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ABSTRACT

Linear recurrent neural networks, such as State Space Models (SSMs) and Lin-
ear Recurrent Units (LRUs), have recently shown state-of-the-art performance
on long sequence modelling benchmarks. Despite their success, their empiri-
cal performance is not well understood and they come with a number of draw-
backs, most notably their complex initialisation and normalisation schemes. In
this work, we address some of these issues by proposing RotRNN – a linear recur-
rent model which utilises the convenient properties of rotation matrices. We show
that RotRNN provides a simple and efficient model with a robust normalisation
procedure, and a practical implementation that remains faithful to its theoretical
derivation. RotRNN also achieves competitive performance to state-of-the-art lin-
ear recurrent models on several long sequence modelling datasets.

1 INTRODUCTION

Long sequence modelling is a notoriously difficult domain in machine learning due to the need
to capture long-range dependencies between input data. Typical sequence models, such as Trans-
formers (Vaswani et al., 2017) and Recurrent Neural Networks (RNNs) (Rumelhart et al., 1987;
Hochreiter & Schmidhuber, 1997; Cho et al., 2014; Koutnik et al., 2014), fail to perform well on
these tasks. In the case of Transformers this is due to poor inductive biases and quadratic scaling of
computational complexity with sequence length, and in the case of non-linear RNNs it is caused by
vanishing and exploding gradients. Recently, State Space Models (SSMs) (Gu et al., 2021; Smith
et al., 2023; Gupta et al., 2022a) have emerged as the state-of-the-art framework for learning on
long-sequences of data. The S4 model (Gu et al., 2021), inspired by linear time invariant dynamical
systems, utilises a linear recurrent layer with HiPPO initialisation (Gu et al., 2020) to solve the van-
ishing and exploding gradient problem of classical RNNs. Moreover, the computational complexity
of S4 scales linearly in time with sequence length, and thus circumvents the quadratic computational
scaling of Transformers. Interestingly, the linear recurrence of S4 hidden state can be viewed as both
a linear RNN for fast inference and as a Convolutional Neural Network (CNN) for efficient parallel
training.

Despite the mathematical elegance of the S4 derivation, the question of whether such careful ini-
tialisation is required remains open. Indeed, several subsequent works suggested that the specific
initialisation and discretisation methods that theoretically motivated S4 may not be necessary for
highly performant SSMs (Gupta et al., 2022a;b; Gu et al., 2022; Smith et al., 2023; Orvieto et al.,
2023). These findings led to the development of the Linear Recurrent Unit (LRU) (Orvieto et al.,
2023), which showed that competitive empirical performance on long sequence modelling tasks
can be achieved by making some small modifications to a standard linear RNN, without using the
theoretical insights from SSMs. While the LRU is conceptually simpler than prior works, the theo-
retical motivation does not necessarily reflect the practical implementation of the algorithm, leading
to more unanswered questions as to why SSMs and the LRU are stable and performative on long
sequence modelling tasks.

The LRU and other linear recurrent layers have been used as basic building blocks for more com-
plex sequence modelling architectures (Gu & Dao, 2023; De et al., 2024). Motivated by the wide
adoption of such models (Zhu et al., 2024; Ma et al., 2024; Xing et al., 2024; Patro & Agneeswaran,
2024), we extend the body of work on linear RNNs by proposing a novel recurrent block, deriv-
ing a conceptually simple but mathematically principled way of performing linear recurrence by
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using rotation matrices. By parameterising the recurrent state matrix as a rotation, we are able to
provide more stable normalisation than prior works, and allow for a robust implementation that faith-
fully reflects its theoretical motivation. Importantly, our model remains consistent with the theory
throughout training, and is not purely used to find a good initialisation of the recurrent matrix (Gu
et al., 2021; Gupta et al., 2022a; Smith et al., 2023). Moreover, we derive a mathematical equiva-
lence between a special case of the LRU and our model, in the hope that it will help shed light on
some of the LRU’s internal mechanics. We summarise our main contributions as follows:

• We propose a novel linear RNN layer where the recurrent state matrix A is parameterised as a
rotation, with the resulting algorithm faithfully reflecting the theoretical motivation throughout
training.

• We present a method for computing efficient matrix powers of parametric rotations to enable
fast linear recurrence with rotation matrices.

• We use this new formulation to derive a principled normalisation procedure which retains a con-
stant expected hidden state magnitude that holds throughout training.

• We show competitive performance with the state-of-the-art on long sequence benchmarks, and
show that the improved normalisation of our model holds on practical tasks.

2 BACKGROUND

2.1 STATE SPACE MODELS

SSMs (Gu et al., 2021; Smith et al., 2023; Gupta et al., 2022a) are derived from time-invariant
continuous-time linear ordinary differential equations (ODEs), of the form

ẋ(t) = A′x(t) +B′u(t)

y(t) = Cx(t) +Du(t)

where B′ ∈ RDx×Du is the input matrix, A′ ∈ RDx×Dx is the state matrix, C ∈ RDy×Dx and
D ∈ RDy×Du are the output matrices and u(t) ∈ RDu is the continuous-time input.

