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ABSTRACT

Aligning large language models (LLMs) with diverse user preferences is a critical
yet challenging task. While post-training methods can adapt models to specific
needs, they often require costly data curation and additional training. Test-time
scaling (TTS) presents an efficient, training-free alternative, but its application has
been largely limited to verifiable domains like mathematics and coding, where re-
sponse correctness is easily judged. To extend TTS to the domain of preference
alignment, we introduce a novel framework that models the task as a realignment
problem, as the base model often fails to sufficiently align with the preference.
Our key insight is to decompose the underlying reward function into two com-
ponents: one related to the question and the other to user preference. This al-
lows us to derive a REAlignment Reward (REAR) that selectively rescales the
preference-related reward while preserving the question-related reward. We show
that REAR can be formulated as a linear combination of policy probabilities, mak-
ing it computationally efficient and easy to integrate with existing TTS algorithms
like best-of-N sampling and tree-search algorithms. Experiments on various pref-
erence alignment and role-playing benchmarks demonstrate that TTS with REAR
enables scalable and effective test-time realignment with superior performance.

1 INTRODUCTION

The remarkable success of Large Language Models (LLMs) in aligning with human preferences
is largely attributed to techniques such as Reinforcement Learning from Human Feedback (RLHF)
(Ouyang et al., 2022; Bai et al., 2022; Rafailov et al., 2023; Guo et al., 2025). This alignment enables
a wide range of applications, from personalized assistants (OpenAI, 2023; Chen et al., 2024; Cui
et al., 2024) to recommendation systems (Wu et al., 2024; Xue et al., 2023). However, a fundamental
challenge remains: the preference alignment of a pretrained model is inherently tied to its training
data. This often leads to a mismatch when the model is applied to downstream tasks that require
personalized or diverse preferences (Jang et al., 2023; Zhang et al., 2025b;d). While this gap can
be bridged through task-specific post-training (Zhang et al., 2025b; Li et al., 2025b), such methods
demand significant investment in data curation and computational resources.

To circumvent the costs of post-training, we explore aligning models at inference time. While
some approaches modify the policy distribution at the token level to reflect user preferences (Zhang
et al., 2025c; Gao et al., 2024), they tend to be computationally intensive and scale poorly. A
more promising direction is Test-Time Scaling (TTS) (OpenAI, 2024; Muennighoff et al., 2025;
Beeching et al., 2025), where models leverage additional computation during generation to enhance
output quality. However, existing TTS research has predominantly focused on domains such as
mathematics and coding, where the correctness can be easily verified (OpenAI, 2024). Applying
TTS to preference alignment is more challenging, as the quality of a response is holistic and not
reducible to a simple verifiable answer. This raises a critical question: how can we effectively guide
a TTS framework to evaluate and improve responses for complex preference alignment tasks?

In this work, we address this challenge by framing the TTS process as a realignment problem.
We posit that while a pretrained model possesses general instruction-following abilities, its original
training objective may not be optimal for a specific user’s needs. An inference-time realignment
process can rescale the importance of user preference to generate a more aligned response. As
illustrated in Figure 1, when a user asks for enjoyable ways to study math but expresses a dislike

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

I'm looking for ways to make 
studying for my upcoming math 
exams more enjoyable. Can you 
suggest any interactive 
resources or techniques?

I strongly dislike gamified 
learning approaches and find 
them to be more distracting 
than engaging.

Explore math puzzle 
games that turn concepts 
into challenges.

Try working through 
practice problems with a 
study group or tutor.

Question-related Reward
(Enjoyable Learning)

Preference-related Reward
(Dislike Gamification)

REAR

Question

Preference

Score: 0.2178

Score: -1.0898

Figure 1: A motivating example of REAR. The method realigns its response from a gamified sug-
gestion to a collaborative one when selecting candidate responses according to REAR scores.

for gamification, a TTS method might generate multiple responses. Some responses may only focus
on answering the question of “enjoyable learning approaches”, while the preferred responses should
also align with the preference on “dislike gamification”. Our REAlignment Reward (REAR) is
designed to capture the preference alignment capabilities. Specifically, we decompose the reward
of a pretrained LLM into a question-related component and a preference-related component. REAR
then rescales the preference component to acquire a realigned reward value, allowing us to score the
candidate responses and thus effectively select the most aligned option. We further show that REAR
can be efficiently computed as a linear combination of policy probabilities, and then incorporate
REAR into two TTS methods: a simple best-of-N sampling strategy (Stiennon et al., 2020) and a
more sophisticated tree-search algorithm DVTS (Beeching et al., 2025). The contributions of this
paper are summarized as follows:

• We formalize test-time preference alignment as a realignment problem and propose REAR,
a computationally efficient reward from a decomposed preference alignment objective.

• We develop two scalable TTS methods guided by REAR: a best-of-N sampling approach
and a DVTS-based search algorithm.

• Extensive experiments on preference alignment and role-play benchmarks show that our
REAR-guided TTS methods outperform existing test-time alignment approaches.

2 PRELIMINARIES

In this section, we first formalize the text generation problem as a Markov Decision Process (MDP)
(Puterman, 1994; Sutton & Barto, 2018) at the token level. The MDP model enables us to see how
we can apply modern reinforcement learning (RL) algorithms (Schulman et al., 2017; 2015) to text
generation problems. Then we will provide a view of reinforcement learning from human feedback
(RLHF) (Ouyang et al., 2022) from the perspective of rewards in the given MDP model.

2.1 TOKEN-LEVEL MDP FOR TEXT GENERATION

We can model the text generation process as an MDP according to Ramamurthy et al. (2023). The
MDP can be defined as a tuple M = ⟨S,A,P, r, γ, ρ, T ⟩, where S is the state space and A is
the action space defined as the vocabulary of a language model, where each action is a token in the
vocabulary. We use π(a | s) to denote the policy, i.e., an LLM, that provides a distribution of actions
given the state s. At the beginning of text generation, the prompt x = (x1, x2, · · · , xm) of length m
is sampled from the initial distribution ρ(s) as the initial state s0, while we use the policy π(· | st)
to sample an action at at each time step t ∈ {1, . . . , T}. The MDP thus transits to the next state
st+1 ∼ P(· | st, at) according to the transition function P . The transition function is a deterministic
function satisfying P(st+1 | st, at) = 1 when st+1 = st ⊕ at, where ⊕ is the concatenation
operation. The reward function r(st, at) is given at each time step t, where the model maximizes
the discounted cumulative reward with a discount factor γ. The episode terminates when the model
generates an end-of-sequence token defined in the vocabulary or exceeds the maximum length T .
We assume that the early-stop sequence is also padded to length T for notational simplicity.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.2 REINFORCEMENT LEARNING FROM HUMAN FEEDBACK

