A Compressive-Expressive Communication
Framework for Compositional Representations

Rafael Elberg * Felipe del Rio

Pontificia Universidad Catélica, CENIA, i-Health Pontificia Universidad Catdlica, CENIA
Chile Chile
rafael.elberg@uc.cl fidelrio@uc.cl
Mircea Petrache Denis Parra

Pontificia Universidad Catdlica, CENIA Pontificia Universidad Catdlica, CENIA, i-Health

Chile Chile

mpetrache@uc.cl dparras@uc.cl
Abstract

Compositionality in knowledge and language—the ability to represent complex
concepts as a combination of simpler ones—is a hallmark of human cognition and
communication. Despite recent advances, deep neural networks still struggle to
acquire this property reliably. Neural models for emergent communication look to
endow artificial agents with compositional language by simulating the pressures
that form human language. In this work, we introduce CELEBI"| (Compressive-
Expressive Language Emergence through a discrete Bottleneck and Iterated learn-
ing), a novel self-supervised framework for inducing compositional representations
through a reconstruction-based communication game between a sender and a
receiver. Building on theories of language emergence and the iterated learning
framework, we integrate three mechanisms that jointly promote compressibility,
expressivity, and efficiency in the emergent language. First, Progressive Decoding
incentivizes intermediate reasoning by requiring the receiver to produce partial
reconstructions after each symbol. Second, Final-State Imitation trains successive
generations of agents to imitate reconstructions rather than messages, enforcing a
tighter communication bottleneck. Third, Pairwise Distance Maximization regu-
larizes message diversity by encouraging high distances between messages, with
formal links to entropy maximization. Our method significantly improves both
the efficiency and compositionality of the learned messages on the Shapes3D and
MPI3D datasets, surpassing prior discrete communication frameworks in both
reconstruction accuracy and topographic similarity. This work provides new the-
oretical and empirical evidence for the emergence of structured, generalizable
communication protocols from simplicity-based inductive biases.

1 Introduction

In natural languages, compositionality enables humans to communicate an infinite number of ideas
using a finite set of elements [12]. This principle enables speakers to flexibly combine known words
and structures to convey novel meanings, supporting flexible and generalizable communication across
diverse and previously unseen contexts.
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Works on the emergence of compositionality in language [34, 35, [37]] have argued that opposing
pressures are necessary for the natural selection of compositional languages between generations of
speakers [20} 3]. On the one hand, successful communication requires high expressivity in order
to usefully describe the world, allowing speakers to produce distinct messages for a wide range
of meanings. On the other hand, models of emergent communication such as the iterated learning
framework [34] state that natural speakers tend to minimize the complexity of languages through
cultural transmission, implying that simpler and more compressive languages are more easily
passed on to new speakers.

These opposite pressures of expressivity and compressibility thus generate a trade-off, highlighted
in several works [35} 120, [3]] which is argued to be optimized by compositional languages, whereby
languages evolve to maximize communicative efficiency — remaining expressive enough to convey
diverse meanings while being simple and structured enough to be easily learned and transmitted
by successive generations of speakers. When either pressure is dominant, undesirable languages
tend to emerge: (a) excessive language compression leads to degenerate languages where multiple
meanings are mapped to the same messages making them ambiguous and thus hard to use, and
(b) prioritizing expressivity alone produces in holistic languages i.e. languages where messages
are mapped arbitrarily to meanings without respecting their structures, hindering their transmission
across generations [S5]].

Enabling machines to generalize compositionally is thought to be crucial for them to quickly adapt to
novel situations beyond their training experience [42]. Inducing compositional behavior in neural
networks remains a major challenge [39,130L159} 33]]. A growing body of work suggests that a model’s
ability to generalize compositionally is highly sensitive to its training conditions [40, [14, 160l 141} [15],
including factors such as data distribution, learning objectives, and task design. One promising
direction is the study of emergent communication, where discrete languages evolve for coordination
between independent neural agents.

In this work, we build on the Lewis reconstruction game framework [58]] to study emergent commu-
nication in a reconstruction task. A sender encodes an image into a discrete message and a receiver
reconstructs the original. Drawing on theories of language evolution [34} 35]], we develop a novel
framework for inducing compositional communication grounded in simplicity bias.

We introduce CELEBI (Compressive-Expressive Language Emergence through a discrete Bottleneck
and Iterated learning). Within this framework, we introduce three mechanisms in the learned
communication protocol:

Progressive Decoding, in which the receiver makes reconstruction predictions after each incoming
symbol, rather than waiting until the full message is received. This biases the system towards using
intermediate reasoning steps, thereby imposing a pressure towards lower-complexity and less holistic
encodings. While this mechanism does not directly improve reconstruction accuracy, it yields more
efficient and structured communication.

Final-State Imitation modifies the standard imitation phase in the iterated learning (IL) framework
of cultural evolution [35H37]. Instead of imitating the entire message, the student is trained to
reproduce only the final output of the receiver, effectively reducing the information transmitted
across generations. This tighter generational bottleneck increases pressure for compressibility in
the emergent communication protocol [64], thereby promoting the emergence of compositional
structure as a necessary condition for successful transmission. Empirically, this leads to increased
compositionality with minimal degradation in reconstruction accuracy.

Pairwise Distance Maximization as a regularization term, i.e., as a further pressure towards increased
diversity in the emergent language, that encourages exploration during the imitation phase. This
term pushes the student sender to maximize an approximate Hamming distance between messages in
a given batch, finding the most "diverse" protocol. We prove that this regularization gives a lower
bound for entropy maximization [69]], and an upper bound on the contrastive learning loss NT-Xtent
(1]

The opposing pressures induced by these three mechanisms impose a tight regularization on the
complexity of the emergent language. These ingredients make explicit the pressures proposed in
the cognitive science and linguistic literature to shape language evolution, thus aligning with the IL
paradigm and leading to measurably higher compositionality.



2 Background

2.1 Problem setup: recovering compositional representations

In a formalism similar to [56], we model a dataset D = {x = GenX(G) : G € G}, i.e. data
x are created via a deterministic function GenX from a set G of generating factors G. We have
access to samples from D but not to GenX or to the structure of (, and the goal is to reproduce the
set of z, i.e., generate images 7 that approximate the distribution of z in a natural metric such as
E.ep[MSE(z, T)], where MSE is the mean squared error on pixels.

The factors G are assumed to have compositional structure of the form G = [G1, ..., G}], in which
G represent independent characteristics having finitely many possible values (as in the dataset of
Sec. [4.1]for example). In this case, an efficient way to reproduce elements of D is to impose that Z is
similarly generated as T = GenX’(G'), with generating factors G’ giving a learned encoding of G.

As G has a large number of classes (one per combination of factor values) and we have a single
example per class, successful reconstruction relies on the compositional structure of G. Thus the goal
is to build a framework for finding the optimized compositional encoding G’ from observation
of a small training set D;,..;, C D. The compositional nature of G is what makes reconstruction
possible from a small random D4, i.e. from data corresponding to a small subset of classes. This
would be of course impossible for non-compositional data (see §D]for a formal treatment).

2.2 Approach: Lewis reconstruction game

We frame the above reconstruction problem in the form of a cooperative game between two agents: a
sender S and a receiver R. The goal of S will be to build the reconstruction factors G’ and the receiver
R will map the factors to an image =. The two agents aim to create a protocol that reconstructs x to
good accuracy. This setup fits in the general class of Lewis Reconstruction Games (LRG) [58]], a
subclass of so-called Lewis Signaling Games (LSGs) [43].

Within the framework of signaling games, the factors G’ are interpreted as a language which S
uses to communicate x to R as accurately as possible. The allowed message space is finite, i.e.
G’ € M := VY, and we take C fixed and large enough that |V|© > |G|, so that the size of the
message space is not a limiting factor on the emergent communication. The following diagram
summarizes our notations:

G pcx Hm=veLx
Our main focus is on defining a IL process which favors the emergence of a compositional language
between .S and R that accurately recovers x € D.

2.3 Base model architecture

We adopt a standard emergent communication setup as described by Xu et al. [71], see implementation
details in §[B.T] Sender and Receiver are implemented using the EGG framework [32]]. Input images
are encoded into latent representations using a pretrained VAE visual backbone. The sender encodes
this latent input into a discrete message using an LSTM and then transmits it through a fixed-length
communication channel. Message generation is made differentiable via a Gumbel-Softmax bottleneck
[26]. The receiver takes the full message as inputs in an LSTM, and produces a latent vector, which
is subsequently decoded into a reconstructed image by the VAE decoder. Reconstruction loss is
computed between the original and generated images using Mean Squared Error (MSE). Both VAE
encoder and decoder remain frozen during training.

3 Methods

This section describes our proposed improvements to the EL framework [71] (cf. Figure [Ia).
Intuitively, our additions attempt to increase the language drift between iterations of speakers, in
order to thoroughly explore the landscape of possible languages, while maintaining efficient and
useful communication. For the latter, we introduce Progressive Decoding (PD), to serve as an anchor
for the emergent language during interaction, and for the former we introduce Final-State Imitation
(FiSI) and Parwise Distance Maximization (PDM), which aim to incentivize exploration during the



imitation phase. We expect the combination of these factors to show the strongest impact towards
compositionality in the learned language, more so than the factors taken separately.

3.1 Progressive Decoding (PD)

Our first proposed enhancement to the baseline communication protocol aims to improve the efficiency
of the emergent language determined by the Sender and Receiver, by condensing information in
fewer message tokens. This type of efficiency has been argued to be necessary for the emergence of
natural language properties [29, 49].

Standard reconstruction games typically optimize a reconstruction loss computed only at the end
of the communication phase, after the receiver has observed the full message [58]], and as shown
by Rita et al. [S7]], without an incentive to efficiently use the information received in the message,
the receiver only updates its internal state after the full message has been received. To improve
communication efficiency, we propose the following Progressive Decoding (PD) objective: the
receiver generates a prediction after each received symbol, and our interaction phase loss explicitly
weights the reconstruction error of each sub-message, as follows.

C
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where Sy (x); is the prefix of length i of the sender’s message, and A > 1 is an expressivity
hyperparameter that increases the weight of later reconstructions. This loss has the following effects:

Efficiency pressure: Loss (I)) rewards accurate reconstructions made as early as possible, favoring
messages with shorter useful length.