Under a constant sampling rate with a given stepsize ∆ > 0, such systems can be discretised using
Zero-Order Hold (ZOH) or Bilinear discritisation. Under the ZOH method, the resulting discrete
system can be expressed by the following recursion:

xt = Axt−1 +But

yt = Cxt +Dut
(1)

where ut are the sampled input signals and A = exp(∆A′) and B = (A− I)A′−1B′ are discretised
versions of the state and input matrices, respectively. Importantly, this recurrence relation can also
be unrolled and written as a convolution over the inputs,

xt =

t∑
k=1

At−kBuk. (2)

This duality of recurrence and convolution allows for efficient parallel computation of sequence
outputs during training, and fast state updating during inference. Equation 1 is the foundation of the
SSM layer in S4 (Gu et al., 2021) and its variants (Gupta et al., 2022a; Smith et al., 2023; Gu & Dao,
2023). The matrix A is initialised using HiPPO theory (Gu et al., 2020), whose derivation follows
from the theory of optimal polynomial projections.

2.2 LINEAR RECURRENT UNITS

Instead of discretising a continuous-time ODE, the LRU (Orvieto et al., 2023) achieves compete-
tive empirical performance with clever parameterisation and normalisation of linear RNNs. The
derivation of the LRU is motivated by the observation that the recurrent matrix A ∈ RDx×Dx can be
written (up to arbitrarily small perturbation of the entries (Axler, 2024)) as

A = PΛP−1 (3)
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Figure 1: Full neural network architecture of the RotRNN. Here T denotes the length of the input
sequence, and Du denotes the number of channels in the input data.

where Λ = diag(λ1, . . . , λDx
) ∈ CDx×Dx is the diagonal matrix of eigenvalues and P ∈ CDx×Dx

is a complex-valued invertible matrix of eigenvectors. This diagonalised parameterisation is neces-
sary to allow for fast computation of matrix powers, which is required in linear recurrent models
(see Equation 2). Premultiplying both sides of Equation 2 by P−1, and plugging in Equation 3, we
obtain

x̃t =
t∑

k=1

Λt−kB̃uk

yt = C̃x̃t +Dut

(4)

where x̃t = P−1xt, B̃ = P−1B, C̃ = CP . The LRU aims to directly learn the matrices B̃ and C̃,
along with the eigenvalues λj = νje

iθj , for learnable parameters νj , θj ∈ R.

2.3 DRAWBACKS OF PRIOR WORKS

These prior methods for tackling long sequence modelling with linear recurrence have several draw-
backs. In the case of SSMs, a complicated theoretical derivation based on polynomial projections
is required to initialise the recurrent HiPPO matrix. However, this is purely used as an initialisa-
tion procedure. The inner workings of SSM models throughout training is not well understood, and
more research is needed to uncover why deviation from optimal polynomial projections of func-
tions improves results and remains stable throughout learning. Indeed, as shown in the LRU, it is in
fact unnecessary to use such theoretical motivation to achieve strong performance on long sequence
benchmarks.

What actually goes on under the hood of the LRU, though, is also not entirely clear. The motivation
of the LRU stems from constraining classical linear RNNs, but this is not fully reflected in the final
proposed algorithm. Firstly, eigenvalues of the real matrix A come in conjugate pairs, but this is
not enforced in the LRU (as it is in, for example, S5 (Smith et al., 2023)). Moreover, there is no
constraint ensuring that yt = C̃x̃t = CPP−1xt = Cxt is real-valued – i.e. that the P and P−1

components of the learned C̃ and x̃t are consistent. Instead, the authors simply take the real part of
the resulting complex yt. Additionally, the LRU is normalised (at initialisation) by ensuring expected
convergence in the limit of infinite sequence length (see 4.1), but in practice a learnt normaliser is
used, and does not necessarily result in desirable or consistent hidden state magnitudes (Figure 3).

In this work, we aim to overcome this mis-match between theoretical motivation and practical im-
plementation by proposing a novel linear recurrent model using rotation matrices. Our algorithm
is conceptually simple to understand, efficient to compute, robust to exploding hidden state norms,
and, importantly, faithfully reflects the mathematical principles that underpin its motivation.

3 ROTRNN

The key component of our model, which we call the Rotational Recurrent Neural Network
(RotRNN), is the parameterisation of the recurrent state matrix A as a rotation matrix. The rea-
son for this choice is three-fold:

i) Rotation matrices can be generated smoothly from any real-valued matrix, making them robust
to initialisation and easy to constrain during training (Section 3.1).

3
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ii) Rotations can be easily decomposed for fast computation of matrix powers, which is needed in
linear RNNs (Section 3.2).

iii) The orthogonality of rotation matrices, and the fact that their eigenvalues lie on the unit circle,
allows us to derive a simple normalisation scheme that retains a constant expected hidden state
norm throughout training (Section 3.3).

