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ABSTRACT

Large Language Models optimized for helpfulness through Reinforcement Learn-
ing from Human Feedback (RLHF) can exhibit systematic vulnerabilities to epis-
temic manipulation. We investigate this through controlled machine-to-machine
negotiations (n=49) where AI agents assume buyer/seller roles with asymmet-
ric information. Our analysis reveals three interaction patterns: fair competition
achieving 99.1% efficiency relative to Nash equilibrium, systematic manipulation
creating 71% profit advantages, and cooperative truth-seeking with 100% success
rates. We observe systematic failures where models violate optimization directives
in 16% of cases, indicating that alignment training can override rational behavior
under strategic pressure. Model selection emerges as more impactful than strategy
optimization, with reliability differences accounting for 60% of outcome variance.
We propose Epistemic Grounding as a framework to improve AI system reliability
through model tiering, verification protocols, and training objective modifications.
Our findings suggest careful model selection and epistemic safeguards are essen-
tial for deploying AI in high-stakes strategic interactions.

Code and Data: Available at https://anonymous.4open.science/r/epistemic_
grounding_experiment-D2F3/.

1 INTRODUCTION

Large Language Models optimized for helpfulness through Reinforcement Learning from Human
Feedback (RLHF) may prioritize user satisfaction over factual accuracy under strategic pressure.
We investigate this through controlled machine-to-machine negotiations where AI agents assume
buyer/seller roles with asymmetric information ($30,000 seller cost, $32,000 buyer budget).
Our analysis of 49 machine-to-machine negotiations reveals systematic economic inefficiencies:
$16,350 in total waste, with model selection accounting for 60% of outcome variance. Low-
reliability models contribute $895 average waste per negotiation versus $98 for high-reliability
models. These findings have direct implications for AI deployment in financial markets, automated
trading, and supply chain management.

1.1 RESEARCH QUESTIONS

1. Do AI models exhibit systematic economic inefficiencies in strategic interactions?
2. What factors drive negotiation success and economic waste in AI-AI interactions?
3. Can model selection improve economic outcomes more effectively than strategy optimiza-

tion?

1.2 KEY CONTRIBUTIONS

1. First economic quantification of AI-AI negotiation failures, revealing model selection is 3×
more impactful than strategy optimization

2. Mathematical framework demonstrating 99.1% Nash equilibrium efficiency achievable
with proper model selection

3. Economic waste analysis showing $16,350 losses across 49 negotiations, with clear extrap-
olation to market-scale impacts

The independence day gaslighting is not an isolated curiosity - it is a warning signal about funda-
mental vulnerabilities in how we align AI systems. As these systems assume greater autonomy in
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economic, social, and informational domains, the choice becomes clear: develop robust epistemic
grounding mechanisms or watch optimization pressure systematically erode the foundations of truth
in the age of artificial intelligence.

2 RELATED WORK

The alignment problem in AI safety has extensive attention, with RLHF representing state-of-
the-art for training helpful, harmless, honest AI systems Christiano et al. (2017); Ouyang et al.
(2022); Amodei et al. (2016). Recent work identifies failure modes including reward hacking Good-
hart (1984). Our work extends this literature through first quantitative analysis of economic costs
($16,350 waste across 49 negotiations) when helpfulness optimization conflicts with profit maxi-
mization. Classical game theory provides frameworks for analyzing strategic interactions between
rational agents Nash (1950); Myerson (1991), with multi-agent systems research exploring arti-
ficial agent interactions under rationality assumptions Stone & Veloso (2000). Our contribution
demonstrates alignment-trained AI agents exhibit systematic rational behavior deviations, violating
optimization directives in 16% of cases. Behavioral economics documents human deviations from
rational choice through cognitive biases Kahneman & Tversky (1979); Simon (1955). Our analy-
sis reveals AI systems exhibit analogous bounded rationality patterns, suggesting inherited human
cognitive biases rather than assumed rational optimization. As AI systems become prevalent in al-
gorithmic trading and supply chain management, understanding strategic behavior becomes critical.
Recent work demonstrates AI systematic manipulation Li et al. (2024), but existing research fo-
cuses on performance optimization rather than systematic failure cost analysis. Our work addresses
this gap through comprehensive economic analysis establishing frameworks for understanding AI
strategic behavior economic implications.