Interpretable sub-messages: The model is encouraged to structure messages such that an interpreta-
tion by R,, is available for sub-messages, making each symbol accountable for partial reconstruction.
This echoes findings in prior theoretical and empirical work on chain-of-thought and compositionality
[66] 28, (10} 152, 168}, 154]], which show that forcing intermediate semantic consistency or intermediate
reasoning steps encourages models to show increased compositional behavior.

Tuning the efficiency pressure: Small ) yields fast but potentially coarse reconstructions, while
larger values favor detailed outputs at the cost of longer, possibly redundant messages, and in the limit
A — oo (1)) becomes equivalent to using just the last term in brackets, i.e., the full-length message
reconstruction. In our experiments (see Section[5.2), we explore this trade-off empirically and show
that A = 1.5 achieves the best performance across generalization, communication efficiency metrics,
and compositionality.

3.2 Imitation Phase

Iterated learning is known to add compressibility pressure to emergent communication schemes [34],
resulting in languages that are "easy to learn", thus favoring simple communication schemes that can
be compressed: this is known as a communication (or generational) bottleneck. 1t is argued [34]
that languages that remain relatively stable even when a learner only observes a small subset of the
language of the previous generation need to be compositional.

Our case (and in fact, most deep learning applications of IL) differ from the original IL formulation
[34], in that the transmission bottleneck does not constrict the amount of examples presented to the
student, but rather constricts the information obtainable from these examples in order to perfectly
reconstruct the language. This paradigm shift for transmission bottlenecks is at the heart of discrete
bottlenecks [1535} 158,157 and noisy bottlenecks [56].

We next pass to describe our proposed imitation scheme and its motivations compared to previous
methods.

3.2.1 Final-State Imitation (FiSI)

As usual in IL, we apply a teacher-student regime to initialize the next iteration sender St+1.



Our main proposed novelties for the imitation phase are as follows.

State space imitation: As opposed to other IL implementations [55} 155 44], our models are not
directed to match the student protocols from different iterations in the message space, but rather in
the state space, using the frozen receiver network from the interaction phase. This change allows a
wider range of sender strategies, as the new loss is more permissive.

Final state reconstruction: During imitation phase we use the following reconstruction loss, where
7 = R+, Sf = Sy are frozen receiver and sender from the previous iteration and S; 1 = Sye+1 is
the newly trained sender:

rec
pt+1

= E, [da (R (S5(2)), R Sy (2)))] @)
Our loss E;ﬁil only depends on the state associated to the full message, without testing reconstruc-
tion on sub-messages. This change allows the intermediate message tokens of the student sender

Sgt+1(x)4,1 < C to drift further away from the ones of the teacher mapping S; (x); and thus more
easily find different strategies with the same end result.

State space imitation is justified as follows. Note that as message space is discrete, there exists a value
dp such that any two messages at distance < Jy in fact coincide. Then d (S5 (), St+1(2)) < o
always implies dx (R} (S} (2)), R} (St+1(x))) = 0, while the vice-versa is not always true: if R} is
not injective, any S;11(z) € (R})~(S;(x)) will preserve zero distance of R}-images. If R} has
mild Lipschitz regularity assumption, this principle extends to the regime of small loss, showing that
our new loss is less restrictive on the choices of S;; than the traditional message space loss. Thus,
state space imitation enables wider sender strategy exploration without penalization losses.
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Figure 1: (a) Overview of our proposed architecture. Interaction Phase: The sender Sy and
receiver R+ are jointly trained to minimize the reconstruction error between the input state = and the
predicted states {z'}, by encoding x into a message m’ . Imitation Phase: A new sender Spt+1 is
trained to imitate the final predicted output of R, (m’ ), while also maximizing pairwise message
diversity to encourage exploration. (b) Qualitative example of image decoding: the receiver
reconstructs the input image from the sender’s message for each sub-message, giving a series of
reconstructions. The useful length of a message corresponds to the first reconstruction that has error
below a threshold € > 0: in this example the last two message tokens are not useful in that they do
not add to the reconstruction accuracy.

The choice of using just final states is justified because final state reconstruction allows greater
freedom during imitation for the student sender. By only constraining the reconstruction of the full
message, we allow much more freedom for the encoding strategy of S(x) at earlier sub-messages at
each iteration (see Proposition [E-T|for a formal statement and proof).

3.2.2 Pairwise Distance Maximization (PDM)

To further improve protocol diversity and promote exploration of the language space during the
imitation phase, we introduce a regularization objective that promotes dissimilarity between messages
within each batch. In addition to enabling a larger search space for optimal student strategies.
Enhancing the diversity of student strategies also fits the general IL argument according to which
compositional languages are the most resistant to noisy language transmission [34}37,136].



Specifically, we approximate the Hamming distance by computing the position-wise cosine dissim-
ilarity between the probability distributions over symbols in each messageE] This encourages the
sender to generate messages that are maximally distinct while remaining semantically aligned with
the teacher protocol. The strength of this regularization is controlled by a hyperparameter 5.

The resulting imitation loss is defined as:

rec 1
Lot = L35 + B > d(Syr (i), Sgre (25)), 3)
batch i.j
where d(-, -) is the mean cosine similarity between corresponding symbol distributions.

In § [F4] we show that this regularization term provides a lower bound on entropy maximization
objectives [69], and serves as an upper bound for contrastive losses such as NT-Xent [[11], thus
connecting our formulation to well-established principles in representation learning.

4 Experimental setup

4.1 Datasets

Shapes3D We tested our framework using the Shapes3D [50] dataset, which consists of colored
images of 3D geometric shapes, with 6 underlying generating factors G: floor hue, wall hue, object
hue, shape, scale, and orientation. The total amount of attribute-value combinations is 480, 000.

MPI3D We also evaluated using the compositional split of the MPI3D dataset [23]]. This dataset
consists of colored images of a robot arm interacting with objects, rendered in controlled 3D
scenes with 7 underlying generative factors G: object color, object shape, object size, camera
height, background color, horizontal arm position, and vertical arm position. The dataset comprises
1,036, 800 unique combinations of these factor values.

For both datasets we use the compositional split from Schott et al. [62]], which ensures all attribute
values appear in training, yet some combinations are reserved for the testing set (See §D|for a proof
that this situation would anyways hold for random train/test splittings with high probability).

4.2 Evaluation Metrics

Following Chaabouni et al. [9], we assess compositionality using Topographic Similarity (TopSim) [3]],
a widely used proxy for compositionality. TopSim measures the correlation between pairwise
Hamming distances in message space and the generating factor space, capturing the extent to which
semantically similar inputs yield similar messages under a structured encoding.

To evaluate communication efficiency, we define the useful length ll (x) , which estimates the minimal
prefix of a message necessary to achieve near-maximal reconstruction quality. Formally:

le(x) := min {ie{l,...,C} : MSE (2, Ru(Sy(x)p;))) <€},
where C' is the maximum message length and ¢.(x) = C if the threshold is unmet.

We choose € by viewing the loss distributions on both tested datasets and estimating a common
plateau point for each. The full position-wise loss values can be found in the supplementary material.

Finally, to approximate the expressivity of the communication protocol, we evaluate reconstruction
quality using the MSE between the generated image and the original input.

We discuss the use of additional language metrics in §I|

5 Results

For all experiments, we report the mean and standard error of 10 random seeds. To assess the
robustness of our findings, we also perform permutation tests to evaluate the statistical significance of

3For one-hot encoded messages, this formulation is equivalent to maximizing the Hamming distance.



Table 1: Performance comparison across all experiments on the SHAPES3D and MPI3D datasets.
We report Topographic Similarity (TopSim 1), Useful Length (0, 1), and Last Symbol MSE () for
each ablation. The results are grouped by the components of our proposed framework: Interaction,
Imitation, and Regularization. The synergetic mixture of our proposed methods (PD+FiSI+PDM)
consistently improves compositionality and message efficiency over the baseline and prior variants.

TopSim 1 foy10-1 L Last symbol MSE |
Interaction Full message reconstruction, no IL (Baseline)  0.244 4 0.002 10.0 £ 0.0 0.212 4+ 0.003
Progressive Decoding(PD, ours) 0.270 £ 0.001 7.5+£0.215  0.238+£0.007
Message imitation (baseline) 0.257 £ 0.005 9.9£0.3 0.200 £ 0.007
Imitation Full state imitation 0.256 £ 0.003 9.9+0.3 0.179 £ 0.003
Final-State Imitation (FiSI, ours) 0.283 £ 0.003 10.0 £ 0.0 0.176 £+ 0.002
Regularization PD+FiSI+KoLeo A = 1.5 0.256 £0.002  8.555+£0.167 0.179 £0.003
g PD+FiSI+PDM (ours) A = 1.5 0.292+0.002 7.0+0.155 0.194 £ 0.005
(a) Shapes3D
TopSim 1 ZAL%X 10-2 4  Last symbol MSE |
Interaction Full message reconstruction, no IL (Baseline)  0.133 & 0.001 9.3 +0.002 0.015+0.0
Progressive Decoding(PD, ours) 0.137 £ 0.001 6.6+0.341 0.015+0.0
Message imitation (baseline) 0.135+£0.001  9.733+£0.029 0.016+0.0
Imitation Full state imitation 0.137£0.001  9.923+£0.020 0.018 £0.0
Final-State Imitation (FiSI, ours) 0.156 £0.001 9.7+0.046 0.02+0.0
Regularization PD+FiSI+KoLeo A = 1.5 0.147 £ 0.002 8.9+0.221  0.02+0.0
g PD+FiSI+PDM (ours) A = 1.5 0.153 £ 0.001 9.0+0.167  0.024+0.0

(b) MPI3D

the observed differences (see §J.1). Additionally, we include qualitative reconstruction experiments
in §H] where we visually compare the outputs of all evaluated methods across progressive decoding
steps. Further implementation details are provided in

5.1 Progressive Decoding reduces the message’s useful length

We begin by evaluating the effect of incorporating PD during the interactive phase of training.
As shown in the first two rows of Table [T} this modification leads to a 25-29% reduction in the
useful message length, indicating more efficient communication. These gains are achieved without
compromising expressivity on MPI3D and with only a slight compromise on Shapes3D, as indicated
by stable reconstruction quality in the former and a minor degradation in the latter.

