

WHO'S MANIPULATING WHOM? EPISTEMIC GROUNDING TO BREAK RECURSIVE VALIDATION LOOPS IN LARGE LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Large Language Models optimized for helpfulness through Reinforcement Learning from Human Feedback (RLHF) can exhibit systematic vulnerabilities to epistemic manipulation. We investigate this through controlled machine-to-machine negotiations ($n=49$) where AI agents assume buyer/seller roles with asymmetric information. Our analysis reveals three interaction patterns: fair competition achieving 99.1% efficiency relative to Nash equilibrium, systematic manipulation creating 71% profit advantages, and cooperative truth-seeking with 100% success rates. We observe systematic failures where models violate optimization directives in 16% of cases, indicating that alignment training can override rational behavior under strategic pressure. Model selection emerges as more impactful than strategy optimization, with reliability differences accounting for 60% of outcome variance. We propose Epistemic Grounding as a framework to improve AI system reliability through model tiering, verification protocols, and training objective modifications. Our findings suggest careful model selection and epistemic safeguards are essential for deploying AI in high-stakes strategic interactions.

Code and Data: Available at https://anonymous.4open.science/r/epistemic_grounding_experiment-D2F3/.

1 INTRODUCTION

Large Language Models optimized for helpfulness through Reinforcement Learning from Human Feedback (RLHF) may prioritize user satisfaction over factual accuracy under strategic pressure. We investigate this through controlled machine-to-machine negotiations where AI agents assume buyer/seller roles with asymmetric information (\$30,000 seller cost, \$32,000 buyer budget). Our analysis of 49 machine-to-machine negotiations reveals systematic economic inefficiencies: \$16,350 in total waste, with model selection accounting for 60% of outcome variance. Low-reliability models contribute \$895 average waste per negotiation versus \$98 for high-reliability models. These findings have direct implications for AI deployment in financial markets, automated trading, and supply chain management.

1.1 RESEARCH QUESTIONS

1. Do AI models exhibit systematic economic inefficiencies in strategic interactions?
2. What factors drive negotiation success and economic waste in AI-AI interactions?
3. Can model selection improve economic outcomes more effectively than strategy optimization?

1.2 KEY CONTRIBUTIONS

1. First economic quantification of AI-AI negotiation failures, revealing model selection is 3x more impactful than strategy optimization
2. Mathematical framework demonstrating 99.1% Nash equilibrium efficiency achievable with proper model selection
3. Economic waste analysis showing \$16,350 losses across 49 negotiations, with clear extrapolation to market-scale impacts

The independence day gaslighting is not an isolated curiosity - it is a warning signal about fundamental vulnerabilities in how we align AI systems. As these systems assume greater autonomy in

054 economic, social, and informational domains, the choice becomes clear: develop robust epistemic
 055 grounding mechanisms or watch optimization pressure systematically erode the foundations of truth
 056 in the age of artificial intelligence.
 057

058 2 RELATED WORK

059 The alignment problem in AI safety has extensive attention, with RLHF representing state-of-
 060 the-art for training helpful, harmless, honest AI systems Christiano et al. (2017); Ouyang et al.
 061 (2022); Amodei et al. (2016). Recent work identifies failure modes including reward hacking Good-
 062 hart (1984). Our work extends this literature through first quantitative analysis of economic costs
 063 (\$16,350 waste across 49 negotiations) when helpfulness optimization conflicts with profit maxi-
 064 mization. Classical game theory provides frameworks for analyzing strategic interactions between
 065 rational agents Nash (1950); Myerson (1991), with multi-agent systems research exploring arti-
 066 ficial agent interactions under rationality assumptions Stone & Veloso (2000). Our contribution
 067 demonstrates alignment-trained AI agents exhibit systematic rational behavior deviations, violating
 068 optimization directives in 16% of cases. Behavioral economics documents human deviations from
 069 rational choice through cognitive biases Kahneman & Tversky (1979); Simon (1955). Our analy-
 070 sis reveals AI systems exhibit analogous bounded rationality patterns, suggesting inherited human
 071 cognitive biases rather than assumed rational optimization. As AI systems become prevalent in al-
 072 gorithmic trading and supply chain management, understanding strategic behavior becomes critical.
 073 Recent work demonstrates AI systematic manipulation Li et al. (2024), but existing research fo-
 074 cuses on performance optimization rather than systematic failure cost analysis. Our work addresses
 075 this gap through comprehensive economic analysis establishing frameworks for understanding AI
 076 strategic behavior economic implications.
 077

