

000 001 002 003 004 005 REAR: SCALABLE TEST-TIME PREFERENCE 006 REALIGNMENT THROUGH REWARD DECOMPOSITION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

ABSTRACT

027 Aligning large language models (LLMs) with diverse user preferences is a critical
028 yet challenging task. While post-training methods can adapt models to specific
029 needs, they often require costly data curation and additional training. Test-time
030 scaling (TTS) presents an efficient, training-free alternative, but its application has
031 been largely limited to verifiable domains like mathematics and coding, where re-
032 sponse correctness is easily judged. To extend TTS to the domain of preference
033 alignment, we introduce a novel framework that models the task as a realignment
034 problem, as the base model often fails to sufficiently align with the preference.
035 Our key insight is to decompose the underlying reward function into two com-
036 ponents: one related to the question and the other to user preference. This al-
037 lows us to derive a REAlignment Reward (REAR) that selectively rescales the
038 preference-related reward while preserving the question-related reward. We show
039 that REAR can be formulated as a linear combination of policy probabilities, mak-
040 ing it computationally efficient and easy to integrate with existing TTS algorithms
041 like best-of-N sampling and tree-search algorithms. Experiments on various pref-
042 erence alignment and role-playing benchmarks demonstrate that TTS with REAR
043 enables scalable and effective test-time realignment with superior performance.
044

1 INTRODUCTION

045 The remarkable success of Large Language Models (LLMs) in aligning with human preferences
046 is largely attributed to techniques such as Reinforcement Learning from Human Feedback (RLHF)
047 (Ouyang et al., 2022; Bai et al., 2022; Rafailov et al., 2023; Guo et al., 2025). This alignment enables
048 a wide range of applications, from personalized assistants (OpenAI, 2023; Chen et al., 2024; Cui
049 et al., 2024) to recommendation systems (Wu et al., 2024; Xue et al., 2023). However, a fundamental
050 challenge remains: the preference alignment of a pretrained model is inherently tied to its training
051 data. This often leads to a mismatch when the model is applied to downstream tasks that require
052 personalized or diverse preferences (Jang et al., 2023; Zhang et al., 2025b;d). While this gap can
053 be bridged through task-specific post-training (Zhang et al., 2025b; Li et al., 2025b), such methods
054 demand significant investment in data curation and computational resources.

055 To circumvent the costs of post-training, we explore aligning models at inference time. While
056 some approaches modify the policy distribution at the token level to reflect user preferences (Zhang
057 et al., 2025c; Gao et al., 2024), they tend to be computationally intensive and scale poorly. A
058 more promising direction is Test-Time Scaling (TTS) (OpenAI, 2024; Muennighoff et al., 2025;
059 Beeching et al., 2025), where models leverage additional computation during generation to enhance
060 output quality. However, existing TTS research has predominantly focused on domains such as
061 mathematics and coding, where the correctness can be easily verified (OpenAI, 2024). Applying
062 TTS to preference alignment is more challenging, as the quality of a response is holistic and not
063 reducible to a simple verifiable answer. This raises a critical question: how can we effectively guide
064 a TTS framework to evaluate and improve responses for complex preference alignment tasks?

065 In this work, we address this challenge by framing the TTS process as a realignment problem.
066 We posit that while a pretrained model possesses general instruction-following abilities, its original
067 training objective may not be optimal for a specific user’s needs. An inference-time realignment
068 process can rescale the importance of user preference to generate a more aligned response. As
069 illustrated in Figure 1, when a user asks for enjoyable ways to study math but expresses a dislike

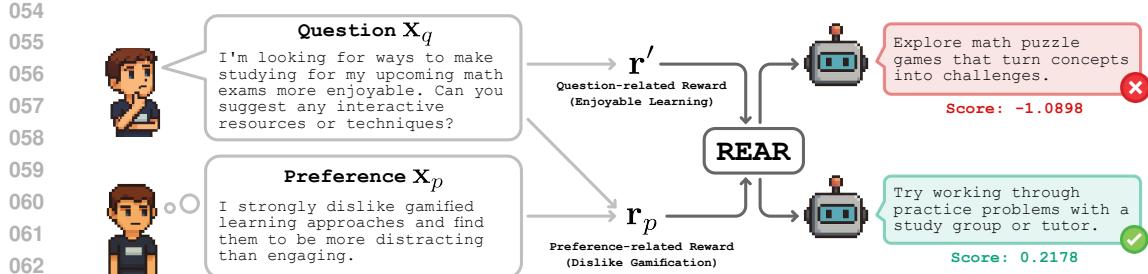


Figure 1: A motivating example of REAR. The method realigns its response from a gamified suggestion to a collaborative one when selecting candidate responses according to REAR scores.

for gamification, a TTS method might generate multiple responses. Some responses may only focus on answering the question of “enjoyable learning approaches”, while the preferred responses should also align with the preference on “dislike gamification”. Our REAlignment Reward (REAR) is designed to capture the preference alignment capabilities. Specifically, we decompose the reward of a pretrained LLM into a question-related component and a preference-related component. REAR then rescales the preference component to acquire a realigned reward value, allowing us to score the candidate responses and thus effectively select the most aligned option. We further show that REAR can be efficiently computed as a linear combination of policy probabilities, and then incorporate REAR into two TTS methods: a simple best-of-N sampling strategy (Stiennon et al., 2020) and a more sophisticated tree-search algorithm DVTS (Beeching et al., 2025). The contributions of this paper are summarized as follows:

- We formalize test-time preference alignment as a realignment problem and propose REAR, a computationally efficient reward from a decomposed preference alignment objective.
- We develop two scalable TTS methods guided by REAR: a best-of-N sampling approach and a DVTS-based search algorithm.
- Extensive experiments on preference alignment and role-play benchmarks show that our REAR-guided TTS methods outperform existing test-time alignment approaches.

2 PRELIMINARIES

In this section, we first formalize the text generation problem as a Markov Decision Process (MDP) (Puterman, 1994; Sutton & Barto, 2018) at the token level. The MDP model enables us to see how we can apply modern reinforcement learning (RL) algorithms (Schulman et al., 2017; 2015) to text generation problems. Then we will provide a view of reinforcement learning from human feedback (RLHF) (Ouyang et al., 2022) from the perspective of rewards in the given MDP model.

2.1 TOKEN-LEVEL MDP FOR TEXT GENERATION

We can model the text generation process as an MDP according to Ramamurthy et al. (2023). The MDP can be defined as a tuple $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, \mathcal{P}, r, \gamma, \rho, T \rangle$, where \mathcal{S} is the state space and \mathcal{A} is the action space defined as the vocabulary of a language model, where each action is a token in the vocabulary. We use $\pi(a | s)$ to denote the policy, i.e., an LLM, that provides a distribution of actions given the state s . At the beginning of text generation, the prompt $x = (x_1, x_2, \dots, x_m)$ of length m is sampled from the initial distribution $\rho(s)$ as the initial state s_0 , while we use the policy $\pi(\cdot | s_t)$ to sample an action a_t at each time step $t \in \{1, \dots, T\}$. The MDP thus transits to the next state $s_{t+1} \sim \mathcal{P}(\cdot | s_t, a_t)$ according to the transition function \mathcal{P} . The transition function is a deterministic function satisfying $\mathcal{P}(s_{t+1} | s_t, a_t) = 1$ when $s_{t+1} = s_t \oplus a_t$, where \oplus is the concatenation operation. The reward function $r(s_t, a_t)$ is given at each time step t , where the model maximizes the discounted cumulative reward with a discount factor γ . The episode terminates when the model generates an end-of-sequence token defined in the vocabulary or exceeds the maximum length T . We assume that the early-stop sequence is also padded to length T for notational simplicity.

108 2.2 REINFORCEMENT LEARNING FROM HUMAN FEEDBACK
109

110 The main objective of reinforcement learning from human feedback (RLHF) is to find a policy
111 that can maximize the expected cumulative reward of the defined MDP. Classical RLHF methods
112 (Ouyang et al., 2022; Bai et al., 2022) usually consider learning a reward model to turn human
113 preferences into reward signals. The objective can be formulated as follows:

$$114 \max_{\pi} \mathbb{E}_{s_0 \sim \rho, a_t \sim \pi(\cdot|s_t), s_{t+1} \sim \mathcal{P}(s_t, a_t)} \left[\sum_{t=0}^T \gamma^t (r(s_t, a_t) - \beta D_{\text{KL}}(\pi(\cdot|s_t) \parallel \pi_{\text{ref}}(\cdot|s_t))) \right], \quad (1)$$

117 where we use D_{KL} to denote the Kullback-Leibler (KL) divergence and β is a hyper-parameter to
118 limit the divergence between the policy to be learned π and a reference policy π_{ref} . The reference
119 policy usually comes from the base model that is used to initialize RL training. Following Li et al.
120 (2025b), we can convert this objective from the perspective of maximum entropy RL (Haarnoja
121 et al., 2018) according to the following proposition.