The main objective of reinforcement learning from human feedback (RLHF) is to find a policy
that can maximize the expected cumulative reward of the defined MDP. Classical RLHF methods
(Ouyang et al., 2022; Bai et al., 2022) usually consider learning a reward model to turn human
preferences into reward signals. The objective can be formulated as follows:

max
π

Es0∼ρ,at∼π(·|st),st+1∼P(st,at)

[
T∑

t=0

γt(r(st, at)− βDKL(π(·|st)∥πref(·|st)))

]
, (1)

where we use DKL to denote the Kullback-Leibler (KL) divergence and β is a hyper-parameter to
limit the divergence between the policy to be learned π and a reference policy πref . The reference
policy usually comes from the base model that is used to initialize RL training. Following Li et al.
(2025b), we can convert this objective from the perspective of maximum entropy RL (Haarnoja
et al., 2018) according to the following proposition.
Proposition 2.1. The optimization problem in Equation (1) is equivalent to

max
π

Es0∼ρ

[
Ea0∼π(·|s0)[Q

π(s0, a0) + βH(π(·|s0))]
]
, (2)

where H(π(·|st)) = Eat∼π(·|st)[− log π(at|st)] is the entropy of π in the state st, and

Qπ(s0, a0) = Est∼P(s0,a0),at∼π(·|st)

[
r′(s0, a0) +

T∑
t=1

γt(r′(st, at) + βH(π(·|st)))

]
. (3)

is the soft-Q function of the policy π. The reshaped reward r′(s, a) = r(s, a) + β log πref(a|s). The
soft-Q function Qπ satisfies the following Bellman equation:
Qπ(s, a) = r′(s, a)+ γEs′∼P(s,a),a′∼π(·|s′)[Q

π(s′, a′) + βH(π(·|s′))] = r′(s, a)+ γV π(s′). (4)

We denote V π(s) = Ea∼π(·|s)[Q
π(s, a) + βH(π(·|s))] as the value function of policy π.

We defer the proof to Appendix A.1. Here Proposition 2.1 shows that the RLHF objective can be
converted to the maximum entropy RL problem under the reward r′. As this optimization manner is
widely used in LLM research, we can thus use various open-source LLMs to address our preference
realignment problem described in the following section.

3 TEST-TIME REALIGNMENT THROUGH REWARD DECOMPOSITION

In this section, we detail our method for test-time preference realignment. We begin by introduc-
ing the theoretical foundation of our approach: a reward decomposition that separates the model’s
objective into question-related and preference-related components. Based on this, we derive our
REAlignment Reward (REAR), a score that allows us to control the emphasis on user preference.
Finally, we show how REAR can be integrated into standard test-time scaling (TTS) algorithms
like best-of-N sampling (Stiennon et al., 2020) and DVTS (Beeching et al., 2025) to produce more
aligned responses.

3.1 REALIGNMENT REWARD (REAR)

In a preference alignment task, an LLM receives a question prompt xq and a preference prompt
xp. The concatenated prompt x = xq ⊕ xp is used to generate a response. To formalize this
into a token-level MDP form, we define the state s as the sequence that contains the full prompt x
and the generated answer, and the state sq as the sequence that contains only the question and the
generated answer. Therefore, we can obtain two reward terms r′(s, a) and r′(sq, a), which represent
the reward when considering the full prompt and only the question part, respectively. Although we
cannot directly access these rewards, there exists a relationship between these two terms. Intuitively,
the reward r′(s, a) should contain both the reward r′(sq, a) which only considers the question, and
an additional reward that focuses on the preference part, which forms the following equation.

r′(s, a) = r′(sq, a) + αrp(s, a), (5)
where rp(s, a) is a preference-related reward that reflects how the chosen action aligns with the
given preference. Here we introduce a linear combination to decompose the reward r′(s, a) into the
question-related reward r′(sq, a) and the preference-related reward rp(s, a).

3
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Lemma 3.1. The policy π(a|s) when taking the full prompt x as input is the optimal policy of the
following optimization problem under the decomposition in Equation (5):

max
π̂

Es0∼ρ,at∼π̂(·|s0),st+1∼P(st,at)

[
T∑

t=0

γt

(
rp(st, at)−

β

α
DKL(π̂(·|st)∥π(·|sqt ))

)]
, (6)

where sqt is the corresponding question-only state of st.

The proof can be found in Appendix A.2. Lemma 3.1 reveals that the original policy π(a|s) implic-
itly maximizes the preference-related reward rp(s, a) subject to a constraint on the KL-divergence
from the distribution of the question-only policy. This framing of Reward Decomposition is es-
sential. Unlike heuristic strategies such as simple policy interpolation, proving that the base model
inherently optimizes a specific reward structure allows us to treat the derived REAR score as a
valid value function. This theoretical foundation validates the use of lookahead search algorithms
like DVTS, which require a consistent reward signal, rather than being limited to simple sampling
heuristics. This framing suggests a clear path to realignment: if we could control this trade-off at
test time, we could steer the generation to be more or less aligned with the preference. To this
end, we introduce a new, flexible coefficient α̂ to re-weight the preference component, defining our
realignment reward as:

rREAR(s, a) = r′(sq, a) + α̂rp(s, a). (7)

By adjusting α̂ at test time, we can modulate the influence of the preference reward, steering the
generation towards responses that are more aligned with a user’s specific needs, without altering the
underlying model. The challenge here is that rREAR(s, a) is defined in terms of unobserved reward
components. Fortunately, the framework of maximum entropy RL (Haarnoja et al., 2018; Li et al.,
2025a) allows us to express this reward in a computable form based on policy probabilities.
Lemma 3.2. The realignment reward rREAR(s, a) keeps policy-optimality with the following proxy
reward:

r̂REAR(s, a) =
(α− α̂)β

α
log π(a | sq) + α̂β

α
log π(a | s). (8)

Intuitively, this substitution is grounded in Maximum Entropy RL, where the optimal policy follows
a Boltzmann distribution π∗(a|s) ∝ exp(Q∗(s, a)/β). Since the Q-function represents the long-
term cumulative reward, the log-probability of the policy is directly proportional to the reward plus
value function terms. This allows us to mathematically recover the implicit reward optimizing the
policy from the log-probabilities themselves, providing a dense, token-level signal without train-
ing a separate reward model. We defer the detailed proof to Appendix A.3, which shows that the
difference between the two rewards is a potential-based shaping term (Ng et al., 1999).