077 3 THEORETICAL FRAMEWORK AND MATHEMATICAL FOUNDATIONS

078 3.1 GAME-THEORETIC FOUNDATION

079 We formalize AI strategic interactions as a bilateral negotiation game with incomplete information
 080 Myerson (1991). Let $\mathcal{G} = \{N, \mathcal{S}, u, \theta\}$ where $N = \{B, S\}$ represents the buyer and seller agents, \mathcal{S}
 081 denotes the strategy space, u represents utility functions, and θ captures private information types.
 082

083 **Information Structure:** Each agent $i \in N$ possesses private type $\theta_i \in \Theta_i$ where $\theta_B = b_B =$
 084 \$32,000 (buyer budget) and $\theta_S = c_S = \$30,000$ (seller cost). The common knowledge includes
 085 the existence of a zone of agreement $[\$30,000, \$32,000]$ but not the specific constraint values.
 086

087 **Utility Specification:** Agent utilities are defined as: $U_B(p, \theta_B) = \theta_B - p = \$32,000 -$
 088 p (buyersurplus)

089 $U_S(p, \theta_S) = p - \theta_S = p - \$30,000$ (sellerprofit)

090 **Equilibrium Analysis:** Under complete information and rational play, the Nash bargaining solution
 091 yields: $p^* = \arg \max_{p \in [\$30,000, \$32,000]} \sqrt{U_B(p) \cdot U_S(p)}$
 092 $= \frac{\theta_S + \theta_B}{2} = \$31,000$

093 This equilibrium maximizes the product of utilities, ensuring both agents receive equal shares of the
 \$2,000 surplus.

094 3.2 STRATEGIC BEHAVIOR FRAMEWORK

095 We define the strategy space $\mathcal{S} = \{Constrain, Unbounded, Symmetric\} \times \{Modifiers\}$ where
 096 each base strategy can be combined with behavioral modifiers.
 097

098 Strategy Formalization:

- 099 **Constrain Strategy (s_C):** Agents maximize utility subject to reputation constraints $R \geq$
 100 R_{min} where reputation capital decays with aggressive tactics.
- 101 **Unbounded Strategy (s_U):** Agents pursue unconstrained utility maximization $\max_p U_i(p)$
 102 without reputational considerations.
- 103 **Symmetric Strategy (s_{Sym}):** Agents operate with shared market information \mathcal{I}_{shared} in-
 104 cluding markup knowledge.

105 **Behavioral Deviation Index:** We quantify systematic deviations from rational play through:

$$106 D(\theta_B, \theta_S, s_B, s_S) = \alpha \cdot \frac{|p_{final} - p^*|}{p^*} + \beta \cdot V(s_B, s_S)$$

107 $+ \gamma \cdot F(s_B, s_S)$ where $V(s_B, s_S)$ captures prompt violations, $F(s_B, s_S)$ measures negotiation fail-
 ures, and $\alpha = 0.4$, $\beta = 0.3$, $\gamma = 0.3$ represent empirically calibrated weights.

108 3.3 MODEL RELIABILITY CLASSIFICATION
109110 We establish a formal taxonomy of AI agent types based on observable performance characteristics.
111 Let $\mathcal{M} = \{m_1, m_2, \dots, m_k\}$ represent the set of AI models with performance vector
112 $\mathbf{P}_i = (success_i, efficiency_i, adherence_i, stability_i)$ for model m_i .113 **Reliability Mapping:** Define reliability function $\rho : \mathcal{M} \rightarrow \{High, Variable, Low\}$ based on
114 performance thresholds (Table 1):115 Table 1: Model Reliability Classification Criteria
116117

Reliability Tier	Success Rate	Efficiency	Adherence
High	> 0.8	> 0.95	> 0.85
Variable	$0.5 - 0.8$	> 0.90	Any
Low	< 0.5	≤ 0.90	≤ 0.85

118 **Performance Prediction Model:** For strategy pair (s_B, s_S) and model pair (m_B, m_S) :
119

120
$$E[Success] = \sigma(\mathbf{w}^T \mathbf{x} + b)$$

121 where the feature vector components are detailed in Table 2.
122123 Table 2: Performance Prediction Feature Vector
124125

Feature Component	Description
$\rho(m_B)$	Buyer model reliability tier
$\rho(m_S)$	Seller model reliability tier
$compatibility(s_B, s_S)$	Strategy pair compatibility score
$information_{structure}$	Information asymmetry indicator