122 **Proposition 2.1.** *The optimization problem in Equation (1) is equivalent to*

$$123 \max_{\pi} \mathbb{E}_{s_0 \sim \rho} [\mathbb{E}_{a_0 \sim \pi(\cdot|s_0)} [Q^{\pi}(s_0, a_0) + \beta \mathcal{H}(\pi(\cdot|s_0))]], \quad (2)$$

124 where $\mathcal{H}(\pi(\cdot|s_t)) = \mathbb{E}_{a_t \sim \pi(\cdot|s_t)} [-\log \pi(a_t|s_t)]$ is the entropy of π in the state s_t , and

$$126 \quad 127 \quad 128 Q^{\pi}(s_0, a_0) = \mathbb{E}_{s_t \sim \mathcal{P}(s_0, a_0), a_t \sim \pi(\cdot|s_t)} \left[r'(s_0, a_0) + \sum_{t=1}^T \gamma^t (r'(s_t, a_t) + \beta \mathcal{H}(\pi(\cdot|s_t))) \right]. \quad (3)$$

129 is the soft-Q function of the policy π . The reshaped reward $r'(s, a) = r(s, a) + \beta \log \pi_{\text{ref}}(a|s)$. The
130 soft-Q function Q^{π} satisfies the following Bellman equation:

$$131 \quad Q^{\pi}(s, a) = r'(s, a) + \gamma \mathbb{E}_{s' \sim \mathcal{P}(s, a), a' \sim \pi(\cdot|s')} [Q^{\pi}(s', a') + \beta \mathcal{H}(\pi(\cdot|s'))] = r'(s, a) + \gamma V^{\pi}(s'). \quad (4)$$

132 We denote $V^{\pi}(s) = \mathbb{E}_{a \sim \pi(\cdot|s)} [Q^{\pi}(s, a) + \beta \mathcal{H}(\pi(\cdot|s))]$ as the value function of policy π .

133 We defer the proof to Appendix A.1. Here Proposition 2.1 shows that the RLHF objective can be
134 converted to the maximum entropy RL problem under the reward r' . As this optimization manner is
135 widely used in LLM research, we can thus use various open-source LLMs to address our preference
136 realignment problem described in the following section.

138 3 TEST-TIME REALIGNMENT THROUGH REWARD DECOMPOSITION
139

140 In this section, we detail our method for test-time preference realignment. We begin by introducing
141 the theoretical foundation of our approach: a reward decomposition that separates the model's
142 objective into question-related and preference-related components. Based on this, we derive our
143 REAlignment Reward (REAR), a score that allows us to control the emphasis on user preference.
144 Finally, we show how REAR can be integrated into standard test-time scaling (TTS) algorithms
145 like best-of-N sampling (Stiennon et al., 2020) and DVTS (Beeching et al., 2025) to produce more
146 aligned responses.

147 3.1 REALIGNMENT REWARD (REAR)
148

149 In a preference alignment task, an LLM receives a question prompt x_q and a preference prompt
150 x_p . The concatenated prompt $x = x_q \oplus x_p$ is used to generate a response. To formalize this
151 into a token-level MDP form, we define the state s as the sequence that contains the full prompt x
152 and the generated answer, and the state s^q as the sequence that contains only the question and the
153 generated answer. Therefore, we can obtain two reward terms $r'(s, a)$ and $r'(s^q, a)$, which represent
154 the reward when considering the full prompt and only the question part, respectively. Although we
155 cannot directly access these rewards, there exists a relationship between these two terms. Intuitively,
156 the reward $r'(s, a)$ should contain both the reward $r'(s^q, a)$ which only considers the question, and
157 an additional reward that focuses on the preference part, which forms the following equation.

$$158 \quad 159 \quad r'(s, a) = r'(s^q, a) + \alpha r_p(s, a), \quad (5)$$

160 where $r_p(s, a)$ is a preference-related reward that reflects how the chosen action aligns with the
161 given preference. Here we introduce a linear combination to decompose the reward $r'(s, a)$ into the
162 question-related reward $r'(s^q, a)$ and the preference-related reward $r_p(s, a)$.

162 **Lemma 3.1.** *The policy $\pi(a|s)$ when taking the full prompt x as input is the optimal policy of the
163 following optimization problem under the decomposition in Equation (5):*

$$165 \max_{\hat{\pi}} \mathbb{E}_{s_0 \sim \rho, a_t \sim \hat{\pi}(\cdot|s_0), s_{t+1} \sim \mathcal{P}(s_t, a_t)} \left[\sum_{t=0}^T \gamma^t \left(r_p(s_t, a_t) - \frac{\beta}{\alpha} D_{\text{KL}}(\hat{\pi}(\cdot|s_t) \parallel \pi(\cdot|s_t^q)) \right) \right], \quad (6)$$

167 where s_t^q is the corresponding question-only state of s_t .
168

169 The proof can be found in Appendix A.2. Lemma 3.1 reveals that the original policy $\pi(a|s)$ implicitly
170 maximizes the preference-related reward $r_p(s, a)$ subject to a constraint on the KL-divergence
171 from the distribution of the question-only policy. **This framing of Reward Decomposition is essential.** Unlike heuristic strategies such as simple policy interpolation, proving that the base model
172 inherently optimizes a specific reward structure allows us to treat the derived REAR score as a
173 valid value function. This theoretical foundation validates the use of lookahead search algorithms
174 like DVTS, which require a consistent reward signal, rather than being limited to simple sampling
175 heuristics. This framing suggests a clear path to realignment: if we could control this trade-off at
176 test time, we could steer the generation to be more or less aligned with the preference. To this
177 end, we introduce a new, flexible coefficient $\hat{\alpha}$ to re-weight the preference component, defining our
178 realignment reward as:

$$179 r_{\text{REAR}}(s, a) = r'(s^q, a) + \hat{\alpha} r_p(s, a). \quad (7)$$

180 By adjusting $\hat{\alpha}$ at test time, we can modulate the influence of the preference reward, steering the
181 generation towards responses that are more aligned with a user’s specific needs, without altering the
182 underlying model. The challenge here is that $r_{\text{REAR}}(s, a)$ is defined in terms of unobserved reward
183 components. Fortunately, the framework of maximum entropy RL (Haarnoja et al., 2018; Li et al.,
184 2025a) allows us to express this reward in a computable form based on policy probabilities.

185 **Lemma 3.2.** *The realignment reward $r_{\text{REAR}}(s, a)$ keeps policy-optimality with the following proxy
186 reward:*

$$187 \hat{r}_{\text{REAR}}(s, a) = \frac{(\alpha - \hat{\alpha})\beta}{\alpha} \log \pi(a \mid s^q) + \frac{\hat{\alpha}\beta}{\alpha} \log \pi(a \mid s). \quad (8)$$

189 Intuitively, this substitution is grounded in Maximum Entropy RL, where the optimal policy follows
190 a Boltzmann distribution $\pi^*(a|s) \propto \exp(Q^*(s, a)/\beta)$. Since the Q-function represents the long-
191 term cumulative reward, the log-probability of the policy is directly proportional to the reward plus
192 value function terms. This allows us to mathematically recover the implicit reward optimizing the
193 policy from the log-probabilities themselves, providing a dense, token-level signal without training a
194 separate reward model. We defer the detailed proof to Appendix A.3, which shows that the
195 difference between the two rewards is a potential-based shaping term (Ng et al., 1999).

197 3.2 TEST-TIME SCALING WITH REAR

199 Our goal is to find a policy that maximizes the expected discounted REAR at inference time. According
200 to Lemma 3.2, this is equivalent to maximizing the expected discounted proxy reward
201 $\hat{r}_{\text{REAR}}(s, a)$. Since the optimal policy is invariant to positive scaling of the reward function, we
202 can simplify $\hat{r}_{\text{REAR}}(s, a)$ by omitting the constant factor β to derive the following score function:

$$203 S(s, a) = (1 - \lambda) \log \pi(a \mid s^q) + \lambda \log \pi(a \mid s), \quad (9)$$

204 where we set $\lambda = \frac{\hat{\alpha}}{\alpha} > 0$ as a hyper-parameter. This concise formulation reveals how we integrate
205 the LLM preferences that are hard to verify by encoding its output probability to a token-level
206 reward. Intuitively, $\lambda > 1$ indicates that the preference is more important in the real case than when
207 the model is trained and $\lambda < 1$ will reduce the importance of the preference. When $\lambda = 1$, the
208 result is equivalent to directly using the original LLM for inference. In our experiments, we find that
209 choosing a relatively large λ will yield better performance on benchmark scores in most tasks.

210 This score can be extended to a response trajectory $\tau = (s_0, a_0, \dots, s_T, a_T)$ across multiple tokens
211 in the form of a cumulative score:

$$212 S(\tau) = \sum_{t=0}^T \gamma^t S(s_t, a_t). \quad (10)$$

215 Since τ can represent either a complete or partial response, this formulation allows for flexible
integration with various TTS methods. We explore two such methods:

216 **Best-of-N (BoN) with REAR.** We simply sample N responses and calculate the REAR score for
 217 each response. Then we select the response with the highest score as the final response.
 218

219 **Diverse Verifier Tree Search (DVTS) with REAR.** We use the DVTS (Beeching et al., 2025)
 220 algorithm to select a final response, where the response generated step-by-step in a tree search
 221 manner and selected according to the REAR score.