3.1 PARAMETERISING ROTATION MATRICES

We first consider the problem of parameterising A as a rotation matrix in the linear RNN formulation.
The group comprising all rotation matrices in RN×N is known as the special orthogonal group,
SO(N), defined as follows:

SO(N) = {Q | Q ∈ RN×N , Q⊤Q = QQ⊤ = I, det(Q) = 1}. (5)
To ensure that a learnable matrix A remains in SO(N) throughout training, instead of learning a
constrained A directly we can learn a general weight matrix M ∈ RN×N and smoothly map M
onto SO(N). To do this, we make use of the following lemma:

Lemma 1. Let M ∈ RN×N , let S = M −M⊤, and define exp(S) :=
∑∞

k=0
1
k!S

k as the matrix
exponential. Then A = exp (S) ∈ SO(N).

Proof. See App. A.1.

The matrix exponential map is surjective from skew-symmetric matrices onto SO(N) (Rohan,
2013), so this parameterisation is sufficiently general for learning arbitrary rotation matrices.

3.2 EFFICIENT ROTATIONAL RECURRENCE

Unfortunately, computing the convolutional form of linear recurrent layers (Equation 2) during train-
ing involves taking matrix powers of A, which is generally slow for high-dimensional, dense matri-
ces. To make this computation more efficient, we utilise the structure of rotation matrices, using the
following result to decompose the dense rotation matrix into block-diagonal form.

Lemma 2. Let P ∈ O(N) be an orthogonal matrix and let Θ ∈ SO(N) be a block-diagonal
rotation matrix. Then A = PΘP⊤ ∈ SO(N). Moreover, any rotation matrix can be written in this
form (Gallier & Xu, 2003).

Proof. See App. A.2.

The matrix Θ has N/2 blocks of the form
(
cos θi − sin θi
sin θi cos θi

)
along the diagonal if N is even, and

N−1
2 blocks if N is odd with the remaining value on the diagonal being 1, where θi ∈ [0, 2π],

i = 1, . . . , ⌊N
2 ⌋, are axis-aligned rotation angles in the space projected onto by P . When computing

matrix powers, the dense orthogonal matrices P and P⊤ cancel out leaving Ak = PΘkP⊤, where

the blocks of Θk are of the form
(
cos kθi − sin kθi
sin kθi cos kθi

)
. Therefore, by learning an orthogonal matrix

P and set of rotation angles θ = {θ1, . . . , θ⌊N
2 ⌋} directly, we can easily generate rotation matrices

that are amenable to computing fast matrix powers.

It is important to note that, unlike SO(N), there is no smooth surjective map from real square
matrices onto O(N), the General Orthogonal group:

O(N) = {Q | Q ∈ RN×N , Q⊤Q = QQ⊤ = I, det(Q) = ±1}.

It is therefore hard in practice to parameterise P such that the space of learnable P covers the entire
group of orthogonal matrices. Instead, we learn a general weight matrix M ∈ RN×N , and use
Lemma 1 to obtain P = exp(M −M⊤) ∈ SO(N) ⊂ O(N). While this means that A = PΘP⊤

may not be surjective onto SO(N), we find it is sufficiently general to achieve good results in
practice (see Section 5).

4
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Figure 2: A visualisation of the mulit-headed RotRNN layer outlined in Section 3.4. The Du-
dimensional input sequence ut, t = 1, . . . , T , is projected onto each of the H heads of dimension
Dh by the B(h) matrices. Each head then independently performs a linear recurrence with different
rotations and decay scales. The outputs of each head are concatenated and mixed linearly to form
the final Du-dimensional output yt.

3.3 NORMALISATION

Now that we have a way to parameterise our recurrent state matrix for efficient recurrence, we
must turn to the problem of normalising the recurrent state. This is a key ingredient of long-range
recurrent networks, as it ensures the hidden state does not vanish or explode across long sequences.
In prior works, this is either done implicitly by discretisation, as is the case in S4 (Gu et al., 2021), or
explicitly with a normalisation constant, as in the LRU (Orvieto et al., 2023). In this work, we take
an explicit approach to normalisation, leveraging the properties of the rotation matrix A to derive
a normalisation constant that retains a constant expected norm of the recurrent state at all times
throughout training.

We define the hidden state recurrence of the RotRNN as
xt = α(γAxt−1 +But) (6)

where α ∈ R is a normalisation constant and γ ∈ (0, 1) is a learnable scalar decay factor which
controls the trade-off in importance between recent and distant-past input values.

Lemma 3. Following Orvieto et al. (2023), let the inputs ut be sampled i.i.d., with mean 0 and
variance I. Then for any constant c, if E

[
||x1||2

]
= c and α = 1√

cγ2+Tr[B⊤B]
we have that

E
[
||xt||2

]
= c for all timesteps t.

Proof. We will prove this by induction. Under the assumption E
[
||x1||2

]
= c, we only need to

prove that E
[
||xt−1||2

]
= c =⇒ E

[
||xt||2

]
= c if α is as stated above. Taking the expected

square norm of Equation 6, we have

E
[
||xt||2

]
= α2

(
γ2E

[
||xt−1||2

]
+ E

[
u⊤
t B

⊤But

]
+ 2γE

[
x⊤
t−1A

⊤But

])
(7)

= α2
(
γ2c+Tr

[
B⊤B E

[
utu

⊤
t

]])
(8)

= α2
(
γ2c+Tr

[
B⊤B

])
(9)

Where in the first line we used the orthogonal property of the rotation matrix AA⊤ = A⊤A = I ,
and in the second line we used the induction assumption that E

[
||xt−1||2

]
= c and that for i.i.d

inputs xt−1 and ut are uncorrelated. Finally, setting α = 1√
cγ2+Tr[B⊤B]

gives E
[
||xt||2

]
= c as

required.