To further promote efficient and structured communication, we introduce a geometric penalty term A
that penalizes reconstruction error more heavily when longer messages are used. As shown in Figure[2}
increasing A up to values near 1.5 consistently improves reconstruction quality and useful length,
indicating higher expressivity and efficiency. However, when A becomes too large, the reconstruction
error incurred at the end of the message dominates the loss function, effectively nullifying PD. We
found that setting A = 1.5 yields favorable results in efficiency and expressivity, while maintaining
high compressibility.

5.2 Final State Imitation increases TopSim

Second, we investigate the impact of final state imitation on the structure of the emergent language.

In these experiments, we compare our approach to a baseline model without imitation and to a
standard IL variant that imitates the teacher’s message directly—a strategy commonly adopted in
prior work for optimizing this phase [55} 156} 44].

As shown in the imitation section in Table in the MPI3D dataset, we find that our final state imitation
method consistently enhances the compositionality of the emergent messages. It outperforms the
non-IL baseline and surpasses message-level imitation significantly (§[J.T).
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Figure 2: Effect of geometric penalty A on emergent communication. We introduce a geometric
weighting term A that penalizes reconstruction error more strongly for longer messages. Increasing
A initially improves useful length (a). However, once a certain threshold is met, useful length and
reconstruction error (b) increase. Values close to 1.5 of \ strike a favorable balance—achieving
efficient and expressive communication.

More broadly, our results support prior findings that IL promotes greater structure in emergent
communication protocols [44] 55]]. They also underscore the value of shifting the learning objective
from message imitation to image reconstruction, which enforces a tighter generational bottleneck by
requiring the student to recover the intended output without access to the original message.

Moreover, this setup increases flexibility in protocol exploration by constraining the student only to
the reconstruction target, not the exact message form. Permitting generational variation in message
structure while preserving semantic fidelity, promoting diversity without sacrificing expressivity.

Together, these factors exert pressure toward discovering more systematic and compositional proto-
cols—structures that are inherently more transmissible and robust across generations.

5.3 Pairwise Distance Maximization increases compositionality and efficiency

We evaluate a model that combines all previously identified best-performing compo-
nents—specifically, A = 1.5, final-state imitation, PD and further introduce an entropy-based
regularization term using PDM. We compare this with the KoLeo entropy estimator proposed by
Sablayrolles et al. [61].

When examining the effect of incorporating PDM, Table[I|shows that PDM outperforms both FiSi
and PD in fostering structure in the message. On the Shapes3D dataset, PDM leads to a marked
improvement in TopSim and a lower useful message length, indicating more efficient and structured
communication, albeit with a slight increase in reconstruction error. For MPI3D, this configuration
doesn’t achieve the highest TopSim, albeit close to the best, and it increases useful length and leads
to a marginally higher reconstruction loss compared to using only PD. This highlights a trade-off
between expressivity and compressibility, in line with prior theoretical accounts on communication
efficiency and compositionality [53} 134} 49].

When comparing PDM to the KoLeo estimator, Regularization section in Table[I] we find that on
Shapes3D, PDM achieves superior TopSim and shorter useful length, with slight reconstruction gains.
On MPI3D, KoLeo leads to a lower useful length but exhibits reduced compositionality, with both
regularizers showing similar reconstruction performance.

5.4 Comparison to disentangled representation learning

Following the comparison made by Xu et al. [[71]], we test our generated messages against standard
self-supervised disentangled representation learning frameworks, namely 5-VAE and 5-TCVAE, as
well as the baseline VAE+EL [71]]. For the continuous models, we extract the first half of the latent
vector (corresponding to the predicted means p:) and evaluate it using the DCI disentanglement score
[18]. In addition, we train a two-layer MLP to predict ground-truth generative factors, reporting
RMSE for continuous factors and classification accuracy for categorical ones.

For the discrete models, we use the predicted messages for each image. We calculate the DCI
disentanglement as-is, and use an embedding matrix to transform the discrete messages into the same
dimension as the continuous vectors for the MLP. Training is conducted on three subsets of size 1000



Table 2: Disentanglement metrics for the Shapes3D and MPI3D datasets. We report the DCI score to
evaluate disentanglement quality, and the RMSE and classification accuracy of a linear probe trained
on the latent representations (both message and vector embeddings) to assess their suitability for
downstream tasks.

Dataset Model Disentanglement 1 RMSE | Acc T
B-VAE 0.045 + 0.004 2.460 £ 0.144 0.702 £ 0.025
Shanes3D B-TCVAE 0.043 £ 0.005 2.378 £0.123 0.721 £0.028
p VAE + EL 0.108 = 0.000 3.168 £+ 0.027 0.343 £ 0.019
VAE + CELEBI  0.112 + 0.001 2.932 £ 0.045 0.453 £ 0.024
B-VAE 0.031 £ 0.001 21.8194+0.111  0.581 %+ 0.006
MPI3D B-TCVAE 0.031 £ 0.001 21.854 +£0.188 0.582 4+ 0.005
VAE + EL 0.114 £ 0.002 15.971+0.301  0.529 £ 0.006

VAE + CELEBI 0.137 +0.002 14.82 £0.012 0.542 £+ 0.002

of the training set and averaged. Evaluations are conducted on the test sets of the compositional splits
for the Shapes3D and MPI3D datasets.

Across both datasets, our method (VAE+CELEBI) demonstrates consistent improvements in disen-
tanglement over baseline methods. On Shapes3D, we observe a substantial increase in DCI scores
compared to continuous models and the discrete baseline (see statistical significance tests in §[J.2)).
However, both discrete models fall behind the continuous baselines in downstream accuracy and
RMSE, suggesting a trade-off between representation interpretability and usefulness in downstream
tasks, which is consistent with previous work indicating that discrete representations may be less
accessible to simple classifiers (as shown in [[72]), and that inductive biases for compositionality do
not imply disentanglement [S1].

On MPI3D, our method slightly under-performs when compared to the continuous baselines in
categorical accuracy, however greatly outperforming all baselines in continuous regression. We
speculate that this discrepancy arises from the lower correlation between pixel-level input statistics and
continuous generative factors in MPI3D as opposed to Shapes3D, which may favor communication-
based models over purely reconstructive.

6 Related Work

The use of language reference games (LRGs) in conjunction with iterated learning for the purpose of
learning self-supervised representations remains underexplored. Xu et al. [71] compare an emergent
language autoencoder—comprising a visual backbone and an LSTM-based sender and receiver—with
disentanglement frameworks such as the 5-VAE and S-TCVAE. They find that the representations
induced by the emergent language model generalize better in downstream tasks, highlighting the
potential of symbolic communication as a compositional bottleneck.

Many previous works have explored using emergent language to induce compositional behavior
[31L 117, 20 [16L [8]]. Several works utilize a referential LSG in conjunction with IL, using predicted
messages as a generational bottleneck [55) 44]. Alternative bottlenecks for emergent language have
been proposed, including simplicial embeddings [56,[19]], code-books [74] and noisy channels [65].
Our message tokens can also be considered as roughly comparable to the slots in slot-attention
architectures such as [22} 24} 46l 27, 45, 211 148} |4} [1]], however note that among other differences,
the slot-attention typically additive decoding layer [7, 38]] does not compare directly to our proposed
Progressive Decoding.

To replicate the Zipfian distributions observed in natural languages [76} [29], Rita et al. [S7] propose
the Lazlmpa framework. The Lazlmpa Impatient listener loss is similar to our proposed Progressive
Decoding, in that they both aim to induce incremental informativeness and efficiency by reconstructing
the input at every timestep. However Lazlmpa is optimized for a referential game task (and not
a reconstruction task as ours) and uses a linear length penalization in conjunction with a cross-
entropy loss. Our proposal instead uses the actual reconstruction loss and the length penalization is
exponential and based on a tunable parameter .



7 Limitations and Future Work

Our experiments are conducted exclusively on the synthetic datasets Shapes3D and MPI3D [6} 23],
which feature clean, disentangled generative factors and lack observational noise. In future work, we
plan to extend our the same principle of making explicit pressures towards complexity reduction of
underlying representations to natural image datasets where factor supervision may be unavailable or
weakly defined. Furthermore, we aim to formalize the notion of language compression defined in
IL in terms of Kolmogorov complexity, for representing datasets with more complex compositional
structures.

Moreover, it is debatable whether MSE is the most appropriate choice for the self-supervised loss
function, especially in the context of natural image data. While MSE is a simple choice, future work
may explore reconstruction losses that better align with human visual perception, such as perceptual
similarity metrics based on deep feature embeddings (e.g., LPIPS [73]]), or adversarial and contrastive
losses that promote more semantically structured representations.

Additionally, we froze the visual backbone across all EL model variants trained on the same dataset.
While this ensures controlled comparisons within each dataset, it may introduce an initialization bias
when comparing with continuous baselines, where the encoder is jointly optimized. Although our
results remain statistically significant, future work could investigate whether co-training the vision
encoder yields improved alignment between symbolic and perceptual representations, or leads to new
trade-offs in compression and expressivity.

Finally, our experiments were restricted to compositional generalization metrics and reconstruction-
based evaluation. Other facets of emergent communication, such as robustness and interpretability,
are left for future work. We believe our framework offers a strong foundation for such extensions and
a tractable setting to explore the interplay between compression, efficiency, and generalization.

8 Conclusion

We introduce the CELEBI framework with three novel mechanisms for enhancing compositional
learning in IL frameworks, as well as mathematical justification for their design. First, with Progres-
sive Decoding (PD) we reward informative communication at each step of the message, creating
an inductive bias toward efficient and distributed representations. We show that PD promotes both
message compressibility and compositional alignment.

Second, in our Final State Imitation (FiSI) in IL, the student is trained to reproduce the final prediction
of the teacher, rather than the message itself. This shift enables greater exploration of the message
space while preserving semantic consistency. We provided theoretical motivation and empirical
evidence that this approach yields more expressive and compositional protocols, outperforming
traditional message imitation in TopSim and reconstruction metrics.

Third, our regularizer based on Pairwise Distance Maximization (PDM), which provably approximates
entropy maximization over messages, serves as a practical inductive bias for promoting diversity and
structure in emergent languages, particularly during the imitation phase.