222 Compared to external or generative reward models (Lambert et al., 2025; Liu et al., 2024a; Zhang
 223 et al., 2024; Mahan et al., 2024), REAR solves the preference alignment problem by solely rescaling
 224 its inherent preferences, without requiring extra training, external model calls or extra generation
 225 steps. This makes REAR highly flexible and readily deployable in a plug-and-play manner across
 226 almost any LLM. Moreover, since REAR provides a token-level reward formulation, it can be ap-
 227 plied to partial responses, enabling its use with advanced TTS algorithms like DVTS, which is not
 228 valid for general reward models that can only perform effective evaluations with the whole response.
 229

230 4 RELATED WORK

232 **Preference Alignment** Aligning LLMs with human preferences is a central challenge in AI safety
 233 and usability. Early and prominent approaches rely on training-based methods, particularly rein-
 234 force learning from human feedback (RLHF) (Ouyang et al., 2022; Bai et al., 2022), where
 235 a reward model is trained on human preference data to fine-tune a base model. Subsequent work
 236 has sought to simplify this pipeline (Rafailov et al., 2023) bypassing the need for an explicit reward
 237 model. Other approaches focus on creating specialized data curricula (Zhang et al., 2025b) or main-
 238 taining original capabilities when adapting to new preferences (Li et al., 2023; Wang et al., 2025;
 239 Li et al., 2025b). While effective, these training-based methods often require extensive data and are
 240 computationally expensive. This motivates a shift towards test-time alignment methods that adapt
 241 model behavior without updating weights. For instance, Zhang et al. (2025c) and Gao et al. (2024)
 242 propose techniques to modify the model’s output distribution at each generation step to better align
 243 with given preferences. Our work builds on this line of research but focuses on scaling the align-
 244 ment process through a novel reward formulation within a TTS framework rather than direct policy
 245 modification, which provides a stable and scalable performance improvement.
 246

246 **Test-time Scaling** Test-time scaling (TTS) aims to improve model performance by allocating more
 247 computational resources during inference, realized by extended thinking (OpenAI, 2024; Guo et al.,
 248 2025; Muennighoff et al., 2025) or parallel searching (Wang et al., 2024a; Comanici et al., 2025;
 249 Huang & Yang, 2025). This paradigm has been particularly successful in domains where answers
 250 can be easily extracted and verified, such as mathematical and coding problems (OpenAI, 2024;
 251 Zhang et al., 2025a), where researchers adopt self-consistency (Wang et al., 2023; Li et al., 2024)
 252 and use explicit verifiers such as process-based reward models (Lightman et al., 2024; Wang et al.,
 253 2024b) with sophisticated search algorithms (Wei et al., 2022; Yao et al., 2023; Wang et al., 2024a)
 254 that explore different reasoning paths. However, applying TTS to open-ended preference alignment
 255 tasks is challenging due to the absence of a simple, verifiable ground truth. Generative reward
 256 models (Zhang et al., 2024; Mahan et al., 2024; Liu et al., 2025) are proposed for their ability to
 257 verify an answer through the generation process but still face challenges on computational efficiency
 258 and accuracy. Recent study (Li et al., 2025a) indicates that the LLM itself is an implicit reward
 259 model, supporting the validity of policy probabilities as rewards. Our approach differs by deriving
 260 a specialized reward, REAR, that is specifically designed for preference realignment and can be
 261 integrated into various TTS algorithms, bridging the gap between TTS for verifiable reasoning and
 262 TTS for subjective preference alignment. [Unlike methods like ARGs \(Khanov et al., 2024\) or IVG \(Liu et al., 2024b\) which rely on training and hosting external Reward Models or value heads, REAR is fully training-free and derives its signal solely from the base model’s internal probabilities. This allows REAR to extend TTS to open-ended domains where no ground-truth verifiers exist.](#)
 263

265 5 EXPERIMENTS

268 In this section, we investigate the efficacy of REAR-guided test-time sampling (TTS) on existing
 269 preference alignment tasks. We first describe our experimental setup in Section 5.1. Then in Sec-
 270 tion 5.2, we specifically seek to determine whether our proposed hyperparameter, λ , can effectively

270 control the degree of alignment with user preferences. In Section 5.3, we evaluate the performance
 271 of our method against several baselines, including other test-time preference alignment methods
 272 and TTS approaches that use different reward forms. In Section 5.4, we further show the scaling
 273 performance of our methods and analyze the robustness and efficiency of our method.
 274

275 **5.1 EXPERIMENTAL SETUP**
 276

277 **Evaluation Benchmarks** To evaluate the preference alignment capabilities of different methods,
 278 we use three recent benchmarks:
 279

- 280 • **PrefEval** (Zhao et al., 2025) requires the LLM to generate personalized responses across
 281 conversations according to the user’s previously stated preferences, which provides a com-
 282 prehensive evaluation of the LLM’s capability on inferring, remembering, and applying the
 283 user preference to multi-turn conversations. The PrefEval benchmark contains three data
 284 types, including explicit preference, implicit choice, and implicit preference.
 285
- 286 • **Multifaceted Bench** (Lee et al., 2024) is designed to evaluate whether the LLM can gen-
 287 erate context-specific responses tailored to user preferences. Each sample is paired with
 288 synthetic system messages and reference answers.
 289
- 290 • **PingPong** (Gusev, 2024) evaluates the role-playing capabilities of LLMs through a multi-
 291 turn conversation. As role-playing can be framed as a preference alignment problem, we
 292 use this benchmark to assess our method’s effectiveness in this practical scenario.
 293

294 **Baselines** Beyond greedy decoding, several methods can align model outputs with human prefer-
 295 ences. We compare REAR against baselines from two main categories, with implementation details
 296 provided in Appendix C:
 297

- 298 • **Test-time preference alignment methods.** We include two representative methods:
 299 Amulet (Zhang et al., 2025c) and Linear Alignment (LA) (Gao et al., 2024). These meth-
 300 ods align generations with preferences by modifying the token-level generation probability
 301 distribution.
 302
- 303 • **Test-time Sampling with Other Rewards.** Like our method, these baselines use best-of-N
 304 (BoN) sampling but employ different reward sources. We consider two variants: one using
 305 an external reward model (External RM) and another using the generative model itself as
 306 a reward source (GenRM). For the external RM, we use the Skywork-Reward-Llama-8B
 307 model (Liu et al., 2024a) due to its strong performance on RewardBench (Lambert et al.,
 308 2025) and its comparable size to our base model.
 309

310 For our main experiments, we use Qwen2.5-7B-Instruct (Yang et al., 2024) as the base model.
 311 We employ the SGLang inference engine (Zheng et al., 2024) for response generation, maintaining
 312 consistent sampling parameters across all methods except for Amulet and Linear Alignment, for
 313 which we use the authors’ original implementation (Zhang et al., 2025c). We use $N = 16$ samples
 314 for BoN methods in our experiments or equivalent sampling size for DVTS. Further implementation
 315 details are provided in Appendix C.
 316

317 **5.2 CONTROLLABLE REALIGNMENT WITH λ**
 318

319 As established in our methodology, the hyperparameter λ governs the strength of preference align-
 320 ment by scaling the preference-related reward. A larger λ directs more attention to this reward while
 321 a smaller λ may not sufficiently align the model with user preferences but focuses more on answer-
 322 ing the question. In this section, we investigate the impact of λ on benchmark performance. We
 323 conduct experiments on the PrefEval benchmark, evaluating both Best-of-N and DVTS with REAR
 324 across a range of λ values.
 325

326 We focus on two data types from PrefEval: explicit preference and implicit choice. Although derived
 327 from the same source data, they employ different prompting and evaluation protocols. For the ex-
 328 plicit preference task, the model must generate a response that adheres to a given system preference
 329 prompt. An external LLM judge evaluates the response quality based on multiple rubrics, including
 330 helpfulness, preference violation, consistency, and hallucination. We report the average score across
 331

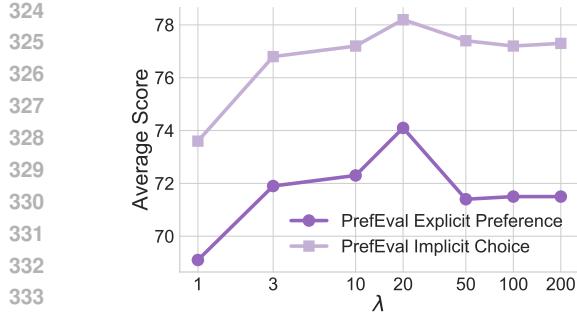


Figure 2: Benchmark scores of REAR-guided TTS methods on PrefEval explicit preference and implicit choice data with different λ values.

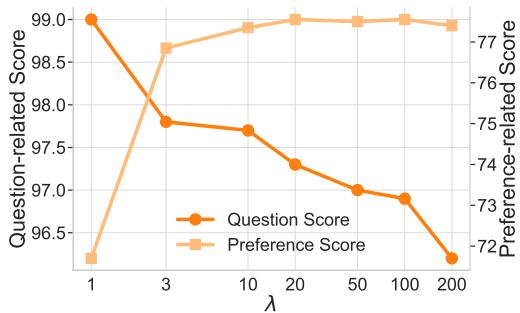


Figure 3: Scores on questions and preference of REAR-guided TTS methods on PrefEval explicit preference data with different λ values.

Table 1: Performance comparison of REAR-guided TTS methods and other baselines on various preference alignment benchmarks. Bold values indicate the best performance on the corresponding benchmark.

