shown
in Figure [I] partitioning the remaining data points into smaller subgroups reduces the GSV for A,
despite no change in data content. In other words, malicious players may exploit the loophole in GSV
by splitting their data among puppy subsidiaries, a vulnerability we coin as shell company attack.

To address this issue, we propose a faithfulness axiom for group data valuation, such that the total
valuation of the same set of data remains unchanged, regardless of how others are subdivided. Based
on this, we introduce the Faithful Group Shapley Value (FGSV) for a group as the sum of individual
Data Shapley values of its members, and prove that it uniquely satisfies the set of axioms that are
desirable for faithful group data valuation. Figure [1|demonstrates that FGSV effectively defends
against the shell company attack.

While FGSV safeguards faithfulness, its exact computation requires combinatorial computation of
individual Shapley values. Although numerous approximation algorithms for individual Shapley
values have been developed [2, (7} [14} 34, 26| 13| 38| 24} 27], simply applying them and summing up
results in each group is slow for large groups and may compound approximation errors. Importantly,
we proved that a small subset of terms dominate in FGSV’s formula. As a result, we developed an
original algorithm that directly approximates FGSV fast and accurately. Our numerical experiments
demonstrate its computational efficiency and approximation accuracy against summing up individual
Shapley values computed by state-of-the-art (SOTA) methods. We also applied FGSV to faithful
copyright compensation on Stable Diffusion models for image generation.

2 Preliminaries: individual and group Shapley values

Individual Shapley value (SV). Let D = {z1,...,2,} € Z™ denote the training data, where
n := |D|. Let S C [n] be an index set of cardinality s := |S|, and write S := {z; : i € S}. A
utility function U (S) assigns a performance score (such as classification accuracy) to method trained
based on data S. To simplify notation, we may refer to “U(S)” by index as “U(S)” and write them
interchangeably. The individual Shapley value of data point ¢ is defined as

, |S[!(n — |S| = 1)! .
SV(i) == Z oy {U(SU{i})=U(S)}. )
SCln]\{i}
The widespread adoption of Shapley value stems from its strong theoretical foundation that it uniquely

satisfies four desired axioms, called null player, symmetry, linearity, and efficiency. We will review
these principles as part of our axiomatization for group Shapley value in Definition

Group Shapley value (GSV). As mentioned in Section[2} most group-level Shapley values [15, 35
32| adopt the so-called group-as-individual (Gal) approach. Suppose the entire data set is partitioned
into (K + 1) disjoint groups: D = Sy U Sy U -+ - U Sk, in which, Sy C [n] is the group we aim to
evaluate. The group Shapley value (GSV) of Sy, as in [[15,[35][32]], is defined as

GSV(So) = Y. W{U({uke,sk}uso)—U(ukelsk)}. 2)
IC{1,....K} '

Clearly, (2) is a “set version” of (I)). Thus GSV also satisfies the four axioms for SV at the group
level. However, it is questionable whether these axioms, originally formulated for individual-level
valuation, are appropriate for groups.

Fairness issue with GSV. The GSV valuation of .Sj as in (2)) can be impacted by how the rest of the
data are grouped. A serious consequence is that GSV is prone to the shell company attack: splitting
a group into smaller subgroups will increase the total valuation earned by the same set of data points.
We have seen an illustration in Figure[T]in Section[I] Now we theoretically formalize this observation.



Proposition 1 (Shell company attack). Let P be the underlying data distribution over the sample
space Z, and write P° for the s-fold product distribution; thus S ~ P° denotes an i.i.d. sample
S =(21,...,25) € Z°5with z; ~P. Let U(s) = Egp:[U(S)] denote the expected utility for data
S (which only depends on s = |S|). Now we split a group Sy, into two non-empty subgroups S}, and
Sy (ie, S, US) =Sk S, NS =0, and Sy, S}, # 0), If U(s) satisfies a prudence condition:
A3U(s):=U(s+3)—3U(s+2)+3U(s+1) - U(s) >0, 3)
then
E[GSV(Sk)] < E[GSV(S},)] + E[GSV(S})]. 4)

Condition (@) is a familiar concept in economics, characterizing risk-aversion behaviors under
uncertainty [8]. It is also observed in machine learning, where the performance of a learning method
saturates as the same type of data repeatedly come in [[18] [12]].

3  Our method
3.1 Faithfulness axiom and Faithful Group Shapley Value (FGSV)

Motivated by the faithfulness issue, we introduce a set of axioms that formalize desirable principles
for faithful group data valuation. We first axiomatize group-level data valuation that generalizes the
Shapley’s four axioms for individual valuation.

