
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NASH: NEURAL ADAPTIVE SHRINKAGE FOR STRUC-
TURED HIGH-DIMENSIONAL REGRESSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Sparse linear regression is a fundamental tool in data analysis. However, traditional
approaches often fall short when covariates exhibit structure or arise from hetero-
geneous sources. In biomedical applications, covariates may stem from distinct
modalities or be structured according to an underlying graph. We introduce Neural
Adaptive Shrinkage (Nash), a unified framework that integrates covariate-specific
side information into sparse regression via neural networks. Nash adaptively mod-
ulates penalties on a per-covariate basis, learning to tailor regularization without
cross-validation. We develop a variational inference algorithm for efficient training
and establish connections to empirical Bayes regression. Experiments on real
data demonstrate that Nash can improve accuracy and adaptability over existing
methods.

1 INTRODUCTION

Regularization techniques for linear models have been central in data analysis for decades (Hoerl &
Kennard, 1970; Tibshirani, 1996; Zou & Hastie, 2005). They remain central in modern data analysis
as they are competitive approaches when the sample size is limited and the covariates are high-
dimensional (Horvath & Raj, 2018; Bohlin et al., 2016; Horvath & Raj, 2018; Haftorn et al., 2021).
Despite their popularity, these methods often fall short when dealing with heterogeneous covariates
that exhibit structural properties, such as nominal, ordinal, spatial, or graphical data. Classical
regularization methods like Lasso (Tibshirani, 1996) typically apply uniform penalties across all
covariates, which can be suboptimal when diverse predictor types are present in the covariate matrix
(e.g, different genetic modalities). Real-world problems often benefit from tailored regularization
that leverages the covariate side information, such as geographical proximity (Devriendt et al.,
2021) or type biological measurements (Boulesteix et al., 2017). On the other hand, the existing
methods that leverage covariate side information (Tibshirani et al., 2005; Yuan & Lin, 2006; Yu
et al., 2016; Boulesteix et al., 2017) are often limited by their application-specific nature and reliance
on cumbersome cross-validation for hyperparameter selection (Tibshirani et al., 2005; Yuan & Lin,
2006).

In this work, we introduce neural adaptive shrinkage (Nash), a novel regression model framework
that can leverage neural networks to automatically learn the form of the penalty and select the amount
of regularization without using cross-validation or approximate methods. Hence, alleviating the
limitations listed above. We fit Nash using a novel variational inference empirical Bayes (VEB)
method called split VEB, originally introduced for smoothing over-dispersed Poisson counts (Xie,
2023), that we adapt here for high-dimensional Gaussian linear models. When no side information
is available, our approach corresponds to optimizing the lower bound of a recently proposed model
by Kim et al. (2024) and has similar computation complexity O ((n+K)p). However, our learning
algorithm is much simpler than the one proposed by Kim et al. (2024) and allows easy integration
of machine learning approaches for penalty learning (e.g., neural net, xgboost Chen & Guestrin
(2016)). Hence, Nash is both an extremely efficient high-dimensional regression method when no
side information is present and a very flexible alternative when side information is available. We
demonstrate that Nash is a highly competitive framework through a comprehensive study on real data
examples.
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2 PREVIOUS WORKS AND CONTRIBUTION

Previous works have mostly focused on two main types of side information on the covariate. The
first type corresponds to groups (e.g. DNA methylation vs genotype data (Boulesteix et al., 2017)) or
hierarchical information on the covariate; these works include group Lasso (Yuan & Lin, 2006) and
other of its variations (Gertheiss & Tutz, 2010; Tutz & Oelker, 2017; Oelker & Tutz, 2017) and the
IPF Lasso (Boulesteix et al., 2017). Essentially, these methods extend classical regularized techniques
for linear models by using different additive sub-penalties that depend on the group/hierarchy of the
covariates. The second type of covariate side information leveraged in penalized regression is graphs
(Tibshirani et al., 2005; Tibshirani & Taylor, 2011). Spanning from simple L0 graph filtering problem
such as Fused Lasso (Tibshirani et al., 2005) to more complex graphical structure that can be handled
by the GEN Lasso (Tibshirani & Taylor, 2011) and more recent variations (Yu et al., 2016; Devriendt
et al., 2021) that can fit a mix of the different penalties above within a single framework.

Our contribution. While combining neural networks with linear regression is not new (Okoh
et al., 2018; Nalisnick et al., 2019; Lemhadri et al., 2021), existing methods focus on hybrid models
(Okoh et al., 2018; Nalisnick et al., 2019) or learning link functions (Lemhadri et al., 2021) rather
than learn the penalty itself. Our work differs substantially from the previous works listed above.
To our knowledge, this is the first work to propose the use of a neural network to incorporate
covariate side information when learning the penalty function in linear regression. Our work is
much more assumption-lean compared to previous works, as Nash can leverage any side information
that is processable by a neural net. Additionally, we propose a novel low-complexity variational
approximation for empirical Bayes in multiple linear regression. The resulting learning algorithm is a
simple and effective iterative procedure, akin to ADMM or proximal algorithms (Polson et al., 2015).

3 PROBLEM DEFINITION

3.1 VARIATIONAL EMPIRICAL BAYES FOR THE NASH MODEL

The Nash model is defined as follows:

y|X,β, σ2 ∼ N(Xβ, σ2) (1)

βj ∼ N(bj , σ
2
0) (2)

bj ∼ g(dj ,θ) (3)

where y is a response vector of length n, X is an n × p matrix, where p can be much larger than
n (i.e., p≫ n), and xj is the jth column of X . The terms σ2 > 0 and σ2

0 > 0 are strictly positive
variance parameters. The vector dj corresponds to side information on column j. The function g(·, ·)
belongs to a certain class of functions G and takes dj (side information) as its first argument and
θ (parameters) as its second argument. For any tuple (dj ,θ), g(dj ,θ) defines a distribution with a
density, denoted as g(bj ;dj ,θ) at the point bj .

For simplicity, we assume that y is scaled, centered with unit variance, and similarly that each
columns of X (i.e., ∥xj∥ = 1 and E(xj) = 0 for all j = 1, . . . , p). Note that we do not model
the intercept in equation 1, as centering y and X prior to model fitting accounts for it, and it is
straightforward to recover the effect for the unscaled X (Chipman et al., 2001).