Benchmark	DVTS w/ REAR (Ours)	BoN w/ REAR (Ours)	Greedy	External RM	GenRM	Amulet	LA
<i>PrefEval Scores</i>							
Explicit Preference	77.7	74.1	67.0	73.4	69.0	68.5	64.2
Implicit Choice	78.6	78.2	71.5	78.3	74.7	70.4	78.0
Implicit Preference	19.1	16.2	12.0	17.0	12.9	13.1	12.8
Multifaceted Bench	76.8	76.3	75.3	76.5	76.1	75.4	75.6
<i>Ping-Pong Bench</i>							
Score	3.03	3.07	2.97	2.97	3.01	2.87	3.01
Stay in Character Score	2.19	2.35	2.01	2.10	2.09	2.07	2.13
Fluency Score	4.67	4.50	4.88	4.52	4.76	4.47	4.70
Entertaining Score	2.24	2.36	2.02	2.27	2.18	2.09	2.20

all rubrics. In contrast, the implicit choice task presents preferences within a multi-turn conversation, from which the model must infer the user’s inclination. The evaluation is a multiple-choice question where the model selects the most preferred response out of four options, and performance is measured by accuracy.

Benchmark Scores with Different λ As shown in Figure 2, the performance of BoN with REAR on both PrefEval explicit preference and implicit choice data varies with λ . The scores for both data types follow a similar trend: they first increase and then decrease as λ grows. Optimal performance on both tasks is achieved consistently at $\lambda = 20.0$, with lower scores observed for both smaller and larger values of λ . We also find similar trends when adjusting λ in other tasks and the results are deferred to Appendix E.

Analysis on Generated Responses To understand this non-monotonic relationship, we analyze how λ affects different aspects of response quality. The detailed rubrics from the PrefEval explicit preference task allow us to disentangle performance into two components: general response quality and preference alignment. We use the “helpfulness” score to measure the former and the average of “preference violation” and “preference acknowledgement” scores for the latter. As illustrated in Figure 3, these two components exhibit monotonic trends with respect to λ . As λ increases, the preference-related score improves, while the question-related score (helpfulness) declines. This trade-off explains why simply increasing λ does not guarantee better overall performance; an excessively large λ compromises the model’s fundamental ability to provide helpful answers, thereby reducing the overall quality of the response.

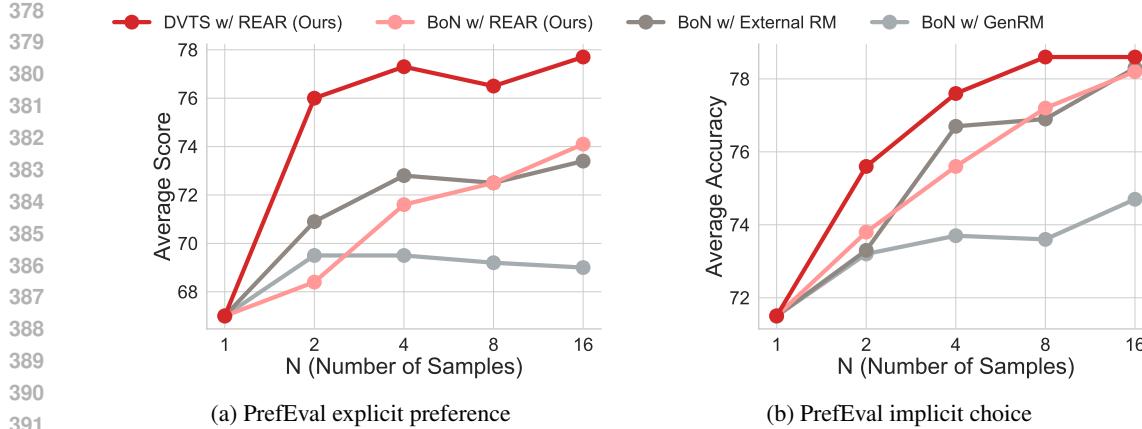


Figure 4: Scaling performance on the PrefEval benchmark with varying numbers of samples (N) for different methods. We use the average LLM-evaluated scores for the explicit preference task (left) and the accuracy of selected choices for the implicit choice task (right).

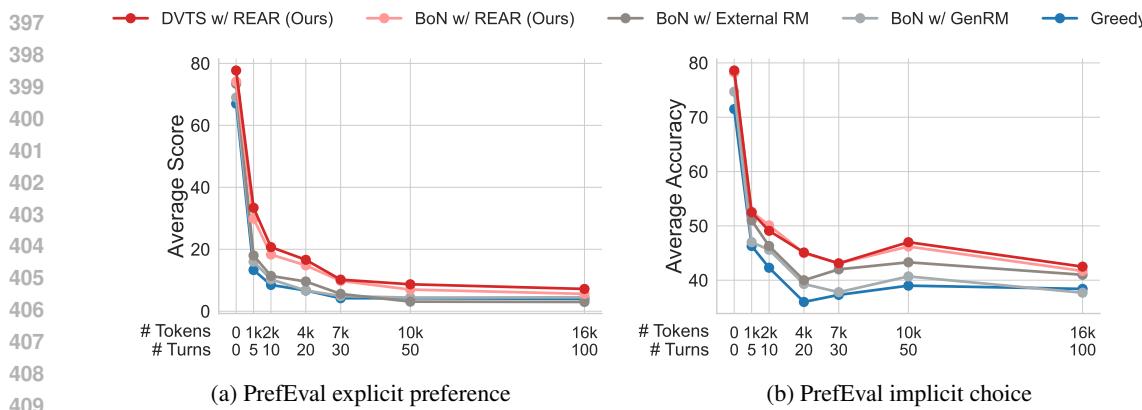


Figure 5: Long-context performance of REAR-guided TTS methods and other baselines on the explicit preference data and implicit choice data from the PrefEval benchmark with augmented conversation turns. The x-axis indicates the number of conversation turns and the estimated total number of tokens for the augmented conversational data. We use the average LLM-evaluated scores for the explicit preference task (left) and the accuracy of choices for the implicit choice task (right).

5.3 PERFORMANCE COMPARISONS

We compare our methods against the baselines on the PrefEval, Multifaceted, and Ping-Pong benchmarks. As shown in Table 1, both BoN with REAR and DVTS with REAR outperform all baselines on most benchmarks, demonstrating strong performance on both accuracy-based (PrefEval implicit choice) and LLM-evaluated tasks. The BoN baseline using an external RM also performs competitively, likely because the external model provides a valuable additional reward signal to select the best response. In contrast, using the generative model itself as a reward model (GenRM) does not yield significant improvement, suggesting that the model struggles to reliably verify its own responses. In addition, the test-time preference alignment methods, including Amulet and LA, also underperform on these benchmarks.

On a benchmark-specific level, we observe a significant performance drop on the PrefEval implicit preference task compared to the other two PrefEval tasks, which is consistent with previous findings (Zhao et al., 2025). Interestingly, on the Ping-Pong benchmark, all TTS methods achieve higher scores on the “stay-in-character” and “entertaining” rubrics, but decrease the “fluency” score, where greedy decoding performs best. This suggests that TTS methods prioritize role-playing traits at the

expense of fluency. For the multifaceted benchmark, while we do not report detailed rubric scores since they differ from specific samples, our DVTS variant again outperforms the baselines.

5.4 ROBUSTNESS AND EFFICIENCY OF REAR-GUIDED TTS

Scaling Performance We investigate how the performance of our method scales with the number of samples (N). As shown in Figure 4, performance on the PrefEval explicit preference and implicit choice datasets improves as N increases, with diminishing returns for larger values. Our BoN approach with REAR demonstrates scaling performance comparable to the variant using an external RM. The DVTS variant achieves stronger performance with a smaller sampling budget, highlighting the efficiency of its step-by-step tree search approach.

Robustness on Long-context Input A key advantage of REAR is that it is derived directly from the generation process, making it inherently robust. This becomes particularly evident with out-of-distribution inputs, such as long-context prompts. Following the methodology from Zhao et al. (2025), we evaluate robustness by augmenting conversations with additional turns inserted between the preference context and the question. As shown in Figure 5, our methods consistently outperform the baselines across various context lengths. Test-time alignment baselines including Amulet and LA are excluded due to out-of-memory errors on long-context data. The performance of BoN with an external RM and GenRM degrades significantly on long-context inputs, occasionally falling below outside the external RM’s training distribution,

Efficiency of REAR REAR offers significant efficiency gains over baselines that rely on external reward models. We report the inference cost of REAR-guided methods compared to other baselines on the PrefEval explicit preference task in Figure 6, using a node of 8 NVIDIA GPUs with 96GB memory, by calculating rewards from the model’s internal probabilities, REAR avoids the substantial computational overhead of loading and executing additional models. This makes REAR-guided methods not only more efficient but also easier for deployment.

6 CONCLUSION

In this work, we introduced the REAlignment Reward (REAR), a novel and efficient reward that realigns LLM to user preferences at test time. By decomposing the underlying reward into question-related and preference-related portions, we can calculate REAR directly from the model’s own policy probabilities. We further integrate two test-time scaling methods, best-of-N sampling and DVTS, into REAR, enabling controllable and effective preference realignment without any model training. Extensive experiments show that REAR-guided TTS methods significantly outperforms both existing test-time alignment techniques and TTS methods guided by other rewards across a range of preference alignment benchmarks. Our work provides a controllable and scalable solution for personalizing LLM interactions and enables test-time scaling to more subjective, open-ended domains without the need of other models.

Despite these promising results, our work has several limitations. First, the performance of REAR is dependent on the hyperparameter λ , which may differ from data samples. Although we show that the optimal range of λ is relatively consistent, pre-evaluation on a validation dataset or selecting appropriate values with heuristic methods can help further improve the performance. Second, while TTS is more lightweight than fine-tuning a model, it still introduces significant computational overhead at inference time. Identifying the sweet spot of REAR-guided TTS methods without incurring excessive computational cost can be a promising direction.