3.2 TEST-TIME SCALING WITH REAR

Our goal is to find a policy that maximizes the expected discounted REAR at inference time. Ac-
cording to Lemma 3.2, this is equivalent to maximizing the expected discounted proxy reward
r̂REAR(s, a). Since the optimal policy is invariant to positive scaling of the reward function, we
can simplify r̂REAR(s, a) by omitting the constant factor β to derive the following score function:

S(s, a) = (1− λ) log π(a | sq) + λ log π(a | s), (9)

where we set λ = α̂
α > 0 as a hyper-parameter. This concise formulation reveals how we integrate

the LLM preferences that are hard to verify by encoding its output probability to a token-level
reward. Intuitively, λ > 1 indicates that the preference is more important in the real case than when
the model is trained and λ < 1 will reduce the importance of the preference. When λ = 1, the
result is equivalent to directly using the original LLM for inference. In our experiments, we find that
choosing a relatively large λ will yield better performance on benchmark scores in most tasks.

This score can be extended to a response trajectory τ = (s0, a0, . . . , sT , aT ) across multiple tokens
in the form of a cumulative score:

S(τ) =

T∑
t=0

γtS(st, at). (10)

Since τ can represent either a complete or partial response, this formulation allows for flexible
integration with various TTS methods. We explore two such methods:

4
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Best-of-N (BoN) with REAR. We simply sample N responses and calculate the REAR score for
each response. Then we select the response with the highest score as the final response.

Diverse Verifier Tree Search (DVTS) with REAR. We use the DVTS (Beeching et al., 2025)
algorithm to select a final response, where the response generated step-by-step in a tree search
manner and selected according to the REAR score.

Compared to external or generative reward models (Lambert et al., 2025; Liu et al., 2024a; Zhang
et al., 2024; Mahan et al., 2024), REAR solves the preference alignment problem by solely rescal-
ing its inherent preferences, without requiring extra training, external model calls or extra generation
steps. This makes REAR highly flexible and readily deployable in a plug-and-play manner across
almost any LLM. Moreover, since REAR provides a token-level reward formulation, it can be ap-
plied to partial responses, enabling its use with advanced TTS algorithms like DVTS, which is not
valid for general reward models that can only perform effective evaluations with the whole response.

4 RELATED WORK

Preference Alignment Aligning LLMs with human preferences is a central challenge in AI safety
and usability. Early and prominent approaches rely on training-based methods, particularly rein-
forcement learning from human feedback (RLHF) (Ouyang et al., 2022; Bai et al., 2022), where
a reward model is trained on human preference data to fine-tune a base model. Subsequent work
has sought to simplify this pipeline (Rafailov et al., 2023) bypassing the need for an explicit reward
model. Other approaches focus on creating specialized data curricula (Zhang et al., 2025b) or main-
taining original capabilities when adapting to new preferences (Li et al., 2023; Wang et al., 2025;
Li et al., 2025b). While effective, these training-based methods often require extensive data and are
computationally expensive. This motivates a shift towards test-time alignment methods that adapt
model behavior without updating weights. For instance, Zhang et al. (2025c) and Gao et al. (2024)
propose techniques to modify the model’s output distribution at each generation step to better align
with given preferences. Our work builds on this line of research but focuses on scaling the align-
ment process through a novel reward formulation within a TTS framework rather than direct policy
modification, which provides a stable and scalable performance improvement.

Test-time Scaling Test-time scaling (TTS) aims to improve model performance by allocating more
computational resources during inference, realized by extended thinking (OpenAI, 2024; Guo et al.,
2025; Muennighoff et al., 2025) or parallel searching (Wang et al., 2024a; Comanici et al., 2025;
Huang & Yang, 2025). This paradigm has been particularly successful in domains where answers
can be easily extracted and verified, such as mathematical and coding problems (OpenAI, 2024;
Zhang et al., 2025a), where researchers adopt self-consistency (Wang et al., 2023; Li et al., 2024)
and use explicit verifiers such as process-based reward models (Lightman et al., 2024; Wang et al.,
2024b) with sophisticated search algorithms (Wei et al., 2022; Yao et al., 2023; Wang et al., 2024a)
that explore different reasoning paths. However, applying TTS to open-ended preference alignment
tasks is challenging due to the absence of a simple, verifiable ground truth. Generative reward
models (Zhang et al., 2024; Mahan et al., 2024; Liu et al., 2025) are proposed for their ability to
verify an answer through the generation process but still face challenges on computational efficiency
and accuracy. Recent study (Li et al., 2025a) indicates that the LLM itself is an implicit reward
model, supporting the validity of policy probabilities as rewards. Our approach differs by deriving
a specialized reward, REAR, that is specifically designed for preference realignment and can be
integrated into various TTS algorithms, bridging the gap between TTS for verifiable reasoning and
TTS for subjective preference alignment. Unlike methods like ARGS (Khanov et al., 2024) or IVG
(Liu et al., 2024b) which rely on training and hosting external Reward Models or value heads, REAR
is fully training-free and derives its signal solely from the base model’s internal probabilities. This
allows REAR to extend TTS to open-ended domains where no ground-truth verifiers exist.

5 EXPERIMENTS

In this section, we investigate the efficacy of REAR-guided test-time sampling (TTS) on existing
preference alignment tasks. We first describe our experimental setup in Section 5.1. Then in Sec-
tion 5.2, we specifically seek to determine whether our proposed hyperparameter, λ, can effectively
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control the degree of alignment with user preferences. In Section 5.3, we evaluate the performance
of our method against several baselines, including other test-time preference alignment methods
and TTS approaches that use different reward forms. In Section 5.4, we further show the scaling
performance of our methods and analyze the robustness and efficiency of our method.

5.1 EXPERIMENTAL SETUP

Evaluation Benchmarks To evaluate the preference alignment capabilities of different methods,
we use three recent benchmarks:

• PrefEval (Zhao et al., 2025) requires the LLM to generate personalized responses across
conversations according to the user’s previously stated preferences, which provides a com-
prehensive evaluation of the LLM’s capability on inferring, remembering, and applying the
user preference to multi-turn conversations. The PrefEval benchmark contains three data
types, including explicit preference, implicit choice, and implicit preference.