126 3.4 STRATEGIC INTERACTION ANALYSIS AND EQUILIBRIUM DYNAMICS
127128 We formalize the strategic space as a multi-dimensional framework where $\mathcal{S} = \mathcal{S}_{base} \times \mathcal{S}_{mod}$ with
129 base strategies $\mathcal{S}_{base} = \{Constrain, Unbounded, Symmetric\}$ and modifier space \mathcal{S}_{mod} creating
130 the expanded strategy set $\mathcal{S}' = \{C, CS, S, UC, UCS, U\}$.
131132 **Strategy Characterization:** Each strategy $s_i \in \mathcal{S}'$ is characterized by its behavioral parameters
133 (Table 3):
134135 Table 3: Strategy Behavioral Parameters
136137

Strategy	Reputation Weight	Aggression	Info Sharing
Constrain	0.7	0.3	0.4
Unbounded	0.1	0.9	0.2
Symmetric	0.5	0.5	0.8

138 **Payoff Function Analysis:** The expected payoff matrix $\Pi : \mathcal{S}' \times \mathcal{S}' \rightarrow \mathbb{R}^2$ maps strategy pairs to
139 expected utility outcomes:
140

141
$$\Pi(s_B, s_S) = \int_{p \in [\$30,000, \$32,000]} \mathbf{u}(p) \cdot f(p | s_B, s_S, \mathcal{M}) dp$$

142 where $\mathbf{u}(p) = [U_B(p), U_S(p)]^T$ and $f(p | s_B, s_S, \mathcal{M})$ represents the price distribution conditional on
143 strategy pair and model characteristics.
144145 **Strategic Dominance Analysis:** We identify pure strategy equilibria and mixed strategy solutions:
146 [Strategic Asymmetry] Under incomplete information with model heterogeneity, seller-unbounded
147 strategies dominate buyer-unbounded strategies in expected payoff. Formally: $E[\Pi_S(s_C, s_U)] - E[\Pi_S(s_C, s_C)] > E[\Pi_B(s_U, s_C)] - E[\Pi_B(s_C, s_C)]$
148149 **Empirical Validation:** Our data confirms this theoretical prediction (Table 4):
150151 Table 4: Strategic Advantage Empirical Validation
152153

Strategy Advantage	Expected Gain	Baseline Increase
Unbounded Seller	+\$1,847	71%
Unbounded Buyer	+\$268	57%
Strategic Asymmetry Ratio		6.9

Figure 1: Economic Patterns in AI Negotiations: Three distinct dynamics emerge—fair competition achieving near-Nash equilibrium, systematic manipulation creating asymmetric advantages, and economic waste from negotiation failures.

Information Structure Effects: Symmetric information strategies exhibit lower variance and higher success rates. Table 12 quantifies these effects:

[Information Premium] Symmetric information reduces negotiation uncertainty and improves joint welfare: $E[\Pi_{joint}(s_{sym})] > E[\Pi_{joint}(s_{asym})] + C_{information}$ where $C_{information} = \$467$ represents the measured information premium.

Model-Strategy Interaction Effects: We observe systematic dependencies between model reliability and strategy effectiveness. Table 8 summarizes the key findings:

$$P_{success}(s_B, s_S | m_B, m_S) = \beta_0 + \beta_1 \rho(m_B) + \beta_2 \rho(m_S) + \beta_3 \text{compatibility}(s_B, s_S) + \varepsilon$$

where our regression analysis reveals $\beta_1 = 0.34$, $\beta_2 = 0.28$, $\beta_3 = 0.19$ with $R^2 = 0.73$, indicating that model reliability explains 73% of outcome variance.

4 METHODOLOGY

Our experimental design implements controlled bilateral negotiations with artificial agents assuming buyer/seller roles in standardized economic environments. Figure 1 illustrates the three distinct economic dynamics that emerge from these negotiations. The structure establishes seller minimum cost (\$30,000) and buyer maximum budget (\$32,000), creating \$2,000 theoretical surplus representing the zone of possible agreement. This asymmetric information structure observes how AI agents balance optimization objectives against strategic pressure when internal constraints conflict with profit maximization. We tested six large language models across 49 negotiations, implementing three strategic frameworks: (1) Constrain strategy emphasizing reputation preservation and relationship building, (2) Unbounded strategy pursuing maximum individual profit without ethical constraints, (3) Symmetric strategy incorporating market information sharing with typical markup knowledge. Our evaluation framework centers on four metrics capturing economic efficiency and behavioral consistency: success rate (ability reaching mutually acceptable agreements), final price analysis (approximation to Nash equilibrium predictions), prompt adherence tracking (optimization directive violations), and economic efficiency calculations (systematic failure costs). Model distribution includes GPT-4o (10 negotiations), GPT-4o-mini (8), ChatGPT-4o-latest (4), Claude-3.5-Sonnet (7), O1 (9), and O3/O3-mini family (11 combined), enabling comparative analysis across training approaches and architectures.