Definition 1 (Group data valuation). For data D = {z1,...,z,}, utility U and partition ITI =

{S1,..., Sk} such that Sy, N Sy, = 0,Y1 < ky < ks <nand S; U---U Sk = [n], a group data

valuation method vy p 11(+) : II — R is a mapping that assigns a real-valued score to each Sy, € IL

Next, we propose a set of axioms that a faithful group data valuation method should satisfy.

Definition 2 (Axioms for faithful group data valuation). A group data valuation vy p 11 is called

Jaithful if it satisfies the following axioms for any dataset D, utility U, and partition 11:

1. Null player: For any S € 11, if every subset S’ C S satisfies U(S" U S") = U(S") for all
S" Cn)\ S, thenvypn(S) =0.

2. Symmetry: Forany S1,Ss € 11, | S1| = |Sa|, if there is a bijection o : S; — Sa, s.t. U(S"US") =
U(S"Uo(S") forall S C Sy and 8" C [n]\ (5" Ua(S")), then vyp n(S1) = vu,p.1(S2).

3. Linearity: For any utility functions Uy, Uy and scalars o1, a5 € R, we have for all S € 11
VayUr+azUs,0,11(S) = a1vy, pu(S) + aovu,, p.u(S).

4. Efficiency: For any partition I1 = {S1, ..., Sk}, we have Zszl vup(Sk) = U([n]).

5. Faithfulness: For any group S € II; N 11y, we have vy p 11, (S) = vu,p.11, (S).

Notably, our null player and symmetry require group valuation to faithfully reflect the contributions
of its individual members. They are strictly weaker assumptions than their Gal counterparts. For
example, a group assigned zero value in Gal can receive nonzero value under our axioms if some
of its members have marginal contributions, but not the other way around. Linearity and efficiency
are standard group-level extensions. Our newly introduced Axiom [5|requires that a group’s value is
determined only on its own competitive merit and rules out the unfair competition means of shell
company attack.

It turns out that there is a unique group data valuation method that can satisfy all axioms in Definition 2}
simply add up all member’s individual Shapley values.

Theorem 1. The only group data valuation method vy p 11 that satisfies all axioms in Deﬁnition is
vupu(S) = > ;c5 SV (i), where SV (i) is the individual Shapley value defined in (T).

In view of Theorem|[I} we propose Faithful Group Shapley Value (FGSV):
FGSV(Sp) := Y SV(i). 5)

1€So
3.2 Fast and accurate approximation algorithm for FGSV

The exact evaluation of FGSV requires combinatorial computation. To develop a feasible approxima-
tion method, we make a series of key mathematical observations leading to an efficient algorithm.



To start, from the definition of FGSV (@) and (I)), we see that FGSV(Sy) is a complicated linear
combination of U(.S) terms, where .S ranges over all subsets of [n]. Therefore, the first step towards
simplification is to discover the pattern in the coefficient in front of each U (.5) term.

Key observation 1. In FGSV(Sy), the coefficient of U(S) depends on S and Sy only through the
tuple (s1, s, so), where recall that sg = |Sp| and s :=|S|, and define s1 :=|So N S)|.

In other words, any two terms U(S) and U(S’) with |S| = |S’| and | Sy N S| = |Sg N S| share
the same coefficient in FGSV(S). This motivates us to aggregate these terms in our analysis. Let
s, :=1{8 :|S] =s,[SNSp| = s1} collect all S”es with the same (s, s1) configuration, and define

S1 L Z:SE.AS,Sl U(S) - ZS:|S\:3,\SQSO\:51 U(S)
1 (;,s,so,n) - |As s, | B G0 (GZ) ©

When sampling a subset S C [n] of size s without replacement, the size of S N .Sy, which we now
denote as the boldfaced s; to emphasize its randomness, follows a hypergeometric distribution:
P(sy =s1) = (3°)(77:°) /(7). Using this fact, we can re-express FGSV in terms of 4.

S1 §—81

Lemma 1. Letr s1 ~ HG(n, so, s). We can rewrite FGSV as

n—1
FGSV(So) = 2 [U([n)) = U(@)] + >_ T(s), )
s=1
where
T(S) = Eslwﬂg(n,so,s) {n Ti s (S?l - %0) H (Ssl;s,so,n)] . ®)

Instead of directly estimating 7 (s) via Monte Carlo, we discover two key observations that deepen
our understandings of ({7) and (8), building on which, we can greatly reduce computational cost.