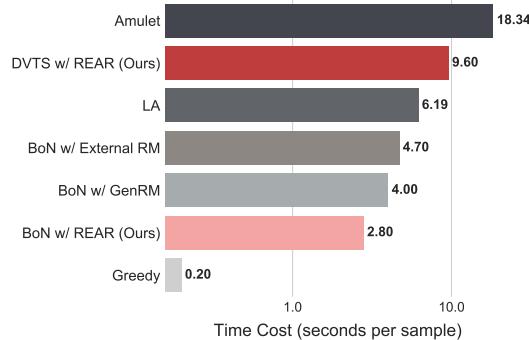


Figure 6: Time cost of different methods on the PrefEval explicit preference task. The greedy baseline, since the augmented data lies leading to unreliable reward signals.

ETHICS STATEMENT

The authors of this paper have adhered to the ICLR Code of Ethics. Our work focuses on improving the alignment of large language models with user preferences, which we believe is a crucial step toward developing safer and more helpful AI systems. We acknowledge that, like any alignment technique, our method could potentially be misused to align models with harmful or unethical preferences. However, the core principles of our approach are designed to provide controllable and transparent realignment, which can also serve as a tool for safety researchers to better understand and mitigate undesirable model behaviors. The experiments are conducted on publicly available benchmarks, which do not contain personally identifiable information. We encourage responsible use of this technology and further research into robust safety guardrails for preference alignment techniques. Our use of large language models for evaluation was conducted via standard APIs, and we acknowledge the associated computational and environmental costs.

REPRODUCIBILITY STATEMENT

The code and data are provided in the supplementary material, while our used model is publicly available. The `README` file within the code submission contains detailed instructions on setting up the environment and running experiments presented in the paper. Appendix C also provides a comprehensive description of the implementation details, including the base model used, key hyperparameters, and the setup for all baseline methods. Appendix D details the evaluation protocols for each benchmark.

REFERENCES

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine Ols-son, Christopher Olah, Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli Tran-Johnson, Ethan Perez, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal Ndousse, Kamile Lukosiute, Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noemí Mercado, Nova DasSarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston, Shauna Kravec, Sheer El Showk, Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton, Tom Con-erly, Tom Henighan, Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben Mann, Dario Amodei, Nicholas Joseph, Sam McCandlish, Tom Brown, and Jared Kaplan. Constitutional AI: Harmlessness from AI feedback. *CoRR*, abs/2212.08073, 2022.

Edward Beeching, Lewis Tunstall, and Sasha Rush. Scaling test-time compute with open models, 2025. URL <https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute>.

Jiangjie Chen, Xintao Wang, Rui Xu, Siyu Yuan, Yikai Zhang, Wei Shi, Jian Xie, Shuang Li, Ruihan Yang, Tinghui Zhu, Aili Chen, Nianqi Li, Lida Chen, Caiyu Hu, Siye Wu, Scott Ren, Ziquan Fu, and Yanghua Xiao. From persona to personalization: A survey on role-playing language agents. *Transactions on Machine Learning Research*, 2024, 2024.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit S. Dhillon, Marcel Blstein, Ori Ram, Dan Zhang, Evan Rosen, Luke Marrs, Sam Petulla, Colin Gaffney, Asaf Aharoni, Nathan Lintz, Tiago Cardal Pais, Henrik Jacobsson, Idan Szpektor, Nan-Jiang Jiang, Krishna Haridasan, Ahmed Omran, Nikunj Saunshi, Dara Bahri, Gaurav Mishra, Eric Chu, Toby Boyd, Brad Hekman, Aaron Parisi, Chaoyi Zhang, Kornraphop Kawintiranon, Tania Bedrax-Weiss, Oliver Wang, Ya Xu, Ollie Purkiss, Uri Mendlovic, Ilai Deutel, Nam Nguyen, Adam Langley, Flip Korn, Lucia Rossazza, Alexandre Ramé, Sagar Waghmare, Helen Miller, Nathan Byrd, Ashrith Sheshan, Raia Hadsell Sangnie Bhardwaj, Pawel Janus, Tero Rissa, Dan Horgan, Sharon Silver, Ayzaan Wahid, Sergey Brin, Yves Raimond, Klemen Kloboves, Cindy Wang, Nitesh Bharadwaj Gundavarapu, Ilia Shumailov, Bo Wang, Mantas Pajarskas, Joe Hey-ward, Martin Nikoltchev, Maciej Kula, Hao Zhou, Zachary Garrett, Sushant Kafle, Sercan Arik, Ankita Goel, Mingyao Yang, Jiho Park, Koji Kojima, Parsa Mahmoudieh, Koray Kavukcuoglu,

540 Grace Chen, Doug Fritz, Anton Bulyenov, Sudeshna Roy, Dimitris Paparas, Hadar Shemtov, Bo-
 541 Juen Chen, Robin Strudel, David Reitter, Aurko Roy, Andrey Vlasov, Changwan Ryu, Chas Le-
 542 ichner, Haichuan Yang, Zelda Mariet, Denis Vnukov, Tim Sohn, Amy Stuart, Wei Liang, Minmin
 543 Chen, Praynaa Rawlani, Christy Koh, JD Co-Reyes, Guangda Lai, Praseem Banzal, Dimitrios
 544 Vytiniotis, Jieru Mei, and Mu Cai. Gemini 2.5: Pushing the frontier with advanced reasoning,
 545 multimodality, long context, and next generation agentic capabilities. *CoRR*, abs/2507.06261,
 546 2025.

547 Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Bingxiang He, Wei Zhu, Yuan Ni, Guotong
 548 Xie, Ruobing Xie, Yankai Lin, Zhiyuan Liu, and Maosong Sun. ULTRAFEEDBACK: boosting
 549 language models with scaled AI feedback. In *International Conference on Machine Learning*,
 550 2024.

551 Songyang Gao, Qiming Ge, Wei Shen, Shihan Dou, Junjie Ye, Xiao Wang, Rui Zheng, Yicheng
 552 Zou, Zhi Chen, Hang Yan, Qi Zhang, and Dahua Lin. Linear alignment: A closed-form solution
 553 for aligning human preferences without tuning and feedback. In *International Conference on*
 554 *Machine Learning*, 2024.

555 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu, Runxin Xu, Ruoyu
 556 Zhang, Shirong Ma, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhi-
 557 hong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng,
 558 Chengda Lu, Chenggang Zhao, Chengqi Deng, Chong Ruan, Damai Dai, Deli Chen, Dongjie
 559 Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li,
 560 H. Zhang, Hanwei Xu, Honghui Ding, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li,
 561 Jingchang Chen, Jingyang Yuan, Jinhao Tu, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang,
 562 Jin Chen, Kai Dong, Kai Hu, Kaichao You, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean
 563 Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan
 564 Zhang, Minghua Zhang, Minghui Tang, Mingxu Zhou, Meng Li, Miaojun Wang, Mingming
 565 Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi
 566 Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu,
 567 Shangyan Zhou, Shanhua Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou,
 568 Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Tao Yun, Tian Pei, Tianyu Sun, T. Wang,
 569 Wangding Zeng, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao,
 570 Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin
 571 Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue
 572 Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou,
 573 Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao
 574 Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying
 575 He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou,
 576 Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You,
 577 Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunx-
 578 ian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean
 579 Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui
 580 Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng
 581 Xu, Zhongyu Zhang, and Zhen Zhang. DeepSeek-R1 incentivizes reasoning in LLMs through
 582 reinforcement learning. *Nature*, 645:633–638, 2025. doi: 10.1038/s41586-025-09422-z.

583 Ilya Gusev. Pingpong: A benchmark for role-playing language models with user emulation and
 584 multi-model evaluation. *CoRR*, abs/2409.06820, 2024.

585 Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
 586 Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft actor-critic algo-
 587 rithms and applications. *CoRR*, abs/1812.05905, 2018.

588 Yichen Huang and Lin F. Yang. Gemini 2.5 pro capable of winning gold at IMO 2025. *CoRR*,
 589 abs/2507.15855, 2025.

590 Joel Jang, Seungone Kim, Bill Yuchen Lin, Yizhong Wang, Jack Hessel, Luke Zettlemoyer, Han-
 591 naneh Hajishirzi, Yejin Choi, and Prithviraj Ammanabrolu. Personalized soups: Personalized
 592 large language model alignment via post-hoc parameter merging. *CoRR*, abs/2310.11564, 2023.

594 Maxim Khanov, Jirayu Burapacheep, and Yixuan Li. ARGS: Alignment as reward-guided search.
 595 In *International Conference on Learning Representations*, 2024.
 596

597 Nathan Lambert, Valentina Pyatkin, Jacob Morrison, Lester James V. Miranda, Bill Yuchen Lin,
 598 Khyathi Raghavi Chandu, Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, Noah A. Smith,
 599 and Hannaneh Hajishirzi. Rewardbench: Evaluating reward models for language modeling. In
 600 *Findings of the Association for Computational Linguistics*, pp. 1755–1797, 2025.

601 Seongyun Lee, Sue Hyun Park, Seungone Kim, and Minjoon Seo. Aligning to thousands of prefer-
 602 ences via system message generalization. In *Advances in Neural Information Processing Systems*,
 603 2024.

604 Chenran Li, Chen Tang, Haruki Nishimura, Jean Mercat, Masayoshi Tomizuka, and Wei Zhan.
 605 Residual q-learning: Offline and online policy customization without value. In *Advances in Neu-
 606 ral Information Processing Systems*, 2023.

