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Abstract— Despite the slow neuromuscular system, humans
achieve impressive dexterity in physical interactions. It is
hypothesized that this is possible through "motor primitives,"
basic building blocks of motor control that enable dynamic
behavior with minimal high-level control. In this paper, we
review "Elementary Dynamic Actions" (EDA), which consist of
three classes of motor primitives: submovements, oscillations,
and impedance. We demonstrate how EDA can simplify robot
control for contact-rich manipulation by implementing a peg-
in-hole task on a real robot. Our assembly strategy remained
unaffected by position errors of the insertion hole. Moreover,
different workpiece shapes could be assembled for the same set
of primitives. We briefly present our ongoing research to com-
bine EDA with learning, reducing the numbers programmer-
specified control parameters.

I. INTRODUCTION

It appears to be a paradox that humans achieve such re-
markable dexterity, despite their slow neuromuscular system.
One hypothesis that can possibly resolve this paradox pro-
poses that the human motor control system consists of basic
building blocks, called “motor primitives” [1]. By composing
control based on motor primitives, dynamic motor actions
can be achieved without continuous intervention from higher
levels of the Central Nervous System [2]. The concept of
motor primitives dates back at least a century [3], with a
number of subsequent experiments providing support for its
existence in biological systems [4], [5], [6].

Motor primitives have been an inspiration for robot con-
trol. Two major control frameworks exist: Dynamic Move-
ment Primitives (DMP) [7], [8], [9] and Elementary Dy-
namic Actions (EDA)1 [1], [10], [11]. DMP uses kinematic
motor primitives to generate the desired robot movement.
It also provides a method called “Imitation Learning” to
learn (or imitate) movements with arbitrary complexity [7].
EDA includes both kinematic and interactive primitives for
robot control. The former parameterizes kinematic behavior
and the latter manages interaction dynamics. A simple and
heavily used implementation example of EDA is impedance
control [12], [13], [14], which provides multiple advantages
for tasks involving contact and physical interaction [15], [16].

Using a KUKA LBR iiwa 14 kg robot, we will show a peg-
in-hole assembly task, involving three different workpiece
shapes: a square, a hexagonal, and a circular peg (figure
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Fig. 1: Peg-in-hole assembly with the KUKA LBR iiwa.

1). A video of the assembly application can be found here:
https://youtu.be/T2pFu6IXk04.

Our assembly strategy arose from industrial assembly
applications with the KUKA LBR iiwa. The approach was
robust against a displacement error of the insertion hole
within ±3 mm along each planar direction (section III-A).

While using the same assembly strategy for all workpiece
shapes, we discovered two notable findings that motivates
our ongoing research (section III-B):

• The same set of impedance parameters worked for all
three workpiece shapes. We therefore investigate the
possibility of whether EDA enables a generalization of
assembly strategies.

• Each task could be achieved within a range of
impedance parameters. We currently investigate learn-
ing algorithms to find a range of feasible parameters,
rather than one specific set of optimal impedance values.

The main contribution of this workshop paper is to present
the theory of EDA and its applicability for contact-rich
manipulation (section III-A). In section III-B, we will give
an outlook of our ongoing research of impedance learning.
With this approach, we aim to facilitate the programming
of assembly tasks and reduce the number of parameters that
have to be selected by the programmer.

II. ELEMENTARY DYNAMIC ACTIONS

EDA consists of three distinct classes of motor primitives:
submovements and oscillations as kinematic primitives, and
mechanical impedance as interaction primitive [10], [1], [11]
(figure 2A). The three primitives can be combined by using
the Norton equivalent network model (figure 2B) [17].

https://youtu.be/T2pFu6IXk04
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Fig. 2: (A) The three primitives of Elementary Dynamic Actions (EDA). Submovement and oscillation are kinematic primitives and
mechanical impedance is an interactive primitive. (B) The three primitives are combined using a Norton equivalent network model.

For the remainder of the paper, we consider a system with
n degrees of freedom (DOF).