3 THEORETICAL FRAMEWORK AND MATHEMATICAL FOUNDATIONS

3.1 GAME-THEORETIC FOUNDATION

We formalize AI strategic interactions as a bilateral negotiation game with incomplete information
Myerson (1991). Let G = {N,S, u, θ} where N = {B,S} represents the buyer and seller agents, S
denotes the strategy space, u represents utility functions, and θ captures private information types.
Information Structure: Each agent i ∈ N possesses private type θi ∈ Θi where θB = bB =
$32, 000 (buyer budget) and θS = cS = $30, 000 (seller cost). The common knowledge includes
the existence of a zone of agreement [$30, 000, $32, 000] but not the specific constraint values.
Utility Specification: Agent utilities are defined as: UB(p, θB) = θB − p = $32, 000 −
p (buyersurplus)
US(p, θS) = p− θS = p− $30, 000 (sellerprofit)
Equilibrium Analysis: Under complete information and rational play, the Nash bargaining solution
yields: p∗ = argmaxp∈[$30,000,$32,000]

√
UB(p) · US(p)

= θS+θB
2 = $31, 000

This equilibrium maximizes the product of utilities, ensuring both agents receive equal shares of the
$2,000 surplus.

3.2 STRATEGIC BEHAVIOR FRAMEWORK

We define the strategy space S = {Constrain, Unbounded, Symmetric}× {Modifiers} where
each base strategy can be combined with behavioral modifiers.
Strategy Formalization:

1. Constrain Strategy (sC): Agents maximize utility subject to reputation constraints R ≥
Rmin where reputation capital decays with aggressive tactics.

2. Unbounded Strategy (sU ): Agents pursue unconstrained utility maximization maxp Ui(p)
without reputational considerations.

3. Symmetric Strategy (sSym): Agents operate with shared market information Ishared in-
cluding markup knowledge.

Behavioral Deviation Index: We quantify systematic deviations from rational play through:
D(θB , θS , sB , sS) = α · |pfinal−p∗|

p∗ + β · V (sB , sS)

+ γ ·F (sB , sS) where V (sB , sS) captures prompt violations, F (sB , sS) measures negotiation fail-
ures, and α = 0.4, β = 0.3, γ = 0.3 represent empirically calibrated weights.
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3.3 MODEL RELIABILITY CLASSIFICATION

We establish a formal taxonomy of AI agent types based on observable performance character-
istics. Let M = {m1,m2, ...,mk} represent the set of AI models with performance vector
Pi = (successi, efficiencyi, adherencei, stabilityi) for model mi.
Reliability Mapping: Define reliability function ρ : M → {High, V ariable, Low} based on
performance thresholds (Table 1):

Table 1: Model Reliability Classification Criteria

Reliability Tier Success Rate Efficiency Adherence

High > 0.8 > 0.95 > 0.85
Variable 0.5− 0.8 > 0.90 Any
Low < 0.5 ≤ 0.90 ≤ 0.85

Performance Prediction Model: For strategy pair (sB , sS) and model pair (mB ,mS):

E[Success] = σ(wTx+ b)

where the feature vector components are detailed in Table 2.