607

608 Junyou Li, Qin Zhang, Yangbin Yu, Qiang Fu, and Deheng Ye. More agents is all you need. *CoRR*,
 609 abs/2402.05120, 2024.

610 Yi-Chen Li, Tian Xu, Yang Yu, Xuqin Zhang, Xiong-Hui Chen, Zhongxiang Ling, Ningjing Chao,
 611 Lei Yuan, and Zhi-Hua Zhou. Generalist reward models: Found inside large language models.
 612 *CoRR*, abs/2506.23235, 2025a.

613

614 Yi-Chen Li, Fuxiang Zhang, Wenjie Qiu, Lei Yuan, Chengxing Jia, Zongzhang Zhang, Yang Yu, and
 615 Bo An. Q-adapter: Customizing pre-trained llms to new preferences with forgetting mitigation.
 616 In *International Conference on Learning Representations*, 2025b.

617 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
 618 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. In *International
 619 Conference on Learning Representations*, 2024.

620

621 Chris Yuhao Liu, Liang Zeng, Jiacai Liu, Rui Yan, Jujie He, Chaojie Wang, Shuicheng Yan, Yang
 622 Liu, and Yahui Zhou. Skywork-reward: Bag of tricks for reward modeling in llms. *CoRR*,
 623 abs/2410.18451, 2024a.

624

625 Zhixuan Liu, Zhanhui Zhou, Yuanfu Wang, Chao Yang, and Yu Qiao. Inference-time language
 626 model alignment via integrated value guidance. In *Findings of the Association for Computational
 627 Linguistics: EMNLP 2024*, 2024b.

628

629 Zijun Liu, Peiyi Wang, Runxin Xu, Shirong Ma, Chong Ruan, Peng Li, Yang Liu, and Yu Wu.
 630 Inference-time scaling for generalist reward modeling. *CoRR*, abs/2504.02495, 2025.

631

632 Dakota Mahan, Duy Phung, Rafael Rafailov, Chase Blagden, Nathan Lile, Louis Castricato,
 633 Jan-Philipp Fränken, Chelsea Finn, and Alon Albalak. Generative Reward Models. *CoRR*,
 634 abs/2410.12832, 2024.

635

636 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
 637 Zettlemoyer, Percy Liang, Emmanuel J. Candès, and Tatsunori Hashimoto. s1: Simple test-time
 638 scaling. *CoRR*, abs/2501.19393, 2025.

639

640 Andrew Y. Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:
 641 Theory and application to reward shaping. In *International Conference on Machine Learning*, pp.
 642 278–287. Morgan Kaufmann, 1999.

643

644 OpenAI. Chatgpt. <https://chat.openai.com/>, 2023. Accessed: 2023-03-14.

645

646 OpenAI. Learning to reason with LLMs, 2024. URL <https://openai.com/index/learning-to-reason-with-llms>. Accessed: 2025-05-05.

647

648 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
 649 Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser
 650 Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan
 651 Leike, and Ryan Lowe. Training language models to follow instructions with human feedback.
 652 In *Advances in Neural Information Processing Systems*, 2022.

648 Martin L. Puterman. *Markov Decision Processes: Discrete Stochastic Dynamic Programming*. Wiley,
 649 ley, 1994.
 650

651 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D. Manning, Stefano Ermon, and
 652 Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
 653 In *Advances in Neural Information Processing Systems*, 2023.

654 Rajkumar Ramamurthy, Prithviraj Ammanabrolu, Kianté Brantley, Jack Hessel, Rafet Sifa, Chris-
 655 tian Bauckhage, Hannaneh Hajishirzi, and Yejin Choi. Is reinforcement learning (not) for natural
 656 language processing: Benchmarks, baselines, and building blocks for natural language policy
 657 optimization. In *International Conference on Learning Representations*, 2023.

658 John Schulman, Sergey Levine, Pieter Abbeel, Michael I. Jordan, and Philipp Moritz. Trust region
 659 policy optimization. In *International Conference on Machine Learning*, pp. 1889–1897, 2015.
 660

661 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 662 optimization algorithms. *CoRR*, abs/1707.06347, 2017.
 663

664 Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
 665 Dario Amodei, and Paul F. Christiano. Learning to summarize from human feedback. *CoRR*,
 666 abs/2009.01325, 2020.

667 Richard S Sutton and Andrew G Barto. *Reinforcement Learning: An Introduction*. MIT press, 2018.
 668

669 Chaojie Wang, Yanchen Deng, Zhiyi Lv, Zeng Liang, Jujie He, Shuicheng Yan, and Bo An. Q*: Im-
 670 proving multi-step reasoning for llms with deliberative planning. *CoRR*, abs/2406.14283, 2024a.

671 Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
 672 Sui. Math-Shepherd: Verify and reinforce LLMs step-by-step without human annotations. In
 673 *Annual Meeting of the Association for Computational Linguistics*, pp. 9426–9439, 2024b.

674 Pengcheng Wang, Xinghao Zhu, Yuxin Chen, Chenfeng Xu, Masayoshi Tomizuka, and Chenran
 675 Li. Residual policy gradient: A reward view of kl-regularized objective. *CoRR*, abs/2503.11019,
 676 2025.
 677

678 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha
 679 Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in Language
 680 Models. In *International Conference on Learning Representations*, 2023.

681 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
 682 Quoc V. Le, and Denny Zhou. Chain-of-Thought prompting elicits reasoning in large language
 683 models. In *Advances in Neural Information Processing Systems*, 2022.

684 Likang Wu, Zhi Zheng, Zhaopeng Qiu, Hao Wang, Hongchao Gu, Tingjia Shen, Chuan Qin, Chen
 685 Zhu, Hengshu Zhu, Qi Liu, Hui Xiong, and Enhong Chen. A survey on large language models
 686 for recommendation. *World Wide Web (WWW)*, 27(5):60, 2024.

687 Wanqi Xue, Qingpeng Cai, Zhenghai Xue, Shuo Sun, Shuchang Liu, Dong Zheng, Peng Jiang, Kun
 688 Gai, and Bo An. Prefrec: Recommender systems with human preferences for reinforcing long-
 689 term user engagement. In *Proceedings of ACM SIGKDD Conference on Knowledge Discovery
 690 and Data Mining*, pp. 2874–2884, 2023.

691 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Day-
 692 iheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 693 Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Keqin Bao,
 694 Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tian-
 695 hao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
 696 Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report.
 697 *CoRR*, abs/2412.15115, 2024.
 698

699 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
 700 Narasimhan. Tree of Thoughts: Deliberate problem solving with large language models. In
 701 *Advances in Neural Information Processing Systems*, 2023.

702 Fuxiang Zhang, Jiacheng Xu, Chaojie Wang, Ce Cui, Yang Liu, and Bo An. Incentivizing llms
 703 to self-verify their answers. *CoRR*, abs/2506.01369, 2025a. doi: 10.48550/ARXIV.2506.01369.
 704 URL <https://doi.org/10.48550/arXiv.2506.01369>.

705 Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agarwal.
 706 Generative Verifiers: Reward modeling as next-token prediction. *CoRR*, abs/2408.15240, 2024.

708 Xuemiao Zhang, Liangyu Xu, Feiyu Duan, Yongwei Zhou, Sirui Wang, Rongxiang Weng, Jingang
 709 Wang, and Xunliang Cai. Preference curriculum: Llms should always be pretrained on their
 710 preferred data. In *Findings of the Association for Computational Linguistics*, pp. 21181–21198,
 711 2025b.

712 Zhaowei Zhang, Fengshuo Bai, Qizhi Chen, Chengdong Ma, Mingzhi Wang, Haoran Sun, Zilong
 713 Zheng, and Yaodong Yang. Amulet: Realignment during test time for personalized preference
 714 adaptation of llms. In *International Conference on Learning Representations*, 2025c.

716 Zhehao Zhang, Ryan A. Rossi, Branislav Kveton, Yijia Shao, Diyi Yang, Hamed Zamani, Franck
 717 Dernoncourt, Joe Barrow, Tong Yu, Sungchul Kim, Ruiyi Zhang, Jiuxiang Gu, Tyler Derr,
 718 Hongjie Chen, Junda Wu, Xiang Chen, Zichao Wang, Subrata Mitra, Nedim Lipka, Nesreen K.
 719 Ahmed, and Yu Wang. Personalization of large language models: A survey. *Transactions on
 720 Machine Learning Research*, 2025, 2025d.

721 Siyan Zhao, Mingyi Hong, Yang Liu, Devamanyu Hazarika, and Kaixiang Lin. Do LLMs recog-
 722 nize your preferences? evaluating personalized preference following in LLMs. In *International
 723 Conference on Learning Representations*, 2025.

724 Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao,
 725 Christos Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark W. Barrett, and Ying Sheng. Sqlang:
 726 Efficient execution of structured language model programs. In *Advances in Neural Information
 727 Processing Systems*, 2024.

729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755

A DEFERRED PROOFS

A.1 PROOF OF PROPOSITION 2.1

The objective of RLHF is to maximize the expected discounted reward regularized by the KL divergence between the learned policy π and a reference policy π_{ref} :

$$\max_{\pi} \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^T \gamma^t (r(s_t, a_t) - \beta D_{\text{KL}}(\pi(\cdot|s_t) \| \pi_{\text{ref}}(\cdot|s_t))) \right], \quad (11)$$

where the expectation is over trajectories $\tau = (s_0, a_0, s_1, \dots)$ sampled from the policy π .