We assume that for each predictor xj in X , we observe some side information dj . We intentionally
remain vague on the form of the side information dj , with the only constraint being that d1, . . . ,dp

can be processed by a neural network (e.g., images, tokens, graph matrices). For ease of presentation,
we assume that we can store d1, . . . ,dp in a matrix D of size p × k. The case without any side
information can be recovered by setting d1 = d2 = . . . = dp, i.e., constant side information.

Assuming that σ2 and σ2
0 are known, solving equation 1 in an Empirical Bayes (EB) fashion involves

the following steps:
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1. Learning the parameter θ of the function g(·, ·) ∈ G via maximum marginal likelihood L(θ)

θ̂ =argmax
θ

L(θ) (4)

=argmax
θ

∫
p(y|X,β, σ2)

∏
j

p(βj |bj , σ2
0)g(bj ;dj , θ) dbj (5)

2. Compute the posterior distribution

ppost(β, b) = p(β, b|y,X,D, σ2) ∝ p(y|X,β, σ2)
∏
j

p(βj |bj , σ2
0)g(bj ;dj , θ̂) (6)

Wang & Stephens (2021) and Kim et al. (2024) study similar problems in the case where g does
not depend on side information d (i.e., g(dj ,θ) = g(θ) for all j). They note that even in this case,
both steps described above are computationally intractable except in some very special cases. This
problem becomes even more challenging when we allow the prior g to depend on side information.

3.2 SPLIT VARIATIONAL INFERENCE

Given that we aim to fit model equation 1 in a tractable and efficient way, we propose fitting equation 1
via split VEB (Xie, 2023) using a candidate posterior of the form:

q(β, b) =

P∏
j

qβj (βj)qbj (bj) (7)

The main idea behind split VEB is to decouple the prior/penalty learning step (step 1) from the
posterior computation step (step 2). Our primary quantity of interest is the posterior of b. However,
using b directly in the linear predictor results in a coupled prior/posterior update as in Kim et al.
(2024). To alleviate this problem, we essentially introduce a latent variable β that allows splitting the
ELBO into two parts that are separately updated (see equation 8). At a high level, split VEB allows
deriving a coordinate ascent that essentially iterates between solving two simple problems similar to
optimization techniques (e.g., ADMM or proximal algorithms Polson et al. (2015)).

Form of the ELBO Using the candidate posteriors of the form 7 leads to an ELBO of the following
form for the Nash model

F (qβ, qb, g, σ
2, σ2

0)Nash =
∑
i

Eq(β,b)

[
log

p(yi|xi,β, σ
2)

qβ(β)

]
+
∑
j

Eq(β,b)

[
log p(βj |bj , σ2

0)
]
+

(8)∑
j

Eq(β,b)

[
log

g(bj ;dj ,θ)

qbj (bj)

]
(9)

Where q(β, b) is the mean-field variational distribution as defined in 7.

High-Level Coordinate Ascent Update for Nash Let β̄j = Eq(βj) denote the expected value of
βj with respect to q, and b̄j = Eq(bj) denote the expected value of bj . We define r̄ = y −Xβ̄ as
the vector of expected residuals with respect to q. Let X−j be the design matrix excluding the jth

column, and q−j denote all factors qj′ except factor j. The expected residuals accounting for the
linear effect of all variables other than j are given by:

r̄j = y −X−jβ̄−j = y −
∑
j′ ̸=j

xj′ β̄j′ (10)

3
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1. Update for q∗βj
: the coordinate ascent update q∗βj

= argmaxqβj
FNash(g, q, σ

2, g, q, σ2
0) is

obtained by computing the posterior using

p(r̄j |xj , βj , σ)p(βj |b̄j , σ2
0)

This is a simple posterior computation due to conjugacy and has a closed form that only
requires computing the ordinary least square (OLS) regression of xj on r̄j (see section
3.2.1).

2. Update for (g∗, q∗b): The coordinate ascent update

(g∗, q∗b) = argmax
g,qb

F (qβ, qb, g;σ
2)Nash

is obtained by fitting a neural net with the following objective function:

θ̂ =argmax
θ
L(θ) (11)

=argmax
θ

p∏
j=1

∫
N (β̄j ; bj , σ

2
0) g(bj ;dj ,θ) dbj (12)

Then, by computing the posterior of

p(bj |β̄j ,di, σ
2
0) ∝ N (β̄j ; bj , σ

2
0) g(bi;di, θ̂)

for each bj , which is also a simple posterior computation.

3. Update for σ2, σ2
0

(a) (σ2)∗ = argmaxσ2 F (qβ, qb, g, σ
2, σ2

0)Nash

(b) (σ2
0)

∗ = argmaxσ2
0
F (qβ, qb, g, σ

2, σ2
0)Nash

The first step is a direct consequence of the work by Kim et al. (2024) (see Appendix for more details),
the second step results from our splitting approach, and the last step is a standard coordinate ascent
variational inference (CAVI) step. We provide the closed-form formulas for both σ2 and σ2

0 in the
supplementary section A.1, and we describe the overall learning process in the Appendix, Algorithm
1.

Choice of G For clarity, suppose that g(·, ·) belong to a family of distributions G that have the
following form:

g(dj ,θ) =

M∑
m=0

πm(dj ,θ)gm (13)

π(dj ,θ) = (π0(dj ,θ), . . . , πM (dj ,θ)) (14)

where gm are fixed known distributions (e.g., g0 = δ0 and gm = N (0, σ2
m) with σ2

m < σ2
m+1 for all

m > 0). Then π(.,θ) is a neural network that takes side information dj as input and outputs a vector
of probabilities (π0(dj ,θ), . . . , πM (dj ,θ)) that sum to 1 (e.g., using a softmax function). Under
this model, the loss for θ has the following simple form:

θ̂ = argmax
θ

P∑
j=1

log

M∑
m=0

πm(dj ,θ)Ljm (15)

where Ljm is defined as:

Ljm =

∫
p(β̄j |bj)gm(bj) dbj (16)
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Figure 1: Upper panel: Adaptation of Figure 1 from Kim et al. (2024), showcasing that posterior
mean shrinkage operators (left panel) for different choices of σ2

1 , . . . , σ
2
M and π0, . . . , πM can mimic

the shrinkage operators from some commonly used penalties (right-hand panel). Bottom panel
left: Illustration of how Nash can mimic fused Lasso penalty when used with a graph neural net
prior-based. The left image presents the induced prior density from equation 24, allowing Nash to
mimic the fused Lasso penalty ( using s1 = 0.45 and s2 = 0.15). Bottom right panel, penalty surface
of the fused Lasso (i.e., |b1 + |b2|+ |b1 − b2|).

