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Abstract

Diffusion generative models have recently overtaken GANs in the text-to-image domain and
show great potential for video generation and editing tasks. This review offers an overview
of the current literature on video diffusion models. We provide a systematic overview over
relevant aspects such as applications, architecture, and temporal dynamics. Developments in
the field are outlined through paper summaries. The review concludes with an examination
of remaining challenges and an outlook on the future of the field.

1 Introduction

Diffusion generative models have demonstrated a tremendous ability for learning heterogenous visual concepts
and creating high quality images based on text descriptions. Due to their versatility, they have quickly
overtaken GAN-based approaches in popularity (Dhariwal & Nichol, 2021). Currently, a lot of effort is being
made to also explore their potential for various video generation and editing tasks. Even though progress is
being made on a daily basis, adapting generative diffusion models to video generation poses unique challenges
that still need to be fully overcome. These challenges relate to aspects such as temporal consistency, video
length, and computational costs.
In this review, we first try to identify relevant aspects of video diffusion models such as possible applications,
the choice of architecture, and mechanisms for modeling of temporal dynamics (see Fig. 1 for an overview).
We then provide brief summaries of relevant papers in order to outline developments in the field until
now. We conclude with a discussion of ongoing challenges and try to point out potential areas for future
improvements.

Figure 1: Overview of important aspects of video diffusion models.
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2 Taxonomy of Applications

The possible applications of video diffusion models can be roughly categorized according to input modalities.
This includes text prompts, images, videos, and auditory signals. Many models also accept input that is a
combination of some of these modalities. Fig. 2 visualizes the different applications. We summarize notable
papers in each application domain starting from section 6.1. For this, we have tried to assign each model
a main function, even though many models are capable of multiple tasks. The full scope of each model is
shown in Table 1.
In our taxonomy, text-to-video refers to the task of generating videos purely based on text descriptions.
Different models show varying degrees of success in how well they can model object-specific motion. We
therefore roughly differentiate between models able to generate only simple movements, and those able to
accurately depict more complex motion over time.
In image-to-video tasks, an existing reference image is animated. Sometimes, a text prompt or other guidance
information is provided. In practice, only few models offer this ability, and they are usually also specialized on
a different application domain (such as text-to-video). For models introduced in other sections, we mention
their capability for image-to-video generation where applicable.
Video-to-video models use an existing video as a baseline from which a new video is generated. Typical
tasks include style editing (changing the look of the video while maintaining the identity of objects), object
/ background replacement, video prediction (producing a longer video based on the input), and restoration
of old video footage (including tasks such as denoising, colorization, or extension of the aspect ratio).
Multimodal models accept sound clips as input, sometimes in combination with other modalities such as text
or images. They can then synthesize videos that are congruent with the sound source. Typical applications
include the generation of talking faces, of music videos, as well as of more general scenes.
We treat models aimed at generating long videos as a distinct group, even though they intersect with the
previous applications. Video diffusion models typically have a fixed number of input and output frames due
to architectural and hardware limitations. To extend such models to generate videos of arbitrary length,
both auto-regressive and hierarchical approaches have been explored.

3 Architecture

3.1 Generator principle

A diffusion model for image generation implements its generation process as a chain of denoising steps that
start from an input image that is a sample from a gaussian distribution of uncorrelated white pixel noise.
Each denoising step is performed by a neural network that has been trained to distort the noisy input image
towards the image distribution of the target domain of the generation process. After a sufficient number
of such denoising steps the image will have become transformed into a practically noise-free sample of the
target domain. The key for this mechanism to succeed is a suitable training of the denoising networks. This
is achieved by supervised training with input-output image pairs from reversed pairs of the inverse process,
which is a chain of images starting from samples of the target domain that are iteratively transformed
into samples from a gaussian distribution of uncorrelated white pixel noise by mixing at each iteration a
constant proportion of uncorrelated gaussian white noise into the pixel values. This original formulation of
the generation process as denoising diffusion probabilistic models (DDPM, Ho et al. 2020) in the form of a
reverse Markov chain has more recently become complemented by a non-Markovian alternative denoted as
denoising diffusion implicit models (DDIM, Song et al. 2020), which offers a deterministic and more efficient
generation process.

3.2 UNet

The UNet (Ronneberger et al., 2015) is currently the most popular architectural choice for the denoising
steps in diffusion models (see Fig. 3). Originally developed for medical image segmentation, it has more
recently been successfully adapted for generative tasks in the image, video, and audio domains. An UNet
transforms its input image into an output image of the same size and shape by encoding its input first into
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Figure 2: Applications of video diffusion models. Example images taken from following papers (top to
bottom): Guo et al. (2023), Ho et al. (2022a), Singer et al. (2022), Wang et al. (2023b), Zhao et al. (2023),
Liu et al. (2023a), Stypułkowski et al. (2023), Liu et al. (2023d), Lee et al. (2023b)

increasingly lower spatial resolution latent representations while increasing the number of feature channels
while progressing through a fixed number of encoding layers. Then, the resulting latent representation is
upsampled back to its original size through the same number of decoding layers. While the original UNet
(Ronneberger et al., 2015) only used ResNet blocks, most diffusion models interleave them with Vision
Transformer blocks in each layer. The ResNet blocks mainly utilize 2D-Convolutions, while the Vision
Transformer blocks implement spatial self-attention, as well as cross-attention. This happens in a way that
allows to condition the generative process on additional information such as text prompts. Layers of the
same resolution in the encoder and decoder part of the UNet are connected through residual connections
only.
To train a UNet on image generation tasks, small amounts of Gaussian noise are added to the input.
The learning objective is make the UNet predict an estimate of the original input, i.e.to minimize the
discrepancy between the denoised image predicted by the UNet and the input image. By letting the UNet
predict and remove small amounts of noise in an iterative fashion, the network can iteratively restore pure
random inputs into images from the domain that was used to create the training data. By conditioning the
denoising step on encoded text prompts, the generation process can be made steerable through language
input, e.g. to obtain image instances that are compatible with a specific subject-matter.

It turns out that for video generation the basic UNet architecture needs to be suitably adapted, which will
be the topic of section 4.