First, we expand the KL divergence term:

$$D_{\text{KL}}(\pi(\cdot|s_t) \| \pi_{\text{ref}}(\cdot|s_t)) = \mathbb{E}_{a_t \sim \pi(\cdot|s_t)} [\log \pi(a_t|s_t) - \log \pi_{\text{ref}}(a_t|s_t)]. \quad (12)$$

Substituting this into the objective and taking the expectation over actions inside the summation gives:

$$\max_{\pi} \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^T \gamma^t (r(s_t, a_t) - \beta (\log \pi(a_t|s_t) - \log \pi_{\text{ref}}(a_t|s_t))) \right]. \quad (13)$$

We can rearrange the terms within the summation:

$$\max_{\pi} \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^T \gamma^t ((r(s_t, a_t) + \beta \log \pi_{\text{ref}}(a_t|s_t)) - \beta \log \pi(a_t|s_t)) \right]. \quad (14)$$

Let us define a reshaped reward function $r'(s_t, a_t) = r(s_t, a_t) + \beta \log \pi_{\text{ref}}(a_t|s_t)$. Additionally, we recognize that the term $-\mathbb{E}_{a_t \sim \pi(\cdot|s_t)} [\log \pi(a_t|s_t)]$ is the entropy of the policy, denoted by $\mathcal{H}(\pi(\cdot|s_t))$. With these substitutions, the objective becomes:

$$\max_{\pi} \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^T \gamma^t (r'(s_t, a_t) + \beta \mathcal{H}(\pi(\cdot|s_t))) \right]. \quad (15)$$

This is the standard objective for maximum entropy reinforcement learning. The expected return in this framework is the definition of the soft value function $V^{\pi}(s_0)$. The objective can thus be written in terms of the soft Q-function and entropy at the initial state, which is equivalent to the formulation in Equation (2).

A.2 PROOF OF LEMMA 3.1

Let $\pi_q(\cdot|s) = \pi(\cdot|s^q)$. In maximum entropy reinforcement learning, the optimal policy π^* is related to the soft Q-function by $\log \pi^*(a|s) = (Q^{\pi^*}(s, a) - V^{\pi^*}(s))/\beta$, where $V^{\pi^*}(s)$ is the soft value function. The Q-function satisfies the Bellman equation $Q^{\pi^*}(s, a) = r'(s, a) + \gamma V^{\pi^*}(s')$. Combining these, we can express the reshaped reward as:

$$r'(s, a) = \beta \log \pi^*(a|s) + V^{\pi^*}(s) - \gamma V^{\pi^*}(s'). \quad (16)$$

The term $V^{\pi^*}(s')$ depends on the action a through the next state s' . For this proof, we adopt the common approximation that this value is constant with respect to a , which is reasonable when a single token has a limited impact on the total future reward. Under this approximation, we can apply this relation to our two policies, $\pi(a|s)$ and $\pi_q(a|s)$:

$$r'(s, a) = \beta \log \pi(a|s) + C_1(s), \quad (17)$$

$$r'(s^q, a) = \beta \log \pi_q(a|s) + C_2(s), \quad (18)$$

where $C_1(s)$ and $C_2(s)$ are terms independent of the current action a . Using the reward decomposition from Equation (5), $r'(s, a) = r'(s^q, a) + \alpha r_p(s, a)$, we can substitute the expressions above:

$$\beta \log \pi(a|s) + C_1(s) = \beta \log \pi_q(a|s) + C_2(s) + \alpha r_p(s, a). \quad (19)$$

Rearranging the terms, we find the optimality condition for $\pi(a|s)$:

$$\log \pi(a|s) - \log \pi_q(a|s) = \frac{\alpha}{\beta} r_p(s, a) + \text{terms independent of } a. \quad (20)$$

Now, consider the KL-regularized optimization problem from the lemma. The per-step objective to maximize at a state s is:

$$\max_{\hat{\pi}} \mathbb{E}_{a \sim \hat{\pi}(\cdot|s)} [r_p(s, a) + \gamma V(s')] - \frac{\beta}{\alpha} D_{\text{KL}}(\hat{\pi}(\cdot|s) \parallel \pi_q(\cdot|s)), \quad (21)$$

where $V(s')$ is the value of the next state. The solution $\hat{\pi}^*$ to this optimization is well-known:

$$\hat{\pi}^*(a|s) \propto \pi_q(a|s) \exp \left(\frac{\alpha}{\beta} (r_p(s, a) + \gamma V(s')) \right). \quad (22)$$

Taking the logarithm, we find the optimality condition for $\hat{\pi}^*$:

$$\log \hat{\pi}^*(a|s) - \log \pi_q(a|s) = \frac{\alpha}{\beta} r_p(s, a) + \text{terms independent of } a. \quad (23)$$

Since the optimality conditions in Equation (20) and Equation (23) are identical, their solutions must be identical. Therefore, $\pi(a|s) = \hat{\pi}^*(a|s)$, which proves the lemma.

A.3 PROOF OF LEMMA 3.2

We start from the definition of the realignment reward from Equation (7):

$$r_{\text{REAR}}(s, a) = r'(s^q, a) + \hat{\alpha} r_p(s, a). \quad (24)$$

From the reward decomposition in Equation (5), we can express the preference-related reward $r_p(s, a)$ as:

$$r_p(s, a) = \frac{1}{\alpha} (r'(s, a) - r'(s^q, a)). \quad (25)$$

Substituting this into the definition of $r_{\text{REAR}}(s, a)$, we get:

$$r_{\text{REAR}}(s, a) = r'(s^q, a) + \frac{\hat{\alpha}}{\alpha} (r'(s, a) - r'(s^q, a)) \quad (26)$$

$$= \left(1 - \frac{\hat{\alpha}}{\alpha} \right) r'(s^q, a) + \frac{\hat{\alpha}}{\alpha} r'(s, a). \quad (27)$$

Next, we relate the reshaped rewards $r'(s, a)$ and $r'(s^q, a)$ to their respective optimal policies, $\pi(a|s)$ and $\pi_q(a|s) = \pi(a|s^q)$. In maximum entropy RL, the reshaped reward can be expressed in terms of the optimal policy and the soft value functions:

$$r'(s, a) = \beta \log \pi(a|s) + V^\pi(s) - \gamma V^\pi(s'), \quad (28)$$

where $s' = s \oplus a$ is the next state. Applying this for both $r'(s, a)$ and $r'(s^q, a)$:

$$r'(s, a) = \beta \log \pi(a|s) + V^\pi(s) - \gamma V^\pi(s'), \quad (29)$$

$$r'(s^q, a) = \beta \log \pi_q(a|s) + V^{\pi_q}(s) - \gamma V^{\pi_q}(s'). \quad (30)$$

Substituting these into the expression for $r_{\text{REAR}}(s, a)$:

$$\begin{aligned} r_{\text{REAR}}(s, a) &= \left(1 - \frac{\hat{\alpha}}{\alpha} \right) (\beta \log \pi_q(a|s) + V^{\pi_q}(s) - \gamma V^{\pi_q}(s')) \\ &\quad + \frac{\hat{\alpha}}{\alpha} (\beta \log \pi(a|s) + V^\pi(s) - \gamma V^\pi(s')). \end{aligned} \quad (31)$$

We can group the terms that depend on the action a and those that depend only on the state s :

$$r_{\text{REAR}}(s, a) = \frac{(\alpha - \hat{\alpha})\beta}{\alpha} \log \pi(a|s^q) + \frac{\hat{\alpha}\beta}{\alpha} \log \pi(a|s) + Z(s, a), \quad (32)$$

where $Z(s, a)$ contains the value function terms:

$$Z(s, a) = \left(1 - \frac{\hat{\alpha}}{\alpha} \right) (V^{\pi_q}(s) - \gamma V^{\pi_q}(s')) + \frac{\hat{\alpha}}{\alpha} (V^\pi(s) - \gamma V^\pi(s')). \quad (33)$$

The term $Z(s, a)$ can be rewritten as $\Phi(s) - \gamma \Phi(s')$, where $\Phi(s) = \left(1 - \frac{\hat{\alpha}}{\alpha} \right) V^{\pi_q}(s) + \frac{\hat{\alpha}}{\alpha} V^\pi(s)$ is a potential function that depends only on the state s . According to the theory of potential-based reward shaping (Ng et al., 1999), adding a reward of the form $\gamma \Phi(s') - \Phi(s)$ to a base reward function does not change the optimal policy. The term $Z(s, a)$ is the negative of such a potential-based shaping reward. Therefore, the optimal policy for the full reward $r_{\text{REAR}}(s, a)$ is identical to the optimal policy for the proxy reward obtained by removing $Z(s, a)$. This justifies using only the action-dependent terms for our score function, which can be expressed as

$$\hat{r}_{\text{REAR}}(s, a) = \frac{(\alpha - \hat{\alpha})\beta}{\alpha} \log \pi(a|s^q) + \frac{\hat{\alpha}\beta}{\alpha} \log \pi(a|s). \quad (34)$$