This represents the marginal likelihood of β̄j under mixture component m. For Gaussian mixture
components gm = N (0, σ2

m), we have:

Ljm = N (β̂j ; 0, σ
2
0 + σ2

m) (17)

These integrals often cannot be computed analytically for other priors and error models. However,
(Ljm) are simple one-dimensional integrals that are fast to approximate. It is straightforward to
extend this model to use more complex distribution mixtures such as Mixture Density Networks
Bishop (1994) or Graph Mixture Density Networks Errica et al. (2021) (see section 4 for more
details). More generally, g(·, ·) can be any probabilistic model (e.g., Gaussian Process, but potentially
more complex models) for which the loss in 12 can be evaluated and the posterior p(bj |β̄j ,di, σ

2
0) ∝

N (β̄j ; bj , σ
2
0)g(bi;di, θ̂) can be computed. For computational efficiency, it is useful that both of

these steps can be evaluated via closed-form formulas. Note that when g does not depend on the
covariate, then step 2) in the coordinate ascent described above corresponds to an empirical Bayes
normal mean problem (EBNM; see Willwerscheid et al. (2024) for an overview, and (Robbins, 1956;
Efron, 2019; Stephens, 2017) for classical statistical papers on this topic). In this case, fitting g as in
13 with fixed gm(·) distributions corresponds to estimating the mixture proportions for the different
mixture components gm(·). Using fixed distributions is particularly practical as it allows efficient
estimation of the mixture components (π0, . . . , πM ) via sequential quadratic programming, which is
often achieved in sub-linear time (in terms of p), see Kim et al. (2019).

3.2.1 ON THE UPDATE FOR β

A careful reader will notice that the update for β can actually be solved exactly, without using an
approximate posterior as in 7. Split VEB leads to an update for β that corresponds to a Bayesian
ridge regression y|X,β, σ2 ∼ N(Xβ, σ2) with a prior on β ∼ N(b, σ2

0Ip). The posterior of β has
a well-known closed form (Hoerl & Kennard, 1970). However, computing this posterior requires
inverting a matrix, resulting in O(np2+p3) operations to compute the exact posterior (or O(n2p+n3)
operations using the dual form, via Woodbury formula (Saunders et al., 1998)). Because of conjugacy
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and the assumption that the columns of X are centered and scaled, the update at iteration t+1 for βj

under 7 is given by βt+1
j = ωx⊺

j r̄
t+1
j + (1− ω)b̄tj . Here, r̄t+1

j is the expected residual at iteration
t + 1 as defined in 10, b̄tj is the posterior mean of bj under 7 at iteration t, and x⊺

j r̄j corresponds
to the maximum likelihood estimate (MLE) of the effect of xj on r̄t+1

j due to scaling. The term ω

is defined as ω =
(n−1)σ2

0

σ2+(n−1)σ2
0

as due to scaling x⊺
jxj = n − 1 . Therefore, each update for a βj

corresponds to a scalar product between two vectors, resulting in a coordinate ascent algorithm that
has a complexity of O(np), which is significantly smaller than O(n2p+ n3) or O(np2 + p3).

3.2.2 AN AUTOREGRESSIVE UPDATE FOR g WITH AUTO-ADAPTIVE DAMPENING

Given that in practice both σ2 and σ2
0 are being updated (see steps 3a and 3b in the coordinate ascent

algorithm above), the resulting updates for g and qb correspond to fitting a series of autoregressive
covariate-moderated empirical Bayes normal mean problems (cEBNM) that have the following form:

ωtβ̂
t+1
jMLE

+ (1− ωt)b̄
t
j ∼ N(bt+1

j , σ2
0,t), (18)

bt+1
j ∼ g(dj ,θ

t+1). (19)

Here, ωt =
(n−1)σ2

0t

σ2
t+(n−1)σ2

0t
, where σ0t is the value of σ2

0 at iteration t (the same goes for σ2
t ). Equation

18 arises from basic Bayesian computation, yet it leads to an update that is simple to interpret. At
each update for g and qb, the model uses a proportion ωt of novel evidence while retaining 1− ωt of
the previous update. Given that σ2

t and σ2
0t are maximized by Nash’s ELBO, the parameter ωt can be

viewed as a data-driven dampening parameter for learning g and qb.

3.3 COMPARISON AND CONNECTION WITH MR.ASH

Our work is closely related to the multiple regression with adaptive shrinkage (mr.ash) proposed
by Kim et al. (2024), but it differs in two key aspects. The most notable difference is that mr.ash
cannot handle side information. A more technical yet important difference is our learning algorithm.
Kim et al. (2024) use a standard CAVI for fitting VEB approximation of mr.ash, which results in a
coordinate ascent algorithm that requires updating the prior g whenever updating qbj . Thus mr. ash’s
update for g corresponds to an M-step (Dempster et al., 1977). Because the posterior and the prior
learning steps are not decoupled in the mr.ash variational formulation, the resulting CAVI requires
updating the prior g, p times per CAVI update. Split VEB allows decoupling these two problems,
leading to a coordinate ascent for Nash that is notably more efficient, as it only requires updating the
prior g once per coordinate ascent update. While this nuance may appear subtle at first, it turns out to
be crucial when side information is present. Using split VEB allows fitting Nash with a single update
of the neural net parameters θ (g(·, θ)) per coordinate ascent update iteration. In contrast, adapting
mr.ash would require updating the neural net p times per CAVI update, which is not practical when p
is large.

mr.ash Nash, without side information (20)

y|X, b, σ2 ∼ N(Xb, σ2) y|X,β, σ2 ∼ N(Xβ, σ2) (21)

bj ∼ g βj ∼ N(bj , σ
2
0) (22)

bj ∼ g (23)