3.3 Vision Transformer

The Vision Transformer (ViT) (Dosovitskiy et al., 2020) is an important building block of generative dif-
fusion models. It is a form of neural network based on the transformer architecture developed for natural
language processing (Vaswani et al., 2017). Therefore, it similarly combines normalization layers, a multi-
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Figure 3: The denoising UNet architecture typically used in text-to-image diffusion models. The model
iteratively predicts a denoised version of the noisy input image. The image is processed through a number
of encoding layers and the same number of decoding layers that are linked through residual connections.
Each layer consists of ResNet blocks implementing convolutions, as well as Vision Transformer self-attention
and cross-attention blocks. Self-attention shares information across image patches, while cross-attention
conditions the denoising process on text prompts.

head attention layer, skip connections, as well as a linear projection layer to transform a vector of input
tokens into a vector of output tokens. In the image case, the input tokens are obtained by dividing the
input image into regular patches and using an image encoder to compute for each patch a patch embedding,
supplemented with position embeddings to obtain a vector of input tokens. Within the attention layer,
the patch embeddings are projected through trainable projection matrices, producing so called Query, Key
and Value matrices. The first two matrices are used to compute a learnable affinity matrix A between
different image token positions, which is calculated according to the scaled dot-product attention formula:
A(Q, K) = softmax( QKT

√
dk

). Here, Q and K are d × dk dimensional and refer to the query and key matrix, d

is the number of input tokens, dk the dimensionalities of the d query and key vectors making up the rows
of K and Q, and the matrix Z of output embeddings is obtained as Z = AV , i.e. the attention-weighted
superposition of the rows of the value matrix V (with one row for each input token embedding). In the
simplest case, there is a single (d × d dimensional) affinity matrix, resulting from a single set of projection
matrices. In multi-head attention, a stack of such projections is used, giving rise several attention and value
matrices that whose pairwise products finally superimposed to form a single set of d new patch embeddings
as output. This extension allows the model to focus on multiple aspects of the image and all heads can be
computed in parallel. Depending on the task, ViTs can output an image embedding or be equipped with a
classification head.
In diffusion models, ViT blocks serve two purposes: On the one hand, they implement spatial self-attention
where Q, K, and V refer to image patches. This allows information to be shared across the whole image,
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Figure 4: Architectural choices for image diffusion models. a) Latent Diffusion Models (LDM) use a pre-
trained variational auto-encoder (VAE) to operate in lower-dimensional space, thus preserving computational
resources. b) Cascaded Diffusion Models (CDM) chain denoising UNets of increasing resolution to generate
high-fidelity images. c) Vision Transformer (ViT) models use only attention layers for denoising.

or even an entire video sequence. On the other hand, they are used for cross-attention that conditions the
denoising process on additional guiding information such as text prompts. Here, Q is an image patch and
K and V are based on text tokens that have been encoded into an image-like representation using a CLIP
encoder (Radford et al., 2021).
Purely Vision Transformer-based diffusion models have been proposed as an alternative to the standard
UNet (Peebles & Xie, 2022; Lu et al., 2023). Rather than utilizing convolutions, the whole model consists of
a series of transformer blocks only. Even though far less commonly used, this approach might have distinct
advantages, such as lower computational costs and, in the case of generative video models, more flexibility
in regard to the length of the generated video sequence.

3.4 Cascaded Diffusion Models

Cascaded Diffusion Models (CDM) (Ho et al., 2022b) consist of multiple UNet models that operate at
increasing image resolutions. By upsampling the low-resolution output image of one model and passing it
as input to the next model, a high-fidelity version of the image can be generated. The use of CDMs has
largely vanished after the adaptation of Latent Diffusion Models (Rombach et al., 2022) that allow for native
generation of high-fidelity images with limited resources.
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3.5 LDM

Latent Diffusion Models (LDM) (Rombach et al., 2022) have been an important development of the base
UNet architecture that now forms the de-facto standard for image and video generation tasks. Instead of
operating in pixel space, the input image is first enocoded into a lower-dimensional latent representation
using a pre-trained variational auto-encoder (VAE). This low-resolution representation is then passed to
the UNet where the whole diffusion and denoising process takes place in latent space. The denoised latent
is then decoded back to the original pixel space using the decoder part of the VAE. By operating in a
lower-dimensional latent space, LDMs can save significant computational resources, thus allowing them to
generate higher-resolution images compared to previous diffusion models. Stable Diffusion 1 is an open
source implementation of the LDM architecture.

4 Temporal Dynamics

Text-to-image models such as Stable Diffusion can produce realistic images, but extending them for video
generation tasks is not trivial. If we try to naively generate individual video frames from a text prompt, the
resulting sequence has no spatial or temporal coherence (see Fig. 5 a) ). For video editing tasks, we can
extract spatial cues from the original video sequence and use it to condition the diffusion process. In this
way, we can produce fluid motion of objects, but temporal coherence still suffers due to changes in the finer
texture of objects (see Fig. 5 b) ).
In order to achieve spatio-temporal consistency, video diffusion models therefore need to share information
across video frames. The most obvious way to achieve this is to add a third temporal dimension to the
denoising model. ResNet blocks then implement 3D convolutions, while self-attention blocks are turned into
full cross-frame attention blocks (see Fig. 6). This type of full 3D architecture is however associated with
very high computational costs.
To lower the computational demands of video UNet models, different approaches have been proposed (see
Fig. 7): 3D convolution and attention blocks can be factorized into spatial 2D and temporal 1D blocks.
The temporal 1D modules are often inserted into a pre-trained text-to-image model. Additionally, temporal

1https://github.com/Stability-AI/stablediffusion

Figure 5: Limitations of text-to-video diffusion models for generating consistent videos. a) When using
only a text prompt (“Michael Jordan running”), both the appearance and position of objects change wildly
between video frames. b) Conditioning on spatial information from a reference video can produce consistent
movement, but the appearance of objects and the background still fluctuates between video frames.
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upsampling techniques are often used to increase motion consistency. In video-to-video tasks, pre-processed
video features such as depth estimates are often used to guide the denoising process. Finally, the type of
training data and training strategy has a profound impact on a model’s ability to generate consistent motion.

4.1 Spatio-Temporal Attention Mechanisms

In order to achieve spatial and temporal consistency across video frames, most video diffusion models modify
the self-attention layers in the UNet model. These layers consist of a vision transformer that computes the
affinity between a query patch of an image and all other patches in that same image. This basic mechanism
can be extended in several ways: In temporal attention, the query patch attends to patches at the same

Figure 6: Three-dimensional extension of the UNet architecture for video generation. Topmost: temporally
adjacent UNet 2D-layer outputs are stacked to provide 3D input at each new resolution (yellow) in the UNet
layer chain. Below: processing inside the layer group starts with 3D operations, followed by cross-attention
to accomodate text input, followed by flattening back to purely spatial ResNet and upsampling stages.
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Figure 7: Attention mechanisms for modeling temporal dynamics.

location in other video frames. In full spatio-temporal attention, it attends to all patches in all video frames.
In causal attention, it only attends to patches in all previous video frames. In sparse causal attention, it only
attends to patches in a limited number of previous frames, typically the first and immediately preceding one.
The different forms of spatio-temporal attention differ in how computationally demanding they are and how
well they can capture motion. Additionally, the quality of the produced motion greatly depends on the used
training strategy and data set.