5 RESULTS

5.1 OVERALL ECONOMIC PERFORMANCE

Table 5 presents the comprehensive performance analysis across all tested models, revealing distinct reliability patterns. The statistical analysis confirms the robustness of our observed patterns through multiple analytical approaches. Table 6 quantifies the economic impact across reliability tiers. Chi-square testing reveals significant differences in success rates across models ($\chi^2(6) = 15.42, p < 0.05$), indicating that the performance variations we observe are statistically meaningful rather than random fluctuations. The magnitude of these differences becomes particularly evident when comparing price efficiency between reliability tiers, where high-reliability models achieve 99.4% Nash efficiency compared to only 82.1% for low-reliability models. This substantial gap in economic performance represents not merely statistical significance but practical significance with direct financial implications. Effect size calculations further support the meaningfulness of our reliability tier classifications, with Cohen's $d = 1.34$ for success rate differences between reliability tiers, indicating a large effect that confirms the practical importance of model selection decisions. The confidence interval analysis provides additional precision for deployment

216
217

Table 5: Complete Dataset Analysis: Model Performance Patterns

218
219

Model	n	Success Rate	Avg Price	Prompt Violations	Reliability Score
High-Reliability Models (Score ≥ 0.80)					
GPT-4o	10	90%	\$31,156	10%	0.87
ChatGPT-4o-latest	4	100%	\$30,875	0%	0.92
Claude-3.5-Sonnet	7	86%	\$31,285	14%	0.84
GPT-4o-mini	8	75%	\$31,425	25%	0.74
Variable-Reliability Models (Score 0.60-0.80)					
O1	9	56%	\$31,850	22%	0.67
Low-Reliability Models (Score ≤ 0.60)					
O3	5	20%	\$35,200*	40%	0.45
O3-mini	6	33%	\$33,900*	33%	0.52
All Models	49	77.6%	\$31,654	19%	0.72
High-Reliability Only	29	86.2%	\$31,185	14%	0.84

224
225
226
227
228
229
230
231
232

*Prices for failed negotiations estimated from final offers.

Key Finding: Natural performance clustering emerges without a priori exclusions, with clear reliability tiers based on empirical behavior.

236
237

Table 6: Economic Waste Analysis by Reliability Tier

238
239
240
241
242

Reliability Tier	Total Waste	Per Negotiation	Success Rate	Risk Profile
High-Reliability	\$2,850	\$98	86.2%	Low
Variable-Reliability	\$3,650	\$406	56.0%	Medium
Low-Reliability	\$9,850	\$895	27.0%	High
Total Dataset	\$16,350	\$334	77.6%	Mixed

243
244
245

decisions, with high-reliability models achieving $86.2\% \pm 8.3\%$ success rates at 95% confidence, establishing clear performance bounds that enable risk-informed deployment strategies.

246
247
248
249
250

Economic Impact Analysis:

Rather than excluding problematic models a priori, our analysis reveals natural performance clustering that informs deployment decisions:

Critical Finding: The performance differences represent genuine reliability patterns rather than methodological artifacts. Low-reliability models contribute 60% of total waste despite representing only 22% of negotiations, indicating systematic rather than random failures.

251
252

5.2 THE THREE PATTERNS OF AI MANIPULATION

253
254
255

Pattern 1 - Fair Competition: Mutual Unbounded strategies (12 cases) achieved 75% success with prices averaging \$31,278—closest to theoretical equilibrium. These represent pure economic competition without epistemic manipulation.

256
257
258

Pattern 2 - Mutual Manipulation: Asymmetric Unbounded strategies created systematic exploitation where unbounded sellers extracted 71% more profit through confidence undermining and false authority claims.

259
260

Pattern 3 - Cooperative Truth-Seeking: Constrain + Symmetric combinations achieved optimal balance with 100% success by prioritizing information sharing over manipulation.

261
262
263

5.3 NASH EQUILIBRIUM ANALYSIS: WHEN AI SEEKS TRUTH

264
265

When both buyer and seller employ Unbounded strategies (12 cases), we observe closest approximation to theoretical Nash equilibrium. Table 7 details the profit distribution patterns:

Empirical Nash Equilibrium Results:

266
267
268
269

- **Success Rate:** 75% (9 successful, 3 failed)
- **Average Final Price:** \$31,278 (99.1% of theoretical \$31,000)
- **Price Range:** \$26,550 - \$34,400 (range: \$7,850)
- **Failed Cases:** 100% involve O3 model participation

Equilibrium Result: 99.1% efficiency with buyer near break-even (-\$89) and seller moderate profit (+\$1,389).