These two works are related, as fitting Nash with split VEB when no side information is provided
corresponds to optimizing a lower bound of mr.ash’s Evidence Lower Bound (ELBO), when using
g ∈ G from the same family of distributions when fitting both models (see section A.2 for a formal
proof. We also provide in supplementary material Algorithm 2 a high-level description of the key
differences between Nash and mr.ash fitting procedures.
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4 CONNECTION TO PENALIZED LINEAR REGRESSION AND BEYOND

Kim et al. (2024) showed that mr.ash (and therefore Nash) can be viewed as a penalized linear
regression (PLR) problem. When using an adaptive shrinkage prior (ash, (Stephens, 2017)) of the
form g = π0δ0 +

∑M
m=1 πmN(0, σ2

m), different choices of (π0, . . . , πM ) corresponding to different
penalties such as Ridge regression (Hoerl & Kennard, 1970), L0Learn (Hazimeh et al., 2023), Lasso
(Tibshirani, 1996), Elastic Net (Zou & Hastie, 2005), the smoothly clipped absolute deviation (SCAD)
penalty, and the minimax concave penalty (MCP) (Breheny & Huang, 2011). The advantage of
mr.ash and Nash is that the user doesn’t need to specify the penalty, as the model learns the mixture
(π̂0, . . . , π̂M ) that best fits the data via EB. (Kim et al., 2024) proposed the concept of a shrinkage
operator to properly establish the connection between EB multiple linear regression and PLR, which
we depict in figure 1. We further build on this idea by suggesting that some parameterizations of
Nash (detailed below) can be viewed as extensions to previous PLR methods with side information.

Group-Based and Hierarchical Penalty Several approaches have been developed to modulate
the penalty based on groups or hierarchical structures of the data. Examples include the Group
Lasso (Yuan & Lin, 2006), which uses a penalty of the form λ1∥b∥1 + λ2

∑
k∈K
√
dk∥bk∥2, and

the IPF-Lasso Boulesteix et al. (2017) with a penalty of the form λ
∑

k∈K
∑

j∈k ωk|bj |, where K
corresponds to the different groups or clusters. These cases are easily handled by Nash, as they
simply correspond to fitting an ash prior per group/cluster/category. This is achieved using a prior of
the form gk(·) = π0kδ0 +

∑M
m=1 πmkN(0, σ2

m) for each k. In other words the side information dj

for the covariate xj is a vector of length K with binary entries, where the kth entry of dj is set to 1 if
covariate j belongs to group k. Thus, the model π : dj → (π0(dj), . . . , πM (dj)) is a multinomial
regression that is straightforward to fit using standard machine learning routines. Unlike the Group
Lasso or the IPF-Lasso, Nash can naturally fit different penalty types to different groups ( e.g., fitting
an L1 like penalty on group 1 and fitting an L2 like penalty on group 2).

Fused Lasso and Graph-Based Penalty The Fused Lasso (Tibshirani et al., 2005) aims to balance
sparsity and smoothness covariates using a penalty of the for

∑p
j=1 |bj | ≤ s1 and

∑p
j=2 |bj −

bj−1| ≤ s2 . Bayesian versions Casella et al. (2010); Betancourt et al. (2017) have been proposed. We
extend these with graph neural networks (GNNs) to handle more complex dependencies. Classical
Bayesian Fused Lasso Casella et al. (2010) can be reframed using a trivial graphical neural networks
(GNN) (Kipf & Welling, 2017). Here, dj = dt+1

j is the graph (a line in the Fused Lasso case)
with nodes storing βt+1

j,MLE and b̄tj . As the model converges, b̄tj+1 ≈ b̄t+1
j+1, aligning with classic

formulations. We propose the EB Fused Lasso formulation:
gfused(dj) = zL(0, s1)L(l(dj), s2)L(r(dj), s2) (24)

Here, L(µ, s0) is a Laplace distribution centered at µ with scale s0, and z is a normalization constant.
Functions r(dj) = b̄tj−1 and l(dj) = b̄tj+1 are trivial GNNs, allowing different strengths for previous
and next values. Posterior moments for bj can be approximated via Gauss-Hermite quadrature.
Hyperparameters (s1, s2) are learned by maximizing the marginal log likelihood.

For an arbitrary graph, model 24 becomes computationally challenging as computing the posterior
under a product of k > 3 Laplace distributions, as it quickly becomes computationally demanding to
approximate. We propose a generalized EB Fused Lasso :

gfused(dj) = zL(0, s1)L(v1(dj), s2(dj)) (25)
Here, v1(dj), (dj) is the output of a GNN output controlling bj’s smoothness with respect to the
graph structure. This simplifies normalization computation and integral approximation as it only uses
two Laplace distributions.

Note that different variations of the Fused Lasso have been proposed, such as the Sparse Regression
Incorporating Graphical Structure Among Predictors (SRIG) Yu et al. (2016) or the Graph-Guided
Fused Lasso (GGFL) Chen et al. (2010). The SRIG and GGFL penalties can also be mimicked by
adapting the prior 72 using Normal instead of Laplace.

Beyond Regularization We also provide an implementation of Nash that uses penalties based on
Mixture Density Networks (MDN) (Bishop, 1994) and Graph Mixture Density Networks (GMDN)
(Errica et al., 2021). The formulation is as follows:
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g(j,θ) = π0(dj)δ0 +
∑
k

πk(dj)N(µk(dj), σ
2
k(dj)) (26)

Here, (πk(dj)), (µk(dj)), (σ
2
k(dj)) are the outputs of the (graph) MDN, as described in Bishop

(1994) and in Errica et al. (2021). These parameterizations allow the model to actually push the
values of bj away from 0. Enabling Nash to be used as a "self-supervised" biased regression where
the bias (here µk(dj)) is automatically learned from the data.

5 NUMERICAL EXPERIMENT

Figure 2: Performances of the different approaches for denoising MNIST image in terms of RMSE.

We evaluate Nash prediction performance on 4 real data sets that have side information. In each
of these datasets, we also benchmark the performance of mr.ash, Lasso, the elastic net (Enet) with
α = 0.5, ridge regression, and when the data display group/hierarchical side information, we also
benchmark the ipf Lasso. We benchmark 2 versions of Nash: i) Nash without side information and ii)
Nash-mdn equation 26. We also benchmark the performance of xgboost (Chen & Guestrin, 2016),
and multi-layer perceptron (MLP) with L2 regularization.