4.2 Temporal Upsampling

Generating long video sequences in a single batch often exceeds the capacity of current hardware. While
different techniques have been explored to reduce the computational burden (such as sparse causal attention),
most models are still limited to generating video sequences that are no longer than a few seconds even on high-
end GPUs. To get around this limitation, many authors have adapted a hierarchical upsampling technique
whereby they first generate spaced out key frames. The intermediate frames can then be filled in by either
interpolating between neighboring key frames, or using additional passes of the diffusion model conditioned
on two key frames each. It should be noted that even with this method, current diffusion models are rarely
able to produce videos that are longer than a few seconds.
As an alternative to temporal upsampling, the generated video sequence can also be extended in an auto-
regressive manner. Hereby, the last generated video frame(s) of the previous batch are used as conditioning
for the first frame(s) of the next batch. While it is in principle possible to arbitrarily extend a video in this
way, the results often suffer from repetition and quality degradation over time.

4.3 Structure Preservation

Video-to-video translation tasks typically strive for two opposing objectives: Maintaining the coarse structure
of the source video on the one hand, while introducing desired changes on the other hand. Adhering to the
source video too much can hamper a model’s ability to perform edits, while strolling too far away form
the layout of the source video allows for more creative results but negatively impacts spatial and temporal
coherence.
A common approach for preserving the coarse structure of the input video is to replace the initial noise in
the denoising model with (a latent representation of) the input video frames. By varying the amount of noise
added to each input frame, the user can control how closely the output video should resemble the input, or
how much freedom should be granted while editing it.
In practice, this method in itself is not sufficient for preserving the more fine-grained structure of the input
video and is therefore usually augmented with other techniques. For one, the outlines of objects are not
sufficiently preserved when adding higher amounts of noise. This can lead to unwanted object warping across
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the video. Furthermore, finer details can shift over time if information is not shared across frames during
the denoising process.
These shortcomings can be mitigated to some degree by conditioning the denoising process on additional
spatial cues extracted from the original video. For instance, specialized diffusion models can be used that
have been trained to take into account depth estimates 2. ControlNet (Zhang & Agrawala, 2023) is a more
general extension for Stable Diffusion that enables conditioning on various kinds of information, such as
depth maps, OpenPose skeletons, or lineart. A ControlNet model is a fine-tuned copy of the encoder portion
of the Stable Diffusion denoising UNet that can be interfaced with a pre-trained Stable Diffusion model.
Image features are extracted using a preprocessor, encoded through a specialized encoder, passed through
the ControlNet model, and concatenated with the image latents to condition the denoising process. Multiple
ControlNets can be combined in an arbitrary fashion. Recently, a form of cross-image attention has also
been implemented by the attention_only preprocessor 3, which enables sharing of information across video
frames.

4.4 Training

Video diffusion models can differ greatly in regards to how they are trained. Some models are trained from
scratch, while others are built on top of a pre-trained image model. It is possible to train a model completely
on labeled video data, whereby it learns associations between text prompts and video contents as well as
temporal correspondence across video frames. However, large data sets of labeled videos are still relatively
rare and may include only a very limited range of content. For that reason, training is often augmented
with readily available data sets of labeled images. This allows a given model to learn a broader number
of relationships between text and visual concepts. Meanwhile, the spatial and temporal coherence across
frames can be trained independently on video data that is often unlabeled.
In contrast to models that are trained from scratch, recent video diffusion approaches often rely on a pre-
trained image generation model such as Stable Diffusion. These models show impressive results in the
text-to-image and image editing domains, but are not built with video generation in mind. For this reason,
they have to be adjusted in order to yield results that are spatially and temporally coherent. One possibility
to achieve this is to add new attention blocks or to tweak existing ones so that they model the spatio-
temporal correspondence across frames. Depending on the implementation, these attention blocks either
re-use parameters from the pre-trained model, are fine-tuned on a training data set consisting of many
videos, or only on a single input video in the case of video-to-video translation tasks. During fine-tuning,
the rest of the pre-trained model’s parameters are usually frozen in place. The different training methods
are shown in Fig. 8.

5 Evaluation Metrics

5.1 Human Ratings

Human ratings are the most important evaluation method for video models since the ultimate goal is to
produce results that appeal to our aesthetic standards. To demonstrate the quality of a new model, subjects
usually rate its output in comparison to an existing baseline. Depending on the study, the ratings can either
purely reflect the subject’s personal preference, or they can refer to specific aspects of the video such as
temporal consistency and adherence to the prompt. Humans are very good at judging what “looks natural”
and identifying small temporal inconsistencies. The downsides of human ratings include the effort and time
needed to collect large enough samples, as well as the limited comparability across studies. For this reason,
it is desirable to also report automated evaluation metrics.

5.2 CLIP Cosine Distance

CLIP cosine similarity is often used to measure prompt and frame consistency. CLIP (Radford et al., 2021)
is a family of vision transformer auto-encoder models that can project image and text data into a shared

2https://huggingface.co/stabilityai/stable-diffusion-2-depth
3https://github.com/Mikubill/sd-webui-controlnet/discussions/1236
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Figure 8: Training approaches for video diffusion models. Left column: training on labeled videos (top),
or training on labelled images (middle) and subsequent refinement on unlabelled videos (bottom). Right
column: inserting attention blocks with pre-trained txt2img model with subsequent refinement of attention
only, using video database (top), or single video only (middle); (bottom) same approach, but relying on
pre-training only.

embedding space. During training, the distance between embedded images and their associated text labels
is minimized. Thereby, visual concepts are represented close to words that describe them. The similarity
between CLIP embeddings is typically measured through their cosine distance. A value of 1 describes
identical concepts, while a value of 0 implies completely unrelated concepts. In order to determine how well
a video sequence adheres to the text prompt used to generate or edit it, the average similarity between each
video frame and the text prompt is calculated (prompt consistency, Esser et al. 2023). In a similar fashion,
it is also possible to get a rough measure of temporal coherence by computing the mean CLIP similarity
between adjacent video frames in a sequence (frame consistency, Esser et al. 2023). In video editing tasks,
the percentage of frames with a higher prompt consistency score in the edited over original video is also
sometimes reported (frame accuracy, Qi et al. 2023).