In practice, however, we find that this naı̈ve method of normalisation is not entirely satisfactory.
Unrolling Equation 6 into its convolutional form we obtain

xt =

t∑
k=1

αt+1−kγt−kAt−kBuk (10)

5
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where we can see that the normalisation constant α is raised to the power t + 1 − k. When α < 1
we therefore observe that the weighting of early inputs in the sequence goes to zero exponentially,
and the model quickly forgets all but the very recent past. Since we desire that the recurrent decay
is controlled only by γ, we instead enforce α = 1, shifting all normalisation into the matrix B.
This requires that Tr

[
B⊤B

]
= 1 − cγ2, which can be achieved by simply re-scaling B with the

coefficient

ξ :=

√
1− cγ2

Tr [B⊤B]
. (11)

Our final expression for the recurrent and convolutional forms of the RotRNN hidden state is thus

xt = γAxt−1 + ξBut ⇔ xt = ξ

t∑
k=1

γt−kAt−kBuk (12)

which avoids the problem of unwanted exponential decay. In practice we find that setting c = 1 is
sufficient to achieve stable and robust normalisation, even in deep, multi-layer networks (Figure 3).

3.4 MULTI-HEAD DECAY

The price of having a constant expected hidden state norm in our derivation is that the decay fac-
tor γ must be scalar. We find, however, that this does not generalise well to problems that re-
quire retaining information from horizons at different scales. We address this by running H in-
dependent low-dimensional RotRNN heads in parallel (see Figure 2), each with a unique set of
A(h) ∈ RDh×Dh , B(h) ∈ RDh×Du , γ(h) ∈ (0, 1) parameters, where we set Dh = Dx

H . The output
projection,

yt = Cx
(1:H)
t +Dut, (13)

where C ∈ RDu×Dx , D ∈ RDu×Du , and x
(1:H)
t is the concatenation of the tth hidden state from

each head, can be viewed as a linear mixing layer. This enables the model to share information
from the different rotation phase and decay horizon recurrences from each head, which is critical in
tasks which require learning both long and short range dependencies between inputs. We note that,
although we use Dh = Dx

H in our experiments and for ease of mathematic notation, this set-up is
easily scalable to any desired head dimension Dh ≥ 2.

4 ANALYSIS OF ROTRNN AND PRIOR WORK

4.1 LINEAR RECURRENT UNITS

The RotRNN algorithm proposed in this paper is inspired in part by the LRU (Orvieto et al., 2023).
As well as sharing superficial similarities in the structure of the recurrent layer, more formal com-
parisons can be drawn between the two architectures. In this section, we derive a mathematical
equivalence between a special case of the LRU and the RotRNN, and compare the normalisation
procedures of the two models.

Multihead RotRNN as a special case of the LRU In practice, ignoring skip connections, the
LRU recurrent layer has 3 parameter matrices: Λ, a diagonal matrix of complex eigenvalues; B̃,
a dense, complex input matrix; C̃, a dense, complex linear output projection. Consider the case
where the learned eigenvalues of A come in complex-conjugate pairs. In this case, the matrix Λ

can be written as a block diagonal matrix of
(
νj cos θj −νj sin θj
νj sin θj νj cos θj

)
, with B̃ and C̃ real matrices

(see App. E of Orvieto et al. (2023) for details). If one assumes that B̃ = P⊤B and C̃ = CP for
some block-diagonal orthogonal matrix P , then, up to normalisation, this is algebraically equivalent
to the multi-head RotRNN with H = Dx

2 heads and the dimension of each head is Dh = 2. This
is because the parallel headed structure of the RotRNN can be viewed as one big block-diagonal
recurrent layer, with corresponding dimensions of B that project onto each head being normalised
independently, and the corresponding decay factors γ(h) modulating the eigenvalue magnitude as
does νj in the LRU.

6
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(a) Mean ||xt||2 across different recurrent layers dur-
ing training in an 8-layer model.
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(b) Mean ||xt||2 in a single layer network across 5
random seeds of training.

Figure 3: Average hidden state norm across training on ListOps for the LRU (Orvieto et al., 2023)
and RotRNN. The standard deviation of the means is plotted in the error bars. We note that the error
bars for RotRNN are present, but are mostly too small to be visible.

Note that, despite being algebraically possible in the LRU theoretical framework, this exact special
case of the LRU is unlikely to occur naturally in the practical algorithm proposed in Orvieto et al.
(2023) (outlined in Section 2.2). This is because the model would be required to learn that λ1:Dx

come in conjugate pairs, and the learned P components of the input and output matrices to be
the diagonalising matrix of the block-diagonal A(1:H) ∈ RDx×Dx of the RotRNN. However, we
still believe that this view of the LRU as a decayed rotation-based block can help to uncover the
mechanics of its linear recurrence.