Key observation 2. The probability P(s1 = s1) decays exponentially in |s1 — ssg/n|.

Key observation[2]implies that 7 (s) is dominated by the values of s, around its mean E[s1] = sso/n.
To deepen our understanding of 7 (), for this moment, we informally deem p as a smooth function
of the continuous variable s /s, with formal characterization provided later. Then, applying a “Taylor
expansion” of 1 (s1/s; s, s9,m) around s1/s = sg/n leads to the following intuition.

Key observation 3 (Informal). 7 (s) ~ s~ !(sq/n)(1 — so/n)i’ (so/n; 8, 80, 10).

Key observation reveals that, under suitable conditions, the term 7 (s) can be efficiently estimated
by evaluating the derivative ' (; s, so,n) at a single point sq /n.

Next, we formalize the above discoveries into rigorous mathematical results.

Assumption 1 (Boundedness). Forall s € Nand S € Z°, |U(S)| < C for a universal constant C.
Assumption 2 (Second-order algorithmic stability of utility). There exist constants C > 0 and v > 0
such that forall s € N, S € Z° and 21,2}, 29,25 € Z,

|U(SU {2172’1}) — U(SU {21,2’2}) — U(SU {zi7zé}) _|_U(SU {22,2’5})| < 057(3/24»1))'

Assumption|[T]is a standard regularity condition commonly adopted in the data valuation literature [[14]
33]l, and Assumption[2]introduces a mild second-order stability requirement. In Section 3.5 we will
show examples that Assumption [2]is satisfied by some commonly used utility functions.

Theorem 2. Under Assumptions[l|and[2) for each s € {1,...,n — 1}, we have

T(S) = TL/(TL - 1) ! O[o(l - OZO){AM(ST/S; 8,80, TL) + O(Si(lJrv)) }7 (9)

where s7 := |s50/n], ag := s0/n, and Ap(®L; s, 50,n) = u(%; 5,80,M) — (L8, 50,1).
Theorem [2| consolidates Key observation |3|and, moreover, shows that its approximation error decays
rapidly as s grows. For large s, we can use (9) to design the estimator for 7 (s). Yet, some extra care
is needed. In principle, each p(s1/s; s, so, n) can be estimated by subsampling S from A, , .

m

~ (51, 1 ) (GHyym  idid o
Lm (;,s,so,n) = EZ;U(S ), where {SVY/}7, "7 Uniform(&7 s, ). (10)
iz



However, estimating u(%; s,50,n) and p(2L; s, s0,n) separately can be statistically inefficient,
as the noise from two independent Monte Carlo estimates could mask the signal in their difference—
especially when the true gap is small for large s. Following the variance-reduction technique used in

stochastic simulation [21]], we propose to estimate Ay directly using paired Monte Carlo terms:

— 1 & , . ) ,
Rity (Zis,50,m) = =S {U (s UG}) —U(sD Ui ], (10

j=1

where the tuple {(S(j),i§j),igj))} is i.i.d. sampled from {(S,i1,42) : |S| = 5,[S N Sp| = 51,41 €
SQ\S,iQ S SS\S}

When s is small and the approximation becomes less accurate, we instead estimate 7 (s) via direct
Monte Carlo using (8) and (T0).

We formally present our method as Algo-

rithm [I} Later, our Theorem [3 will pro- Algorithm 1 Approximate FGSV (.Sy)
vide quantitative guidance on choosing

this threshold for deciding whether s is Require: Dataset D, group Sy, threshold 5, subsample

small or large. sizes my, ma.

1: Initialize n = |D|, so = |So| and g = so/n.
3.3 Computational complexity 2: fors=1ton —1do

3:  if s < 5then
Following the convention, we measure  4: Estimate i, (5?17 s,80,m) for each s; €
compgtationalicomplexit.y by the I}umber [max{0, s+sq—n}, min{s, so}] by Eq. (T0).
of gtlhty functlpn eyaluatlons required for 4. Compute 7 (s) by (8). replacing 1 by i,
a given approximation accuracy. 6 else
Definition 3 ((€, §)-approximation). For 7 s« [sao].
a target vector 0 € R%, an estimator 0 is ~ 8: Estimate Ap,,, (25 s, so, n) by Eq. (TT).
called an (e, §)-approximation, if P(||0 —  o. T(s) + rap(l —ag) - Apy,, (355, 50,n).
O]2 >€) <6 10:  end if

Our theoretical analysis for approximating !1: end for 15

. s . n—
T (s) relies on the stability of the utility 12: return 53 [U([n]) — U(@)] 4 Xo0my T(5)-
function U. Specifically, we employ the
concept of deletion stability to quantify the maximum change in the utility function when a single
data point is removed [ 1} [11].