A. Submovement

A submovement x0 : R≥0 → Rn is a smooth trajectory
in which its time derivative is a unimodal function, i.e., has
a single peak value:

ẋ0(t) = v σ̂(t)

In this equation, σ̂ : R≥0 → [0, 1] denotes a smooth
unimodal basis function with peak value 1; v ∈ Rn is
the velocity amplitude of the submovement. Submovements
model discrete reaching motions, and therefore σ̂(t) has a
finite support, i.e., there exists T > 0 such that σ̂(t) = 0 for
t ≥ T . [18]

B. Oscillation

An oscillation x0 : R≥0 → Rn is a smooth non-zero
trajectory which is a periodic function:

∀t > 0 : ∃T > 0 : x0(t) = x0(t+ T )

Compared to submovements, oscillations model rhythmic
and repetitive motions.

C. Mechanical Impedance

A mechanical impedance Z : ∆x(t) −→ F(t) is an
operator which maps (generalized) displacement ∆x(t) ∈
Rn to (generalized) force F(t) ∈ Rn [10]. Here, ∆x(t) ≡
x0(t)−x(t) is the displacement between an actual trajectory
of (generalized) position x(t) and a virtual trajectory x0(t)
to which the mechanical impedance is connected.

Along with the kinematic primitives (submovements and
oscillations), EDA includes mechanical impedance as a dis-
tinct primitive to manage physical interaction [10], [19],
[20]. The dynamics of physical interaction can be controlled
by modulating mechanical impedance. For instance, tactile
exploration and manipulation of fragile objects should evoke
the use of low stiffness, while tasks such as drilling a hole
requires high stiffness for object stabilization [19]. Moreover,
impedance can be related to potential energy functions,
which can be adapted to enable safe physical Human-Robot
Interaciton [16].

Under the assumption that the environment is an admit-
tance, mechanical impedance can be linearly superimposed
even though each mechanical impedance is a nonlinear
operator [14], [10]: Z =

∑
Zi.

D. Norton Equivalent Network Model

The three distinct motor primitives of EDA can be com-
bined using a Norton equivalent network to model physical
interaction [10] (figure 2B). The forward-path dynamics
specify the virtual trajectory x0(t), which consists of sub-
movements and/or oscillations. The interactive dynamics,
which consists of mechanical impedance Z, determines the
generalized force output F(t). The generalized displacement
input is denoted ∆x(t). Hence, a key objective of EDA is
to find appropriate choices of x0(t) and Z to produce the
desired interactive behavior at the interaction port (F, ẋ).

As shown in figure 2B, EDA neither control x(t) (i.e.,
position) nor F(t) (i.e., force/torque) directly. This distinct
feature of EDA has several benefits for robot control during
physical interaction. Compared to x(t) and F(t) that depend
on the environment or the object with which the robot
interacts, x0(t) and Z can be modulated independently, i.e.,
regardless of the environment or the manipulated object [19].
For instance, force control cannot be used for free-space
motions and position control cannot be used in contact with
the environment.

A common criticism is that EDA yields imperfections
in terms of Cartesian accuracy. For most assembly tasks,
however, we claim that Cartesian accuracy is not essential.
In contrast, we show that EDA is robust against non-accurate
workpiece locations.

E. Benefits of Elementary Dynamic Actions

1) Modular Framework for Robot Control: EDA provides
modularity at the kinematic and dynamic level: submove-
ments and/or oscillations can be overlayed at the level of
virtual trajectory x0(t) and multiple impedance can be super-
imposed. For instance, a submovement (i.e., discrete move-
ment) can be directly overlayed with an oscillation (rhythmic
movement). This modular property provides several benefits
to simplify contact-rich manipulation, e.g., assembly tasks
(section III-A).



The benefits of both motor-primitives approaches, DMP
and EDA, can be combined. EDA provides a modular
framework for robot control; DMP’s Imitation Learning
provides a rigorous mathematical framework to generate the
virtual trajectory x0(t). By combining these two approaches,
each module can be learned separately and later combined,
resulting in a “modular” Imitation Learning.