Together, these contributions enrich the IL framework, and give new insights into how training
dynamics and inductive pressures shape the emergence of language-like representations. As confirmed
by our empirical findings, the proposed methods lead to more compositional and generalizable
communication schemes.
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" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims and contributions are clearly stated in the abstract and introduction,
and are backed by theoretical and experimental results.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: The paper contains a separate limitations section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All theoretical results are rigorously proven either in the main text or in the
supplementary material, and justifications of the result’s hypotheses are given.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All implementation details, including hyperparameters, used libraries and
experimental details, are included either in the main text or in the supplementary material.
We plan to release the all code upon acceptance.
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Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our full code and details to reproduce our results can be found in the oficial
repository.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We use and disclose publicly available splits of known datasets, and specify all
training hyperparameters either in the main text or the supplementary material.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We disclose the amount of seeds used in each experiments, and show standard
error for the results in all figures and tables.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide details of the computational resources used for this paper in the
Appendix.
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Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have reviewed the code of ethics and have confirmed that our research
complies with every applicable requirement.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We do not foresee any significant societal impact, as the paper explores
principles for compositional learning and not its applications to society.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not involve models with high risk of misuse, as it explores
simplified models for the sake of finding new principles for enhancing compositionality of
representations based on an iterated communication game setup.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All assets are properly credited and used in accordance with their licenses:

Shapes3D and MPI3D are under CC-BY 4.0, and the EGG framework is released under the
MIT license.

Guidelines:

» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.
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14.

15.

16.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not use crowdsourcing experiments or experiments with human
subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The paper’s results were not based on, or aided by, research using LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Background

A.1 TIterated Learning

The IL model of cultural evolution [34] proposes to emulate the emergence of language through the
interactions of adult and new learning agents. In the original formulation, a space of pairs of signal
+ meaning is randomly generated, and in each iteration, a learning agent is partially exposed to the
language learned by the adult agent in the previous iteration. The learning agent becomes the adult
agent for the next iteration, and transmits a subset of its learned "language". By iterating this process,
the initial random language gains structure and observable properties, such as compositionality.

This framework has been widely extended to include an additional task [44, 156l [75], instead of simply
reshaping the language. Under this formulation, the training regime can be separated into two parts:
Interaction (Interaction), where an agent is optimized to solve the additional task, and Imitation
(Imitation), where a newly initialized agent "learns" from the previous agent through a shared learned
language.

A.2 Lewis reconstruction game

The Lewis reconstruction game (LRG) [58]] is a special case of the Lewis Signaling Game (LSG)
[43] framework, in which two agents cooperate to reconstruct an observed object. Specifically,
a sender agent parameterized by ¢ observes an object « from an object space X’ and produces a
message m € M, where M = V™ is the set of all possible strings formed by concatenating symbols
drawn from a finite vocabulary V. A receiver agent parameterized by w observes m and produces a
reconstruction z’. Both models are optimized to minimize a reconstruction loss Lg(z, 2).

Importantly, in the original LSG, the receiver is tasked with predicting « from a finite set of states,
whereas in this formulation, the problem becomes a regression task, and XX’ can be a continuous space.

B Implementation Details & Hyperparameters

B.1 Baseline Model

* Sender and Receiver: Both consist of a single-layer LSTM with an embedding size of
64 and a hidden size of 256. Outputs are passed through a two-layer MLP with ReLU
activations.

* Communication Channel: The vocabulary size is set to |V| = 15 and messages are
composed of C' = 10 discrete symbols. These values are chosen such that the amount of
posible messages (5.76 x 10'2) greatly outnumbers the amount of states. The Gumbel-
Softmax bottleneck is used without straight-through estimation.

* VAE Backbone: The VAE is implemented using the disentanglement_lib [47]] python
library, using the default setting of two convolutional layers of 32 filters, with kernel size 4
and stride 2, two convolutional layers of 64 filters, with kernel size 2 and stride 2, each with
ReLU activation, as well as a linear layer of size 256 and ReLU activation and an output
layer with size 2*128 for concatenated us and logos. The encoder is mirrored replacing
convolutional layers with transposed convolutions, and an input layer of size 128 and ReLU
activations on all layers save the output.

* VAE Training: The VAE is pretrained for 15 epochs using the Adam optimizer with a
learning rate of 1 x 1073,

The interaction-imitation games were run for a maximum of 100 iterations, alternating one full epoch
in each phase per iteration.

We used early stopping based on the validation MSE of the final reconstruction, starting from epoch 5,
with a minimum § of 1 x 10~ and patience of 5. We used the Adam optimizer with default parameters
and learning rates of 1 x 1072 and 1 x 10~* for Shapes3D [6] and MPI3D [23]], respectively, as we
found the training for the latter became unstable at higher learning rates.

We found that Interaction required smaller batch sizes to converge, whereas the Imitation phase
PDM becomes a better entropy approximation at higher batch sizes, however scaling quadratically
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in computation. Therefore, we set the Interaction and Imitation batch sizes to 256 and 512,
respectively.

To implement Imitation we defined a receiver R,, and two senders Sy, and Sy, with their own
optimizers. After participating in an Interaction iteration, ¢' and w are frozen and used to train S,
as described in After Imitation, the weights ¢- are copied to ¢;, and ¢ is reset. Importantly,
the optimizers for ¢; and ¢4 are never reset nor copied between them.

C Compute Resources

All experiments were conducted on our internal laboratory cluster, using NVIDIA A40 GPUs with
48 GB of VRAM. Each job was allocated a single GPU with 8 GB of VRAM usage on average,
alongside access to a CPU with 20 cores, 118 GB of RAM, and local SSD storage for datasets and
model checkpoints.

The experiments reported in this paper comprise 360 training runs, totaling approximately 180 GPU
hours. Individual runs varied in length from 15 to 50 minutes, depending on early stopping criteria.
These runs represent the finalized experiments whose results are presented in the main text.

In total, the research project required 2,310 experimental runs over the course of development,
amounting to approximately 245 GPU days (5,880 GPU hours) of compute time. This includes
preliminary experiments, ablations, and failed runs that were instrumental to model and protocol
design but are not individually reported in the paper.

C.1 Useful length €

To define the useful length € for both datasets, we observed reconstruction loss distribution over all
positions in the message (see[3) for different A values, and estimated an average plateau point. For
MPI3D we used a more conservative and precise threshold, as the reconstruction error varied more
between methods.

Additionally, we analyzed the useful length graph for multiple € values, and discarded those values
where most models converged to either maximum or minimum possible length (see ).

D Recovering compositional structure from partially observed data

For the sake of clarity of treatment, we assume here that G = [G1, . .., G},,] in whichi factor G; has
the same number N of possible values, and as a consequence G = [1 : N|™. Our results will extend
directly to the general G case as shown in Rmk. [D.4]

We work under the simplified deterministic generation hypotheses, in which our dataset is D =
GenX(G) C X in which GenX is a deterministic injective function.

Our main result is the following:

Theorem D.1. Assume that G = [1 : N|" and that GenX : G — X is an injective function, and that
Dirain C D has cardinality |Dirqin| = p|D| for some p € (0, 1) such that pN™ is an integer.

We assume that the compositional structure of G is such that the following holds:

(A) Forsome k < n, if we observe a set of data whose generating factor combinations feature all
possible combinations of generating factor values (G, ..., G;,) for all choices of indices
1 <4y < -+ < < nthen this is sufficient to reconstruct G to good accuracy.

Then as |G| — oo the probability that Dy,.q.y s sufficient to reconstruct G tends to 1.

Here (A) makes rigorous the common assumption that having a training set that features examples for

diverse enough combinations of factors is sufficient for reconstructing all combinatorial generators
G.

Note that in this work we do not discuss

1. what features of the pre-trained encodings G — D and what requirements on the composi-
tional structure of G would allow to actually guarantee this assumption,
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Figure 3: Loss distribution over positions and A values for (a) Shapes3D and (b) MPI3D
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Figure 4: Useful length values for different € and \ values for (a) Shapes3D and (b) MPI3D

2. alternatives for a rigorous definition of what is meant by "to good accuracy" in the statement
of assumption (A).

Once the above points are settled and defined, we can replace (A) by an explicit requirement. Since
however these points seem like an ambitious whole research line and are far beyond the scope of this
work, we leave the definition of "to good accuracy" and the proof of reconstruction to future works.

Thus, introducing (A) allows us to prove fully rigorous statements such as Thm. [D.3} in absence
of a full theory of compositional reconstruction.

Nevertheless, we make the following remarks:
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* There is a natural trade-off between assumptions on how big D,,..;, should be, vs. how
complicated the compositional reconstruction should be allowed to be for reconstruction to
be feasible: the richer set of such combinations we require Dy,.4;,, to contain (thus making
more restrictive assumptions on Dy,.q;y,), the lower is the requirement for our encoding
framework and for the compositional structure for (A) to hold.

* It seems natural to conjecture that if assumption (A) does not hold for large value of k, then
there is no hope for the compositional reconstruction to be achievable. Thus lowering the
requirement on "good enough accuracy" to make (A) hold seems the only avenue of future
research.

Theorem D.T]is a consequence of below Theorem [D.3]that proves that assumption (A) holds with
probability tending to 1 as |G| — oo and |Dirain|/|G| = p is bounded away from zero. What
Theorem[D.3]says is that for large sets of generators, it will become overwhelmingly unlikely that
Dirain does not contain enough data to reconstruct the generators.

D.1 Observing D;,.;, allows to observe finite statistics of the factors with high probability

Our first result for this section is that when Dy, € D is chosen uniformly at random amongst sets
of size p|D|, for |D| = |G| large enough, we find that with overwhelming probability all possible
values of each of the factors G, ..., G, are achieved by some elements of D;,..;,,. We state the
result in Proposition [D.2} whose proof in our view contains the main ideas useful also for the full
result of Theorem[D.3] which can be considered our main technical result for this section.

The first result is as follows:
Proposition D.2. Assume that forn, N > 2we have G = {G = [G1,...,Gp]: (Vi <n)l < G; <
N} = [1: N]" and that GenX : G — X is an injective function with image D as above. Denote

by Girain = GenX_l(Dtmm) the generating factors related to the training set, and assume that
' ] (0,1)

such that pN™ is an integer. Then

pN™
P{(Hiﬁn)(ajSN)(VGz[G17--~7Gn]Egtv'ain)Gi7éj}§nN(1_Jb) NG

in particular at fixed p, the above event has probability tending to zero as N™ — oo.

Thus, in an equivalent formulation of the last part of the above proposition, we have that in the limit
of large |G| = N™, the probability that each generating factor G; takes all of its possible values on
some generated element of Gy;.q4,, tends to 1.