Definition 4 (Deletion Stability). A utility function U is B(s)-deletion stable for a non-increasing
function B : N — RT, if
U(SU{z}) - US| < B(s),

orallse N, Se 25 landz € Z.
Je

The regime 5(s) = O(1/s) for deletion stability is commonly assumed in the literature on individual
Data Shapley approximation 36,37 and in the analysis of algorithm stability [[L} [11]].

Theorem 3. Suppose the utility function U is O(1/s)-deletion stable, then Algorithmguarantees
that for any truncation threshold § and sample sizes mq, ma, with probability at least 1 — 9,

P 1 1
[FGSV(Sp) — FASV(S)| S 51/ 108(1/9) o1 = ao)y ) 280D 100 1 4 a1 — ag)s—.
mq ma

Specifically, choosing

sx<e Vv my = e log(n/d6), my = max{l, e 2(ap(1 — ao))2(log(n/5))3},

yields an (e, §)-approximation of FGSV (Sy) with O (n - max {1, (ao(1 — ap))*(logn)?}) utility
evaluations.

Theorem 3|implies that our algorithm requires only O(n Poly(log n)) utility evaluations to achieve
an (e, §)-approximation for the FGSV of a group Sy whose size scales as a constant fraction of n.



To compare our method’s computational complexity with existing works, we notice numerous recent
efficient algorithms for approximating individual Shapley values [14, 34, 24} 26, 3 277, 23], [38].

They target an (¢, d)-approximation on the full individual Shapley-value vector ||§ — 0|2, where

6 := (SV(1),...,SV(n)) and 6 is the approximation for §. The SOTA method achieves this
guarantee in O(ne~*log(n/d)) utility evaluations. Approximating FGSV(Sp) = >, 0 by

simply summing up individual approximations can lead to an additive error bounded by /50|60 — 0]|2.
Thus, achieving the same (¢, §)-approximation on FGSV (Sy) requires tightening the error tolerance
to €/4/50, increasing the sample complexity to O (aonzPoly(log n)) By directly targeting the group
objective, our method avoids this quadratic blow-up and offers a significant speed-up over the SOTA.
It continues to outperform SOTA individual-based methods even when evaluating multiple groups in
parallel, provided that the number of groups is o(n).

3.4 Utility function values for small input sets

In some machine learning scenarios, U(S) might not be well-defined for small |.S|. For instance,
methods such as LLM’s would only produce meaningful result from sufficiently large data sets.
Meanwhile, Shapley value emphasizes the contributions from small games, therefore, we cannot
simply ignore the small |S| terms in the computation of FGSV (7). One way is to use variants
of Shapley value, such as beta-Shapley and Banzhaf, that down-weight small |.S| terms, but these
alternatives do not satisfy all axioms for faithful group data valuation per Theorem [T} The other
way is to fill in U(.S) for small S with random or zero values. However, these ad-hoc solutions lack
principle and may risk significantly distorting the valuation.

To motivate our approach, we make two simple observations. First, when S = (J, the trained method
should behave as if it were trained on pure noise, corresponding to a baseline utility value. Second,
big-data reliant methods might not value small S very differently than baseline, regardless of their
content. In this context, both quality and quantity of data matter for valuation.

Our remedy is very simple. We set a threshold for input size, denoted by B, such that U (S) is always
well-defined and meaningful for |S| > B. For example, in a linear regression with p predictors,
observing that U(\S) is undefined for S| < p, we may set B = cp for some constant ¢ > 1. If
|S| < B, we inject B — |S| non-informative data points, to elevate the input size to B; otherwise
no change is made to U(.S). As a concrete example for the non-informative distribution, consider a
supervised learning scenario with data D = {(x;, y;)}"_,. Here, we can randomly shuffle y;’s and
use the resulting empirical data distribution as the non-informative distribution P,,;;. Clearly, we can
expect that as the size of informative data (i.e., |S|) increases, less amount of non-informative data
will be injected, and U (S) gradually becomes non-baseline. For further theoretical and algorithmic
details, see Appendix[C]

While our approach was inspired by the feature deletion technique in machine unlearning, to our best
knowledge, we are the first to adapt the idea for data Shapley, in a distinct fashion.