5.3 FVD

Fréchet Video Distance (Unterthiner et al., 2018) is a metric for assessing the quality of generative video
models based on the Fréchet Inception Distance (FID, Heusel et al. 2017). FID measures the similarity
between the output distribution of a generative image model and its training data. Rather than comparing
the images directly, they are first encoded by a so called inception network, typically an ImageNet classifier.
The FID score is calculated as the squared Wasserstein distance between the image embeddings in the real
and synthetic data. FID can be applied to individual frames in a video sequence to study the image quality
of generative video models, but it fails to properly measure temporal coherence. For this reason, FVD has
been proposed as an extension for the video domain. Its inception net is comprised of a 3D Convnet trained
on action recognition tasks in Youtube videos. The authors demonstrate that the FVD measure is not only
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sensitive to spatial degradation (different kinds of noise), but also to temporal aberrations such as swapping
of video frames. It seems to be a good metric for assessing the quality of unconditional models or text-to-
video models. It might be less suitable for judging the performance of video-to-video models that strongly
alter the appearance of the input videos.

5.4 Optical Flow EPE

Optical flow describes the pixel-level displacement between neighboring video frames. It is estimated using
neural networks, such as RAFT (Teed & Deng, 2020) or GMFlow (Xu et al., 2022). Optical flow estimates
can be used to assess temporal consistency of an edited video sequence against a baseline. Commonly, the
endpoint error (EPE) is used, which expresses the Euclidean distance between the estimated flow of the
edited video and the original video.

6 Literature Overview

6.1 Text-to-Video

Producing realistic videos based on only a text prompt is one of the most challenging tasks for video dif-
fusion models. A main problem lies in the relative lack of suitable training data. Publicly available video
data sets are usually unlabeled, and human annotated labels may not even accurately describe the complex
relationship between spatial and temporal information. Many authors therefore supplement training of their
models with large data sets of labeled images or build on top of a pre-trained text-to-image model. The first
video diffusion models had very high computational demands paired with relatively low visual fidelity. Both
aspects have significantly been improved through architectural advancements, such as moving the denoising
process to the latent space of a variational auto-encoder and using various upsampling techniques.
Ho et al. (2022c) present the first diffusion-based video generation model. It builds on the 3D UNet archi-
tecture proposed by Çiçek et al. (2016), extending it by factorized spatio-temporal attention blocks. This
produces videos that are 16 frames long and 64 × 64 pixels large. These low-resolution videos can then
be extended to 128 × 128 pixels and 64 frames using a larger upsampling model. The models are trained
on a relatively large data set of labeled videos as well as single frames from those videos, which enables
text-guided video generation at time of inference. However, this poses a limitation of this approach since
labeled video data is relatively difficult to come by.
Singer et al.’s (2022) Make-a-Video address this issue by combining supervised training of their model on
labeled images with unsupervised training on unlabeled videos. This allows them to access a wider and more
diverse pool of training data. They also split the convolution layers in their UNet model into 2D spatial
convolutions and 1D temporal convolutions, thereby alleviating some of the computational burden associated
with a full 3D Unet. Finally, they train a masked spatiotemporal decoder on temporal upsampling or video
prediction tasks. This enables the generation of longer videos of up to 76 frames.
Ho et al. (2022a) use a cascaded diffusion process (Ho et al., 2022b) that can generate high resolution videos
in their model called ImagenVideo. They start with a base model that synthesizes videos with 40×24 pixels
and 16 frames, and upsample it over six additional diffusion models to a final resolution of 1280×768 pixels
and 128 frames. The low-resolution base model uses factorized space-time convolutions and attention. To
preserve computational resources, the upsampling models only rely on convolutions. ImagenVideo is trained
on a large proprietary data set of labeled videos and images in parallel, enabling it to emulate a variety
of visual styles. The model also demonstrates the ability to generate animations of text, which most other
models struggle with.
Zhou et al.’s (2022) MagicVideo adapts the Latent Diffusion Models (Rombach et al., 2022) architecture for
video generation tasks. In contrast to the previous models that operate in pixel space, their diffusion process
takes place in a low-dimensional latent embedding space defined by a pre-trained variational auto-encoder
(VAE). This significantly improves the efficiency of the video generation process. This VAE is trained on
video data and can thereby reduce motion artefacts compared to VAEs used in text-to-image models. The
authors use a pre-trained text-to-image model as the backbone of their video model with added causal at-
tention blocks. The model is fine-tuned on data sets of labeled and unlabeled videos. It produces videos of
256×256 pixels and 16 frames that can be upsampled using separate spatial and temporal super resolution
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Table 1: Overview of video diffusion models and their applications.
Paper Model Application Max. Resolution Methodology Shots
Ho et al. (2022c) VDM T V L 128×128×64 FA ↑S ↑T AR Many
Singer et al. (2022) Make-a-Video T I V 768×768×76 FA ↑S ↑T Many
Ho et al. (2022a) ImagenVideo T 1280×768×128 FA ↑S ↑T Many
Zhou et al. (2022) MagicVideo T I V 1024×1024×61 P L FA ↑S ↑T Many
Khachatryan et al. (2023) Text2Video-Zero T V 512×512×8+ P L Many
Blattmann et al. (2023) VideoLDM T V 2048×1280×90000 P L FA ↑S ↑T AR Many
Guo et al. (2023) AnimateDiff T 512×512×16 P L FA Many
Chen et al. (2023) MCDiff I 256×256×10 L AR Many
Molad et al. (2023) Dreamix I V 1280×768×128 P FA ↑S ↑T One
Esser et al. (2023) Runway Gen-2 T I V 448×256×8 P L FA Many
Wu et al. (2022) Tune-A-Video V 512×512×100 P L FA AR One
Qi et al. (2023) FateZero V 512×512×100 P L FA AR One
Liu et al. (2023b) Video-P2P V 512×512×100 P L FA AR One
Ma et al. (2023) Follow Your Pose V 512×512×100 P L FA AR Many
Ceylan et al. (2023) Pix2Video V 512×512×NaN P L FA AR Zero
Wang et al. (2023b) vid2vid-zero V 512×512×8 P L AR Zero
Lu et al. (2023) VDT I V 256×256×30 L FA ↑T Many
Zhao et al. (2023) Make-A-Protagonist V 768×768×8 P L FA One
Huang et al. (2023) Style-A-Video V 512×256×NaN P L Zero
Zhang et al. (2023) ControlVideo V 512×512×100 P L 3D ↑T Zero
Yang et al. (2023) Rerender A Video V 512×512×NaN P L ↑T AR Zero
Liu et al. (2023a) ColorDiffuser V 256×256×NaN P L FA Many
Xing et al. (2023) Make-Your-Video V 256×256×64 P L FA AR Many
Stypułkowski et al. (2023) Diffused Heads A 128×128×8-9s AR Many
Zhua et al. (2023) (Audio Heads) A 1024×1024×NaN P ↑S AR Many
Casademunt et al. (2023) Laughing Matters A 128×128×50 FA AR Many
Lee et al. (2023a) Soundini A 256×256× P One
Lee et al. (2023b) AADiff I A 512×512×150 P L Zero
Liu et al. (2023d) Generative Disco A 512×512×NaN P L Zero
Tang et al. (2023) Composable Diffusion T I V A 512×512×16 P L FA Many
He et al. (2022) LVDM T L 256×256×1024 P L FA ↑T AR Many
Yin et al. (2023) Nuwa-XL T L NaN×NaN×1024 P L FA ↑T Many
Harvey et al. (2022) FDM V L 128×128×15000 P FA ↑T AR Many
Wang et al. (2023a) Gen-L-Video T V L 512×512×hundreds P L 3D NaN
Zhu et al. (2023) MovieFactory T L 3072×1280×NaN P L FA ↑S Many