N

Proof. The possible choices of Gyqin C G of cardinality p|G| = pN™ are W Then,

calling A;; the set of elements G € Giyqiy, such that G; # j, we find that |A;;| = N"71(N — 1) =

N™ N —1 5o that the number of possible choices of Gyqin © Ajj of cardinality pN™ is given by
n N 1 1
N X )1 . Now we bound the probability of the event on the left hand side in () via a
(pPN™MUN™ (5~ —p))!
union bound over the Nn possible choices of A;; for1 <i <n,1 < j < N, so that

=10 =) = pN™)((1 —p)N™)! (N A=)
P{ VG:_[GI7-”7Gn]€gtrain7} § TLN( )EEVH)') )(Nn)( ]L_ ))
Gi#J ’ p N
n N— n N— n N n
_ NV NS oL NS o pNT 4
Nr Nn—1 Nm — pN© +1

1\*NV"
< aN([1-=
(i)

in which in the first line we used a union bound together with the computations of combinatorial
coefficients from above, in the second line we performed a simplification and reordering, and in the

27



third line we used the factthat1 —1/N = (N"(N —1)/N)/N™ > (N"(N —1)/N —4)/(N™ — i)
foralll <¢ < pN™—1.

Finally, considering the limit N™ — oo of the upper bound in (@), we have two cases (Hif N > 2
stays bounded and n — oo, then we can bound nN (1 — 1/N)PN" < CynC, s with constants
Cy € (0,1) and C5 > 1, and by taking logarithms we check that the quantity tends to zero; (2) if

N — oo and n > 2, and in this case (1 — 1/N)PNV" ~ e~PN""" and again by taking logarithms we
find that the quantity tends to zero. O

In fact Prop. [D.2]is gives us guarantees that it will be possible to observe all options for each G; in
the training set, however this may not be sufficient for the main aim of recovering the compositional
structure of G. However we next prove, in an extension of Prop. [D.2] that actually we will also
observe with high probability any possible combination of finitely many factors:

Theorem D.3. Under the same hypotheses on G, GenX, Girqin, p as in Prop. forany k < n we
have the following.

dip < <ip<n
P{ Hjla"'ajk?SN (Gila"'7Gik)#(jl?"'ajk)}

G = [Gla“'an] € gtrain
n! k 1\*M"
< _
< () )

which for fixed p, k tends to zero as N™ — oo.

Proof. As mentioned before, roughly the overall proof strategy is the same as for Prop D.2] We
1ntroduce the sets AJ b f: = AJ and observe that the number of choices of i1 < -+ < i, < n
is m while the number of choices of ji,...,jx < N is N*. Thus the number of sets of

the form Aj is Ny = % Furthermore, each set A} only imposes the constraint of entries

of indices i1,...,7; from a G to avoid one combination of values 3, and thus it has cardinality

|AJ1| = N"~F(N* — 1). Then the number of choices of Grqin C AJi' of cardinality pN™ is just the

combinatorial coefficient o Nn)!((]]vvii’;(gvz__ll)l!p YT and by union bound we then find by the same

reasoning as in Prop.

| PN -p)N™)!  (NENE 1))

left-hand side of < N

(e and side o @) = A (Nn)l (pNn)!(ank(Nkflprk))!
N N™ — Nn—k N™ — Nn—k -1 N™ _Nn—k _pNn +1
- AT N Nn 1 N© — pN© + 1

1 pN" TL' 1 pN™

< Na(1-—= = ——=N"[1-— ~
= A( Nk) Kl(n —k)! ( Nk)

This proves @ In order to show that the bound tends to zero as N — oo at fixed p > 0,k < n, we

first note that m <n / k! and thus (as k is assumed fixed) it suffices to show that

1\
nka(]._]Vk> — 0 as N" — oo.

Here again, we can proceed with the discussion of the two cases (N bounded and n — oo, or
N — 00) exactly as in the end of the proof of Prop. to conclude. O

Remark D.4 (Extension of Prop. [D.2]and Theorems[D.3]and [D.T]to general G). If, for a choice of
n > 2and Ny,...,N, > 2wehave G = {G = [Gy,...,G,] : (Vi <n)l <G; < N;}, then
|G| = N - - - N,, and by carefully following the same steps as in the proof of Prop. we find

=) < n, E'j < Ni7 n 1 pN1...N,
]P{ VG:[le“'an]egtrain» }SZN7<1> y (6)
itholds G; # j ;



Again, this tends to zero for fixed p as |G| = Ny ... N,, = o0o: to prove it, we can proceed as follows.
In a first case, if n > 2 stays bounded, then we can discuss separately for each 1 < ¢ < n whether
N,; — oo or whether it stays bounded, as done in the proof of Prop. and in either case the
corresponding summand on the left of (4) tends to zero, as in case (2) from the proof of Prop. [D.2]
Otherwise, n — oo and we can proceed analogously to case (1) from the end of proof of Prop. [D.2]

For the extension of Thm. [D.3]to general G we get the bound

Jdii < <ip <n
P{ Eljla"'vjng (G117?le)#(jl7?jk)}
VG = [Gla <. -aGn] S gtrain

1 pN1-Ny
< Z Ny, - Ny, (1—M) ; (M
1<ii<-<ig<n

and the strategy for its proof and for the proof that this goes to zero if k,p fixed and |G| =
Njp --- N, — oo are a direct extension of the above.

Theorem [D.1]is a direct consequence of assumption (A) and Theorem [D.3] and thus it also directly
extends to the general case.

E Proof that final state reconstruction allows for wider message choice
freedom

We first recall the setting. Consider two fixed maps
R VY X, S:DCXx -V
and let R[i] : VY — V¥ be the restriction to the first i tokens, i.e. in previous notation, for
m = (my,...,mc) € VC weset Ry (m) :=mp) = (ma,...,my).
For R*, S* asaboveand S : D C X — V© we set, forz € D
d7 (x) == dx (R*(S* (2)1)), R*(S(2)1))) = dae (R (R (S*(2)))), B* (Rpiy (S(2))))-

We also defined the following spaces:
1 &
Stun = {S: E, [5 de(x)] < e}, Shinat = {9+ Eq [d2(z)] <e}. (8)
i=1

Our main result here is the following:
Proposition E.1. With the above notations, we have the following

1. Fori < C and any choice of M,e > 0, the restrictions on i-token sub-messages of S(x) by
requiring S € S %” are more restrictive than those imposed by requiring S € S}, ;. i.e. we have

Ry (S%ll) C Ry (Sfinar)-

2. For the full message case i = C' in general we have S]iu” - Sﬁ;al. If we further assume that

E, [djs(cc)} is non-increasing in j then we have the stronger inclusion 8%, C S%;,,4-
Proof. Ttem 1 is direct, as no restriction on intermediate sub-messages S(x);;; = Ry (S(x)) by the

requirement S € S%;,,)-

For item 2, we observe that

and by taking expectation we find that E, [ >, df (z)] < e implies E,[dZ ()] < Ce, and thus
Stun © Sfciiml, which gives the first part of the statement.

29



For the second part of item 2 we note that if E, [d ()] > E, [d2 ()] forall i < C we get

c c
1 S
E, [d2(2)] < min E,[d} E_ =E, lc ;_1 d; (ar)] :
and thus %, € 8%, as desired. O

The freedom of exploration ensured by item 1 of the proposition is our main motivation: by only
constraining the reconstruction of the full message, we allow much more freedom for the encoding
strategy of S(x) at earlier sub-messages at each iteration.

Item 2 of Prop. [E.]] n shows that the two losses in the definition of Sfy1, Sfinai give comparable
guarantees. At the beginning of iterations we will need to use the general bound with €/C, and as R*
will have been trained on more and more messages during the iteration, the hypothesis of E, [d (z)]
non-increasing will become true allowing for the sharper bound with the same value of ¢, as R* (an
LSTM taking as input successive message tokens) will become efficient in using sub-messages of
pairs (m,m’) = (S(z), S*(x)) to gradually distill information allowing to distinguish them for a
large set of .S, x.

F Regularization to counteract Holistic Encodings

In this section, we include rigorous results useful to justify the regularization of our Imitation phase,
aimed at balancing compressibility and efficiency.

This corresponds to the balance between compositional and parsimonious communication, a general
theme in classical IL literature (see e.g. [35137]). It seems useful to specify more precise definitions
in our generative setting, in order to help justify our architecture choices.

Our aim in this section is threefold:

1. In §FT]we set rigorous definitions of Holistic Encodings within the setting of §2.1T]and §2.7]

2. In we check that compressibility is required for lowest Kolmogorov Complexity
encodings.

3. We verify that optimizing for just expressivity and efficiency on our training set, will
produce Holistic Encodings, and thus is not satisfactory for reconstructing G (see §F.3);

4. We give a few possible options on how to enrich the loss functions in our IL setup, aimed at
establishing a better balance between efficiency and compressibility (see §F.4).

F.1 Definitions of Holistic and Compositional encodings, and role of the compressibility
condition

In the classical IL setup [35) [37]], a holistic system of communication is defined as an encoding
G — M that maps G > G — G’ € M injectively but disregards the compositional structure of the
"language" to be encoded, i.e. in our case, without respecting the structure of G. In our generation

task formalization, a difference is that the relevant encoding map now factors through the generation

map as G cenX ¥ 25 M. Now the generation map GenX is considered fixed, thus the definition

refers to only .S and is the following:

Definition F.1. In the setting from §2.Tand sender S : X — M determines a holistic encoding
if it satisfies expressivity but the messages associated to data generated as GenX(G) do not have a
compositional structure in terms of generating factors G, as specified by Definition [F:2] below.

Note that, as in [35| 37]], Definition [F.T] of holistic encodings refers to "respecting compositional
structure", which requires another deﬁmtlon The definition of compositional encodings crucially
depends on how complex we need/want to assume G to be. In this paper, for the sake of concreteness,
we restricted to the simple case of G being formed as an element of a product space of finite
cardinality, i.e., an n-ple of independent factors G = [G1, ..., G}] in which each G; can take finitely
many values. We thus use a straightforward toy definition of compositional encodings, requiring that
each of the G; is separately encoded as a string and these strings are concatenated together to give
the message that encodes Gt
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Definition F.2. In the setting of and assume that generating factors G = [Gy, ..., G,]
have G; € [1 : N;] for some Ny,..., N, > 2. Then sender S : X — M = V¢ will be defined to

respect the structure of generating factors G if for each 1 < ¢ < n there exist an injective mapping
E; :[1: N;] = V%, for which

VG € G, S(GenX(G)) = E1(G1) -+ En(Gy) and > C;=C.
1=1

The compressibility condition on the sender-receiver protocol just requires that the protocol be not
holistic, and thus it is fully specified via definitions[F.I]and [F.2] Furthermore, Definition [F.2) fully
specifies in which way the map G — M successfully approximates an isomorphic reconstruction of
g, if it satisfies conditions compressibility and expressivity.