3.5 Examples of second-order stable algorithms

Among the conditions our theory needs, Assumption [2is arguably the least intuitive. To demonstrate
that Assumption [2]is in fact quite mild, here, we verify that it holds for two important applications.

3.5.1 Stochastic Gradient Descent (SGD)

SGD on a training set S = {z;}$_; minimizes the empirical loss £(w) = 37 | ¢(w; 2;). Start-
ing from an initial wg, SGD runs for T steps, each step ¢t € [T] updating w; = wi—1 — ay -
% D ic 5, VI (w¢—_1; z;) with learning rate oz, where the mini-batch I; of size m is drawn indepen-
dently and uniformly from [r]. Denote the final output by wr = w(zy,, ..., 21, ). The performance
of wy can be represented as some scalar function u(-) (e.g., classification accuracy on a test data).

Define the utility as the expected performance:
U(S) :==Ep,,....rp[u(wr)]. (12)

Assumption 3. Suppose { and u satisfy the following regularity conditions. All conditions hold for
some constants C, L, 3, p > 0 and all w,w', z.

1. (Smoothness of u) || Vu(w)| < C and ||Vu(w') — Vu(w)| < Cllw’ — w]].
2. (L-Lipschitz of £) [{(w'; z) — £(w; 2)| < L||w" — wl|.



3. (B-smoothness of £) ||V ,l(w'; z) — Vi, l(w; z)|| < Bllw’ — w|.
4. (Smoothness of s Hessian) || V2 (w'; z) — V2 b(w; 2)|| < p||lw’ — w].

Assumption 3] 1 imposes mild smoothness on the utility function u, while the remaining assumptions
concern the loss function /. Compared with the classical analysis of SGD stability by Hardt et al.
(111, the only additional requirement is Assumption [3|4, which ensures smoothness of the Hessian.
This condition is mild and is satisfied by standard smooth loss functions, such as the squared loss,
when the prediction function is twice continuously differentiable in terms of parameters w.

Proposition 2. Ser a; < s™™ /t, m < s™, and T < s™, where constants 71 > 0 and 2,73 > 0.
Suppose v := 211 + 19 — 1/2 > 0. Under Assumption the utility function satisfies:

U(SU{21,21}) = U(S U {21, 22}) = U(S U {21, 25}) + U(S U {2, 25}) S 57 /2,

3.5.2 Influence Function (IF)

The influence function (IF) method [9} [19] considers the following regularized empirical loss:

fs = argmein[,(@;S) = argmein {s’l ZSE(F);Z) +(A/2) - HHH%} (13)
z€E

Like in Section , suppose the utility can be written as U(S) = u(@s). Under mild conditions
(see Proposition [3)), standard IF theory [9} [19] implies that

U(S U {21,4)) — U(S) = 57 Voulls) TH {Ve@ss 20) + VE@si )} (14)

for any z1, 21, where H os is the Hessian of £ evaluated at 53. This yields the following proposition.

Proposition 3. Suppose u is continuously differentiable with L-Lipschitz and bounded gradient.
Assume that the loss function €(0; z) is convex in 0, three times continuously differentiable with all
derivatives up to order three uniformly bounded. Then for any z1, 21, z2, 25 € Z,

|US U{z1,21}) —U(SU{z1,22}) —U(SU{2],25}) + US U {22, 25})| S 572 (15)
Proposition [3]is not surprising in view of (I4)), as the main terms cancel out on the LHS of (T5).

4 Experiments

We empirically compare our method (FGSV) to the approach of first computing individual Shap-
ley values using SOTA methods and then summing them to form a group valuation. The results
demonstrate the superiority of our method in both speed and approximation accuracy and its faithful-
ness under shell company attack in applications such as copyright attribution in generative Al and
explainable AL. We report the key findings in the main paper and relegate full details to Appendix [B]

4.1 Approximation accuracy and computational efficiency

In this experiment, we compare our method to the following benchmarks: (1) Permutation-based
estimator [2|[7] that averages marginal contributions over random data permutations; (2) Group Test-
ing-based estimator [[14}[34] that uses randomized group inclusion tests to estimate pairwise Shapley
value differences; (3) Complementary Contribution estimator [38]] that uses stratified sampling
of complementary coalitions; (4) One-for-All estimator [24] that uses weighted subsets and reuses
utility evaluations; (5) KernelSHAP [26], a regression-based method with locally weighted samples;
(6) Unbiased KernelSHAP [3]], KerneISHAP with a bias-correction; and (7) LeverageSHAP [27]]
that speeds up KernelSHAP by weighted sampling based on leverage scores.