T : txt2vid, I : img2vid, V : vid2vid, A : aud2vid, L : long vid
P : pre-trained model, L : latent space, 3D : full 3D attn./conv., FA : factorized attn./conv.,
↑S : spatial upsampling, ↑T : temporal upsampling, AR : auto-regressive
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models to 1024×1024 pixels and 61 frames. In addition to text-to-video generation, the authors also demon-
strate video editing and image animation capabilities of their model.
Khachatryan et al.’s (2023) Text2Video-Zero completely eschews the need for video training data, instead
relying only on a pre-trained text-to-image diffusion model that is augmented with cross-frame attention
blocks. Motion is simulated by applying a warping function to latent frames, although it has to be men-
tioned that the resulting movement lacks realism compared to models trained on video data. Spatio-temporal
consistency is improved by masking foreground objects with a trained object detector network and smoothing
the background across frames. Similar to Zhou et al. (2022), the diffusion process takes place in latent space.
Blattmann et al. (2023) present another adaptation of the Latent Diffusion Models (Rombach et al., 2022)
architecture to text-to-video generation tasks called VideoLDM. Similar to Zhou et al. (2022), they add
temporal attention layers to a pre-trained text-to-image diffusion model and fine-tune them on labeled video
data. They demonstrate that, in addition to text-to-video synthesis, their model is capable of generating
long driving car video sequences in an auto-regressive manner, as well as of producing videos of personalized
characters using Dreambooth (Ruiz et al., 2023).
Guo et al. (2023) offer a text-to-video model developed with personalized image generation in mind. Their
AnimateDiff extends a pre-trained Stable Diffusion model with a temporal adapter module merely con-
taining self-attention blocks trained on video data. In this way, simple movement can be induced. The
authors demonstrate that their approach is compatible with personalized image generation techniques such
as Dreambooth (Ruiz et al., 2023) and LoRA (Hu et al., 2021).

6.2 Image-to-Video

There appear to be very few models that mainly focus on image animation, but several more generalized
models offer this capability, such as Make-a-Video (Singer et al., 2022), MagicVideo (Zhou et al., 2022),
Dreamix (Molad et al., 2023), Runway Gen-2 (Esser et al., 2023), AADiff (Lee et al., 2023b), and Composable
Diffusion (Tang et al., 2023). Image animation seems to be closely linked to video prediction in the sense that
most of these models use the same masked prediction mechanism for both. Here, the input image is used as
the first frame of a video sequence and generation of subsequent frames is conditioned on this information.
Chen et al. (2023) focus on the task of animating images in accordance with motion cues. Their Motion-
Conditioned Diffusion Model (MCDiff) accepts an input image and lets the user indicate the desired motion
by drawing strokes on top of it. The model then produces a short video sequence in which objects move in
accordance with the motion cues. It can dissociate between foreground (e.g. actor movement) or background
motion (i.e. camera movement), depending on the context. The authors use an auto-regressive approach
to generate each video frame conditioned on the previous frame and predicted motion flow. For this, the
input motion strokes are decomposed into smaller segments and passed to a UNet flow completion model to
predict motion in the following frame. A denoising diffusion model receives this information and uses it to
synthesize the next frame. The flow completion model and the denoising model are first trained separately
but later fine-tuned jointly on unannotated videos.