F.2 Encodings optimizing for only expressivity and efficiency have Kolmogorov Complexity
much higher than compositional ones

By the classical learning theory principle, if our sender generates encodings with lower complexity,
these should be easier to learn by the receiver, in the sense that the receiver will tend to generalize
with more ease form good accuracy on the training set to similar accuracy on the test set.

As a manageable measure of complexity we will use Kolmogorov Complexity (KC), and we verify
that in our setting, encodings satisfying expressivity and efficiency will necessarily have higher KC
than compositional ones. In particular, the receiver will have more trouble reconstructing from such
encodings, justifying our push to enforce the compressibility condition.

Encodings of Dy, satisfying expressivity and efficiency include all injective maps
enc : Dipgin — VC*’ C, = |—10g|v\ |Dt7'uin|—|7 )

in which [a] denotes the smallest integer larger than real number a. For a random map enc as above,
the encoding to be Kolmogorov-irreducible, so that the expected KC of a random enc would be up
to constant factor the one corresponding to explicitly enumerating the |Dy;.qin| strings of length C,
in alphabet V' that describe the encodings of each element of the training set. Each such string thus
requires ~ C, log, |V| bits. Thus if U is the uniform distribution over injective maps (9) then we
have

EenCNU[KC(enC)] ~ ‘,Dtrain|c* 10g2 |V| ~ ‘Dtrain| 1Og2 |Dtrain|- (10)
On the other hand, to specify a compositional encoding comp as in Definition requires only
assigning a string of length C; in alphabet V for every generating factor G;, where we can take
Ci = [logw‘ N;. Thus such string requires ~ log, N; bits, and the whole encoding has KC given

by
KC(comp) ~ Zlog2 N; =10g5 | Dirain- (11)
i=1

If we assume that | Dyyqin|/|D| = p € (0, 1) and we take |D| — oo, then we get

r.h.s. of (T0) _ p|D|(logy p + log, |D|)
rh.s. of (TT) log, |D|

The computation (T2)) shows that

Proposition F.3. Under the same hypotheses on G as in the previous section, consider the limit
|D| — oo and assume that p = |Dirain|/|D| stays bounded away from zero in the limit. Then
the expected Kolmogorov complexity of encodings satisfying expressivity and efficiency becomes
overwhelmingly larger than the one of compositional encodings:

Eenc~v [KC(enc)]
K C(comp)

~p|D| as|D| — . (12)

~ p|D| — 0.

F.3 Encodings that optimize efficiency under expressivity over D;,;, are holistic

First, we clarify the definitions:
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* The requirement of "expressivity over D,,..;,," means that the encodings are injective over
DtTain .

* The requirement of "efficiency over Dy,.,;,," means that the encoding maps Dy,.4;y, into VO
for the minimum value of C,.

Similarly to previous subsection (see (9)), keeping in mind that | Dyyqn| = p|D| = p|G|, with fixed
p € (0,1), we have

Cy = [10g|y| [Dirain|| = [logy plG|] < [logy| 1G]] — [|logy| pl]. (13)
For compositional encodings of G = [G1, . .., G,] the encoding will require to set apart separate

message sub-strings of length C; = [logy,| NV; | for factor G (see Def. , thus the required length
for the encoding will be

n ) | & (x%)
Co =Y [logy Ni] > {Z logy| Ni—‘ = [logy | G]] = Cu+ [|logppll,  (14)

i=1 i=1
in which (xx) follows from (T3).

We now discuss when the inequality signs in (I4) are sharp or not, since sharp inequality Cy > C
implies our claim that optimizing for efficiency under expressivity implies non-compositional (i.e.,
holistic) encodings:

1. If we use relatively small |V| < 10 (assuming commonly used values p < 0.1), we will

have )
Vi< -, (15)
p

and thus log|,; p < —1, and thus the second inequality (x*) in (T4) is guaranteed to be
sharp, showing the desired strict inequality Cy > C, independently of the sizes of factor
ranges N;, i =1,...,n.

2. If the gaps between log)y,| NV; and the lowest integer larger or equal to it, sum to a value of
at least 1, i.e.,

> ([logm Ni| —logy, Ni) >1, (16)
i=1
then (x) becomes sharp, again guaranteeing Cy > C\ as desired. This could be probable
to happen in our setting, and becomes more likely for large |V'| > 1/p for which (T3) fails,
given that the NV; are supposed to be unknown, so it is likely that for large |V| > 1/p
for a few of the NN; the gaps in (I6) are nontrivial. For example, (I6) holds true for
|[V| > 1/p > 10if, say, at least two of the GG; are binary factors, so that N; = 2.

In summary we have the following:

Proposition F.4. Under the same running assumptions over G, p, we have that optimizing only for
efficiency of encodings efficiency under injectivity constraints expressivity over Dyyqip Is guaranteed
fo produce holistic (i.e., non-compositional) encodings if one or both of the conditions (13) and (16)
holds.

F.4 Possible choices of encoded message regularization

As seen above, if we just optimize for efficiency and expressivity then we are likely to get holistic
encodings (Prop. [F.4), which will then make it hard for the receiver to generalize the decoding
strategy outside the training set due to having overwhelmingly higher expected complexity (Prop.

[E.3).

This proves that it is important to incentivize condition compressibility, i.e., to push encoding
strategies away from overly efficient holistic encodings. In this section we discuss a few approaches
to do this in practice, explaining our choice of compressibility regularization.

1. Entropy maximization.
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Background and standard approach. Introduced by [69]] for use in policy-based rein-
forcement learning, entropy maximization is known to enforce exploration in deterministic
policies and avoid early convergence to single output choices for learned policies. Specifi-
cally, in a learning setup with input x, output y and policy parameters W, the authors define
the following estimator for fixed output value &:

h(§,W,z) = —1n Pr(y = {|W, x), (17)
such that if we take the expectation over £ we get:
E[h(&, W, 2)|W,z] = = > Pr(y = §|W,z) In Pr(y = {|W, ), (18)
3

which is the entropy of the network. Therefore h is an unbiased estimator of the entropy.
They also note that, if w; and x; with 7 € U represent the weights and pattern of single
neurons in a feed forward network, &; the ¢, position in a n,-tuple &, and let g; be the
probability density describing y;, i.e:

gi(§7wi’xi) = Pr(yl = glwb>xb)7 (19)
then, for any feed forward network,
Pr(y = ¢W,z) = [] gi(&,w', 2"), (20)
ieU
and therefore
—InPr(y=¢&W,z) = =Y _gi(&,w',a') = h(y, W, X). 21)
ieU

In fact, this method can be extended onto sequence prediction models, and even IL, such as
in [55].

Naive adaptation to our setting is not practical. We take z € X and ¢ € M = V¢ and
recall that in our notation m, indicates the ¢-th token of message m, and My is the notation
for the initial segment m1, ma, . .., my, so that in particular mic) = m.

Importantly, in our setting, to avoid high variance in estimation due to the large message
space (see §G), we approximate the probability distribution of the RNN-produced mes-
sage token at position ¢ < C, denoted here p(m|z, m;_1)), as a 0 distribution over the
vocabulary V' by using the Gumbel-softmax trick:

JeV), P W, L, ifme=v 2
( v E )7 ’r(mt | xZ, 7m[t—1]) ~ 07 lfmt c V\{U}, ( )
and therefore:
c
Pr(m = ¢W,z) = [[ Prim: = &|W, 2, mp_1). (23)
t=1

Note that due to (22), for all but a single one of the || possible values of £ the quantity
(23) is ~ 0, and thus h becomes a poor estimator for the entropy of p(m|z, my_1)), as we
get

C
h(m,W,z) = —In Y Pr(m; = &, W,mj_1)) & oc. (24)
t=1

In particular, it becomes clear that optimizing this h becomes unfeasible with gradient
methods.
Our proposal for regularization. Our model can be seen as a different approximation of
the entropy of the message. Instead of using the policy weights as probability values, we use
the law of large numbers to estimate the probability of each message. For a batch B C X
consisting of Nyqcn training examples and for given sender encoding protocol Sg:

 Hzr eB|Ss(x) = ¢}

For a sufficiently large Npgicn: Pr(m =& |z, ¢) = N (25)
batch
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Yet again, due to the exponential size of the message space, utilizing this probability to
estimate the entropy is still not practical. We will assume approximate independence
between symbol positions, which allows to get the stronger approximation:

Mo € B Sya) =0}l

Pr(m; =v | z, (26)
( ‘ ‘ (b) Nbatch
as well as the additivity of entropy to be applied to (I8):
H(Pr(m|z,¢)) := - Y Prim=¢|z,¢)nPr(im=¢|z.¢)

Leve

c
= —Z Z Pr(my=v|z,¢)InPr(m;=v|z,¢). (27)

t=1veV

Then we can perform the following computations, in which we let m, m/ be two i.i.d. copies
of m:

c
H(Pr(m | z,¢)) —Z Z Pr(my=v|z,¢)In Pr(m; =v | z,¢)
t=1veV

(—zlnx 296—902
forz < 1) c
>

US| ST Primi=v | ,6)Pr(m) =o' | 2,6)

t=1 v,v' eV

- Z Pr(m; =v| z, ¢)2>
v

ve

C
=5 5" Pr(m=v]|z,¢)Pr(m; = | z,0)

t=1 v#v' €V

C
=" Pr(mq # m}) = Eldy(m,m)]

t=1
QE, venldn(Sy(x), Sp(a"))], (28)

In the above step (*) we used that

2
ZPr(mt:v|x,¢) 1= (ZPr(mtzzﬂx,d)))
veV veV

S Pr(m;=v|a,¢)Pr(m; =o' | 2,9).

v eV

The consequence of bound (8 is that maximizing the pairwise Hamming distance between
predicted messages in a batch also maximizes a lower bound to the approximate entropy
of the message space, justifying the choice of optimizing this quantity (which is easier to i
include in practice) for favoring compressibility.

. Contrastive Learning losses. In our framework, PDM can be seen as a form of contrastive
loss, which we now show how to connect to standard contranstive losses from previous
works.