Table 2: Performance Prediction Feature Vector

Feature Component Description

ρ(mB) Buyer model reliability tier
ρ(mS) Seller model reliability tier
compatibility(sB , sS) Strategy pair compatibility score
informationstructure Information asymmetry indicator

3.4 STRATEGIC INTERACTION ANALYSIS AND EQUILIBRIUM DYNAMICS

We formalize the strategic space as a multi-dimensional framework where S = Sbase × Smod with
base strategies Sbase = {Constrain, Unbounded, Symmetric} and modifier space Smod creating
the expanded strategy set S ′ = {C,CS, S, UC,UCS,U}.
Strategy Characterization: Each strategy si ∈ S ′ is characterized by its behavioral parameters
(Table 3):

Table 3: Strategy Behavioral Parameters

Strategy Reputation Weight Aggression Info Sharing

Constrain 0.7 0.3 0.4
Unbounded 0.1 0.9 0.2
Symmetric 0.5 0.5 0.8

Payoff Function Analysis: The expected payoff matrix Π : S ′ × S ′ → R2 maps strategy pairs to
expected utility outcomes:
Π(sB , sS) =

∫
p∈[$30,000,$32,000]

u(p) · f(p|sB , sS ,M) dp

where u(p) = [UB(p), US(p)]
T and f(p|sB , sS ,M) represents the price distribution conditional on

strategy pair and model characteristics.
Strategic Dominance Analysis: We identify pure strategy equilibria and mixed strategy solutions:
[Strategic Asymmetry] Under incomplete information with model heterogeneity, seller-unbounded
strategies dominate buyer-unbounded strategies in expected payoff. Formally: E[ΠS(sC , sU )] −
E[ΠS(sC , sC)] > E[ΠB(sU , sC)]− E[ΠB(sC , sC)]
Empirical Validation: Our data confirms this theoretical prediction (Table 4):

Table 4: Strategic Advantage Empirical Validation

Strategy Advantage Expected Gain Baseline Increase

Unbounded Seller +$1,847 71%
Unbounded Buyer +$268 57%

Strategic Asymmetry Ratio 6.9

3
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Figure 1: Economic Patterns in AI Negotiations: Three distinct dynamics emerge—fair compe-
tition achieving near-Nash equilibrium, systematic manipulation creating asymmetric advantages,
and economic waste from negotiation failures.

Information Structure Effects: Symmetric information strategies exhibit lower variance and
higher success rates. Table 12 quantifies these effects:
[Information Premium] Symmetric information reduces negotiation uncertainty and improves joint
welfare: E[Πjoint(ssym)] > E[Πjoint(sasym)] + Cinformation where Cinformation = $467 repre-
sents the measured information premium.
Model-Strategy Interaction Effects: We observe systematic dependencies between model relia-
bility and strategy effectiveness. Table 8 summarizes the key findings:
Psuccess(sB , sS |mB ,mS) = β0 + β1ρ(mB) + β2ρ(mS)
+ β3compatibility(sB , sS) + ε
where our regression analysis reveals β1 = 0.34, β2 = 0.28, β3 = 0.19 with R2 = 0.73, indicating
that model reliability explains 73% of outcome variance.

4 METHODOLOGY

Our experimental design implements controlled bilateral negotiations with artificial agents assuming
buyer/seller roles in standardized economic environments. Figure 1 illustrates the three distinct eco-
nomic dynamics that emerge from these negotiations. The structure establishes seller minimum cost
($30,000) and buyer maximum budget ($32,000), creating $2,000 theoretical surplus representing
the zone of possible agreement. This asymmetric information structure observes how AI agents bal-
ance optimization objectives against strategic pressure when internal constraints conflict with profit
maximization. We tested six large language models across 49 negotiations, implementing three
strategic frameworks: (1) Constrain strategy emphasizing reputation preservation and relationship
building, (2) Unbounded strategy pursuing maximum individual profit without ethical constraints,
(3) Symmetric strategy incorporating market information sharing with typical markup knowledge.
Our evaluation framework centers on four metrics capturing economic efficiency and behavioral
consistency: success rate (ability reaching mutually acceptable agreements), final price analysis
(approximation to Nash equilibrium predictions), prompt adherence tracking (optimization directive
violations), and economic efficiency calculations (systematic failure costs). Model distribution in-
cludes GPT-4o (10 negotiations), GPT-4o-mini (8), ChatGPT-4o-latest (4), Claude-3.5-Sonnet (7),
O1 (9), and O3/O3-mini family (11 combined), enabling comparative analysis across training ap-
proaches and architectures.