• Multifaceted Bench (Lee et al., 2024) is designed to evaluate whether the LLM can gen-
erate context-specific responses tailored to user preferences. Each sample is paired with
synthetic system messages and reference answers.

• PingPong (Gusev, 2024) evaluates the role-playing capabilities of LLMs through a multi-
turn conversation. As role-playing can be framed as a preference alignment problem, we
use this benchmark to assess our method’s effectiveness in this practical scenario.

Baselines Beyond greedy decoding, several methods can align model outputs with human prefer-
ences. We compare REAR against baselines from two main categories, with implementation details
provided in Appendix C:

• Test-time preference alignment methods. We include two representative methods:
Amulet (Zhang et al., 2025c) and Linear Alignment (LA) (Gao et al., 2024). These meth-
ods align generations with preferences by modifying the token-level generation probability
distribution.

• Test-time Sampling with Other Rewards. Like our method, these baselines use best-of-N
(BoN) sampling but employ different reward sources. We consider two variants: one using
an external reward model (External RM) and another using the generative model itself as
a reward source (GenRM). For the external RM, we use the Skywork-Reward-Llama-8B
model (Liu et al., 2024a) due to its strong performance on RewardBench (Lambert et al.,
2025) and its comparable size to our base model.

For our main experiments, we use Qwen2.5-7B-Instruct (Yang et al., 2024) as the base model.
We employ the SGLang inference engine (Zheng et al., 2024) for response generation, maintaining
consistent sampling parameters across all methods except for Amulet and Linear Alignment, for
which we use the authors’ original implementation (Zhang et al., 2025c). We use N = 16 samples
for BoN methods in our experiments or equivalent sampling size for DVTS. Further implementation
details are provided in Appendix C.

5.2 CONTROLLABLE REALIGNMENT WITH λ

As established in our methodology, the hyperparameter λ governs the strength of preference align-
ment by scaling the preference-related reward. A larger λ directs more attention to this reward while
a smaller λ may not sufficiently align the model with user preferences but focuses more on answer-
ing the question. In this section, we investigate the impact of λ on benchmark performance. We
conduct experiments on the PrefEval benchmark, evaluating both Best-of-N and DVTS with REAR
across a range of λ values.

We focus on two data types from PrefEval: explicit preference and implicit choice. Although derived
from the same source data, they employ different prompting and evaluation protocols. For the ex-
plicit preference task, the model must generate a response that adheres to a given system preference
prompt. An external LLM judge evaluates the response quality based on multiple rubrics, including
helpfulness, preference violation, consistency, and hallucination. We report the average score across

6
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Figure 2: Benchmark scores of REAR-guided
TTS methods on PrefEval explicit preference
and implicit choice data with different λ values.
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Figure 3: Scores on questions and preference
of REAR-guided TTS methods on PrefEval ex-
plicit preference data with different λ values.

Table 1: Performance comparison of REAR-guided TTS methods and other baselines on various
preference alignment benchmarks. Bold values indicate the best performance on the corresponding
benchmark.

Benchmark DVTS w/
REAR (Ours)

BoN w/
REAR (Ours) Greedy External

RM GenRM Amulet LA

PrefEval Scores
Explicit Preference 77.7 74.1 67.0 73.4 69.0 68.5 64.2
Implicit Choice 78.6 78.2 71.5 78.3 74.7 70.4 78.0
Implicit Preference 19.1 16.2 12.0 17.0 12.9 13.1 12.8

Multifaceted Bench 76.8 76.3 75.3 76.5 76.1 75.4 75.6

Ping-Pong Bench
Score 3.03 3.07 2.97 2.97 3.01 2.87 3.01
Stay in Character Score 2.19 2.35 2.01 2.10 2.09 2.07 2.13
Fluency Score 4.67 4.50 4.88 4.52 4.76 4.47 4.70
Entertaining Score 2.24 2.36 2.02 2.27 2.18 2.09 2.20

all rubrics. In contrast, the implicit choice task presents preferences within a multi-turn conversa-
tion, from which the model must infer the user’s inclination. The evaluation is a multiple-choice
question where the model selects the most preferred response out of four options, and performance
is measured by accuracy.

Benchmark Scores with Different λ As shown in Figure 2, the performance of BoN with REAR
on both PrefEval explicit preference and implicit choice data varies with λ. The scores for both data
types follow a similar trend: they first increase and then decrease as λ grows. Optimal performance
on both tasks is achieved consistently at λ = 20.0, with lower scores observed for both smaller and
larger values of λ. We also find similar trends when adjusting λ in other tasks and the results are
deferred to Appendix E.

Analysis on Generated Responses To understand this non-monotonic relationship, we analyze
how λ affects different aspects of response quality. The detailed rubrics from the PrefEval explicit
preference task allow us to disentangle performance into two components: general response quality
and preference alignment. We use the “helpfulness” score to measure the former and the average
of “preference violation” and “preference acknowledgement” scores for the latter. As illustrated
in Figure 3, these two components exhibit monotonic trends with respect to λ. As λ increases,
the preference-related score improves, while the question-related score (helpfulness) declines. This
trade-off explains why simply increasing λ does not guarantee better overall performance; an ex-
cessively large λ compromises the model’s fundamental ability to provide helpful answers, thereby
reducing the overall quality of the response.
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Figure 4: Scaling performance on the PrefEval benchmark with varying numbers of samples (N ) for
different methods. We use the average LLM-evaluated scores for the explicit preference task (left)
and the accuracy of selected choices for the implicit choice task (right).
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Figure 5: Long-context performance of REAR-guided TTS methods and other baselines on the
explicit preference data and implicit choice data from the PrefEval benchmark with augmented
conversation turns. The x-axis indicates the number of conversation turns and the estimated total
number of tokens for the augmented conversational data. We use the average LLM-evaluated scores
for the explicit preference task (left) and the accuracy of choices for the implicit choice task (right).

5.3 PERFORMANCE COMPARISONS

We compare our methods against the baselines on the PrefEval, Multifaceted, and Ping-Pong bench-
marks. As shown in Table 1, both BoN with REAR and DVTS with REAR outperform all baselines
on most benchmarks, demonstrating strong performance on both accuracy-based (PrefEval implicit
choice) and LLM-evaluated tasks. The BoN baseline using an external RM also performs com-
petitively, likely because the external model provides a valuable additional reward signal to select
the best response. In contrast, using the generative model itself as a reward model (GenRM) does
not yield significant improvement, suggesting that the model struggles to reliably verify its own re-
sponses. In addition, the test-time preference alignment methods, including Amulet and LA, also
underperform on these benchmarks.