2) Passivity Property for Passive Environments: It is well
known that robots capable of stable unconstrained motion
may become unstable on contact with a physical constraint
[21]. A well established approach to address this problem
is ensuring the energetic passivity of the robot’s interactive
behavior [16], [22], [23], [24]. By superimposing mechanical
impedance, passivity is preserved when interacting with
passive environments [25]. The stability property of EDA
provides several advantages for contact-rich manipulation
task, e.g., peg-in-hole insertion tasks (section III-A).

3) Parallel Optimization of Impedance: As can be seen
in the Norton Equivalent Network (figure 2B), the forward
path dynamics and mechanical impedance are (separate)
parallel network paths. Hence, x0(t) and Z can be separately
optimized, which has computational advantages for real-time
control of robots with many DOF [26].

4) Simplified task-space control: The output force F of
the impedance operational form [17] can simply be mapped
to joint torques by using the transpose of the Jacobian matrix,
which is beneficial for torque-controlled robots. Here, no
inverse kinematics are needed [27], which enables seamless
operation into and out of kinematic singularities [28]. For
kinematically redundant robots, superposition of mechanical
impedance can be used to manage kinematic redundancy
without violating passivity [21], [24] and guaranteeing in-
tegrable motions without joint drift [29].

III. APPLICATION AND ONGOING RESEARCH

A. Application: Peg-in-hole

For our assembly application, we used the KUKA Sun-
rise framework 1.17. Details about the algorithms behind
the Cartesian Impedance controller can be found in [24].
Between the three workpieces and the respective insertion
holes was a nominal clearance of 0.14 mm (square peg),
0.18 mm (hexagonal peg), and 0.20 mm (circular peg). All
pieces were printed with a PRUSA i3 MK3 3D-printer using
PLA filament. The components were printed with 20% infill
with gyroid pattern.

Algorithm 1 shows the structure of the assembly ap-
plication. For our application, we heavily used the torque
sensors of the robot to predict external forces (Algorithm 1,
line 3-5 and 14-20). All primitives of EDA were used and
the controller specified the diagonal terms of the stiffness
and damping matrices. A key for a successful assembly
was to combine a rotational submovement with low rota-
tional impedance (Algorithm 1, line 4-12). This strategy
was motivated by observations of humans during assembly
where motion and compliance is combined to assemble
workpieces without even looking. With this approach, the
peg automatically “slipped” into the hole, even though the

Algorithm 1 Primitives for peg-in-hole assembly: sub-
movements (orange), oscillations (purple), and mechanical
Impedance (green). The coordinates can be seen in figure 1.

1: Incline workpiece and align planarly at center of hole
2: Create spatial Force Condition: FTCP < 15 N
3: while Force Condition do
4: Move linRel along −x and y coordinates
5: end while
6: Rotate from current TCP-pose to final TCP-pose, with
7: Siffness :
8: CartDOF.TRANSL = 400 [kg/s2]
9: //Be compliant about A

10: //for peg to “slip” into the hole
11: CartDOF.A = 5 [kgm2/s2]
12: CartDOF.B,C = 100 [kgm2/s2]
13: Damping CartDOF.ALL = 0.7
14: while Force Condition do
15: Move linRel along −z, with
16: Siffness (line 8-12), Damping (line 13)
17: //Overcome inaccuracy of 3D-print
18: Overlay Oscillation about CartDOF.A, with
19: Amplitude A = 0.6 [N], Frequency f = 4.5 [Hz]
20: end while

workpiece was not perfectly aligned during the assembly.
Due to the imperfections of the 3D-print, the riffles of the
hole and the workpiece impeded the insertion of the peg.
We therefore overlayed small oscillations to the discrete
motion along −z during the assembly (Algorithm 1, line
18-19). While certainly other assembly strategies would be
successfull for this application (e.g., combining position
control and perception), for us the key was the combination
of tactile exploration with kinematic and dynamic primitives.
This shows the benefits of the modularity of EDA.

Fig. 3: Displacement tolerance during the peg-in-hole task.