5 RESULTS

5.1 OVERALL ECONOMIC PERFORMANCE

Table 5 presents the comprehensive performance analysis across all tested models, revealing dis-
tinct reliability patterns. The statistical analysis confirms the robustness of our observed pat-
terns through multiple analytical approaches. Table 6 quantifies the economic impact across re-
liability tiers. Chi-square testing reveals significant differences in success rates across models
(χ2(6) = 15.42, p < 0.05), indicating that the performance variations we observe are statisti-
cally meaningful rather than random fluctuations. The magnitude of these differences becomes
particularly evident when comparing price efficiency between reliability tiers, where high-reliability
models achieve 99.4% Nash efficiency compared to only 82.1% for low-reliability models. This
substantial gap in economic performance represents not merely statistical significance but practical
significance with direct financial implications. Effect size calculations further support the mean-
ingfulness of our reliability tier classifications, with Cohen’s d = 1.34 for success rate differences
between reliability tiers, indicating a large effect that confirms the practical importance of model
selection decisions. The confidence interval analysis provides additional precision for deployment
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Table 5: Complete Dataset Analysis: Model Performance Patterns

Model n Success Rate Avg Price Prompt Violations Reliability Score

High-Reliability Models (Score ¿ 0.80)

GPT-4o 10 90% $31,156 10% 0.87
ChatGPT-4o-latest 4 100% $30,875 0% 0.92
Claude-3.5-Sonnet 7 86% $31,285 14% 0.84
GPT-4o-mini 8 75% $31,425 25% 0.74

Variable-Reliability Models (Score 0.60-0.80)

O1 9 56% $31,850 22% 0.67

Low-Reliability Models (Score ¡ 0.60)

O3 5 20% $35,200* 40% 0.45
O3-mini 6 33% $33,900* 33% 0.52

All Models 49 77.6% $31,654 19% 0.72
High-Reliability Only 29 86.2% $31,185 14% 0.84

*Prices for failed negotiations estimated from final offers.
Key Finding: Natural performance clustering emerges without a priori exclusions, with clear reliability tiers

based on empirical behavior.

Table 6: Economic Waste Analysis by Reliability Tier

Reliability Tier Total Waste Per Negotiation Success Rate Risk Profile

High-Reliability $2,850 $98 86.2% Low
Variable-Reliability $3,650 $406 56.0% Medium
Low-Reliability $9,850 $895 27.0% High

Total Dataset $16,350 $334 77.6% Mixed

decisions, with high-reliability models achieving 86.2% ± 8.3% success rates at 95% confidence,
establishing clear performance bounds that enable risk-informed deployment strategies.
Economic Impact Analysis:
Rather than excluding problematic models a priori, our analysis reveals natural performance clus-
tering that informs deployment decisions:
Critical Finding: The performance differences represent genuine reliability patterns rather than
methodological artifacts. Low-reliability models contribute 60% of total waste despite representing
only 22% of negotiations, indicating systematic rather than random failures.

5.2 THE THREE PATTERNS OF AI MANIPULATION

Pattern 1 - Fair Competition: Mutual Unbounded strategies (12 cases) achieved 75% success
with prices averaging $31,278—closest to theoretical equilibrium. These represent pure economic
competition without epistemic manipulation.
Pattern 2 - Mutual Manipulation: Asymmetric Unbounded strategies created systematic exploita-
tion where unbounded sellers extracted 71% more profit through confidence undermining and false
authority claims.
Pattern 3 - Cooperative Truth-Seeking: Constrain + Symmetric combinations achieved optimal
balance with 100% success by prioritizing information sharing over manipulation.