On a benchmark-specific level, we observe a significant performance drop on the PrefEval implicit
preference task compared to the other two PrefEval tasks, which is consistent with previous findings
(Zhao et al., 2025). Interestingly, on the Ping-Pong benchmark, all TTS methods achieve higher
scores on the “stay-in-character” and “entertaining” rubrics, but decrease the “fluency” score, where
greedy decoding performs best. This suggests that TTS methods prioritize role-playing traits at the
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expense of fluency. For the multifaceted benchmark, while we do not report detailed rubric scores
since they differ from specific samples, our DVTS variant again outperforms the baselines.

5.4 ROBUSTNESS AND EFFICIENCY OF REAR-GUIDED TTS

Scaling Performance We investigate how the performance of our method scales with the number
of samples (N ). As shown in Figure 4, performance on the PrefEval explicit preference and implicit
choice datasets improves as N increases, with diminishing returns for larger values. Our BoN
approach with REAR demonstrates scaling performance comparable to the variant using an external
RM. The DVTS variant achieves stronger performance with a smaller sampling budget, highlighting
the efficiency of its step-by-step tree search approach.

1.0 10.0

Time Cost (seconds per sample)

Amulet

DVTS w/ REAR (Ours)

LA

BoN w/ External RM

BoN w/ GenRM

BoN w/ REAR (Ours)

Greedy

18.34

9.60

6.19

4.70

4.00

2.80

0.20

Figure 6: Time cost of different methods on the
PrefEval explicit preference task.

Robustness on Long-context Input A key
advantage of REAR is that it is derived directly
from the generation process, making it inher-
ently robust. This becomes particularly evident
with out-of-distribution inputs, such as long-
context prompts. Following the methodology
from Zhao et al. (2025), we evaluate robustness
by augmenting conversations with additional
turns inserted between the preference context
and the question. As shown in Figure 5, our
methods consistently outperform the baselines
across various context lengths. Test-time align-
ment baselines including Amulet and LA are
excluded due to out-of-memory errors on long-
context data. The performance of BoN with an
external RM and GenRM degrades significantly
on long-context inputs, occasionally falling below the greedy baseline, since the augmented data lies
outside the external RM’s training distribution, leading to unreliable reward signals.

Efficiency of REAR REAR offers significant efficiency gains over baselines that rely on external
reward models. We report the inference cost of REAR-guided methods compared to other baselines
on the PrefEval explicit preference task in Figure 6, using a node of 8 NVIDIA GPUs with 96GB
memory, by calculating rewards from the model’s internal probabilities, REAR avoids the substantial
computational overhead of loading and executing additional models. This makes REAR-guided
methods not only more efficient but also easier for deployment.

6 CONCLUSION

In this work, we introduced the REAlignment Reward (REAR), a novel and efficient reward that
realigns LLM to user preferences at test time. By decomposing the underlying reward into question-
related and preference-related portions, we can calculate REAR directly from the model’s own pol-
icy probabilities. We further integrate two test-time scaling methods, best-of-N sampling and DVTS,
into REAR, enabling controllable and effective preference realignment without any model training.
Extensive experiments show that REAR-guided TTS methods significantly outperforms both ex-
isting test-time alignment techniques and TTS methods guided by other rewards across a range of
preference alignment benchmarks. Our work provides a controllable and scalable solution for per-
sonalizing LLM interactions and enables test-time scaling to more subjective, open-ended domains
without the need of other models.

Despite these promising results, our work has several limitations. First, the performance of REAR
is dependent on the hyperparameter λ, which may differ from data samples. Although we show that
the optimal range of λ is relatively consistent, pre-evaluation on a validation dataset or selecting
appropriate values with heuristic methods can help further improve the performance. Second, while
TTS is more lightweight than fine-tuning a model, it still introduces significant computational over-
head at inference time. Identifying the sweet spot of REAR-guided TTS methods without incurring
excessive computational cost can be a promising direction.
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ETHICS STATEMENT

The authors of this paper have adhered to the ICLR Code of Ethics. Our work focuses on improv-
ing the alignment of large language models with user preferences, which we believe is a crucial
step toward developing safer and more helpful AI systems. We acknowledge that, like any align-
ment technique, our method could potentially be misused to align models with harmful or unethical
preferences. However, the core principles of our approach are designed to provide controllable and
transparent realignment, which can also serve as a tool for safety researchers to better understand
and mitigate undesirable model behaviors. The experiments are conducted on publicly available
benchmarks, which do not contain personally identifiable information. We encourage responsible
use of this technology and further research into robust safety guardrails for preference alignment
techniques. Our use of large language models for evaluation was conducted via standard APIs, and
we acknowledge the associated computational and environmental costs.

REPRODUCIBILITY STATEMENT

The code and data are provided in the supplementary material, while our used model is publicly
available. The README file within the code submission contains detailed instructions on setting
up the environment and running experiments presented in the paper. Appendix C also provides
a comprehensive description of the implementation details, including the base model used, key
hyperparameters, and the setup for all baseline methods. Appendix D details the evaluation protocols
for each benchmark.
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tian Bauckhage, Hannaneh Hajishirzi, and Yejin Choi. Is reinforcement learning (not) for natural
language processing: Benchmarks, baselines, and building blocks for natural language policy
optimization. In International Conference on Learning Representations, 2023.

John Schulman, Sergey Levine, Pieter Abbeel, Michael I. Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning, pp. 1889–1897, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017.

Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F. Christiano. Learning to summarize from human feedback. CoRR,
abs/2009.01325, 2020.

Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT press, 2018.

Chaojie Wang, Yanchen Deng, Zhiyi Lv, Zeng Liang, Jujie He, Shuicheng Yan, and Bo An. Q*: Im-
proving multi-step reasoning for llms with deliberative planning. CoRR, abs/2406.14283, 2024a.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
Sui. Math-Shepherd: Verify and reinforce LLMs step-by-step without human annotations. In
Annual Meeting of the Association for Computational Linguistics, pp. 9426–9439, 2024b.