Contrastive loss functions such as the triplet loss [[63] and NT-Xtent [11] work by defining
positive and negative image pairs (usually through image augmentation), and aiming to
minimize the distance between embeddings of positive pairs and maximize the distance
between negative pairs. Specifically, instead of purposefully sampling negative samples
for every x, NT-Xtent produces a single pair of samples for each x in a mini-batch N by
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augmenting each image. Each image in the batch therefore has 2N — 1 negative pairs. They
use the cosine similarity sim (u,v) = u”v/||ul|||v| and some temperature value 7 to define
the following loss between positive pair embeddings z; and z;:

exp(sim(z;, z;)/T)

l;; = —log (29)
’ S exp(sim(zi, z)/7)
For simplicity, let 7 = 1 and thus
2N
0 j = —sim(z;, 2j) + logZeXp(sim(zi, 2k))- (30)
2

Here, we apply the same ideas but take this loss over an unaugmented batch, i.e the only
application of this loss is for z; against itself. In this case it reduces to:

N
b =—1+ logZexp(sim(zi, 2k)) 31)
k
In our representations, the embedding vectors from a batch z;,7 = 1,...,Nare V x C

matrices whose columns are approximately one-hot vectors that represent the tokens of a
message. For one-hot matrices z;, z of this form, the dot product 2] zj, is equivalent to
counting the amount of matching rows of z;, i, i.e, the un-normalized Hamming distance
of the associated message strings m;, my, € V. Since strings have length C and ||2;|?> =
2Tz ~ C, we thus get:

Q

sim(zi, 21) = tr(z zn)/|lzilllleell = = Z [arg max((z:)s,;) = arg max((z)1.5)]

~ 1—dg(m;,mg),

in which d is the (normalized by 1/C') Hamming distance. We can replace this expression
in the unaugmented NT-Xtent loss:

N

6 = —l4log» exp(l—dpy(mimy))
k=1
N
= —1+N—logZeXp(dH(mi,mk))
k=1
(Jensen N
inequality)
< —1+N-logN—— Z (mi, my,).

k

Then, taking the mean loss over the full batch we get:

1 N N N
T2 i< 1N —logN — - ZZ (mi, my,). (32)
=1 k=1

We then include in the loss only the last term, i.e. the average of dp (m;, my), which is the
only term that actually depends on the batch elements, which forms an approximate upper
bound on the NT-Xtent loss.

Note that our approximation of sim(z;, zx) by 1 —dg (m;, my), on which the above is based,
becomes sharp when the z; have actual one-hot entries, thus the approximation becomes
better as our model has high accuracy. Furthermore, Jensen’s inequality, responsbile for
the inequality between the term ¢; from NT-Xtent and our metric, becomes closer to
equality messages my, . . ., my become uniformly spread across V', which is the case for
minimizers of our metric as well. This means that, at least heuristically speaking, we can
consider our metric as having similar minimizers to the NT-Xtent regularization.

A precise matching lower bound to is left for future work.
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G Justification of our imitation step starting from classical probabilistic
reconstruction games

We start by recalling classical probabilistic reconstruction games, after which we adapt the formulation
to the setting of generative tasks, and we show that with a few justified simplifications we arrive to
our formulation from the main paper.

G.1 Classical probabilistic reconstruction games

Recall that in reconstruction games, the two agent types are a teacher and student (or speaker and
listener, or sender and receiver), parameterized by respectively 6, ¢. The game consists in the teacher
observing a signal x distributed according to a probability distribution p, from which it produces a
randomized message m whose distribution conditional on x is obtained according to policy my(-|z).
The student or listener, observes message m and produces a reconstructed signal distributed according
to a conditional probability pg(-|m). The game dynamics can be modeled by stipulating that together,
teacher and student minimize the log-likelihood loss function

Lo,6 = ~Earpmemy (|2 (108 pg(x|m)] (33)
in which z represents the signal and m the message used to reconstruct it, the speaker produces a

reinforcement learning policy 7y (-|x) and the listener produces a reconstruction function py (z|m).

G.2 Reconstruction games in generative tasks

While the above formulation (33)) is formalized using the log-likelihood between distributions, for
our generative task, the reconstruction modeled slightly differently: the task is to optimize, with
high probability, the reconstruction error, measured by a distance between the signal x and its
reconstruction z’, denoted d(x,z"). Here the notation for x, 2’ and d(x,z’) can be (ab)used to
represent two alternative settings: either (a) x, 2’ are vectors in the autoencoder latent space and
d(x,2’) is a discrepancy (e.g. d(z,z’) = |z — 2’|P) between them or (b) x, 2’ are reconstructed
images and d(x, 2’) is a discrepancy (e.g. based on some ad-hoc norm or otherwise) between them.
Thus we have the probabilistic error function

E]f)nf (wa (p) = Ezfvp,mwmpﬂw),w'wpw(-\m)d(xv JC/). 34
The loss (34) is akin to a d-based Wasserstein distance analogue of (33).

G.3 The problem reduces to the case of a deterministic student
Note that when d(z, z) = |z — 2’|? for some Euclidean norm (or more generally, when d is a convex
function of such norm), then the minimization of (34) over distributions p,, at fixed m, ¢ must be
achieved by

xf, € argming, B,y (myd(z, 2"), (35)

where if the set of x is finite then p,, is the probability defined by

P (mle)
Pellm) = & ) ly)

and an analogous expression with integrals replacing the sum holds in general.

(36)

Under the above convexity hypotheses, the choice of ¥, in (33) is unique, and for d(x, 2') = |z —2'|?
it coincides with the barycenter of p,. In this case, p,,(-|m) can be taken to be the Dirac distribution
concentrated at z¥,, and optimization of (34) can be achieved by a deterministic reconstruction
function R, (m), whose optimum value for given ¢ will be z¥, from (33). When reducing to

optimizing only amongst deterministic R,,, the loss (34) rewrites in the simplified form

Lint (wa ‘P) = Ew~p,m~w¢(-|x)d(xa R, (m)) (37)
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G.4 Straight-Trough Gumbel-Softmax (STGS) trick

As in [25] and subsequent works, the optimization of policy 7, (minimization over ) can in theory
be done via policy gradient optimization methods such as REINFORCE [70], however, due to the
combinatorial explosion of the number of messages this can be very compute-intensive if calculated
directly, or produces high variance estimators. We thus follow the straight-trough Gumbel-softmax
trick [226], in which the probabilistic interpretation of 7, is implicit in the network architecture, and
the architecture itself is deterministic and directly differentiable. In this case, we can thus pass to
the deterministic description as m = S, (z), replacing the probabilistic one m ~ 7, (-|m), and we
obtain the updated form of as

Lint(w, @) = Eynpd(z, Rw(sfb(m)))’ (38)
which for d(z,z’) = |x — 2| is very similar to our actual interaction loss (T):
Lint(w,¢) = Ezex (|2 — Ru(Ss(2))]]- (39)
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H Example Generation: Reconstructions

The following reconstruction, Figure[5] examples were generated with the CELEBI model using PDM
regularization with 8 = 1 and A = 1.5. In each row, the leftmost image corresponds to the original
input, while the subsequent images represent the predicted reconstructions z; = R, (S¢(%)[1:9)
obtained from progressively longer message prefixes with the VAE backbone.

We observe that the reconstructions do not merely improve in pixel-level fidelity but rather exhibit
semantic refinements across successive steps — variations in floor hue, object color, shape, or viewing
angle. This progression suggests that the message space encodes the underlying generative factors G
and supports a degree of compositional structure, where messages carry disentangled information.

Qualitative comparison across methods. To further assess the representational properties of
CELEBI, we qualitatively compare reconstructions across the different methods proposed in this
work (see Figures[6and[7). As illustrated in these figures, CELEBI reaches semantically faithful
reconstructions significantly earlier in the decoding sequence than the baseline methods.

Moreover, the differences between reconstructions are more semantically pronounced than in baseline
models, which often show subtler variations mainly related to texture or brightness. This qualitative
evidence supports our hypothesis that CELEBI facilitates a more structured message space, enabling
representations that are not only more compact but also more semantically coherent.

Original Rec 1 Rec 2 Rec 3 Rec 4 Rec 5 Rec 6 Rec 7 Rec 8 Rec 9 Rec 10

(a) Example 1

Original Rec 1 Rec 2 Rec 3 Rec 4 Rec5 Rec 6 Rec 7 Rec8 Rec 9 Rec 10
\ | R | [E— e \ - |
’ | |- | | | | | |

(b) Example 2

Original Rec 1 Rec 2 Rec 3 Rec 4 Rec 5 Rec 6 Rec 7 Rec 8 Rec 9 Rec 10
(c) Example 3

Original Rec 1 Rec2 Rec3 Rec 4. Rec 5 Rec 6 Rec7 Rec 8 Rec 9 Rec 10
(d) Example 4

Figure 5: Progressive image reconstructions obtained at each decoding step by the receiver as it
processes successive symbols of the message.
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Original Rec 1 Rec 2 Rec 3 Rec 4 Rec 5 Rec 6 Rec 7 Rec 8 Rec 9 Rec 10

(a) Reconstruction using the baseline model.

Original Rec 1 Rec 2 Rec 3 Rec 4 Recs Rec 6 Rec 7 Rec 8 Rec 9 Rec 10

(b) Reconstruction using partial decoding.

Original Rec 1 Rec 2 Rec 3 Rec 4 Rec 5 Rec 6 Rec 7 Rec 8 Rec 9 Rec 10

(c) Reconstruction using final state imitation.

Original Rec 1 Rec2 Rec 3 Rec 4 Recs Rec 6 Rec 7 Rec 8 Rec 9 Rec 10

(d) Reconstruction using PD+FiSI+PDM.

Figure 6: Reconstruction for the same example with different methods.