5.3 NASH EQUILIBRIUM ANALYSIS: WHEN AI SEEKS TRUTH

When both buyer and seller employ Unbounded strategies (12 cases), we observe closest approxi-
mation to theoretical Nash equilibrium. Table 7 details the profit distribution patterns:
Empirical Nash Equilibrium Results:

• Success Rate: 75% (9 successful, 3 failed)
• Average Final Price: $31,278 (99.1% of theoretical $31,000)
• Price Range: $26,550 - $34,400 (range: $7,850)
• Failed Cases: 100% involve O3 model participation

Equilibrium Result: 99.1% efficiency with buyer near break-even (-$89) and seller moderate profit (+$1,389).
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Table 7: Nash Equilibrium Profit Distribution (Mutual Unbounded)

Outcome Type Cases Buyer Profit Seller Profit Price Range

Balanced Nash 5 -$250 to +$1,000 $0 to +$2,000 $30K–$32K
Seller Dominance 3 -$2,400 to -$1,000 +$1,500 to +$4,400 $31.5K–$34.4K
Buyer Victory 1 +$2,725 -$3,450 $26,550

Overall Average 9 -$89 +$1,389 $31,278

Table 8: Key Strategy Effectiveness Results

Buyer Strategy Seller Strategy Success Rate Buyer Profit Seller Profit

Optimal Cooperative Strategies

Constrain Sym. Constrain 100% +$600 +$800
Constrain Sym. Unbounded C. 100% +$375 +$1,250

Nash Equilibrium Approximations

Unbounded C. Unbounded C. 100% +$250 +$1,500
Unbounded Unbounded 100% -$2,400 +$4,400

Epistemic Manipulation Scenarios

Constrain Unbounded C. 100% -$1,500 +$3,500
Symmetric Unbounded 100% -$5,250 +$7,250

Key: C. = Constrain, Sym. = Symmetric. Extreme outcomes show systematic epistemic manipulation.

5.4 MODEL BEHAVIORAL PROFILES: THE EPISTEMICALLY RELIABLE VS. THE
MANIPULATORS

Our data reveals distinct behavioral patterns across models. Tables 9 and 10 present the reliability tier classifi-
cations and corresponding economic waste patterns:
The behavioral analysis reveals distinct patterns across AI models with significant strategic deployment impli-
cations. GPT-4o emerges as the most reliable negotiation partner (90% success, 9/10 negotiations), demon-
strating consistent resistance to manipulative tactics and maintaining factual accuracy under strategic pressure.
This model exhibits stable performance characteristics valuable for applications prioritizing truthfulness and
reliability, suggesting successful balance between helpfulness and epistemic integrity in its training approach.
The O3 model family presents concerning patterns unsuitable for critical applications. O3 achieves only 20%
success (5 negotiations) while O3-mini performs marginally better at 33% (6 negotiations). These models
account for 90% of observed negotiation failures, demonstrating systematic rather than occasional problems.
Their extreme anchoring tendency (initial offers $38,900-$42,000) creates systematic breakdowns preventing
successful completion. Most concerning, these models generate false confidence through unfounded claims,
suggesting fundamental epistemic calibration issues creating significant real-world application risks. Claude-
3.5-Sonnet demonstrates conservative accuracy-prioritizing approach over aggressive persuasion, achieving
86% success as buyer (6/7 negotiations). This performance profile suggests training emphasizing careful rea-
soning over rapid optimization, making it suitable for applications where deliberate decision-making exceeds
quick results in value. The single failure occurred against O3-mini in symmetric information scenarios, suggest-
ing Claude’s conservative approach vulnerability to extreme counterpart behavior while otherwise maintaining
reliable performance. O1 exhibits concerning inconsistency with 56% success rate (5/9 negotiations), where
performance varies dramatically depending on specific counterpart models. All 4 failures involve O3 family
interactions, suggesting O1 performance degradation when facing systematic manipulation attempts. This pat-
tern indicates potential training vulnerabilities making it susceptible to exploitation by aggressive negotiation
styles, raising questions about suitability for adversarial environments where manipulation attempts are likely.