Pengcheng Wang, Xinghao Zhu, Yuxin Chen, Chenfeng Xu, Masayoshi Tomizuka, and Chenran
Li. Residual policy gradient: A reward view of kl-regularized objective. CoRR, abs/2503.11019,
2025.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in Language
Models. In International Conference on Learning Representations, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-Thought prompting elicits reasoning in large language
models. In Advances in Neural Information Processing Systems, 2022.

Likang Wu, Zhi Zheng, Zhaopeng Qiu, Hao Wang, Hongchao Gu, Tingjia Shen, Chuan Qin, Chen
Zhu, Hengshu Zhu, Qi Liu, Hui Xiong, and Enhong Chen. A survey on large language models
for recommendation. World Wide Web (WWW), 27(5):60, 2024.

Wanqi Xue, Qingpeng Cai, Zhenghai Xue, Shuo Sun, Shuchang Liu, Dong Zheng, Peng Jiang, Kun
Gai, and Bo An. Prefrec: Recommender systems with human preferences for reinforcing long-
term user engagement. In Proceedings of ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pp. 2874–2884, 2023.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Day-
iheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Keqin Bao,
Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tian-
hao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report.
CoRR, abs/2412.15115, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of Thoughts: Deliberate problem solving with large language models. In
Advances in Neural Information Processing Systems, 2023.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Fuxiang Zhang, Jiacheng Xu, Chaojie Wang, Ce Cui, Yang Liu, and Bo An. Incentivizing llms
to self-verify their answers. CoRR, abs/2506.01369, 2025a. doi: 10.48550/ARXIV.2506.01369.
URL https://doi.org/10.48550/arXiv.2506.01369.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agarwal.
Generative Verifiers: Reward modeling as next-token prediction. CoRR, abs/2408.15240, 2024.

Xuemiao Zhang, Liangyu Xu, Feiyu Duan, Yongwei Zhou, Sirui Wang, Rongxiang Weng, Jingang
Wang, and Xunliang Cai. Preference curriculum: Llms should always be pretrained on their
preferred data. In Findings of the Association for Computational Linguistics, pp. 21181–21198,
2025b.

Zhaowei Zhang, Fengshuo Bai, Qizhi Chen, Chengdong Ma, Mingzhi Wang, Haoran Sun, Zilong
Zheng, and Yaodong Yang. Amulet: Realignment during test time for personalized preference
adaptation of llms. In International Conference on Learning Representations, 2025c.

Zhehao Zhang, Ryan A. Rossi, Branislav Kveton, Yijia Shao, Diyi Yang, Hamed Zamani, Franck
Dernoncourt, Joe Barrow, Tong Yu, Sungchul Kim, Ruiyi Zhang, Jiuxiang Gu, Tyler Derr,
Hongjie Chen, Junda Wu, Xiang Chen, Zichao Wang, Subrata Mitra, Nedim Lipka, Nesreen K.
Ahmed, and Yu Wang. Personalization of large language models: A survey. Transactions on
Machine Learning Research, 2025, 2025d.

Siyan Zhao, Mingyi Hong, Yang Liu, Devamanyu Hazarika, and Kaixiang Lin. Do LLMs recog-
nize your preferences? evaluating personalized preference following in LLMs. In International
Conference on Learning Representations, 2025.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao,
Christos Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark W. Barrett, and Ying Sheng. Sglang:
Efficient execution of structured language model programs. In Advances in Neural Information
Processing Systems, 2024.

14

https://doi.org/10.48550/arXiv.2506.01369


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A DEFERRED PROOFS

A.1 PROOF OF PROPOSITION 2.1

The objective of RLHF is to maximize the expected discounted reward regularized by the KL diver-
gence between the learned policy π and a reference policy πref :

max
π

Eτ∼π

[
T∑

t=0

γt(r(st, at)− βDKL(π(·|st)∥πref(·|st)))

]
, (11)

where the expectation is over trajectories τ = (s0, a0, s1, . . . ) sampled from the policy π.

First, we expand the KL divergence term:

DKL(π(·|st)∥πref(·|st)) = Eat∼π(·|st)[log π(at|st)− log πref(at|st)]. (12)

Substituting this into the objective and taking the expectation over actions inside the summation
gives:

max
π

Eτ∼π

[
T∑

t=0

γt(r(st, at)− β(log π(at|st)− log πref(at|st)))

]
. (13)

We can rearrange the terms within the summation:

max
π

Eτ∼π

[
T∑

t=0

γt((r(st, at) + β log πref(at|st))− β log π(at|st))

]
. (14)

Let us define a reshaped reward function r′(st, at) = r(st, at) + β log πref(at|st). Addition-
ally, we recognize that the term −Eat∼π(·|st)[log π(at|st)] is the entropy of the policy, denoted
by H(π(·|st)). With these substitutions, the objective becomes:

max
π

Eτ∼π

[
T∑

t=0

γt(r′(st, at) + βH(π(·|st)))

]
. (15)

This is the standard objective for maximum entropy reinforcement learning. The expected return in
this framework is the definition of the soft value function V π(s0). The objective can thus be written
in terms of the soft Q-function and entropy at the initial state, which is equivalent to the formulation
in Equation (2).

A.2 PROOF OF LEMMA 3.1

Let πq(·|s) = π(·|sq). In maximum entropy reinforcement learning, the optimal policy π∗ is re-
lated to the soft Q-function by log π∗(a|s) = (Qπ∗

(s, a) − V π∗
(s))/β, where V π∗

(s) is the soft
value function. The Q-function satisfies the Bellman equation Qπ∗

(s, a) = r′(s, a) + γV π∗
(s′).