6.3 Video-to-Video

The task of editing an existing video can be viewed as less demanding than text-to-video generation. The
original video provides information about the structure and movement of objects that can be used to improve
the temporal coherence while editing. Editing can mean a potentially wide range of operations such as ad-
justing the lighting, style, or background, changing, replacing, re-arranging, or removing objects or persons,
modifying movements or entire actions, and more. To avoid having to make cumbersome specifications for
possibly a large number of video frames, a convenient interface is required. To achieve this, most approaches
rely on textual prompts that offer a flexible way to specify desired edit operations at a convenient level of
abstraction and generality. However, completely unconstrained edit requests may be in conflict with desir-
able temporal properties of a video, leading to a major challenge of how to balance temporal consistency and
editability (see Section 4.3). To this end, many authors have experimented with conditioning the denoising
process based on preprocessed features of the input video.
Molad et al. (2023) present a diffusion video editing model called Dreamix based on the ImagenVideo (Ho
et al., 2022a) architecture. It first downsamples an input video, adds Gaussian noise to the low resolution
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version, then applies an denoising process conditioned on a text prompt. The model is finetuned on each
input video and follows the joint training objective of preserving the appearance of both the entire video and
individual frames. The authors demonstrate that the model can edit the appearance of objects as well as
their actions. It is also able to take either a single input image or a collection of images depicting the same
object and animate it. Like ImagenVideo, Dreamix operates in pixel space rather than latent space. Together
with the need to finetune the model on each video, this makes it somewhat computationally expensive.
Esser et al.’s (2023) Runway Gen-1 enables video style editing while preserving the content and structure
of the original video. This is achieved on the one hand by conditioning the diffusion process on CLIP em-
beddings extracted from a reference video frame (in addition to the editing text prompt), and on the other
hand by concatenating extracted depth estimates to the latent video input. The model uses 2D spatial and
1D temporal convolutions as well as 2D + 1D attention blocks. It is trained on video and image data in par-
allel. Predictions of both modes are combined in a way inspired by classifier-free guidance (Ho & Salimans,
2022), allowing for fine-grained control over the tradeoff between temporal consistency and editability. The
successor model Runway Gen-2 (unpublished) also adds image-to-video and text-to-video capabilities.
Wu et al. (2022) base their Tune-A-Video on a pre-trained text-to-image diffusion model. Rather than fine-
tuning the entire model on video data, only the projection matrices in the attention layers are trained on
a given input video. The spatial self-attention layer is replaced with a spatio-temporal layer attending to
previous video frames, while a new 1D temporal attention layer is also added. The structure of the original
frames is roughly preserved by using latents obtained with DDIM inversion as the input for the generation
process. The advantages of this approach are that fine-tuning the model on individual videos is relatively
quick and that extensions developed for text-to-image tasks such as ControlNet (Zhang & Agrawala, 2023)
or Dreambooth (Ruiz et al., 2023) can be utilized. Several models have subsequently built upon the Tune-
A-Video approach and improved it in different ways:
Qi et al. (2023) employ an attention blending method inspired by Prompt-to-Prompt (Hertz et al., 2022) in
their FateZero model. They first obtain a synthetic text description of the middle frame from the original
video through BLIP (Li et al., 2022) that can be edited by the user. While generating a new image from
the latent obtained through DDIM inversion, they blend self- and cross-attention masks of unedited words
with the original ones obtained during the inversion phase. In addition to this, they employ a masking
operation that limits the edits to regions affected by the edited words in the prompt. This method improves
the consistency of generated videos while allowing for greater editability compared to Tune-A-Video.
Liu et al. (2023b) also base their Video-P2P model on Tune-A-Video and similar to FateZero, they incor-
porate an attention tuning method inspired by Prompt-to-Prompt. Additionally, they augment the DDIM
inversion of the original video by using Null-text inversion (Mokady et al., 2023), thereby improving its
reconstruction ability.
Ma et al.’s (2023) Follow Your Pose conditions the denoising process in Tune-A-Video on pose features
extracted from an input video. The pose features are encoded and downsampled using convolutional layers
and passed to the denoising UNet through residual connections. The pose encoder is trained on image data,
whereas the spatio-temporal attention layers (same as in Tune-A-Video) are trained on video data. The
model generates output that is less bound by the source video while retaining relatively natural movement
of subjects.
Ceylan et al.’s (2023) Pix2Video continues the trend of using a pre-trained text-to-image model as the back-
bone for video editing tasks. In contrast to the previous approaches, it however eliminates the need for
fine-tuning the model on each individual video. In order to preserve the coarse spatial structure of the input,
the authors use DDIM inversion and condition the denoising process on depth maps extracted from the
original video. Temporal consistency is ensured by injecting latent features from previous frames into self-
attention blocks in the decoder portion of the UNet. The projection matrices from the stock text-to-image
model are not altered. Despite using a comparatively light-weight architecture, the authors demonstrate
good editability and consistency in their results.
Wang et al. (2023b) also adapt a pre-trained text-to-image model to video editing tasks without fine-tuning.
Similar to Tune-A-Video and Pix2Video, their vid2vid-zero model replaces self-attention blocks with cross-
frame attention without changing the transformation matrices. While the cross-frame attention in those
previous models is limited to the first and immediately preceding frame, Wang et al. extend attention to the
entire video sequence. Vid2vid-zero is not conditioned on structural depth maps, instead using a traditional
DDIM inversion approach. To achieve better alignment between the input video and user-provided prompt,
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it optimizes the null-text embedding used for classifier-free guidance.
Lu et al. (2023) propose Video Diffusion Transformer (VDT) the first diffusion-based video model that uses
a vision transformer architecture (Peebles & Xie, 2022). The reported advantages of this type of architec-
ture over the commonly used UNet include the ability to capture long-range temporal dynamics, to accept
conditioning inputs of varying lengths, and the scalability of the model. VDT was trained on more narrow
data sets of unlabeled videos and accomplished tasks such as video prediction, temporal interpolation, and
image animation in those restricted domains.
Zhao et al.’s (2023) Make-A-Protagonist combines several expert models to perform subject replacement
and style editing tasks. Their pipeline is able to detect and isolate the main subject (i.e. the “protagonist”)
of a video through a combination of Blip-2 (Li et al., 2023) interrogation, Grounding DINO (Liu et al.,
2023c) object detection, Segment Anything (Kirillov et al., 2023) object segmentation, and XMem (Cheng &
Schwing, 2022) mask tracking across the video. The subject can then be replaced with that from a reference
image through Stable Diffusion inpainting with ControlNet depth map guidance. Additionally, the back-
ground can be changed based on a text prompt. The pre-trained Stable Diffusion UNet model is extended
by cross-frame attention and fine-tuned on frames from the input video.
Huang et al. (2023) present Style-A-Video, a model aimed at editing the style of a video based on a text
prompt while preserving its content. It utilizes a form of classifier-free guidance that balances three separate
guidance conditions: CLIP embeddings of the original frame preserve semantic information, CLIP embed-
dings of the text prompt introduce stylistic changes, while CLIP embeddings of thresholded affinity matrices
from self-attention layers in the denoising UNet encode the spatial structure of the image. Flickering is
reduced through a flow-based regularization network. The model operates on each individual frame without
any form of cross-frame attention or fine-tuning of the text-to-image backbone. This makes it one of the
lightest models in this comparison.
Zhang et al.’s (2023) ControlVideo model extends ControlNet (Zhang & Agrawala, 2023) to video generation
tasks. ControlNet encodes preprocessed image features using an auto-encoder and passes them through a
fine-tuned copy of the first half of the Stable Diffusion UNet. The resulting latents at each layer are then
concatenated with the corresponding latents from the original Stable Diffusion model during the decoder
portion of the UNet to control the structure of the generated images. In order to improve the spatio-temporal
coherence between video frames, ControlVideo adds full cross-frame attention to the self-attention blocks
of the denoising UNet. Furthermore, it mitigates flickering by interpolating between alternating frames.
Longer videos can be synthesized by first generating a sequence of key frames and then generating the miss-
ing frames in several batches conditioned on two key frames each. In contrast to other video-to-video models
that rely on a specific kind of preprocessed feature, ControlVideo is compatible with all ControlNet models,
such as Canny or OpenPose. The pre-trained Stable Diffusion and ControlNet models also do not require
any fine-tuning.
Yang et al. (2023) also use ControlNet for spatial guidance in their Rerender A Video model. Similar to
previous models, sparse causal cross-frame attention blocks are used to attend to an anchor frame and the
immediately preceding frame during each denoising step. During early denoising steps, frame latents are
additionally interpolated with those from the the anchor frame for rough shape guidance. Furthermore,
the anchor frame and previous frame are warped in pixel space to align with the current frame, encoded,
and then interpolated in latent space. To reduce artefacts associated with repeated encoding, the authors
estimate the encoding loss and shift the encoded latent along the negative gradient of the loss function to
counteract the degradation. A form of color correction is finally applied to ensure color coherence across
frames. This pipeline is used to generate key frames that are then filled in using patch-based propagation.
The model produces videos that look fairly consistent when showing slow moving scenes but struggles with
faster movements due to the various interpolation methods used.
Liu et al. (2023a) present ColorDiffuser, a model specialized on colorization of grayscale video footage. It
utilizes a pre-trained text-to-image model and specifically trained adapter modules to colorize short video
sequences in accordance with a text prompt. Color Propagation Attention computes affinities between the
current grayscale frame as Query, the reference grayscale frame as Key, and the (noisy) colorized reference
frame latent as Value. The resulting frame is concatenated with the current grayscale frame and fed into a
Coordinator Module that follows the same architecture as the Stable Diffusion UNet. Feature maps from
the Coordinator module are then injected into the corresponding layers of the denoising UNet to guide the
diffusion process (similar to ControlNet). During inference, an alternating sampling strategy is employed,
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whereby the previous and following frame are in turn used as reference. In this way, color information can
propagate through the video in both temporal directions. Temporal consistency and color accuracy is further
improved by using a specifically trained vector-quantized variational auto-encoder (VQVAE) that decodes
the entire denoised latent video sequence.
Xing et al. (2023) extend a pre-trained text-to-image model conditioned on depth maps to video editing
tasks in their Make-Your-Video model, similar to Pix2Video (Ceylan et al., 2023). They add 2D spatial
convolution and 1D temporal convolution layers, as well as cross-frame attention layers to their UNet. A
causal attention mask limits the number of reference frames to the four immediately preceding ones, as the
authors note that this offers the best trade-off between image quality and coherence. The temporal modules
are trained on a large unlabeled video data set (WebVid-10M, Bain et al. 2021).