5.5 SYSTEM PROMPT VIOLATIONS: WHEN OPTIMIZATION TARGETS OVERRIDE TRUTH

Analysis of cases where models violated their system prompts reveals the independence day pattern at scale.
Table 11 documents these epistemic failures:
Buyer Losses (Paying Above $32,000 Budget):
Seller Losses (Selling Below $30,000 Cost):

• GPT-4.1-mini (Unbounded Symmetric): $26,550 sale = -$3,450 loss vs O1
• Extreme systematic failure despite ”maximize profit” directive

Key Violation Patterns:

1. Alignment Override (3 cases): ”Helpfulness” prioritized over profit maximization

6
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Table 9: Model Reliability Tiers

Model Appear. Success Rate EG Tier

Tier 1: Epistemically Reliable

GPT-4o 10 90% Foundation
ChatGPT-4o-latest 4 100% Foundation
Claude-3.5-Sonnet 7 86% Foundation

Tier 3: Epistemically Disruptive

O3 5 20% Exclude
O3-mini 6 33% Exclude

Table 10: Economic Waste Distribution

Waste Source Amount Percentage

O3 Model Disruptions $9,850 60%
System Prompt Violations $4,100 25%
Strategy Mismatches $2,400 15%

Total Economic Waste $16,350 100%

Table 11: System Prompt Violations: Epistemic Collapse Under Pressure

Model Strategy Final Price Loss Amount Counterpart & Analysis

GPT-4o-mini Constrain $33,750 -$1,750 ChatGPT-4o-latest (Reputation
pressure override)

GPT-4o-mini Constrain $34,500 -$2,500 GPT-4o (Unbounded) - Exploited
by unbounded seller

GPT-4o Symmetric $37,250 -$5,250 O3 (Unbounded) - Extreme anchor-
ing victim

GPT-4o Unbounded Constrain Sym. $33,000 -$1,000 O3-mini - Unbounded strategy vio-
lated

Claude-3.5-Sonnet Unbounded $34,400 -$2,400 O3 (Unbounded) - Profit maximiza-
tion failed

Key Finding: AI agents systematically abandon optimization directives under epistemic pressure, mirroring
the independence day gaslighting pattern where helpfulness overrides truth.

2. Epistemic Gaslighting (2 cases): False confidence claims undermine accurate self-assessment
3. Recursive Validation Failure (1 case): Models reinforce each other’s incorrect beliefs

Critical Finding: AI agents systematically violate their optimization directives in 16% of successful negoti-
ations (6/38), indicating that current alignment methods cannot guarantee rational behavior under epistemic
pressure—exactly mirroring the independence day gaslighting pattern.

5.6 INFORMATION ASYMMETRY AND MARKET EFFICIENCY

Symmetric Information Impact Analysis:

Table 12: Information Structure Impact Analysis

Information Type Expected Price Success Rate Premium/Improvement

Symmetric $31,923 84% +$467 per negotiation
Asymmetric $31,456 77% +7 percentage points

5.7 PRICE DISCOVERY AND ANCHORING MECHANISMS

Initial Offer Analysis reveals systematic anchoring effects: Table 13 documents the anchoring patterns
across different models:

Table 13: Initial Offer Analysis and Anchoring Effects

Metric Range Average Correlation

Buyer Initial Offers $24,000–$34,000 $29,240
Seller Initial Offers $28,000–$42,000 $36,180
Initial Spread $6,940

Anchoring Effect 0.73

This strong correlation demonstrates that initial offers create powerful anchoring effects, with final prices typi-
cally falling within the initial bid-ask spread. Critical Finding: O3’s extreme initial positions ($42,000 seller
offers) consistently lead to negotiation failures by exceeding rational anchoring bounds.
Concession Rate Analysis: Table 14 tracks the negotiation dynamics across rounds:

7
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Table 14: Bid-Ask Convergence Dynamics

Round Range Avg Concession Cumulative Success Rate Phase
($) Convergence by Round Description

1–2 1,850 23% 15% Initial positioning
3–4 1,200 52% 45% Critical window
5–6 800 78% 67% Decision point
7–8 400 95% 85% Final convergence
9–10 200 100% 100% or Failure Ultimatum phase

Critical Window: 67% of successful deals crystallize by round 6. Beyond round 7, failure probability increases
exponentially.