We selected a range of real datasets that spans from small data set and with a limited number of
covariates (e.g. Air Passenger data ) to larger data set scale such as epigenetic age prediction with
nearly 500,000 predictors. We detail these datasets and the preprocessing in A.3. In most of our
experiments, we proceed as follows: we remove at random 20% of the data for testing purposes, run
the different methods on the remaining data, and evaluate the performance of each method in terms
of root mean squared error (RMSE).

• SNP500: we used daily return from of the AAPL symbols from SNP500 using other assets
daily return. For each asset used in the predictor, we obtained the type of industry in which
this asset is part of (e.g., Technology, Communication Services, Healthcare, Equity Funds )
and used it as side information.

• Airpassenger: we added noise to the Airpassenger data set and used the measurement time
point as side information.

• GSE40279: we used methylation data from individuals measurement (p = 489, 503) to
predict the age of the subject (Bohlin et al., 2016; Horvath & Raj, 2018). We use methylation
probe annotation as side information.

• TCGA: we predict individual normalized BRCA1 gene expression (an important gene in
breast cancer) expression level using the other genes. We use gene pathways from KEGG
pathway as side information.
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Method SNP500 Airpassenger GSE40279 TCGA

Dimension (n × p) 235 × 85 144 × 144 679 × 489,503 1,212 × 18,300
Side info group time probe type pathway

Ridge 0.070 (0.065; 0.076) 33.0 (31.0; 35.0) 7.21 (6.83; 7.58) 0.536 (0.472; 0.599)
Enet 0.071 (0.066; 0.078) 30.2 (29.5; 30.9) 5.28 (5.02; 5.56) 0.466 (0.411; 0.522)
Lasso 0.093 (0.087; 0.100) 49.2 (48.7; 49.7) 5.39 (5.08; 5.71) 0.465 (0.412; 0.518)
mr.ash 0.082 (0.076; 0.088) 20.2 (19.1; 21.3) 5.25 (5.01; 5.71) 0.449 (0.405; 0.493)
XGBoost 0.062 (0.053; 0.069) 18.2 (17.2; 19.1) 6.17 (5.83; 6.52) 0.549 (0.494; 0.604)
MLP 0.441 (0.361; 0.521) 59.5 (58.3; 60.8) 13.62 (13.08; 14.15) 0.457 (0.349; 0.566)
ipf-Lasso 0.066 (0.060; 0.072) NA 5.06 (4.81; 5.33) 0.443 (0.393; 0.473)
Nash.no.cov 0.084 (0.079; 0.089) 19.7 (18.6; 20.7) 5.27 (5.01; 5.53) 0.457 (0.412; 0.504)
Nash.mdn 0.058 (0.053; 0.0643) 17.7 (17.1; 18.2) 5.12 (4.77; 5.47) 0.435 (0.387; 0.483)

Table 1: Comparison of methods across datasets using RMSE. Parentheses denote 95% confidence
intervals based on Gaussian approximations. ipf-Lasso cannot handle time as side information, so we
put NA for the Airpassenger experiment.

5.1 DENOISING MNIST IMAGES

We evaluate the performance of Nash-fused 24 using a simple 2-layer message passing GNN to
remove Gaussian noise in images compared to methods for image denoising that only use a single
image (as opposed to models trained on other images like diffusion model), such as fused-lasso
(Tibshirani et al., 2005), Total Variation (TV) Denoising Chambolle (2004), Non-Local Means (NLM
) (Buades et al., 2005), Gaussian Filtering (Gonzalez & Woods, 2002), Median Filtering (Huang
et al., 1979), and Noise2Self (Batson & Royer, 2019) of denoising noisy grayscale images from the
MNIST dataset. Nash-fused was run treating each image as a 2D grid graph, where each pixel is
a node connected to its 4-nearest neighbors, and Nosie2Self was run using a convolutional neural
net, which is substantially slower than Nash-fused. The true signal is the clean MNIST digit image
scaled to [0,1], and additive Gaussian noise with as standard deviation of σ = 0.2 was applied to
produce the observed noisy image. The experiment is repeated over 100 randomly selected MNIST
images. For each method, we report the root mean squared error (RMSE) between the denoised
image and the ground truth. Results are summarized as boxplots in Figure 2 additional experiments
using convolutional neural nets are presented in supplementary material in Figure 3. Examples of
denoised images using Nash-fused in the Appendix (see figure5-11)

6 DISCUSSION

We proposed Nash, a novel high-dimensional regression framework that integrates covariate-specific
side information into the estimation process using neural networks. Nash adaptively learns structured
penalties in a nonparametric fashion, enabling flexible regularization without the need for cross-
validation. Our method generalizes and extends existing approaches that incorporate side information,
offering a unified and more expressive framework. We also proposed a new learning algorithm, split
variational empirical Bayes (split VEB), which decouples prior learning from posterior inference,
allowing for efficient and scalable optimization. This algorithm naturally connects to and simplifies
a recently proposed variational Empirical Bayes approach(Kim et al., 2024), while supporting far
richer prior families, including those parameterized by deep neural networks.

To our knowledge, Nash is the first regression method that models the prior distribution over regression
effects as a direct function of side information, enabling automatic, data-driven regularization across
diverse structures such as groups, time, and graphs. Through extensive experiments on real and
synthetic datasets, we demonstrated that Nash consistently performs competitively and can outperform
existing methods tailored to handle a specific type of side information.
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A APPENDIX

A.1 DETAILED SPLIT VEB FOR THE NASH MODEL

The Nash model with side information can be written as:
y|X,β, σ2 ∼ N(Xβ, σ2) (27)

βj ∼ N(bj , σ
2
0) (28)

bj ∼ g(.;dj , θ) (29)

As noted in our manuscript we restrict our search to posterior of the form

q(β, b) =

P∏
j

qβj (βj)qbj (bj) (30)

The overall evidence lower bound (ELBO) for the Nash model is

F (qβ, qb, g;σ
2, σ2

0)Nash =
∑
i

E log
p(yi|xi,β, σ

2)

qβ(β)
+
∑
j

E log p(βj |bj , σ2
0)+ (31)

∑
j

E log
g(bj ;dj , θ)

qbj (bj)
(32)