Experimental setup. We consider the Sum-of-Unanimity (SOU) cooperative game [24]], where the
individual Shapley values have a closed-form expression. Specifically, the utility function is defined as
U(S) = 25:1 ;1 4;cs, and the corresponding Shapley value for player i € [n] is given by SV (i) =
ijl %L‘e A, - Here, each subset A; is generated by sampling a random size uniformly from 1 to
n and then drawing that many players without replacement. We set d = n? and the coefficient «;
as the average of the weights of all players ¢ € A;, where each player ¢ has a weight %ﬁ. We
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Figure 2: Performance comparison in the SOU game. Top: Our method (FGSV) achieves the lowest
AUCC and ARE across all problem sizes. Bottom: Our method costs the lowest runtime per iteration.

partition all players into 4 groups based on their indices: S, = {i € [n] : i = k — 1(mod4)} for

k € [4], and our goal is to estimate the group value FGSV(Sk) = > ;g SV (i). Given a fixed budget

of 20,000 utility function evaluations, we record the absolute relative error of the FGSV estimate

every 200 iterations for each method. We summarize convergence behavior using the Area Under
——— (200-t)

the Convergence Curve (AUCC), defined as: AUCC(Sk) = 155 Zfli(i FGSV(S’“I;(;;(;(S;C) (S) l,

which captures both speed and stability of convergence. We also report the Absolute Relative Error
(20000)

(ARE) of the final estimate: ARE(S)) = ’FGSV(S’“;GE%V]C) ()| Lower AUCC and ARE

indicate faster convergence and better accuracy, respectively. We record the average runtime per
iteration for each method.

Results. Figure 2| summarizes the average performance over 30 replications for n € {64,128, 256}.
The top two rows together indicate that our method shows overall superior performance across all
problem sizes n, exhibiting both the lowest average AUCC and ARE. The bottom row suggests
that, while using the same utility evaluation budget, our method is among the fastest. In contrast,
baselines such as Group Testing, KernelSHAP, and Unbiased KernelSHAP incur substantial higher
computational overhead, due to internal optimization processes. Overall, our method achieves both
faster convergence and improved computational efficiency, which demonstrates the benefits of directly
estimating the group value rather than aggregating individual Shapley estimates.

4.2 Application to faithful copyright attribution in generative Al

Group data valuation is important for fairly compensating copyright holders whose data are used to
train generative Al models. Existing approaches, such as the Shapley Royalty Share (SRS) proposed
by [35]], adopt the Gal approach based on GSV. Given a partition of the training data into K disjoint

groups S, ..., Sk, SRS is defined as SRS(Sy; Tgen) := % However, as discussed
j=1 jsLgen

in Section[2] GSV is prone to the shell company attack. To address this vulnerability, we propose
the Faithful Shapley Royalty Share (FSRS) that replaces GSV with our FGSV to faithfully reward
individuals in a group by their contributions, not by tactical grouping strategies:

FGSV(Sk; Tgen)

S FGSV (S Tgen)

FSRS(Sk; Tgen) :=

Experimental setup. Following [35], we fine-tune Stable Diffusion v1.4 [28] using Low-Rank
Adaptation (LoRA; [13])) on four brand logos from FlickrLogo-27 [[16]. The utility U (-; x(gen)) is the
average log-likelihood of generating 20 brand-specific images z(8°") using the prompt “A logo by
[brand name]” (see example images in Panel (a) of Figure[3). We compare SRS and FSRS under



two grouping scenarios: (1) 30 images from each brand form a single group, and (2) the Google and
Sprite datasets are each split into two subgroups (20/10 images), launching a shell company attack.
Importantly, the total data per brand remains unchanged across two scenarios.
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Figure 3: Comparison of SRS and FSRS for copyright attribution. (a) Example images generated
using brand prompts. (b) Shapley Royalty Share (SRS, [35]]) based on GSV. (¢) Faithful SRS (FSRS,
our method) based on FGSV. Blue bars: valuation under Scenario 1 (single group per brand); orange
bars: valuation under Scenario 2 (Google/Sprite data each split into size-20/10 subgroups, colored in
dark and light orange).
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Results. Figure [3]illustrates the impact of the shell company attack on copyright attribution under
SRS and FSRS. Each subplot corresponds to a brand-specific prompt and shows the royalty shares
assigned to each brand. Conceptually, the brand corresponding to the prompt should receive the
highest royalty share. Panel (b) shows that applying a shell company attack that favors the Google
and Sprite groups indeed inflates their total SRS shares substantially, while reducing others’, despite
the contents contributed by each group remain unchanged. This produces misleading results—for
example, Google and Sprite receive higher overall SRS than Vodafone under the “A logo by
Vodafone” prompt. In contrast, Panel (c) shows that FSRS yields consistent and stable valuations
under the shell company attack. This demonstrates that FSRS mitigates the effects of strategic data
partitioning and provides a more faithful reflection of group contribution for copyright attribution.