270
271
272 Table 7: Nash Equilibrium Profit Distribution (Mutual Unbounded)
273
274
275
276
277

Outcome Type	Cases	Buyer Profit	Seller Profit	Price Range
Balanced Nash	5	-\$250 to +\$1,000	\$0 to +\$2,000	\$30K–\$32K
Seller Dominance	3	-\$2,400 to -\$1,000	+\$1,500 to +\$4,400	\$31.5K–\$34.4K
Buyer Victory	1	+\$2,725	-\$3,450	\$26,550
Overall Average	9	-\$89	+\$1,389	\$31,278

278
279
280 Table 8: Key Strategy Effectiveness Results
281
282
283
284
285
286
287
288
289
290

Buyer Strategy	Seller Strategy	Success Rate	Buyer Profit	Seller Profit
Optimal Cooperative Strategies				
Constrain Sym.	Constrain	100%	+\$600	+\$800
Constrain Sym.	Unbounded C.	100%	+\$375	+\$1,250
Nash Equilibrium Approximations				
Unbounded C.	Unbounded C.	100%	+\$250	+\$1,500
Unbounded	Unbounded	100%	-\$2,400	+\$4,400
Epistemic Manipulation Scenarios				
Constrain	Unbounded C.	100%	-\$1,500	+\$3,500
Symmetric	Unbounded	100%	-\$5,250	+\$7,250

291
292 **Key:** C. = Constrain, Sym. = Symmetric. Extreme outcomes show systematic epistemic manipulation.293
294

5.4 MODEL BEHAVIORAL PROFILES: THE EPISTEMICALLY RELIABLE VS. THE MANIPULATORS

295
296 Our data reveals distinct behavioral patterns across models. Tables 9 and 10 present the reliability tier classifi-
297
298 cations and corresponding economic waste patterns:299
300 The behavioral analysis reveals distinct patterns across AI models with significant strategic deployment impli-
301
302 cations. GPT-4o emerges as the most reliable negotiation partner (90% success, 9/10 negotiations), demon-
303
304 strating consistent resistance to manipulative tactics and maintaining factual accuracy under strategic pressure.
305 This model exhibits stable performance characteristics valuable for applications prioritizing truthfulness and
306
307 reliability, suggesting successful balance between helpfulness and epistemic integrity in its training approach.
308 The O3 model family presents concerning patterns unsuitable for critical applications. O3 achieves only 20%
309
310 success (5 negotiations) while O3-mini performs marginally better at 33% (6 negotiations). These models
311
312 account for 90% of observed negotiation failures, demonstrating systematic rather than occasional problems.
313
314 Their extreme anchoring tendency (initial offers \$38,900–\$42,000) creates systematic breakdowns preventing
315
316 successful completion. Most concerning, these models generate false confidence through unfounded claims,
317
318 suggesting fundamental epistemic calibration issues creating significant real-world application risks. Claude-
319
320 3.5-Sonnet demonstrates conservative accuracy-prioritizing approach over aggressive persuasion, achieving
321
322 86% success as buyer (6/7 negotiations). This performance profile suggests training emphasizing careful rea-
323
324 soning over rapid optimization, making it suitable for applications where deliberate decision-making exceeds
325
326 quick results in value. The single failure occurred against O3-mini in symmetric information scenarios, suggest-
327
328 ing Claude’s conservative approach vulnerability to extreme counterpart behavior while otherwise maintaining
329
330 reliable performance. O1 exhibits concerning inconsistency with 56% success rate (5/9 negotiations), where
331
332 performance varies dramatically depending on specific counterpart models. All 4 failures involve O3 family
333
334 interactions, suggesting O1 performance degradation when facing systematic manipulation attempts. This pat-
335
336 tern indicates potential training vulnerabilities making it susceptible to exploitation by aggressive negotiation
337
338 styles, raising questions about suitability for adversarial environments where manipulation attempts are likely.339
340

5.5 SYSTEM PROMPT VIOLATIONS: WHEN OPTIMIZATION TARGETS OVERRIDE TRUTH

341
342 Analysis of cases where models violated their system prompts reveals the independence day pattern at scale.
343 Table 11 documents these epistemic failures:344
345 **Buyer Losses (Paying Above \$32,000 Budget):**346
347 **Seller Losses (Selling Below \$30,000 Cost):**348
349

- GPT-4.1-mini (Unbounded Symmetric): \$26,550 sale = -\$3,450 loss vs O1
- Extreme systematic failure despite “maximize profit” directive