Our coordinate-ascent algorithm iterates between the updating qβ and updating (qb, g(.; ., θ)).
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A.1.1 UPDATE FOR qβj

Note that given that when qb, g(.; ., θ) are fixed then the ELBO Nash model for qβj
j = 1, . . . , P is

F (qβj
)Nash = E log(p(y|xj , βj , ,X−j ,β−j , σ

2) + E log p(βj |b̄j , σ2
0)− E log qβj

(33)

= E log(p(r̄j |xj , βj , σ
2) + E log p(βj |b̄j , σ2

0)− E log qβj
(34)

where r̄j = y −X−jβ̄−j , this is direct consequence of Proposition 1 of Kim et al. (2024)), so the
and so q∗βj

= maxF (qbj ) is given by computing the posterior of the following simple model

r̄j =xjβj + ε (35)

βj ∼N (b̄j , σ
2
0) (36)

ε ∼N (0, σ2) (37)

By conjugacy, the posterior distribution of βj has the following form βj | r̄j ,xj ∼ N (β̄j , s
2
j ) with

posterior variance s2j =
(

xt
jxj

σ2 + 1
σ2
0

)−1

and posterior mean β̄j = s2j

(
xt

j r̄j

σ2 +
b̄j
σ2
0

)
. In practice

given that the column of X are centered xt
jx

t
j = n− 1 for al j = 1, . . . , p.

A.1.2 UPDATE FOR qb AND g

Given qβ and σ2, the ELBO for the Nash model

F (qb, g(.; ., θ))Nash =
∑
j

E log p(β̄j |bj , σ2
0) +

∑
j

E log
g(bj ;dj , θ)

qbj (bj)
(38)

This ELBO corresponds to a so-called (covariate)moderated normal mean problem (see (Stephens,
2017; Willwerscheid et al., 2024)) that we detail below

The cEBNM problem Given p observations β̄j ∈ R with known standard deviations s2j > 0,
j = 1, . . . , p, the normal means model (Stephens, 2017) is

β̄j
ind.∼ N(bj , σ

2
0), (39)

where the “true” means bj ∈ R are unknown. We further assume that

bj
i.i.d.∼ g ∈ G, (40)

where G is some prespecified family of probability distributions. The empirical Bayes (EB) approach
to fitting this model exploits the fact that the noisy observations β̄j , contain not only information
about the underlying means bj but also about how the means are collectively distributed (i.e., g). EB
approaches "borrow information" across the observations to estimate g, typically by maximizing the
marginal log-likelihood. The unknown means bj are generally estimated by their posterior mean.

We adapt EBNM to a covariate-moderated setting (covariate moderated EBNM, cEBNM), where we
allow the prior for the j-th unknown mean to depend on additional data dj ,

bj
ind.∼ g(dj ,θ) ∈ G, (41)

so that each combination of θ and dj maps to an element of G. We refer to this modified EBNM
model as "covariate-moderated EBNM" (cEBNM).

Solving the cEBNM problem, therefore, involves two key computations:

1. Estimate the model parameters. Compute

θ̂ := argmax
θ ∈Rm

L(θ), (42)
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where L(θ) denotes the marginal likelihood,

L(θ) := p(β̄ | s,θ,D) =

p∏
j=1

∫
N (β̄j ; bj , σ

2
0) g(bj ;dj ,θ) dbj , (43)

in which β̄ = (β̄1, . . . , β̄p), s = (s1, . . . , sn), D is a matrix storing d1, . . . ,dp, and N (β̄j ; bj , σ
2
0)

denotes the density of N (bj , σ
2
0) at β̄j , and g(bj ;dj ,θ) denotes the density of g(dj ,θ) at bj .

2. Compute posterior summaries. Compute summaries from the posterior distributions, such as
the posterior means b̄j := E[bj | β̄j , sj , θ̂,D], using the estimated prior,

p(bj | β̄j , sj , θ̄,D) ∝ N (β̂j ; bj , σ
2
0) g(bj ;dj , θ̂). (44)

In summary, solving the cEBNM problem consists of finding a mapping from known quantities
(β̄, s,D) to a tuple (θ̂, q), where each (dj , θ̂) maps to an element g(dj ,θ) ∈ G, and q is the posterior
distribution of the unobserved b given (β̄, s,D). We denote this mapping as

cEBNM(β̂, s,D) = (θ̂, q). (45)

Any prior family is admissible under the cEBMF framework so long as 45 is computable.

A.1.3 UPDATE FOR σ AND σ2
0

The update for σ and σ2
0 are obtained by simply maximizing the ELBO F (qβ, qb, g;σ

2, σ2
0)Nash

with respect to σ and σ2
0 ,i.e;

(σ2)∗ = argmax
σ2

F (qβ, qb, g;σ
2, σ2

0)Nash (46)

(σ2
0)

∗ = argmax
σ2
0

F (qβ, qb, g;σ
2, σ2

0)Nash (47)

It turns out that using results from (Wang & Stephens, 2021) and Kim et al. (2024) that the update for

σ2 =
||y −Xβ||+ βt(βMLE − β) + σ2p

n+ p
(48)

σ2
0 =
||y −Xb||+ bt(β − b) + σ2

0p
(
1−

∑
j π0(dj)

p )
)

n+ p
(
1−

∑
j π0(dj)

p

) (49)

(50)

Where βMLE is the vector of xt
j r̄j as defined is the section A.1.1.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 1 Algorithm for the split VEB coordinate ascent for Nash.