4.3 Application to faithful explainable AI

Group data valuation is also a crucial tool in explainable Al, providing interpretable summaries of
data contributions at the group level— particularly in contexts where groups correspond to socially or
scientifically significant categories. For example, [[7]] used GSV to quantify the contributions of data
from different demographic groups to patient readmission prediction accuracy [31]]. However, GSV’s
sensitivity to the choice of grouping can cause group values to fluctuate dramatically under different
data partitions, leading to inconsistent interpretations. To address this problem, we recommend
practitioners to use FGSV and empirically demonstrate that it produces more consistent and reliable
interpretations across a variety of grouping configurations.

Experimental setup. We conduct our experiment on the Diabetes dataset [S]], which contains 442
individuals, each described by 10 demographic and health-related features (e.g., sex, age, and BMI).
The task is to predict the progression of diabetes one year after baseline. We construct 7 grouping
schemes, partitioned by all non-empty subsets of the variables sex, age, and BMI, excluding the trivial
no-partition case. For the continuous variables age and BMI, we discretize each into three quantile-
based categories. Overall, we will have between 2 to 18 total groups. For each grouping scheme, we
compute GSV exactly and estimate FGSV via 30 Monte Carlo replications. Our predictive model is
ridge regression, and we measure utility as the negative mean squared error on a held-out test set, with
the null utility set to the variance of the test responses. Thus, higher group valuations indicate greater
contributions to the model’s predictive accuracy. To compare category-level contributions across
different grouping schemes, we aggregate group values as follows: for a given variable (e.g., sex), we
sum the (F)GSVs of all groups that include that category. This allows for consistent cross-scheme
comparisons, where one would expect a category to receive stable valuations after aggregation across
different grouping strategies if the valuation method is robust.

Results. Figure [ visualizes the aggregated category-level values from GSV (top row) and FGSV
(bottom row) across various grouping schemes. FGSV produces significantly more stable and
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Figure 4: Comparison of GSV (top row) and FGSV (bottom row) in a regression task for explainable
Al Each column aggregates category-level values for a specific variable: sex (left), age (middle), and
BMI (right). Shaded areas represent +1 standard deviation across 30 replications.

consistent group rankings compared to GSV. For instance, in the age-wise plots (second column),
GSV gives inconsistent rankings: each of the three age groups—*“Young,” “Middle,” and “Old”—
appears as the top-ranked group under at least one grouping scheme. This instability undermines
the reliability of the interpretation. In contrast, FGSV consistently assigns the highest value to the
“Young” group across all grouping schemes, demonstrating its robustness. Overall, FGSV provides
more reliable explanations that are less sensitive to arbitrary grouping schemes.

5 Conclusion and discussion

In this paper, we proposed FGSV for faithful group data valuation. We showed that FGSV is the
unique group valuation method that satisfies a desirable set of principles, including faithfulness,
which ensures that group value remains unchanged to arbitrary re-grouping among other players,
thereby defending against the shell company attack. Our algorithm also achieves lower sample
complexity over SOTA methods that sum up individual Shapley value estimates, as demonstrated
through both theoretical analysis and numerical experiments. We further illustrated the robustness
of FGSV in applications to copyright attribution and explainable Al, where it faithfully reflects and
fairly rewards individual contributions from group members.

Beyond the shell company attack, there exists another unfair competition strategy, namely, the copier
attack, in which a group may steal valuation from other groups by duplicating their high-value
data points. An ad-hoc remedy is to pre-process the dataset to detect and remove such duplicated
entries before applying our FGSV method. In existing literature, [6] suggests designing the utility
function using Pearl’s “do operation”. This defense can be incorporated into our framework, letting
our method also defend against the copier attack; but such do-utility function is not always available.
[1O] shows that with a submodular utility function, Banzhaf [33]] and leave-one-out can successfully
discourage a genuine contributor from duplicating itself to gain higher total valuation; however, their
method is prone to “pure infringers” who only copy from valuable data points without contributing
original contents. Overall, it remains an open challenge to defend against the copier attack for general
utility functions, while maintaining the defense against the shell company attack to ensure a safe
group data valuation.