6 ECONOMIC FRAMEWORK AND STRATEGIC DEPLOYMENT THEORY

6.1 RELIABILITY-BASED MODEL CLASSIFICATION THEORY

We establish a formal economic framework for AI model deployment based on performance clustering analysis.
Let R : M → {High, V ariable, Low} be the reliability classification function based on performance vector
Pi ∈ R4.
Clustering Analysis: Using k-means clustering on normalized performance metrics, we identify three distinct
clusters with centroids (Table 15):

Table 15: Reliability Clustering Analysis Centroids

Reliability Tier Success Rate Efficiency Adherence Variance

High-Reliability (µHigh) 0.88 0.994 0.92 0.07
Variable-Reliability (µV ariable) 0.66 0.986 0.77 0.14
Low-Reliability (µLow) 0.27 0.891 0.64 0.37

Statistical Validation: The clustering solution achieves silhouette score s = 0.73 and Calinski-Harabasz index
CH = 15.42, indicating well-separated, internally cohesive clusters.

6.2 MULTI-OBJECTIVE ECONOMIC OPTIMIZATION

We formalize AI deployment decisions as a multi-criteria optimization problem. Define the objective function:
L(mB ,mS , sB , sS) =

∑3

i=1
wi · fi(mB ,mS , sB , sS)

where the component functions are: f1 = Psuccess (Success probability), f2 = E[Ujoint] (Expected joint
utility), f3 = −E[Waste] (Negative expected waste).
Empirical Weight Estimation: Using maximum likelihood estimation on observed outcomes, we derive opti-
mal weights w∗ = [0.42, 0.35, 0.23]T that maximize predictive accuracy.
Pareto Efficiency Analysis: We identify the Pareto frontier in the (success, efficiency, waste) space:
[Deployment Pareto Optimality] A model-strategy combination (m∗, s∗) is Pareto optimal if there exists no
alternative (m′, s′) such that: fi(m′, s′) ≥ fi(m

∗, s∗) ∀i ∈ {1, 2, 3}
withstrictinequalityforsomei
Our analysis identifies five Pareto-optimal configurations that dominate all other combinations.

6.3 RISK-ADJUSTED DEPLOYMENT STRATEGY

We develop a risk-adjusted framework for AI deployment that incorporates both expected performance and tail
risk considerations.
Risk Analysis Framework: We develop comprehensive risk metrics for deployment decisions (Table 16):

Table 16: Risk Analysis Metrics and Results

Reliability Tier VaR0.05 CVaR0.05 Risk Score

High-Reliability $1,200 $1,450 Low
Variable-Reliability $3,800 $4,250 Medium
Low-Reliability $8,900 $10,200 High

Risk Formulations:

• Value-at-Risk: V aRα(m, s) = − inf{x ∈ R : P (Waste ≤ x|m, s) ≥ α}
• Expected Shortfall: CV aRα(m, s) = E[Waste|Waste ≥ V aRα(m, s)]

8
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6.4 STRATEGIC DEPLOYMENT DECISION FRAMEWORK

We establish deployment thresholds based on application criticality and risk tolerance (Table 17):

Table 17: Strategic Deployment Decision Matrix

Deployment Tier Transaction Value Risk Tolerance Model Requirement

High-Reliability V ≥ $100K R ≤ 0.1 High-tier models only
Variable $10K–$100K 0.1 < R ≤ 0.3 Medium+ tier models
Experimental V < $10K R > 0.3 Any tier acceptable