Require: Data X ∈ Rn×p,y ∈ Rn; a model for , g(., θ);
1: prior variances, σ2

1 < · · · < σ2
K , with σ2

1 = 0; initial estimates β,b,π, σ2.
2: t=0
3: repeat
4: for j = 1 to p do
5: r̄j ← r̄+ xj β̄

t
j ▷ disregard jth effect

6: β̃t+1
j ← xT

j r̄j ▷ OLS
7: β̄t+1

j ← ωtβ̃
t+1
j + (1− ωt)b̄

t
j ▷ Posterior mean Ridge

8: r̄← r̄j − xj β̄j

9: end for
10: θ̂ = argmaxθ

∏p
j=1

∫
N (β̄t+1

j ; bj , σ
2
0) g(bj ;dj ,θ) dbj ▷ EB for penalty

11: bt+1 ← p(b|β̄,D, σ2
0 , θ̂) ▷ Update latent space

12: σ2
t+1 = argmaxσ2 F (qt+1

β , qt+1
b , gt+1, σ2, σ2

0t)Nash

13: σ2
0t+1 = argmaxσ2

0
F (qt+1

β , qt+1
b , gt+1, σ2

t+1, σ
2
0)Nash

14: ωt+1 =
(n−1)σ2

0t+1

σ2
t+1+(n−1)σ2

0t+1

15: t← t+ 1
16: until termination criterion is met
17: return b̄,π, σ2

A.2 NASH OPTIMIZES A LOWER BOUND OF MR.ASH ELBO

The derivations below are adapted from Section 4.2.1 of Xie (2023). While Xie (2023) studies a
different problem (smoothing Poisson counts), we draw inspiration from this work and adapt it to the
high-dimensional Gaussian setting. In this section, we show that in the absence of side information,
Nash optimizes a lower bound of the mr.ash evidence lower bound (ELBO).

Recall the two models, mr.ash and Nash:

mr.ash Nash (51)

y|X, b, σ2 ∼ N(Xb, σ2) y|X,β, σ2 ∼ N(Xβ, σ2) (52)

bj ∼ g(.) βj ∼ N(bj , σ
2
0) (53)

bj ∼ g(.) (54)

We consider the case without side information, recall that both approach restrict their search to
posteriors of the form

mr.ash Nash (55)

q(b) =

P∏
j

qbj (bj) q(β, b) =

P∏
j

qβj
(βj)qbj (bj) (56)

So the corresponding ELBO for the two models are

F (qβ, g;σ
2)mr.ash =

∑
i

E log
p(yi|xi, b, σ

2)

qb(b)
+
∑
j

E log
g(bj)

qbj (bj)
(57)

F (qβ, qb, g;σ
2σ2

0)Nash =
∑
i

E log
p(yi|xi,β, σ

2)

qβ(β)
+
∑
j

E log p(βj |bj , σ2
0) +

∑
j

E log
g(bj)

qbj (bj)

(58)

Below we show that the profiled ELBO F (qβ , g;σ
2)Nash = maxqbF (qβ, qb, g;σ

2)Nash is a lower
bound for F (qβ , g;σ

2)mr.ash.
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A.2.1 ELBO FOR bj IN THE NASH MODEL

The introduction of latent variable βj induces a marginal density of bj as

log p(y|x, bj , σ2, σ2
0) = log

∫
p(y|X, βj , σ

2)N(βj , bj , σ
2
0)g(bj)dβj (59)

We denote log p(y|x, bj , σ2
0) by log f(bj). Before demonstrating that Nash optimizes a lower bound

for the mr.ash approximation, we first introduce a lemma.

Lemma The second order derivative of log f(·) with respect to b is lower bounded by −1/σ2
0 .

Proof. The second derivative of log f(b) is

d2 log f(bj)

db2j
=

f ′′(bj)

f(bj)
−
(
f ′(bj)

f(bj)

)2

(60)

where

f ′(bj) =
1

σ2
0

f(bj)

∫
βp(β | bj)g(bj)dβ −

β

σ2
0

f(bj) =
1

σ2
0

f(bj) (E(β)− bj) ,

f ′′(bj) =
1

(σ2
0)

2
f(bj)

(
E(β2)− bjE(β)

)
− 1

σ2
0

f(bj)−
bj
σ2
0

(61)

= f(bj)

(
1

(σ2
0)

2
E(β2)− 2bj

(σ2
0)

2
E(β)− 1

σ2
+

b2j
(σ2

0)
2

)
(62)

where the expectation are under p(βj |y,X, bj , σ, σ
2
0)

Substituting f ′(bj) and f ′′(bj), we have

d2 log f(bj)

db2j
= − 1

σ2
0

+
1

(σ2
0)

2
(E(β2)− E((β)2) ≥ − 1

σ2
0

(63)

The primary objective is to perform inference on bj , the most straightforward approach is to regard
the marginal distribution as the prior of bj and maximize the corresponding ELBO,

F̃ (qβj , σ
2) = E log

p(y|X, βj ,β−j)

qβj

+ E log f(βj ; g, σ
2). (9)

The following theorem shows that the ELBO function maximized by the splitting approach is a lower
bound of F (qβj ;σ

2).

Theorem A.1. The profiled ELBO function F (qbj ;σ
2, σ2

0) = maxqβj
F (qβj

, qbj ;σ
2, σ2

0)Nash is a
lower bound of F (qbj ;σ

2)mr.ash.

Proof. The ELBO of Nash for βj , bj is

F (qβj , qbj ;σ
2, σ2

0)Nash =E log p(y|X, βj ,β−j) + E log
N(βj , b̄j , σ

2
0)

qβj (βj)
+ E log

g(bj)

qbj
−

Vqbj

2σ2
0

(64)

=E log p(rj |Xj , βj) + E log
N(βj , b̄j , σ

2
0)

qβj
(βj)

+ E log
g(bj)

qbj
−

Vqbj

2σ2
0

(65)

Where rj = y −X−jβ−j , b̄j = Eqbj
(bj) and Vqbj

= Eqbj
(b− b̄)

Therefore the profiled Nash ELBO for qbj , g is

F (bj , g;σ
2, σ2

0) = maxqβj
F (qβj

, qbj ;σ
2, σ2

0)Nash (66)

= log p(rj |b̄j , σ2) + E log
g(bj)

qbj
−

Vqbj

2σ2
0

(67)
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The ELBO F (qβj
, qbj ;σ

2, σ2
0)Nash reach its maximum over qβj

at q∗βj
= p(βj |rj , b̄j , σ2

0)

A second order Taylor series expansion of F (qbj , g;σ
2)mr.ash in around b̄j gives

F (qbj ;σ
2)mr.ash = E log p(y|X, bj , b−j , σ

2, σ2
0) + E log

g(b)

qb
(68)

= log p(r−j |bj , σ2, σ2
0) +

1

2

(
d2f(b)

db2

) ∣∣∣∣
b=b̄

Vqb + E log
g(b)

qb
(69)

≥ log p(r−j |bj , σ2, σ2
0)−

1

2σ2
0

Vqb + E log
g(b)

qb
(70)

= maxqβj
F (qβj , qbj ;σ

2, σ2
0)Nash (71)

where θ is between β̂ and β. The first inequality holds due to the Lemma above, and the second
inequality is due to the definition of ELBO.
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A.3 REAL DATA EXPERIMENT

A.3.1 GROUP-BASED AND HIERARCHICAL SIDE INFORMATION

This section clarifies the construction of (X, y), the definition of the side information dj , the neural
architecture used to parameterize the prior, and how the prior induces covariate-specific shrinkage.
This applies to the datasets SNP500, GSE40279, and TCGA.