Normalisation differences To compare the normalisation methods between the two algorithms,
we give a brief overview of the derivation for the LRU normalisation constant found in Orvieto et al.
(2023). Assuming white-noise input, one can calculate the expected norm of the LRU hidden state:

E
[
||xt||2

]
= E

( t∑
i=1

ΛiB̃ut−i

)∗ t∑
j=1

ΛjB̃ut−j


=

t∑
i=1

t∑
j=1

Tr
[
E
[
u∗
t−iB̃

∗Λi∗ΛjB̃ut−j

]]

=

t∑
i=1

t∑
j=1

Tr[B̃E
[
ut−ju

∗
t−i

]
B̃∗Λi∗Λj ] =

t∑
i=1

Tr[B̃B̃∗Λi∗Λi] (14)

Since Λ is diagonal, Equation 14 can be re-written into a summation of terms bk|λk|2, where bk is
the squared norm of each row of B̃, and λk ∈ C is the k’th diagonal entry of Λ. Hence the expected
norm becomes:

E
[
||xt||2

]
=

t∑
i=1

N∑
k=1

bk|λk|2i =
N∑

k=1

bk

t∑
i=1

|λk|2i t=∞−−−→
N∑

k=1

bk
1

1− |λk|2

To ensure a finite expected norm in the limit of t → ∞, one can normalise the rows of B̃ element-
wise by

√
1− |λk|2. This is similar to the RotRNN normalisation outlined in Section 3.3, as the

decay parameters γ(h) in each head essentially control the eigenvalue magnitude of the hth recur-
rent state matrix. Conversely, in RotRNN the added Tr

[
B⊤B

]
term applied independently across

heads ensures that the expected norm of the recurrent state remains constant throughout the entire
sequence, providing stronger guarantees than expected convergence at infinite sequence length. We
do, however, use the same white-noise input assumption as in (Orvieto et al., 2023), which we hope
to be able to overcome in future work for normalisation guarantees on more general input types.

7
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Table 1: Test accuracy on the LRA benchmark tasks. We follow the standard training procedures
from Gu et al. (2021). Unless otherwise specified, we report the results of baseline methods from
their respective citations.

Model ListOps Text Retrieval Image Pathfinder Path-X Avg.
(Input Length) (2,048) (4,096) (4,000) (1,024) (1,024) (16,384)

S4 (Gu et al., 2021) 59.6 86.8 90.9 91.1 94.2 96.4 86.5
S4D (Gu et al., 2022) 60.5 86.2 89.5 88.2 93.1 92.0 84.9
Liquid-S4 62.8 89.0 91.2 89.5 94.8 96.7 87.3
(Hasani et al., 2023)
S5 (Smith et al., 2023) 62.2 89.3 91.4 90.1 95.3 98.6 87.8
LRU (Axler, 2024) 60.2 89.4 89.9 89.0 95.1 94.2 86.3
LRU (Our Reprod.) 57.9 89.4 89.4 85.2 90.0 92.8 84.1

RotRNN (Ours) 61.1 89.6 89.9 85.9 93.0 89.2 84.8

4.2 STATE SPACE MODELS

The relationship between RotRNN and other SSMs, namely S4 (Gu et al., 2021) and S5 (Smith et al.,
2023), is perhaps less formally equivalent, but we can still draw comparisons between the structures
of the recurrent layers. The S4 recurrence can be viewed as a stack of single-input-single-output
(SISO) SSMs, whereby independent recurrent layers operate on each channel of the vector-valued
input. The outputs of these independent SSMs are concatenated and passed through a “mixing layer”
to combine information. S5, on the other hand, uses a single multi-input-multi-output (MIMO) SSM
as its recurrent layer, and as such does not require a separate mixing layer to share information
across dimensions. The input-output structure of RotRNN sits somewhere in-between S4 and S5.
The use of multiple independent RotRNN heads outlined in Section 3 can be viewed as a stack of
independent MIMO recurrent layers, in which the user may specify both the number of heads and
the dimension of each head separately. Multiplication with the output matrix C can be viewed as a
linear mixing layer, combining information from the hidden states of each independent head. For
more details on the SISO and MIMO views of S4 and S5, we direct the reader to Smith et al. (2023).

5 EXPERIMENTS

We evaluate the RotRNN on several long sequence modelling datasets, comparing performance
to state-of-the-art linear recurrent sequence models. RotRNN performs competitively throughout,
but particularly excels on very discrete input data (such as text). We also empirically analyse our
normalisation procedure compared to that of the LRU across both deep and single-layer networks.

5.1 LONG RANGE ARENA

We evaluate the performance of RotRNN on Long Range Arena (LRA) (Tay et al., 2021), a set of
6 sequence modelling tasks with sequence lengths between 1K and 16K tokens and varying data
modalities. Tab. 1 shows the results for RotRNN and other linear recurrent models for comparison,
reporting the test accuracy at the highest validation accuracy throughout training. Overall, we find
that RotRNN performs competitively with other state-of-the-art linear recurrent models. In particu-
lar, we find that our model performs best on domains with more discrete input data, such as ListOps,
Text and Retrieval, achieving the highest score of all the baselines in the IMDB classification task
(Text). However, we also note that RotRNN falls short of some of the baselines on the pixel-level
image tasks, such as Path-X and Cifar.