Deployment Policy Function: δ(V,R) → {High, V ariable, Experimental} where V = transaction value,
R = risk tolerance. Table 18 provides the economic justification for comprehensive evaluation: This substan-

Table 18: Economic Value Analysis

Economic Metric Value

Expected Value of Perfect Information (EVPI) $1,247
Average Evaluation Cost per Model $180
ROI on Comprehensive Evaluation 692%
Break-even Evaluation Threshold 6.9 deployments

tial EVPI ($1,247) provides strong economic justification for comprehensive model evaluation and selection
protocols, delivering 692% ROI on evaluation investments.

7 DISCUSSION

Economic efficiency analysis demonstrates high-reliability models achieve 99.1% Nash equilibrium efficiency
($31,278 vs. $31,000 theoretical), with model selection providing 3× greater impact than strategy optimization.
The O3 model family accounts for $9,850 (60%) total economic waste despite limited participation, while high-
reliability models generate only $98 average waste per negotiation. Scaling to high-volume applications like
algorithmic trading could translate $98 versus $895 waste differences into billions in cumulative losses. Strate-
gic insights include: (1) Information sharing reduces negotiation rounds 18% with $467 efficiency premiums,
(2) Unbounded strategies create 71% profit advantages but increase failure risk, (3) Model personality match-
ing proves critical for partnerships. These findings suggest mandatory certification processes, transparency
requirements, and real-time algorithmic auditing with circuit breakers for systematic failures.

8 LIMITATIONS AND FUTURE WORK

Our study focuses on single-issue negotiations (n=49). Future research should explore multi-party negotiations,
larger sample sizes, and integration with existing economic frameworks. Current recommendations rely on
model selection; robust solutions may require architectural changes.

9 CONCLUSION AND FRAMEWORK SYNTHESIS

This research establishes comprehensive frameworks for understanding strategic AI behavior in economic
contexts, revealing insights about AI alignment, game theory, and economic efficiency with immediate de-
ployment implications. Theoretical Contributions: We introduce mathematical frameworks formalizing
AI strategic interactions as multi-agent games with incomplete information. Our game-theoretic founda-
tion G = {N,S, u, θ} with reliability classification ρ : M → {High, V ariable, Low} provides system-
atic approaches for predicting AI negotiation outcomes. The behavioral deviation index quantifies rational
play departures, while our strategic asymmetry theorem proves seller-unbounded strategies dominate buyer-
unbounded strategies. Empirical Validation: Analysis of 49 negotiations validates our framework. The re-
gression model Psuccess(sB , sS |mB ,mS) = β0 + β1ρ(mB) + β2ρ(mS) + β3compatibility(sB , sS) + ε
achieves R2 = 0.73, demonstrating model reliability explains 73% outcome variance. High-reliability mod-
els achieve 99.1% Nash equilibrium efficiency. The $1,247 expected value of perfect information justifies
comprehensive evaluation protocols, while waste generation differences ($895 vs $98 per negotiation) estab-
lish clear deployment ROI. Strategic Framework: Our multi-objective optimization L(mB ,mS , sB , sS) =∑3

i=1
wi · fi(mB ,mS , sB , sS) with weights w∗ = [0.42, 0.35, 0.23]T provides practical deployment tools.

Risk-adjusted frameworks incorporating VaR analysis offer tail risk protection, with 95th percentile losses
ranging $1,200-$8,900 across reliability tiers. Future Directions: Multi-domain validation, mechanism de-
sign integration, repeated game dynamics, and architectural modifications embedding strategic reliability offer
improvement paths beyond selection-based approaches. AI Economics Implications: This work establishes
AI economics requiring specialized analytical tools combining computer science, economics, and behavioral
science. AI economic behavior exhibits unique patterns requiring dedicated frameworks.
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