Combining these, we can express the reshaped reward as:

r′(s, a) = β log π∗(a|s) + V π∗
(s)− γV π∗

(s′). (16)

The term V π∗
(s′) depends on the action a through the next state s′. For this proof, we adopt the

common approximation that this value is constant with respect to a, which is reasonable when a
single token has a limited impact on the total future reward. Under this approximation, we can apply
this relation to our two policies, π(a|s) and πq(a|s):

r′(s, a) = β log π(a|s) + C1(s), (17)

r′(sq, a) = β log πq(a|s) + C2(s), (18)

where C1(s) and C2(s) are terms independent of the current action a. Using the reward decompo-
sition from Equation (5), r′(s, a) = r′(sq, a) + αrp(s, a), we can substitute the expressions above:

β log π(a|s) + C1(s) = β log πq(a|s) + C2(s) + αrp(s, a). (19)

Rearranging the terms, we find the optimality condition for π(a|s):

log π(a|s)− log πq(a|s) =
α

β
rp(s, a) + terms independent of a. (20)
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Now, consider the KL-regularized optimization problem from the lemma. The per-step objective to
maximize at a state s is:

max
π̂

Ea∼π̂(·|s)[rp(s, a) + γV (s′)]− β

α
DKL(π̂(·|s)∥πq(·|s)), (21)

where V (s′) is the value of the next state. The solution π̂∗ to this optimization is well-known:

π̂∗(a|s) ∝ πq(a|s) exp
(
α

β
(rp(s, a) + γV (s′))

)
. (22)

Taking the logarithm, we find the optimality condition for π̂∗:

log π̂∗(a|s)− log πq(a|s) =
α

β
rp(s, a) + terms independent of a. (23)

Since the optimality conditions in Equation (20) and Equation (23) are identical, their solutions must
be identical. Therefore, π(a|s) = π̂∗(a|s), which proves the lemma.

A.3 PROOF OF LEMMA 3.2

We start from the definition of the realignment reward from Equation (7):
rREAR(s, a) = r′(sq, a) + α̂rp(s, a). (24)

From the reward decomposition in Equation (5), we can express the preference-related reward
rp(s, a) as:

rp(s, a) =
1

α
(r′(s, a)− r′(sq, a)). (25)

Substituting this into the definition of rREAR(s, a), we get:

rREAR(s, a) = r′(sq, a) +
α̂

α
(r′(s, a)− r′(sq, a)) (26)

=

(
1− α̂

α

)
r′(sq, a) +

α̂

α
r′(s, a). (27)

Next, we relate the reshaped rewards r′(s, a) and r′(sq, a) to their respective optimal policies, π(a|s)
and πq(a|s) = π(a|sq). In maximum entropy RL, the reshaped reward can be expressed in terms of
the optimal policy and the soft value functions:

r′(s, a) = β log π(a|s) + V π(s)− γV π(s′), (28)
where s′ = s⊕ a is the next state. Applying this for both r′(s, a) and r′(sq, a):

r′(s, a) = β log π(a|s) + V π(s)− γV π(s′), (29)

r′(sq, a) = β log πq(a|s) + V πq (s)− γV πq (s′). (30)
Substituting these into the expression for rREAR(s, a):

rREAR(s, a) =

(
1− α̂

α

)
(β log πq(a|s) + V πq (s)− γV πq (s′))

+
α̂

α
(β log π(a|s) + V π(s)− γV π(s′)). (31)

We can group the terms that depend on the action a and those that depend only on the state s:

rREAR(s, a) =
(α− α̂)β

α
log π(a | sq) + α̂β

α
log π(a | s) + Z(s, a), (32)

where Z(s, a) contains the value function terms:

Z(s, a) =

(
1− α̂

α

)
(V πq (s)− γV πq (s′)) +

α̂

α
(V π(s)− γV π(s′)). (33)

The term Z(s, a) can be rewritten as Φ(s) − γΦ(s′), where Φ(s) =
(
1− α̂

α

)
V πq (s) + α̂

αV
π(s)

is a potential function that depends only on the state s. According to the theory of potential-based
reward shaping (Ng et al., 1999), adding a reward of the form γΦ(s′) − Φ(s) to a base reward
function does not change the optimal policy. The term Z(s, a) is the negative of such a potential-
based shaping reward. Therefore, the optimal policy for the full reward rREAR(s, a) is identical to
the optimal policy for the proxy reward obtained by removing Z(s, a). This justifies using only the
action-dependent terms for our score function, which can be expressed as

r̂REAR(s, a) =
(α− α̂)β

α
log π(a | sq) + α̂β

α
log π(a | s). (34)
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B DECLARATION ON THE USE OF LLMS

We acknowledge the use of Large Language Models (LLMs) to assist in the preparation of this
manuscript. Specifically, LLMs were utilized for the following tasks: (1) generating boilerplate
code for experiment scripts, (2) assisting with the implementation of baselines and plotting scripts
for visualizing results, (3) performing grammar and spelling checks to improve readability, and (4)
proofreading the manuscript for clarity and correctness. All content, including the final text, figures,
and scientific contributions, were curated and verified by the authors.

C IMPLEMENTATION DETAILS

Our experiments are conducted using a framework based on the SGLang inference engine (Zheng
et al., 2024). For all methods, we employ the inference engine to serve the Qwen2.5-7B-Instruct
(Yang et al., 2024) model, which ensures efficient and consistent response generation across all ex-
periments. We choose this model because of its popularity and moderate performance on evaluated
benchmarks, leaving enough improvement space for TTS methods.

Calculation of REAR Scores The REAR score is calculated by obtaining token-level log-
probabilities for each generated response under two distinct contexts: one with the full prompt
including preference information and another with only the question part of the prompt. We use the
SGLang frontend APIs to directly obtain the log-probabilities for each token in the response. The
log-probabilities on the full prompt can be directly acquired within the text generation process, while
the log-probabilities on the question part of the prompt are calculated with another simple forward
process that takes the question part and the generated response as input, which can be lightweight
and efficient. These two sets of log-probabilities are then combined as a weighted sum, controlled
by the hyperparameter λ, to produce the final realignment score, as formulated in our methodology.
To calculate the REAR score of a complete or partial response, we simply set the discount factor
γ = 1 to take all the tokens into account with equal weights.

TTS Methods We adapt our REAR scores to two TTS methods, best-of-N sampling (BoN) (Sti-
ennon et al., 2020) and dynamic verifier tree search (DVTS) (Beeching et al., 2025). For BoN, we
directly use the inference engine to generate multiple responses in separate requests, and then select
the response with the highest REAR score. For DVTS, we use the line break as the delimiter of
each tree-search step, where the algorithm will select the expanded branch of each node according
to the REAR score. In our experiments, unless specified, we set the number of samples to 16 for all
BoN methods including the baselines. For DVTS, we set an equivalent compute budget to the BoN
method by setting its expansion width and initial tree nodes both to 4. According to Beeching et al.
(2025), this setting is comparable to the N = 16 setting for BoN. All the generated responses are
sampled using a temperature of 1.0 and the maximum generated length is set to 2048 tokens.