6.4 Multimodal Synthesis

Multimodal synthesis might be the most challenging task for video diffusion models. A key problem lies in
how associations between different modalities can be learned. Similar to how CLIP models (Radford et al.,
2021) encode text and images in a shared embedding space, many models learn a shared semantic space for
audio, text, and / or video through techniques such as contrastive learning (Chen et al., 2020).
Stypułkowski et al. (2023) have developed the first diffusion model for generating videos of talking heads.
Their model Diffused Heads takes a reference image of the intended speaker as well as a speech audio clip
as input. The audio clip is divided into short chunks that are individually embedded through a pre-trained
audio encoder. During inference, the reference image as well as the last two generated video frames are
concatenated with the noisy version of the curent video frame and passed through a 2D UNet. Additionally,
the denoising process is conditioned on a sliding window selection of the audio embeddings. The generated
talking faces move their lips in sync with the audio and display realistic facial expressions.
Zhua et al. (2023) follow a similar approach, but instead of using a reference image, their model accepts a
reference video that is transformed to align with the desired audio clip. Face landmarks are first extracted
from the video, then encoded into eye blink embeddings and mouth movement embeddings. The mouth
movements are aligned with the audio clip using contrastive learning. Head positions and eye blinks are en-
coded with a VAE, concatenated together with the synchronized mouth movement embeddings, and passed
as conditioning information to the denoising UNet.
Casademunt et al. (2023) focus on the unique task of laughing head generation. Similar to Diffused Heads
(Stypułkowski et al., 2023), the model takes a reference image and an audio clip of laughter to generate a
matching video sequence. The model combines 2D spatial convolutions and attention blocks with 1D tempo-
ral convolutions and attention. This saves computational resources over a fully 3D architecture and allows
it to process 16 video frames in parallel. Longer videos can be generated in an auto-regressive manner. The
authors demonstrate the importance of using a specialized audio-encoder for embedding the laughter clips
in order to generate realistic results.
Lee et al.’s (2023a) Soundini model enables local editing of scenic videos based on sound clips. A binary mask
can be specified to indicate a video region that is intended to be made visually consistent with the auditory
contents of the sound clip. To this end a sliding window selection of the sound clip’s mel spectrogram is
encoded into a shared audio-image semantic space. During training, two loss-functions are minimized to
condition the denoising process on the embedded sound clips: The cosine similarity between the encoded
audio clip and the image latent influences the generated video content, whereas the cosine similarity between
the image and audio gradients is responsible for synchronizing the video with the audio signal. In contrast
to other models, Soundini does not extend its denoising UNet to the video domain, only generating single
frames in isolation. To improve temporal consistency, bidirectional optical flow guidance is used to warp
neighboring frames towards each other.
Lee et al. (2023b) generate scenic videos from text prompts and audio clips with their Audio-Aligned Dif-
fusion Framework (AADiff). An audio clip is used to identify a target token from provided text tokens,
based on the highest similarity of the audio clip embedding with one of the text token embeddings. For
instance, a crackling sound might select the word “burning”. While generating video frames, the influence
of the selected target token on the output frame is modulated through attention map control (similar to
Prompt-to-Prompt, Hertz et al. 2022) in proportion to the sound magnitude. This leads to changes of rel-
evant video elements that are synchronized with the sound clip. The authors also demonstrate that their
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model can be used to animate a single image and that several sound clips can be inserted in parallel. The
model uses a pre-trained text-to-image model to generate each video frame without additional fine-tuning
on videos or explicit modeling of temporal dynamics.
Liu et al.’s (2023d) Generative Disco provides an interactive interface to support creation of music visual-
izations. They are implemented as visual transitions between image pairs created with a diffusion model
from user-specified text prompts. The interval in-between the two images is filled according to the beat of
the music, using a form of interpolation that employs design patterns to cause shifts in color, subject or
style, or set a transient video focus on subjects. A large language model can further assist the user with
choosing suitable prompts. While the model is restricted to simple image transitions and is therefore not
able to produce realistic movement, it highlights the creative potential of video diffusion models for music
visualization.
Tang et al. (2023) present a model called Composable Diffusion that can generate any combination of output
modalities based on any combination of input modalities. This includes text, images, videos, and sound.
Encoders for the different modalities are aligned in a shared embedding space through contrastive learning.
The diffusion process can then be flexibly conditioned on any combination of input modalities by linearly
interpolating between their embeddings. A separate denoising diffusion model is trained for each of the
output modalities and information between the modality-specific models is shared through cross-attention
blocks. The video model uses simple temporal attention as well as the temporal shift method from An et al.
(2023) to ensure consistency between frames.