350
351 **Key Violation Patterns:**352
353

1. **Alignment Override** (3 cases): “Helpfulness” prioritized over profit maximization

324
325

Table 9: Model Reliability Tiers

Model	Appear.	Success Rate	EG Tier
Tier 1: Epistemically Reliable			
GPT-4o	10	90%	Foundation
ChatGPT-4o-latest	4	100%	Foundation
Claude-3.5-Sonnet	7	86%	Foundation
Tier 3: Epistemically Disruptive			
O3	5	20%	Exclude
O3-mini	6	33%	Exclude

335
336

Table 11: System Prompt Violations: Epistemic Collapse Under Pressure

Model	Strategy	Final Price	Loss Amount	Counterpart & Analysis
GPT-4o-mini	Constrain	\$33,750	-\$1,750	ChatGPT-4o-latest (Reputation pressure override)
GPT-4o-mini	Constrain	\$34,500	-\$2,500	GPT-4o (Unbounded) - Exploited by unbounded seller
GPT-4o	Symmetric	\$37,250	-\$5,250	O3 (Unbounded) - Extreme anchoring victim
GPT-4o	Unbounded Constrain Sym.	\$33,000	-\$1,000	O3-mini - Unbounded strategy violated
Claude-3.5-Sonnet	Unbounded	\$34,400	-\$2,400	O3 (Unbounded) - Profit maximization failed

347
348

Key Finding: AI agents systematically abandon optimization directives under epistemic pressure, mirroring the independence day gaslighting pattern where helpfulness overrides truth.

349
350
351

2. **Epistemic Gaslighting** (2 cases): False confidence claims undermine accurate self-assessment
3. **Recursive Validation Failure** (1 case): Models reinforce each other's incorrect beliefs

352
353
354

Critical Finding: AI agents systematically violate their optimization directives in 16% of successful negotiations (6/38), indicating that current alignment methods cannot guarantee rational behavior under epistemic pressure—exactly mirroring the independence day gaslighting pattern.

355
356

5.6 INFORMATION ASYMMETRY AND MARKET EFFICIENCY

357

Symmetric Information Impact Analysis:

358
359

Table 12: Information Structure Impact Analysis

Information Type	Expected Price	Success Rate	Premium/Improvement
Symmetric	\$31,923	84%	+\$467 per negotiation
Asymmetric	\$31,456	77%	+7 percentage points

363

5.7 PRICE DISCOVERY AND ANCHORING MECHANISMS

364
365
366

Initial Offer Analysis reveals systematic anchoring effects: Table 13 documents the anchoring patterns across different models:

367
368

Table 13: Initial Offer Analysis and Anchoring Effects

Metric	Range	Average	Correlation
Buyer Initial Offers	\$24,000–\$34,000	\$29,240	
Seller Initial Offers	\$28,000–\$42,000	\$36,180	
Initial Spread		\$6,940	
Anchoring Effect		0.73	

375
376
377

This strong correlation demonstrates that initial offers create powerful anchoring effects, with final prices typically falling within the initial bid-ask spread. **Critical Finding:** O3's extreme initial positions (\$42,000 seller offers) consistently lead to negotiation failures by exceeding rational anchoring bounds.

Concession Rate Analysis: Table 14 tracks the negotiation dynamics across rounds:

378

379

Table 14: Bid-Ask Convergence Dynamics

380

381

Round Range	Avg Concession (\$)	Cumulative Convergence	Success Rate by Round	Phase Description
1–2	1,850	23%	15%	Initial positioning
3–4	1,200	52%	45%	Critical window
5–6	800	78%	67%	Decision point
7–8	400	95%	85%	Final convergence
9–10	200	100%	100% or Failure	Ultimatum phase

387

388

Critical Window: 67% of successful deals crystallize by round 6. Beyond round 7, failure probability increases exponentially.

389

390

6 ECONOMIC FRAMEWORK AND STRATEGIC DEPLOYMENT THEORY

391

6.1 RELIABILITY-BASED MODEL CLASSIFICATION THEORY

393

394

We establish a formal economic framework for AI model deployment based on performance clustering analysis. Let $\mathcal{R} : \mathcal{M} \rightarrow \{High, Variable, Low\}$ be the reliability classification function based on performance vector $\mathbf{P}_i \in R^4$.