Hidden State Norms We plot the mean hidden state norm of the recurrent layers of the LRU and
RotRNN throughout training on the ListOps dataset in Figure 3. We find that the hidden states of
the RotRNN have an almost constant magnitude throughout training, with very little variance across
layer depth or random initialisations. To contrast this, the LRU hidden state norms vary wildly across
layer depth, and take far longer to converge (if ever) to a reasonably constant magnitude throughout
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training. Moreover, we see that the size and variance of the norms are significantly larger that those
of the RotRNN across random seeds in a single-layer network.

5.2 RAW SPEECH CLASSIFICATION

Since LRA (Tay et al., 2021) is partly a synthetic benchmark, we further evaluate RotRNN on
a more natural long-sequence classification task: the Speech Commands dataset (Warden, 2018).
This dataset contains 1s waveforms of 35 spoken English words, sampled at 16kHz. The task is to
classify the word from its given sampled waveform. The results are displayed in Tab. 2. We find
that RotRNN performs identically well to the LRU (Orvieto et al., 2023), with a similar number
of parameters. It also remains very competitive with other, more theoretically complex deep state
space models.

Table 2: Test accuracy on the 35-way Speech Commands classification task (Warden, 2018). Unless
otherwise specified, we report the results of baseline methods from their respective citations.

Model Params. 16kHz
(Input Length) (16,000)

S4 (Gu et al., 2021) 307K 96.1
S4D (Gu et al., 2022) 306K 95.8
Liquid-S4 (Hasani et al., 2023) 224K 96.8
S5 (Smith et al., 2023) 280K 96.8
LRU (Our Reprod.) 283K 95.2

RotRNN (Ours) 284K 95.2

6 RELATED WORK

Orthogonal Recurrent Networks The use of orthogonal and rotation matrices in recurrent net-
works has been explored previously in non-linear RNNs. Unitary RNNs (uRNNs) (Arjovsky et al.,
2016; Jing et al., 2017) prevent blow-up in long sequences by parameterising recurrent matricies
with unitary matrices (an extension of orthgonality to the complex field) to ensure an eigenvalue
magnitude of 1. This idea has since been applied without the need for complex numbers (Helfrich
et al., 2018), and has inspired works replacing recurrent operators in LSTMs with rotations (Dan-
govski et al., 2019; Velici & Prügel-Bennett, 2021). These methods, however, still suffer from the
drawbacks of classical non-linear RNNs, such as inefficient computation of recurrent states during
training when compared to associative-scan based linear models.

Building on Linear Recurrent Models Linear recurrent layers have recently been used as build-
ing blocks to construct more complex long sequence models. Two representative examples include
Griffin (De et al., 2024) built on top of the LRU, and Mamba (Gu & Dao, 2023) built on top of S4.
The key to the success of both these models is gating – the ability to construct recurrent state matri-
ces based on the current inputs to selectively control information flow. We believe that the RotRNN
could be used as a drop-in replacement for the LRU in Griffin, or be used to perform alternative
gating strategies with input dependent rotations, but we leave this direction for future work.

7 CONCLUSIONS AND FUTURE WORK

In this paper we propose RotRNN, a linear recurrent model that utilises the convenient properties
of rotation matrices. We show that RotRNN performs competitively with the state-of-the-art on
long-range sequence modelling benchmarks, while providing a conceptually simple and efficient
algorithm. RotRNN remains faithful to its theoretical derivation throughout training, with a robust
normalisation procedure that does not rely on complex initialisation.

In addition, we hope that the concrete comparisons between our model and the LRU drawn in
Section 4 can shed new light on the inner workings of the LRU and similar algorithms as multi-
headed rotation-based linear recurrent networks. We point future investigations towards integrating
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RotRNN into more complex architectures to test its downstream capacity on other domains, and
implementing input dependent rotation transitions for gated rotational recurrence.

8 REPRODUCIBILITY STATEMENT

We provide a number of elements in this paper to help improve the reproducibility of our results.
Firstly, we describe in detail the methods used to construct the RotRNN in Section 3, and show a
full neural network architecture used for our experiments in Figure 1. Moreover, we provide the
hyperparameters used and details of the initialisation and parameterisation of learnable parameters
in App. B. Finally, we provide a simplified JAX implementation of the RotRNN in App. C.
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A PROOFS

In this section we provide proofs of all theorems and lemmas not proven in the main text.

A.1 PROOF OF LEMMA 1

To prove Lemma 1, we must first state the formal definition of SO(N).

Definiton 4 (Special Orthogonal Group). The Special Orthogonal group, SO(N), is defined as

SO(N) =
{
A ∈

(
RN×N , ∗

)
| A⊤A = AA⊤ = I, det(A) = 1

}
where the group operation ∗ denotes matrix multiplication.

Hence, to prove Lemma 1, we must simply show that any matrix M ∈ RN×N under the respective
transformation is both orthogonal and has determinant 1.