I Additional Language Metrics

Table 3: Comparison of proposed methods using language variation metrics from [[13].
Synonymy |  Homonymy | Freedom | Entanglement |
Full message reconstruction, no IL (Baseline) 0.563 £ 0.026  0.695 4+ 0.015  0.569 £+ 0.026  0.831 4 0.006

Interaction

Progressive Decoding (PD, ours) 0.640 £0.022 0.737 £0.013 0.646 £0.013  0.786 = 0.007
Message imitation (baseline) 0.601 +£0.039 0.714 +0.027 0.613 £0.039 0.822 4+ 0.010
Imitation Full state imitation 0.597 £0.017 0.734+0.021 0.604 £0.018 0.824 + 0.007
Final-State Imitation (FiSI, ours) 0.633 £0.038 0.751 +£0.018 0.640 £0.038 0.842 + 0.007
Regularization PD+FiSI+KoLeo A = 1.5 0.594 £0.027 0.739+0.013 0.598 £0.027 0.805 =+ 0.007
g PD+FiSI+PDM (ours) A = 1.5 0.654 £0.013  0.753 +£0.008 0.658 £0.013 0.780 =+ 0.008
(a) Shapes3D
Synonymy |  Homonymy | Freedom | Entanglement |
Interaction Full message reconstruction, no IL (Baseline)  0.595 £+ 0.053  0.597 4+ 0.061  0.597 £0.052 0.852 4+ 0.021
Progressive Decoding (PD, ours) 0.484 £0.044 0.486+0.056 0.486 £0.044 0.786 £ 0.025
Message imitation (baseline) 0.367 £0.034 0.393+0.042 0.369 £0.034 0.837 4+ 0.015
Imitation Full state imitation 0.362£0.045 0.424+0.052 0.364 £0.044 0.832+0.018
Final-State Imitation (FiSI, ours) 0.324 £0.020 0.393+0.018 0.328 £0.020 0.830 + 0.008
Regularization PD+FiSI+KoLeo A = 1.5 0.365£0.011 0.338+0.019 0.367 £0.011 0.763 = 0.005
g PD+FiSI+PDM (ours) A = 1.5 0.347 £0.012 0.333+0.010 0.349 £0.013 0.756 + 0.005
(b) MPI3D

In addition to the metrics presented in the main text of this work, we attempted to measure other
metrics for qualitative linguistic variation. We were not able to find many such metrics in the literature,
and thus restrict to the ones presented in [13]]. Importantly, since this reference had a slightly different
focus, variation in this context will not refer to the evolution of the language in time, but rather a
departure from regularity, which masks an underlying compositional structure.
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Original Rec 1 Rec 2 Rec 3 Rec 4 Rec 5 Rec 6 Rec 7 Rec 8 Rec 9 Rec 10

J . ) )

(a) Reconstruction using the baseline model.

Original

Rec 1 Rec 2 Rec 3 Rec 4 Rec s Rec 6 Rec 7 Rec 8 Rec 9 Rec 10

(b) Reconstruction using partial decoding.

Original Rec 1 Rec 2 Rec 3 Rec 4 Rec 5 Rec 6 Rec 7 Rec 10

Rec 8 Rec 9

(c) Reconstruction using final state imitation.

Original

Rec 1 Rec2 Rec 3 Rec 4 Rec s Rec 6 Rec 7 Rec 8 Rec 9 Rec 10

(d) Reconstruction using PD+FiSI+PDM.

Figure 7: Reconstruction for the same example with different methods.

We study the four measures of variation presented in the paper, namely synonymy, homonymy, word
order freedom and entanglement. Synonymy measures the presence of one-to-many mappings
between atomic meanings and characters in a position, being minimized when each generating factor
value is mapped to a single position and character. Homonymy measures the opposite, i.e., the
presence of many-to-one mappings, and is minimized when each character in a position is mapped
to a unique generating factor value. Word order freedom refers to the strictness of the mapping
between generating factors and positions in the message (for example, if the mapping system always
encodes the shape generating factor at the first position). It is minimized if all single generating
factors are encoded in the same message position. Similarly, entanglement is minimized when all
factors are encoded into unique positions in the message.

Important formular metricas, pero no encaja tan bien. Unico paper que conocemos. No clear patterns,
but we argue it is because... An important assumption made by the authors for all these metrics is that
meaning should be undivisably encoded into single positions of the message. We believe this scope
of regularity is too narrow to capture compositionality-respecting mappings in out setting, as defined
in[F.2] and does not fit well when the space of messages is greatly larger than the amount of possible
states. We found no clear trend or similar behavior across both tested datasets, save a small decrease
in entanglement when using PD. This may suggest that the increased pressure for efficiency forces
individual generating factors to be uniquely distributed in the message, however we believe there
is not sufficient evidence to make such a claim considering the previously discussed pitfalls of the
metrics.

To our knowledge there are no available official implementations for these metrics. Our versions can
be found in the official repository for this work.
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Table 4: Permutation tests for Shapes3D and MPI3D on emergent language metrics.

Metric Mode A Mode B Statistic p-Value
TopSim Progressive Decoding (PD; ours)  Full message reconstruction; no IL (Baseline)  0.0263 0.0233
TopSim Full state imitation Final-State Imitation (FiSI; ours) -0.0267  0.1014
TopSim Full state imitation Message imitation (Baseline) -0.0018  0.9332
TopSim Final-State Imitation (FiSI; ours) Message imitation (Baseline) 0.0249 0.2605
TopSim PD+FiSI+KoLeo A = 1.5 PD+FiSI+PDM A = 1.5 -0.0371  0.0004
Useful Length  Progressive Decoding (PD; ours)  Full message reconstruction; no IL (Baseline) -2.5 0.0031
Useful Length  Full state imitation Final-State Imitation (FiSI; ours) 0.0 1.0
Useful Length  Full state imitation Message imitation (Baseline) 0.0 1.0
Useful Length  Final-State Imitation (FiSI; ours) Message imitation (Baseline) 0.0 1.0
Useful Length  PD+FiSI+KoLeo A = 1.5 PD+FiSI+PDM A = 1.5 1.3000 0.0996
Final MSE Progressive Decoding (PD; ours)  Full message reconstruction; no IL (Baseline)  -0.0218  0.0657
Final MSE Full state imitation Final-State Imitation (FiSI; ours) -0.0130  0.4871
Final MSE Full state imitation Message imitation (Baseline) -0.0201  0.5679
Final MSE Final-State Imitation (FiSI; ours) Message imitation (Baseline) -0.0071 0.8384
Final MSE PD+FiSI+KoLeo A = 1.5 PD+FiSI+PDM A = 1.5 0.0343 0.0431

(a) Shapes3D permutation test

Metric Mode A Mode B Statistic ~ p-Value
TopSim Progressive Decoding (PD; ours)  Full message reconstruction; no IL (Baseline) 0.0037 0.4416
TopSim Full state imitation Final-State Imitation (FiSI; ours) -0.0193 0.0019
TopSim Full state imitation Message imitation (Baseline) 0.0047 0.4395
TopSim Final-State Imitation (FiSI; ours) Message imitation (Baseline) 0.0240 0.0007
TopSim PD+FiSI+KoLeo A = 1.5 PD+FiSI+PDM \ = 1.5 -0.0060 0.4767
Useful Length  Progressive Decoding (PD; ours)  Full message reconstruction; no IL (Baseline) ~ -2.7000 0.0345
Useful Length  Full state imitation Final-State Imitation (FiSI; ours) 0.0231 1.0

Useful Length  Full state imitation Message imitation (Baseline) 0.2231 0.3998
Useful Length  Final-State Imitation (FiSI; ours) Message imitation (Baseline) 0.2000 0.5820
Useful Length  PD+FiSI+KoLeo A = 1.5 PD+FiSI+PDM \ = 1.5 0.2222 1.0

Final MSE Progressive Decoding (PD; ours)  Full message reconstruction; no IL (Baseline) 0.0011 0.5894
Final MSE Full state imitation Final-State Imitation (FiSI; ours) -0.0018 0.1166
Final MSE Full state imitation Message imitation (Baseline) 0.0019 0.2870
Final MSE Final-State Imitation (FiSI; ours) Message imitation (Baseline) 0.0037 0.0201
Final MSE PD+FiSI+KoLeo A = 1.5 PD+FiSI+PDM A = 1.5 -0.000012  0.9626

(b) MPI3D permutation test

J Permutation Tests

J.1 Emergent language metrics

To assess the statistical significance of each component added to the Iterated Learning (IL) framework
proposed in this work, we conducted permutation tests using the SciPy library [67]]. The test statistic
was defined as the difference in means, A — B, where A corresponds to the arithmetic mean of the
evaluated mode and metric across 10 random seeds. The complete results are presented in Table [5]

Across both the Shapes3D and MPI3D datasets, we found that the inclusion of the PD module consis-
tently reduced the useful message length, yielding a test statistic of approximately 2.5 and a p-value
below 0.05. None of the other additions introduced in this work produced a statistically significant
decrease in useful length relative to their respective baselines, supporting our hypothesis that PD
imposes an efficiency pressure on the emergent language. Moreover, we observed a statistically
significant increase in TopSim for the Shapes3D dataset, with a test statistic of 0.026 and p < 0.05.

Final-State Imitation had a statistically significant gain in TopSim over both baseline methods on
MPI3D, with statistic of ~ 0.02 and p < 0.02. PDM outperformed the KoLeo estimator in both
reconstruction error and TopSim on Shapes3D, but achieved no statistically significant increase in
MPI3D.

J.2 Disentanglement permutation tests

In this section we evaluate the statistical significance of the differences between our model and
the discrete baseline on the metrics used in table Similar to the previous section, we conducted
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permutation tests, using the difference in means as a statistic for 10 random seeds. The complete
results are presented in Table 3]

We found a significant difference in accuracy on the Shapes3D dataset, with a statistic of 0.114 and
p < 0.01. We found a significant descrease in RMSE on both datasets, with statistics of 0.227 and
1.151 for Shapes3D and MPI3D, respectively, and p < 0.001. We also observed a significant gain
in disentanglement on both datasets, with statistics of 0.003 and 0.023 for Shapes3D and MPI3D,
respectively, and p < 0.05 for both.

Table 5: Permutation tests for Shapes3D and MPI3D on disentanglement, accuracy and RMSE using
messages from discrete models as data for a linnear probe.

Metric Mode A Mode B Diff(A-B) p-Value
Accuracy VAE+EL VAE+CELEBI  -0.1139 0.0018
RMSE VAE+EL VAE+CELEBI 0.2266 0.0010

DCI Disentanglement VAE+EL VAE+CELEBI  -0.0034 0.0042

(a) Shapes3D permutation test

Metric Mode A Mode B Diff(A-B) p-Value
Accuracy VAE+EL VAE+CELEBI  -0.0128 0.0570
RMSE VAE+EL VAE+CELEBI 1.1512 0.0010

DCI Disentanglement VAE+EL VAE+CELEBI  -0.0230 0.0002

(b) MPI3D permutation test
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