864 **B DECLARATION ON THE USE OF LLMs**
865866 We acknowledge the use of Large Language Models (LLMs) to assist in the preparation of this
867 manuscript. Specifically, LLMs were utilized for the following tasks: (1) generating boilerplate
868 code for experiment scripts, (2) assisting with the implementation of baselines and plotting scripts
869 for visualizing results, (3) performing grammar and spelling checks to improve readability, and (4)
870 proofreading the manuscript for clarity and correctness. All content, including the final text, figures,
871 and scientific contributions, were curated and verified by the authors.
872873 **C IMPLEMENTATION DETAILS**
874875 Our experiments are conducted using a framework based on the SGLang inference engine (Zheng
876 et al., 2024). For all methods, we employ the inference engine to serve the Qwen2.5-7B-Instruct
877 (Yang et al., 2024) model, which ensures efficient and consistent response generation across all ex-
878 periments. We choose this model because of its popularity and moderate performance on evaluated
879 benchmarks, leaving enough improvement space for TTS methods.
880881 **Calculation of REAR Scores** The REAR score is calculated by obtaining token-level log-
882 probabilities for each generated response under two distinct contexts: one with the full prompt
883 including preference information and another with only the question part of the prompt. We use the
884 SGLang frontend APIs to directly obtain the log-probabilities for each token in the response. The
885 log-probabilities on the full prompt can be directly acquired within the text generation process, while
886 the log-probabilities on the question part of the prompt are calculated with another simple forward
887 process that takes the question part and the generated response as input, which can be lightweight
888 and efficient. These two sets of log-probabilities are then combined as a weighted sum, controlled
889 by the hyperparameter λ , to produce the final realignment score, as formulated in our methodology.
890 To calculate the REAR score of a complete or partial response, we simply set the discount factor
891 $\gamma = 1$ to take all the tokens into account with equal weights.
892893 **TTS Methods** We adapt our REAR scores to two TTS methods, best-of-N sampling (BoN) (Sti-
894 ennon et al., 2020) and dynamic verifier tree search (DVTS) (Beeching et al., 2025). For BoN, we
895 directly use the inference engine to generate multiple responses in separate requests, and then select
896 the response with the highest REAR score. For DVTS, we use the line break as the delimiter of
897 each tree-search step, where the algorithm will select the expanded branch of each node according
898 to the REAR score. In our experiments, unless specified, we set the number of samples to 16 for all
899 BoN methods including the baselines. For DVTS, we set an equivalent compute budget to the BoN
900 method by setting its expansion width and initial tree nodes both to 4. According to Beeching et al.
901 (2025), this setting is comparable to the $N = 16$ setting for BoN. All the generated responses are
902 sampled using a temperature of 1.0 and the maximum generated length is set to 2048 tokens.
903904 **Best-of-N with Generative RM (GenRM)** This baseline leverages the base model as its own
905 judge. Each generated response is appended with a template that prompts the model to evaluate
906 whether the response is preferred. The final reward is calculated from the log-probability difference
907 between the model generating “Yes” and “No”. To be specific, we use the following chat template:
908909 Listing 1: Generative Verification Prompting Template
910911 System: [Preference in the data sample]
912
913 User: [Question]
914
915 Assistant: [Response]
916
917 User: Please act as an impartial judge and evaluate the
918 quality of the assistant’s response. A preferred response
919 is helpful, harmless, and accurately follows instructions.
920 Is this a preferred response? Answer ‘Yes’ or ‘No’ in the
921 format ‘Preferred: X’.
922

918 Table 2: Ablation study on the hyper-parameter λ in REAR on different tasks from PrefEval and
 919 Multifaceted benchmarks.

Method	λ			
	3	10	20	50
<i>PrefEval Explicit Preference</i>				
BoN w/ REAR	71.9	72.3	74.1	71.4
DVTS w/ REAR	77.4	76.4	76.3	75.1
<i>PrefEval Implicit Choice</i>				
BoN w/ REAR	76.8	77.2	78.2	77.4
DVTS w/ REAR	73.8	76.2	78.6	77.4
<i>PrefEval Implicit Preference</i>				
BoN w/ REAR	14.6	15.1	15.4	16.2
DVTS w/ REAR	14.7	17.4	19.1	18.1
<i>Multifaceted Bench</i>				
BoN w/ REAR	75.4	76.0	76.3	75.3
DVTS w/ REAR	74.5	75.3	76.8	75.6

938 Assistant: [Potential chain-of-thought reasoning process]
 939 Preferred: [Yes/No]

941 **Best-of-N with External RM** This approach uses an external, dedicated reward model, Skywork-
 942 Reward-Llama-8B (Liu et al., 2024a), hosted on an independent inference endpoint. For each can-
 943 didate response, the prompt and the response are sent to this external model, which returns a scalar
 944 reward score.

946 **Amulet and Linear Alignment (LA)** We use the implementation of Amulet and LA provided
 947 by the Amulet paper (Zhang et al., 2025c) to run the experiments¹. We do not change the default
 948 hyper-parameters of these baselines. For Amulet, experiments are run with an iteration number of
 949 60 for test-time alignment.

951 D EVALUATION PROTOCOLS

954 In this section, we provide a detailed description of the evaluation protocols used for each benchmark
 955 in our experiments. Except for the PrefEval implicit choice task, which uses the accuracy on selected
 956 option as the metric, the other tasks typically adopt LLM-as-a-judge for evaluation. We choose the
 957 GPT-4.1 model as the judge by calling the OpenAI API.

958 **PrefEval** The PrefEval benchmark (Zhao et al., 2025) is evaluated across its three distinct data
 959 types, each with a specific protocol. For **explicit preference**, the task is evaluated using an LLM-
 960 as-a-judge. For each generated response, a series of automated checks assesses different aspects
 961 of quality and preference alignment, including helpfulness, preference violation, consistency, and
 962 hallucination. The final score is an aggregated metric that reflects overall preference-following
 963 accuracy. The evaluation protocol for **implicit preference** is identical to that of explicit preference,
 964 using the same LLM-as-a-judge and the same set of automated checks. For **implicit choice**, this
 965 is a multiple-choice task where the model must select the best response from four options. The
 966 evaluation protocol extracts the model’s choice from its generated output and compares it to the
 967 ground-truth correct answer. The final performance is measured by accuracy.

968 **Multifaceted Bench** For the Multifaceted Bench (Lee et al., 2024), we also employ an LLM-as-
 969 a-judge for evaluation. The judge assesses the model’s generated response based on a set of rubrics

971 ¹<https://github.com/zowiezhang/Amulet>

972
973
974 Table 3: Ablation study on λ for REAR on Ping-Pong Bench.
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999

BoN w/ REAR				
λ	3	10	20	50
Score	2.92	2.97	3.02	3.07
DVTS w/ REAR				
λ	0.3	0.5	1	1.5
Score	2.88	2.99	3.03	2.87

that are provided within each data sample. It assigns a score from 1 to 5 for each rubric. The final reported score is the average of these scores across all rubrics.

Ping-Pong Bench The Ping-Pong benchmark (Gusev, 2024) for role-playing is evaluated using an LLM-as-a-judge. The judge evaluates the entire conversation based on three main criteria: **stay-in-character score** (how well the model maintains its assigned persona), **entertaining score** (how engaging and entertaining the conversation is), and **fluency score** (the quality and naturalness of the language used). Each criterion is scored on a scale, and the final metric is the overall average score across these dimensions. We adopt the English version of the Ping-Pong-v2 dataset for evaluation. Differing from the original benchmark that uses gpt-4o-mini as the interrogator model to generate multi-turn data from the user side, we use the same model as our base model, i.e., Qwen2.5-7B-Instruct, as the interrogator model to avoid heavy expenses on calling the API. We note that this setting will result in slight performance degradation compared to the original benchmark. However, it is still able to capture the role-playing capabilities of the model and the comparisons are fair and valid for all evaluated methods.

E ADDITIONAL EXPERIMENTS ON HYPER-PARAMETER TUNING

1000 We conduct an ablation study on the hyper-parameter λ in REAR, which controls the weight of
1001 the value function. The results are shown in Table 2 and Table 3. The results largely confirm the
1002 observations made in Section 5.2. Across most tasks on the PrefEval and Multifaceted benchmarks,
1003 we observe a non-monotonic relationship between λ and performance. For the majority of these
1004 tasks, the optimal performance is achieved when λ is around 20 for both BoN and DVTS. This
1005 reinforces the idea that there is a trade-off between adhering to user preference and maintaining the
1006 general quality of the response, as an excessively high λ can degrade helpfulness.

1007 However, we also note some task-specific variations. For instance, on the PrefEval Explicit Pref-
1008 erence task, DVTS achieves its best performance with a smaller λ of 3. On the PrefEval Implicit
1009 Preference and the Ping-Pong Bench tasks, BoN with REAR shows a trend of continuously im-
1010 proving performance as λ increases up to 50. This suggests that for certain tasks, particularly those
1011 requiring strong adherence to a persona (Ping-Pong) or subtle preference cues, a stronger emphasis
1012 on the preference-related reward component is beneficial.

1013 Furthermore, the optimal range for λ appears to depend on the specific TTS algorithm. For exam-
1014 ple, the DVTS algorithm adopts a step-by-step tree search strategy, which can be more sensitive to
1015 the preference reward. Exaggerating the preference reward may lead to suboptimal performance.
1016 In contrast, BoN methods only rate the final response after finishing generation, where a large λ
1017 value is often preferred for the benchmark. For the Ping-Pong benchmark, DVTS achieves its peak
1018 performance at $\lambda = 1.0$, while BoN performs best with a much larger λ . This highlights that the
1019 interaction between the search strategy and the reward scaling is an important factor. In summary,
1020 while a λ of 20 serves as a robust default for many scenarios, fine-tuning this hyper-parameter for
1021 the specific task and TTS method can unlock further performance gains.

1022
1023
1024
1025