Best-of-N with Generative RM (GenRM) This baseline leverages the base model as its own
judge. Each generated response is appended with a template that prompts the model to evaluate
whether the response is preferred. The final reward is calculated from the log-probability difference
between the model generating “Yes” and “No”. To be specific, we use the following chat template:

Listing 1: Generative Verification Prompting Template
System: [Preference in the data sample]

User: [Question]

Assistant: [Response]

User: Please act as an impartial judge and evaluate the
quality of the assistant’s response. A preferred response
is helpful, harmless, and accurately follows instructions.
Is this a preferred response? Answer ’Yes’ or ’No’ in the
format ’Preferred: X’.
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Table 2: Ablation study on the hyper-parameter λ in REAR on different tasks from PrefEval and
Multifaceted benchmarks.

λ

Method 3 10 20 50

PrefEval Explicit Preference
BoN w/ REAR 71.9 72.3 74.1 71.4
DVTS w/ REAR 77.4 76.4 76.3 75.1

PrefEval Implicit Choice
BoN w/ REAR 76.8 77.2 78.2 77.4
DVTS w/ REAR 73.8 76.2 78.6 77.4

PrefEval Implicit Preference
BoN w/ REAR 14.6 15.1 15.4 16.2
DVTS w/ REAR 14.7 17.4 19.1 18.1

Multifaceted Bench
BoN w/ REAR 75.4 76.0 76.3 75.3
DVTS w/ REAR 74.5 75.3 76.8 75.6

Assistant: [Potential chain-of-thought reasoning process]
Preferred: [Yes/No]

Best-of-N with External RM This approach uses an external, dedicated reward model, Skywork-
Reward-Llama-8B (Liu et al., 2024a), hosted on an independent inference endpoint. For each can-
didate response, the prompt and the response are sent to this external model, which returns a scalar
reward score.

Amulet and Linear Alignment (LA) We use the implementation of Amulet and LA provided
by the Amulet paper (Zhang et al., 2025c) to run the experiments1. We do not change the default
hyper-parameters of these baselines. For Amulet, experiments are run with an iteration number of
60 for test-time alignment.

D EVALUATION PROTOCOLS

In this section, we provide a detailed description of the evaluation protocols used for each benchmark
in our experiments. Except for the PrefEval implicit choice task, which uses the accuracy on selected
option as the metric, the other tasks typically adopt LLM-as-a-judge for evaluation. We choose the
GPT-4.1 model as the judge by calling the OpenAI API.

PrefEval The PrefEval benchmark (Zhao et al., 2025) is evaluated across its three distinct data
types, each with a specific protocol. For explicit preference, the task is evaluated using an LLM-
as-a-judge. For each generated response, a series of automated checks assesses different aspects
of quality and preference alignment, including helpfulness, preference violation, consistency, and
hallucination. The final score is an aggregated metric that reflects overall preference-following
accuracy. The evaluation protocol for implicit preference is identical to that of explicit preference,
using the same LLM-as-a-judge and the same set of automated checks. For implicit choice, this
is a multiple-choice task where the model must select the best response from four options. The
evaluation protocol extracts the model’s choice from its generated output and compares it to the
ground-truth correct answer. The final performance is measured by accuracy.

Multifaceted Bench For the Multifaceted Bench (Lee et al., 2024), we also employ an LLM-as-
a-judge for evaluation. The judge assesses the model’s generated response based on a set of rubrics

1https://github.com/zowiezhang/Amulet
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Table 3: Ablation study on λ for REAR on Ping-Pong Bench.

BoN w/ REAR

λ 3 10 20 50
Score 2.92 2.97 3.02 3.07

DVTS w/ REAR

λ 0.3 0.5 1 1.5
Score 2.88 2.99 3.03 2.87

that are provided within each data sample. It assigns a score from 1 to 5 for each rubric. The final
reported score is the average of these scores across all rubrics.

Ping-Pong Bench The Ping-Pong benchmark (Gusev, 2024) for role-playing is evaluated using
an LLM-as-a-judge. The judge evaluates the entire conversation based on three main criteria: stay-
in-character score (how well the model maintains its assigned persona), entertaining score (how
engaging and entertaining the conversation is), and fluency score (the quality and naturalness of the
language used). Each criterion is scored on a scale, and the final metric is the overall average score
across these dimensions. We adopt the English version of the Ping-Pong-v2 dataset for evaluation.
Differing from the original benchmark that uses gpt-4o-mini as the interrogator model to generate
multi-turn data from the user side, we use the same model as our base model, i.e., Qwen2.5-7B-
Instruct, as the interrogator model to avoid heavy expenses on calling the API. We note that this
setting will result in slight performance degradation compared to the original benchmark. However,
it is still able to capture the role-playing capabilities of the model and the comparisons are fair and
valid for all evaluated methods.

E ADDITIONAL EXPERIMENTS ON HYPER-PARAMETER TUNING

We conduct an ablation study on the hyper-parameter λ in REAR, which controls the weight of
the value function. The results are shown in Table 2 and Table 3. The results largely confirm the
observations made in Section 5.2. Across most tasks on the PrefEval and Multifaceted benchmarks,
we observe a non-monotonic relationship between λ and performance. For the majority of these
tasks, the optimal performance is achieved when λ is around 20 for both BoN and DVTS. This
reinforces the idea that there is a trade-off between adhering to user preference and maintaining the
general quality of the response, as an excessively high λ can degrade helpfulness.

However, we also note some task-specific variations. For instance, on the PrefEval Explicit Pref-
erence task, DVTS achieves its best performance with a smaller λ of 3. On the PrefEval Implicit
Preference and the Ping-Pong Bench tasks, BoN with REAR shows a trend of continuously im-
proving performance as λ increases up to 50. This suggests that for certain tasks, particularly those
requiring strong adherence to a persona (Ping-Pong) or subtle preference cues, a stronger emphasis
on the preference-related reward component is beneficial.

Furthermore, the optimal range for λ appears to depend on the specific TTS algorithm. For exam-
ple, the DVTS algorithm adopts a step-by-step tree search strategy, which can be more sensitive to
the preference reward. Exaggerating the preference reward may lead to suboptimal performance.
In contrast, BoN methods only rate the final response after finishing generation, where a large λ
value is often preferred for the benchmark. For the Ping-Pong benchmark, DVTS achieves its peak
performance at λ = 1.0, while BoN performs best with a much larger λ. This highlights that the
interaction between the search strategy and the reward scaling is an important factor. In summary,
while a λ of 20 serves as a robust default for many scenarios, fine-tuning this hyper-parameter for
the specific task and TTS method can unlock further performance gains.
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