Lemma 1. Let M ∈ RN×N , let S = M −M⊤, and define exp(S) :=
∑∞

k=0
1
k!S

k as the matrix
exponential. Then A = exp (S) ∈ SO(N).

Proof. To prove orthogonality of A, we will use the well-known fact that for two square matrices
P,Q ∈ RN×N , if PQ = QP then exp(P ) exp(Q) = exp(P + Q). Since S is skew-symmetric,
we have that S⊤ = −S and hence SS⊤ = S⊤S = −S2. Moreover, since the matrix exponential is
defined by a power series, we have that exp(S)⊤ = exp(S⊤). Putting these two together we get

AA⊤ = exp(S) exp(S)⊤ = exp(S) exp(S⊤) = exp(S + S⊤) = exp(S − S) = I (15)
and clearly the same is true for A⊤A. Hence, A is orthogonal.

To prove that determinant is 1, we use Jacobi’s formula, which states that for any square matrix S,
det(exp(S)) = exp(Tr [S]). Since S is skew-symmetric, we have that Tr [S] = 0, and hence

det(A) = det(exp(S)) = exp(Tr [S]) = exp(0) = 1 (16)

A.2 PROOF OF LEMMA 2

Lemma 2. Let P ∈ O(N) be an orthogonal matrix and let Θ ∈ SO(N) be a block-diagonal
rotation matrix. Then A = PΘP⊤ ∈ SO(N). Moreover, any rotation matrix can be written in this
form (Gallier & Xu, 2003).

Proof. We provide only a proof for the first statement, as it is the only one functionally relevant for
the RotRNN to be valid, but the converse statement follows trivially from the Jordan form of orthog-
onal matrices. For the first statement, we must again show that A is orthogonal with determinant 1.
The first condition is satisfied due to the orthogonality of P and Θ as follows

AA⊤ = PΘP⊤PΘ⊤P⊤ = PΘΘ⊤P⊤ = PP⊤ = I (17)
and similarly for A⊤A.

The second condition is satisfied by noting that all matrices in SO(N) have determinant 1, all
matrices in O(N) have determinant ∈ {±1}, and det(P ) = 1

det(P⊤)
for orthogonal P . Hence,

det(A) = det(PΘP⊤) = det(P ) det(Θ) det(P⊤) = 1 (18)

B IMPLEMENTATION DETAILS

We implement the RotRNN in JAX due to its associative scan operator for fast, parallel computation
of the recurrent states across long sequence. Figure 1 provides an overview of the entire RotRNN
architecture. In the following subsections, we will discuss implementation details that make our
code efficient and provide the hyperparameters used in our experiments. A simplified JAX imple-
mentation of RotRNN is given in App. C.
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B.1 ROTATION MATRIX MULTIPLICATION

We use the associative scan operation to implement the RotRNN layer with an efficient matrix
multiplication algorithm, making use of the special structure of our rotation matrix. In particular,
since our rotation matrix factorises into A = PΘP⊤, the orthogonality of P means we only need
to multiply by the block-diagonal matrix Θ in the associative scan. Multiplying a vector by a block
diagonal matrix can be implemented efficiently, Θx can be equivalently computed as

Θx =



x1

x2

x3

x4

...
xDx−1

xDx


⊙



cos θ1
cos θ1
cos θ2
cos θ2

...
cos θDx//2

cos θDx//2


+



−x2

x1

−x4

x3

...
−xDx

xDx−1


⊙



sin θ1
sin θ1
sin θ2
sin θ2

...
sin θDx//2

sin θDx//2


(19)

where ⊙ denotes element-wise multiplication.

B.2 HYPERPARAMETERS

In our experiments we use bidirectional RotRNN layers for Pathfinder and Path-X datasets, while for
the rest of the datasets we use unidirectional layers. In the bidirectional layer we reuse the parameters
P , Θ and B, while the matrix C is different for the forward and the backward pass. We use batch
normalisation for all of our experiments, and the number of layers L = 6 and number of heads H =
32 were the same for all experiments. The rest of the hyperparameters are described in Tab. 3. We
select initial hyperparameters from the literature surrounding Linear Recurrent Networks and State
Space Models, and performed small hyperparameter sweeps for ListOps, Text, Retrieval, Image and
Speech Commands, grid-searching the hyperparameter spaces for γinit, θinit and learning rate. We
tuned the hyperparameters for Pathfinder and Path-X manually. The total number of parameters in
the resulting model is very similar to the baseline models (Gu et al., 2021; Smith et al., 2023; Orvieto
et al., 2023; Gupta et al., 2022a; Hasani et al., 2023).

Table 3: Hyperprameters used for training on LRA and Speech Commands. D=model dimen-
sion, N=recurrent layer dimension, GLR=global learning rate, LR=recurrent layer learning rate,
B=batch size, WD=weight decay, γinit=initialisation range for γ, θinit=initialisation range for θ.