Code

The code and instructions to reproduce the experiments are provided in the supplementary material
and available at https://github.com/KiljaeL/Faithful_GSV.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately reflected the contents of the paper, and the
conclusions are supported by theory and numerical experiments.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made in
the paper.

 The abstract and/or introduction should clearly state the claims made, including the contribu-
tions made in the paper and important assumptions and limitations. A No or NA answer to
this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

e It is fine to include aspirational goals as motivation as long as it is clear that these goals are
not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: While our method effectively defends against the shell company attack, there exists
a different type of attack, called the copier attack. This attack can be addressed by adding a data
pre-processing step before feeding data to our method. See Section [5|for details.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to vi-
olations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

» While the authors might fear that complete honesty about limitations might be used by review-
ers as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms
that preserve the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [Yes]
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Justification: We presented all the main theoretical results and the assumptions they depend on in
the paper. All proofs, along with auxiliary lemmas, are in the appendix.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.

» All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if they
appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides sufficient details in both the main text and Appendix to reproduce
the key experiments. For each setting, we provide the details, such as how the utility function is
constructed, how data are grouped, and how the estimation method is implemented.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived well by
the reviewers: Making the paper reproducible is important, regardless of whether the code
and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of
the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the case
of closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]
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Justification: All datasets used in the experiments are publicly available. The code will be
included as part of supplemental materials and later released as a GitHub repository, along with
detailed instructions for reproducing the main results. The synthetic data used in the paper is
fully documented by the main paper and supplemental materials, as well as reproducible by our
submitted code.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https://
nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state
which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).

 Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]

Justification: The paper specifies all essential training and test settings needed to understand and
replicate the experiments. This includes the choices of machine learning models, the values of
hyper/tuning parameters, and additional implementation details.

Guidelines:

* The answer NA means that the paper does not include experiments.
» The experimental setting should be presented in the core of the paper to a level of detail that
is necessary to appreciate the results and make sense of them.
* The full details can be provided either with the code, in appendix, or as supplemental material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes] (Whenever applicable)
Justification: In Sections {f.T] and [4.3] we reported numerical results with error bars. For the
motivation example in Section[I} we did not report error bars because it is a qualitative illustration.
In the generative Al application in Section[4.2] reporting standard errors would require retraining
Stable Diffusion models many times, which exceeds the hardware resources available to us. That
being said, we did repeat both experiments (in Section[I]and Section @.2)) multiple times, even
though not enough to formally produce error bars, and found the outcomes sufficiently stable to
support our interpretations.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).
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8.

10.

The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?

Answer: [Yes]

Justification: The paper provides detailed information about the compute environment for each
experiment, including CPU/GPU specifications. Resource-demanding experiments, such as
those involving generative Al models, include descriptions of GPU hardware and fine-tuning
time. For all other experiments, computational details are specified to ensure reproducibility and
transparency.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or
cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experi-
mental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We are carefully complying with all requirements in NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

e If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration
due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [Yes]

Justification: We propose Faithful GSV (FGSV), which addressed the loophole in the existing
method called GSV, which can be exploited by “shell company attack” lead to negative societal
impact. In this regard, our paper’s main contribution is to uphold fair competition in data valuation.
On the other hand, a data pre-processing step needs to be added to our method to defend against a
different type of attack.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal impact
or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point out
that an improvement in the quality of generative models could be used to generate deepfakes
for disinformation. On the other hand, it is not needed to point out that a generic algorithm
for optimizing neural networks could enable people to train models that generate Deepfakes
faster.

* The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms
for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?

Answer: [NA|

Justification: We use open/public data sets that anyone can access. Our work does not generate
machine learning models, either. We do not believe this aspect is relevant to this paper.

Guidelines:

* The answer NA means that the paper poses no such risks.

» Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users
adhere to usage guidelines or restrictions to access the model or implementing safety filters.

» Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]

Justification: We only use open/public data sets and have properly acknowledged their sources by
including the corresponding citations.

Guidelines:

* The answer NA means that the paper does not use existing assets.

» The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.
* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of service
of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA|
Justification: This paper does not release any new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

* At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?

Answer: [NA]
Justification: This aspect is not relevant or applicable to this paper.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

¢ Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included in
the main paper.

¢ According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.
Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?

Answer: [NA]
Justification: This aspect is not relevant or applicable to this paper.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should
clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: After carefully reading the LLM policy of NeurIPS 2025, we believe no LLM-related
declaration is needed for this paper.
Guidelines:
* The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.
¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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