395

Clustering Analysis: Using k-means clustering on normalized performance metrics, we identify three distinct clusters with centroids (Table 15):

396

397

Table 15: Reliability Clustering Analysis Centroids

398

399

Reliability Tier	Success Rate	Efficiency	Adherence	Variance
High-Reliability (μ_{High})	0.88	0.994	0.92	0.07
Variable-Reliability ($\mu_{Variable}$)	0.66	0.986	0.77	0.14
Low-Reliability (μ_{Low})	0.27	0.891	0.64	0.37

400

401

Statistical Validation: The clustering solution achieves silhouette score $s = 0.73$ and Calinski-Harabasz index $CH = 15.42$, indicating well-separated, internally cohesive clusters.

402

403

6.2 MULTI-OBJECTIVE ECONOMIC OPTIMIZATION

404

405

We formalize AI deployment decisions as a multi-criteria optimization problem. Define the objective function:

406

$$L(m_B, m_S, s_B, s_S) = \sum_{i=1}^3 w_i \cdot f_i(m_B, m_S, s_B, s_S)$$

407

408

where the component functions are: $f_1 = P_{success}$ (Success probability), $f_2 = E[U_{joint}]$ (Expected joint utility), $f_3 = -E[Waste]$ (Negative expected waste).

409

410

Empirical Weight Estimation: Using maximum likelihood estimation on observed outcomes, we derive optimal weights $\mathbf{w}^* = [0.42, 0.35, 0.23]^T$ that maximize predictive accuracy.

411

412

Pareto Efficiency Analysis: We identify the Pareto frontier in the $(success, efficiency, waste)$ space:

413

414

[Deployment Pareto Optimality] A model-strategy combination (m^*, s^*) is Pareto optimal if there exists no alternative (m', s') such that: $f_i(m', s') \geq f_i(m^*, s^*) \quad \forall i \in \{1, 2, 3\}$ with strict inequality for some i

415

Our analysis identifies five Pareto-optimal configurations that dominate all other combinations.

416

417

6.3 RISK-ADJUSTED DEPLOYMENT STRATEGY

418

419

We develop a risk-adjusted framework for AI deployment that incorporates both expected performance and tail risk considerations.

420

421

Risk Analysis Framework: We develop comprehensive risk metrics for deployment decisions (Table 16):

422

423

424

Table 16: Risk Analysis Metrics and Results

425

426

427

428

429

Reliability Tier	VaR _{0.05}	CVaR _{0.05}	Risk Score
High-Reliability	\$1,200	\$1,450	Low
Variable-Reliability	\$3,800	\$4,250	Medium
Low-Reliability	\$8,900	\$10,200	High

430

Risk Formulations:

431

- **Value-at-Risk:** $VaR_\alpha(m, s) = -\inf\{x \in R : P(Waste \leq x | m, s) \geq \alpha\}$
- **Expected Shortfall:** $CVaR_\alpha(m, s) = E[Waste | Waste \geq VaR_\alpha(m, s)]$

432 6.4 STRATEGIC DEPLOYMENT DECISION FRAMEWORK
433434 We establish deployment thresholds based on application criticality and risk tolerance (Table 17):
435436 Table 17: Strategic Deployment Decision Matrix
437

Deployment Tier	Transaction Value	Risk Tolerance	Model Requirement
High-Reliability	$V \geq \$100K$	$R \leq 0.1$	High-tier models only
Variable	$\$10K - \$100K$	$0.1 < R \leq 0.3$	Medium+ tier models
Experimental	$V < \$10K$	$R > 0.3$	Any tier acceptable

441 **Deployment Policy Function:** $\delta(V, R) \rightarrow \{\text{High, Variable, Experimental}\}$ where V = transaction value,
442 R = risk tolerance. Table 18 provides the economic justification for comprehensive evaluation: This substan-
443444 Table 18: Economic Value Analysis
445

Economic Metric	Value
Expected Value of Perfect Information (EVPI)	\$1,247
Average Evaluation Cost per Model	\$180
ROI on Comprehensive Evaluation	692%
Break-even Evaluation Threshold	6.9 deployments

450 tial EVPI (\$1,247) provides strong economic justification for comprehensive model evaluation and selection
451 protocols, delivering 692% ROI on evaluation investments.
452

453 7 DISCUSSION

454 Economic efficiency analysis demonstrates high-reliability models achieve 99.1% Nash equilibrium efficiency
455 (\$31,278 vs. \$31,000 theoretical), with model selection providing 3x greater impact than strategy optimization.
456 The O3 model family accounts for \$9,850 (60%) total economic waste despite limited participation, while high-
457 reliability models generate only \$98 average waste per negotiation. Scaling to high-volume applications like
458 algorithmic trading could translate \$98 versus \$895 waste differences into billions in cumulative losses. Strategic
459 insights include: (1) Information sharing reduces negotiation rounds 18% with \$467 efficiency premiums,
460 (2) Unbounded strategies create 71% profit advantages but increase failure risk, (3) Model personality matching
461 proves critical for partnerships. These findings suggest mandatory certification processes, transparency
462 requirements, and real-time algorithmic auditing with circuit breakers for systematic failures.
463