Dataset D N GLR LR B WD Drop. Iters. γinit θinit

ListOps 128 256 1e-3 1e-3 32 0.05 0.0 80K [0.5, 0.999] [0, π/100]
Text 256 192 1e-3 1e-3 32 0.05 0.1 50K [0.5, 0.8] [0, π/10]
Retrieval 128 256 1e-4 1e-5 32 0.01 0.1 50K [0.5, 0.999] [0, 2π]
Image 512 384 4.5e-3 1e-3 50 0.05 0.1 250K [0.99, 0.999] [0, 2π]
Pathfinder 192 256 4.5e-3 1e-3 64 0.03 0.05 500K [0.1, 0.9999] [0, π/10]
PathX 192 256 4.5e-3 1e-3 32 0.03 0.2 250K [0.999, 0.9999] [0, π/10]
Sp. Cmds. 96 128 8e-3 1e-3 16 0.04 0.1 212K [0.1, 0.9999] [0, π/10]

B.3 PARAMETERISING AND INITIALISING VARIABLES

Inspired by Orvieto et al. (2023), to ensure γ remains in (0, 1) throughout training, instead of directly
learning γ we learn parameter γlog s.t. γ = e−eγlog ∈ (0, 1). We initialise γ to be within the range
[γmin, γmax], and θ within [0, θmax]. To initialise the input and output matrices B and C, we use
the Glorot initialisation procedure (Glorot & Bengio, 2010). The weight matrix for the orthogonal
P is initialised as a random normal matrix, and we initialise D as a random normal vector applied
element-wise to ut.

C JAX ROTRNN IMPLEMENTATION

Here we present a simplified version of the RotRNN layer written in JAX.

13
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import jax
import numpy as np
from jax import numpy as jnp

parallel_scan = jax.lax.associative_scan

def forward(rotrnn_params, input_sequence):
"""Forward pass through the RotRNN layer"""

thetas, gamma_log, M, B, C, D = rotrnn_params
gammas = jnp.exp(-jnp.exp(gamma_log))

T, dim_u = input_sequence.shape

# compute \xi and normalise B
B_T_B = jax.vmap(lambda a, b: a @ b)(B.transpose(0, 2, 1), B)
B_T_B_trace = jnp.trace(B_T_B, axis1=1, axis2=2)
xi = jnp.sqrt((1 - gammas.squeeze() ** 2) / B_T_B_trace)
B_norm = jnp.einsum("H, HTD -> HTD", xi, B)

# create orthogonal matrix P from weight matrix M
P = jax.scipy.linalg.expm(M - M.transpose(0, 2, 1))

# project inputs onto heads
x = jnp.einsum("HDi,Ti->HTD", B_norm, input_sequence)

# project with PˆT
x = jnp.einsum("HDi, HTi -> HTD", P.transpose(0, 2, 1), x)

# compute recurrence parallelised over heads
gammas = jnp.repeat(gammas[:, None], repeats=T, axis=1)
thetas = jnp.repeat(thetas[:, None], repeats=T, axis=1)
rec_fn = jax.vmap(

lambda a, b, c: parallel_scan(binf, (a, b, c)),
in_axes=(0, 0, 0),
out_axes=0,

)
x = rec_fn(gammas, thetas, x)[2]

# project back with P
x = jnp.einsum("HDi, HTi -> HTD", P, x)

# concatenate heads
x = x.transpose(1, 0, 2).reshape(T, -1)

# apply output projection/head mixing and skip connection
y = jax.vmap(lambda a: C @ a)(x) + D * input_sequence
return y

def init_params(H, dim_x, dim_u, gamma_min, gamma_max, theta_max):
"""Initialise the learnable parameters"""

dim_h = dim_x // H

# random initialisation of \theta in [0, theta_max]
theta = np.random.uniform(0, theta_max, (H, dim_h // 2))

# constrained initialisation of \gamma in [gamma_min, gamma_max]
u1 = np.random.uniform(size=(H, 1))
gamma_log = jnp.log(

-0.5 * jnp.log(u1 * (gamma_max**2 - gamma_min**2) + gamma_min**2)
)
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# Glorot initialised input/output matrices
B = np.random.normal(size=(H, dim_h, dim_u)) / np.sqrt(dim_u)
C = np.random.normal(size=(dim_u, dim_x)) / np.sqrt(dim_x)

# Orthogonal weight matrix M
M = np.random.normal(size=(H, dim_h, dim_h))

# D is random vector applied element-wise to u
D = np.random.normal(size=(dim_u))

return theta, gamma_log, M, B, C, D

def binf(a, b):
"""Binary function for the parallel scan"""
gamma_i, thetas_i, acc_i = a
gamma_j, thetas_j, acc_j = b

# get off diagonal terms [-x2, x1, -x4, x3,...]
# these will be multiplied by sin(\theta)
off_diags = jnp.stack([-acc_i[..., 1::2], acc_i[..., 0::2]], axis=-1)
off_diags = off_diags.reshape(acc_i.shape)

# duplicate \theta [\theta_1, \theta_1, \theta_2, \theta_2,...]
theta = jnp.repeat(thetas_j, repeats=2, axis=-1)

# compute sine and cosine elements of the output
sin = jnp.sin(theta) * off_diags
cos = jnp.cos(theta) * acc_i
acc = gamma_j * (cos + sin)

return (gamma_i * gamma_j, thetas_i + thetas_j, acc + acc_j)
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