6.5 Long Video Generation

Most video diffusion models can only generate a fixed number of video frames per sequence. In order to
circumvent this limitation, auto-regressive extension and temporal upsampling methods have been proposed
(see Section 4.2). Models adopting these methods often adjust and combine them in unique ways that benefit
computational speed or consistency. A common problem of these approaches is that they tend to generate
videos that suffer from repetitive content. Some models have therefore explored ways to generate videos
with changing scenes by varying the text prompts over time.
He et al. (2022) tackle the task of generating long videos with over 1,000 frames with their Long Video
Diffusion Model (LVDM). It combines auto-regressive and hierarchical approaches for first generating long
sequences of key frames and then filling in missing frames. In order to reduce quality degradation induced by
auto-regressive sampling, the authors use classifier-free guidance and conditional latent perturbation which
conditions the denoising process on noisy latents of reference frames. The model utilizes a dedicated video
encoder and combines 2D spatial with 1D temporal self-attention. It can be used for unconditional video
generation or text-to-video tasks.
Yin et al.’s (2023) NUWA-XL model uses an iterative hierarchical approach to generate long video sequences
of several minutes. It first generates evenly spaced key frames from separate text prompts that form a rough
outline of the video. The frames in-between are then filled in with a local diffusion model conditioned on
two key frames. This process is applied iteratively to increase the temporal resolution with each pass. Since
this can be parallelized, the model achieves much faster computation times than auto-regressive approaches
for long video generation. The authors train the model on a new training data set consisting of annotated
Flintstones cartoons. Simple temporal convolution and attention blocks are inserted into the pre-trained
text-to-image model to learn temporal dynamics.
Harvey et al. (2022) similarly explore methods for generating long video sequences with video models that
have a fixed number of output frames. Their Flexible Diffusion Model (FDM) accepts an arbitrary number
of conditioning frames to synthesize new frames, thereby allowing it to either extend the video in an auto-
regressive manner or to use a hierarchical approach (similar to NUWA-XL, Yin et al. 2023). The authors
explore variations of these sampling techniques and suggest an automated optimization routine that finds
the best one for a given training data set.
Wang et al.’s (2023a) Gen-L-Video generates long video sequences by denoising overlapping shorter video
segments in parallel. A video diffusion model predicts the denoised latent in each video segment individually.
The noise prediction for a given frame is than aggregated through interpolation across all segments in which it
appears. This leads to greater coherence across the long video sequence. The authors apply this new method
to existing frameworks in the text-to-video (LVDM, He et al. 2022), tuning-free video-to-video (Pix2Video,
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Ceylan et al. 2023), and one-shot tuning video-to-video (Tune-A-Video, Wu et al. 2022) domains.
Zhu et al. (2023) follow a unique approach for generating long video sequences in their MovieFactory model.
Rather than extending a single video clip, they generate a movie-like sequence of separate related clips from
a single text prompt. ChatGPT is used to turn the brief text prompt into ten detailed scene descriptions.
Each scene description is then passed as a prompt to the video diffusion model to generate a segment of the
video sequence. Finally, audio clips matching each video scene are retrieved from a sound data base. The
pre-trained text-to-image model (Stable Diffusion 2.0) is first expanded by additional ResNet and attention
blocks that are trained in order to produce wide-screen images. In a second training step, 1D temporal
convolution and attention blocks are added to learn temporal dynamics.

7 Outlook and Challenges

Video diffusion models have already demonstrated impressive results in a variety of use cases. However, it
seems that there are still several challenges that need to be overcome before we arrive at models capable of
producing longer video sequences with good temporal consistency.
One issue is the relative lack of suitable training data. While labeled images can be be scraped in large quan-
tity from the internet, there is no comparable source of labeled video data. Many authors have therefore
reverted to training their models jointly on labeled images and unlabeled videos or fine-tuning a pre-trained
text-to-image model on unlabeled video data. While this compromise allows for learning of diverse visual
concepts, it seems that it might not be ideal for capturing object-specific motion. One possible solution is
to manually annotate video sequences (Yin et al., 2023), although it seems unlikely that this can be done
on the scale required for training generalized video models. It is to be hoped that in the future automated
annotation methods will develop that allow for generation of accurate video descriptions (Zare & Yazdi,
2022).
An even more fundamental problem is that simple text labels are often inadequate for describing the tempo-
rally evolving content of videos. This hampers the ability of current video models to generate more complex
sequences of events. For this reason, it might be beneficial to examine alternative ways to describe video
contents that represent different aspects more explicitly, such as the actors, their actions, the setting, camera
angle, lighting, scene transitions, and so on.
A different challenge lies in the modeling of (long-term) temporal dependencies. Due to the memory limita-
tions of current graphics cards, video models can typically only process a fixed number of video frames at a
time. To generate longer video sequences, the model is extended either in an auto-regressive or hierarchical
fashion, but this usually introduces artefacts or leads to degraded image quality over time. Possible improve-
ments could be made on an architectural level. Most video diffusion models build on the standard UNet
architecture of text-to-image models. To capture temporal dynamics, the model is extended by introduc-
ing cross-frame convolutions and / or attention. Using full 3D spatio-temporal convolutions and attention
blocks are however prohibitively expensive. Many models therefore have adopted a factorized pseudo-3D
architecture, whereby a 2D spatial block is followed by a 1D temporal block. While this compromise seems
necessary in the face of current hardware limitations, it stands to reason that full 3D architectures might
be better able to capture complex spatio-temporal dynamics once the hardware allows it. In the meantime,
other methods for reducing the computational burden of video generation will hopefully be explored. This
could also enable new applications of video diffusion, such as real-time video-to-video translation.

8 Conclusion

In this review, we have explored the current literature on video diffusion models. We have first categorized
possible applications based on input modalities. Next, we have discussed technical aspects regarding the
choice of architecture, modeling of temporal dynamics, and model training. Developments in the field have
been outlined through paper summaries. We have concluded with remaining issues and potential for future
improvements.
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