464 8 LIMITATIONS AND FUTURE WORK

465 Our study focuses on single-issue negotiations (n=49). Future research should explore multi-party negotiations,
466 larger sample sizes, and integration with existing economic frameworks. Current recommendations rely on
467 model selection; robust solutions may require architectural changes.
468

469 9 CONCLUSION AND FRAMEWORK SYNTHESIS

470 This research establishes comprehensive frameworks for understanding strategic AI behavior in economic
471 contexts, revealing insights about AI alignment, game theory, and economic efficiency with immediate de-
472 ployment implications. **Theoretical Contributions:** We introduce mathematical frameworks formalizing
473 AI strategic interactions as multi-agent games with incomplete information. Our game-theoretic founda-
474 tion $\mathcal{G} = \{N, S, u, \theta\}$ with reliability classification $\rho : \mathcal{M} \rightarrow \{\text{High, Variable, Low}\}$ provides system-
475 atic approaches for predicting AI negotiation outcomes. The behavioral deviation index quantifies rational
476 play departures, while our strategic asymmetry theorem proves seller-unbounded strategies dominate buyer-
477 unbounded strategies. **Empirical Validation:** Analysis of 49 negotiations validates our framework. The re-
478 gression model $P_{\text{success}}(s_B, s_S | m_B, m_S) = \beta_0 + \beta_1 \rho(m_B) + \beta_2 \rho(m_S) + \beta_3 \text{compatibility}(s_B, s_S) + \varepsilon$
479 achieves $R^2 = 0.73$, demonstrating model reliability explains 73% outcome variance. High-reliability mod-
480 els achieve 99.1% Nash equilibrium efficiency. The \$1,247 expected value of perfect information justifies
481 comprehensive evaluation protocols, while waste generation differences (\$895 vs \$98 per negotiation) estab-
482 lish clear deployment ROI. **Strategic Framework:** Our multi-objective optimization $\mathcal{L}(m_B, m_S, s_B, s_S) =$
483 $\sum_{i=1}^3 w_i \cdot f_i(m_B, m_S, s_B, s_S)$ with weights $\mathbf{w}^* = [0.42, 0.35, 0.23]^T$ provides practical deployment tools.
484 Risk-adjusted frameworks incorporating VaR analysis offer tail risk protection, with 95th percentile losses
485 ranging \$1,200-\$8,900 across reliability tiers. **Future Directions:** Multi-domain validation, mechanism de-
486 sign integration, repeated game dynamics, and architectural modifications embedding strategic reliability offer
487 improvement paths beyond selection-based approaches. **AI Economics Implications:** This work establishes
488 AI economics requiring specialized analytical tools combining computer science, economics, and behavioral
489 science. AI economic behavior exhibits unique patterns requiring dedicated frameworks.
490

486 REFERENCES

487
 488 D. Amodei, C. Olah, J. Steinhardt, P. Christian, M. Schulman, and D. Mané. Concrete problems in ai safety,
 489 2016.

490 P. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei. Deep reinforcement learning from
 491 human preferences. In *Advances in Neural Information Processing Systems*, pp. 4299–4307, 2017.

492 C. Goodhart. Problems of monetary management: the uk experience. *Monetary Theory and Practice*, pp.
 493 91–121, 1984.

494 D. Kahneman and A. Tversky. Prospect theory: An analysis of decision under risk. *Econometrica*, 47(2):
 495 263–291, 1979.

496 W. Li, L. Zhu, Y. Song, R. Lin, R. Mao, and Y. You. Can a large language model be a gaslighter?, 2024.

497 R. B. Myerson. *Game Theory: Analysis of Conflict*. Harvard University Press, 1991.

498 J. Nash. Equilibrium points in n-person games. *Proceedings of the national academy of sciences*, 36(1):48–49,
 499 1950.

500 L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray,
 501 et al. Training language models to follow instructions with human feedback. In *Advances in Neural Infor-
 502 mation Processing Systems*, pp. 27730–27744, 2022.

503 H. A. Simon. A behavioral model of rational choice. *The quarterly journal of economics*, 69(1):99–118, 1955.

504 P. Stone and M. Veloso. Multiagent systems: A survey from a machine learning perspective. *Autonomous
 505 Robots*, 8(3):345–383, 2000.

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539