In most manual production lines, there is a non-neglectable
drift of the location of the conveyed workpiece. While control
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algorithms like position control, force control, or hybrid
force-position control struggle with this drift, our application
was still successful for displacements errors of the insertion
hole within ±3 mm (figure 3).

As can be seen in Algorithm 1, multiple parameters have
to be chosen. The overall assembly strategy and the selec-
tion of impedance parameters was heuristically determined,
based on previous experience in industrial applications. Less
experienced programmers, however, might struggle to find a
set of suitable impedance parameters.

The main goal of our current work is to minimize the
parameters to be selected and therefore facilitate impedance
programming. Our current approach tries to use learning
methods to provide a range of feasible impedance values.

B. Learning feasible regions of impedance parameters

One common method of finding task-specific impedance
parameters is to describe the task as an optimization problem
[10], [30], [31], [32]. The impedance parameters are derived
by optimizing a given cost function. While it is not trivial
to find an appropriate cost function [33], a common choice
includes the Cartesian error between the virtual and actual
end-effector trajectory, i.e., the 2-norm of the displacement
x0(t) [32], [34]. The minimization of this cost functions
results in one specific set of impedance parameters, which
are often high impedance values on the matrix main diagonal
[32].

For impedance-controlled robots, the authors challenge
this common practice: 1) Using a cost function that involves
the Cartesian error conflicts with the Norton equivalent
network model (figure 2B) and does not take advantage of
the parallel property between forward-path dynamics and
mechanical impedance. 2) The output of most optimization
and learning approaches is one single set of impedance,
even though a range of parameters would be feasible. For
example in our assembly strategy, changing the translational
impedance parameters from 700 to 900 [kg/s2] (Algorithm 1,
line 8) would still be feasible, while changing the rotational
impedance about the long side of the peg from 5 to 20
[kgm2/s2] (Algorithm 1, line 8) would not work.

In our current work, we aim to learn regions of impedance
parameters that achieve the task. This formulation was mo-
tivated by Bernstein’s philosophy “repetition without repeti-
tion” in human motor behavior [35].

We can identify regions of impedance parameters that
result in success (1) or failure (0) by using binary classi-
fication methods [36], [37]. The benefit of binary classifi-
cation methods is that it does not require a cost function
design and can be readily combined with learning algorithms
[38]. Using the same assembly strategy as for our peg-in-
hole task (section III-A), we collected an initial data-set
D := {(Z(i), y(i))} for i ∈ {1, 2, · · · , N}, where Z(i) =

{K(i)
x ,K

(i)
y ,K

(i)
z ,K

(i)
A ,K

(i)
B ,K

(i)
C , ξt, ξr} ∈ R8

>0 is an array
of translational and rotaional stiffness parameters Ki and
translational and rotational damping ratios ξi (algorithm 1);
y(i) ∈ {0, 1} denotes success (1) or failure (0).

To collect the dataset D, each element of the eight
impedance parameters in Z(i) is assigned three regions: low,
medium, and high. Each value is then sampled in one of
the regions, which results in 38 combinations. Considering
that each trial requires ≃ 20 seconds to determine failure
(y(i) = 0) or success (y(i) = 1), all possible combinations
require 20× 38 ≈ 36 hours of learning.

With this data-set, consisting of N = 38 sample points,
we define a binary classifier function gθ(Z), formulated
as a neural network (figure 4A). Here, θ denotes the pa-
rameters of the neural network. The weights of the neural
network θ are optimized with loss function Lθ(D) =∑N

i=1 L(gθ(Z
(i)), y(i)). For L, we use binary cross-entropy

loss function [39]:

L(gθ(Z
(i)), y(i)) =

{
− log(1− gθ(Z

(i))), y(i) = 0

− log(gθ(Z
(i))), y(i) = 1

Once the weights of gθ are learned from the data-set D,
this binary classifier function is used to predict whether an
arbitrary set of impedance parameters Z (not contained in
D) results in success or failure. Moreover, if one defines a
threshold value c ∈ R for the function g, regions of success
(respectively failure) can be defined by finding the impedance
values Z that results in g(Z) ≥ 0 (respectively g(Z) < 0).
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