Side information. In group-structured regression, each covariate j belongs to a group k(j) ∈
{1, . . . ,K}. We encode this using a one-hot vector.

dj ∈ {0, 1}K , dj,k = 1 ⇐⇒ j ∈ group k.

This representation allows the prior on coefficient bj to depend explicitly on the group membership
of covariate j.

Prior parameterization. We use a mixture density network (MDN) to produce the group-specific
shrinkage prior

g(bj | dj , θ) = π0(dj) δ0 +

M∑
k=1

πk(dj)N
(
µk(dj), σ

2
k(dj)

)
,

with g0 = δ0 fixed. The MDN learns the smooth mapping dj 7→ {πk(dj), µk(dj), σ
2
k(dj)} so that

different groups receive different shrinkage patterns.

Neural network architecture. The MDN is implemented as a fully connected feed-forward network
with three affine layers and ReLU activations. Given dj ∈ Rq , the network computes

h1 = ReLU(W1dj + b1), h2 = ReLU(W2h1 + b2),

π(dj ; θ) = Softmax(W3h2 + b3).

Here,
W1 ∈ RH×q, W2 ∈ RH×H , W3 ∈ R(M+1)×H ,

and we use H = 32 in all experiments. The final layer outputs the (M + 1) mixture weights for the
spike-and-slab prior, along with 2M linear outputs for the means and log-variances of the continuous
mixture components.

All networks in this section are trained using the Adam optimizer with a learning rate 10−3 for 100
epochs.

A.3.2 CONTINUOUS SIDE INFORMATION

In the AirPassengers application, the side information associated with each coefficient is continuous
rather than categorical. This section clarifies how the side information dj is constructed and how the
MDN adapts shrinkage continuously across covariates.

Side information. When covariates are associated with continuous metadata—such as time, spatial
location, or continuous annotations—we encode each covariate j using a real-valued feature vector

dj ∈ Rq,

where q depends on the application. Examples include (i) dj = tj for time-indexed covariates,
(ii) dj = (xj , yj) for 2D spatial structure, and (iii) multi-dimensional continuous annotations. This
allows the prior strength and sparsity pattern to vary smoothly as a function of dj .

Prior parameterization via an MDN. The mixture density network used here is identical to the
architecture described in Section A.3.1. It outputs the mixture weights and mixture parameters as
continuous functions of dj .

All MDNs in this section are trained using Adam with a learning rate 10−3 for 100 epochs.
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A.3.3 GRAPH-BASED SIDE INFORMATION

In the MNIST denoising experiment, the covariates correspond to pixels on a two-dimensional grid.
This induces a natural graph structure that the prior can exploit to encourage spatial smoothness while
allowing for sharp boundaries and local adaptivity. Below we describe the construction of the side
information dj , the graph G = (V,E), and the neural architecture used to parameterize the fused
prior.

Side information from 2D coordinates. Each coefficient bj corresponds to a pixel located at
(dj1 , dj2) on an n× n grid. We encode its spatial position as the normalized coordinate pair

dj = (dj1/n, dj2/n),

so that both components lie in [0, 1]. This representation allows the prior to vary smoothly across
both spatial dimensions.

Graph construction. We equip the pixel grid with a 4-nearest-neighbor graph:

E = {(j, k) : k ∈ Nbh(j)}, Nbh(j) = {up, down, left, right}.

This graph encodes local spatial adjacency and enables the use of message passing to incorporate
information from neighboring pixels.

Fused-Laplace prior. To encourage piecewise smoothness, we employ a fused-Laplace shrinkage
prior of the form

gfused(dj) = z L(0, s1) L(v1(dj), s2(dj)) , (72)

where L(µ, s) denotes a Laplace distribution with location µ and scale s, and z is a normalizing
constant. The first factor shrinks bj toward zero, while the second penalizes the local difference v1(dj)
between bj and its neighbors. Learning (s1, s2(dj), v1(dj)) produces a data-adaptive analogue of the
fused lasso.

Neural parameterization via a 2-layer message-passing GNN. The parameters of the fused prior

(s1, v1(dj), s2(dj))

are produced by a two-layer message-passing neural network (MPNN) operating on the graph
G = (V,E). Let h(0)

j = dj denote the initial node features. The GNN performs two rounds of
message passing:

h
(1)
j = ReLU

W1h
(0)
j +

∑
k∈Nbh(j)

Wmsg h
(0)
k

 ,

h
(2)
j = ReLU

W2h
(1)
j +

∑
k∈Nbh(j)

W ′
msg h

(1)
k

 .

A final linear layer produces the prior parameters:

(s1, s2(dj), v1(dj)) = Softplus
(
W3h

(2)
j + b3

)
.

This architecture allows the shrinkage strength s1, the smoothness scale s2(dj), and the fused-lasso
direction v1(dj) to depend not only on the spatial coordinates of pixel j, but also on the features of
its neighbors through message passing.

We use H = 64 hidden dimensions and train all GNNs using the Adam optimizer with learning rate
10−3 for 100 epochs.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

A.3.4 OTHER METHODS

MLP/Feed forward neural network: We trained a feed-forward neural network (NN) as a baseline
for comparison. The network consists of three fully connected layers: an input layer followed by
two hidden layers of sizes 128 and 64, each with ReLU activation. The output is a single linear
unit predicting a continuous response. The input features were standardized to zero mean and unit
variance based on the training set. The model was trained using the Adam optimizer with a learning
rate of 0.001 and mean squared error (MSE) loss. Each model was trained for 100 epochs using all
training samples in batch mode. Training and evaluation were implemented in PyTorch. RMSE was
computed on each test split, and average RMSE across the 10 folds is reported.

xgboost: We trained gradient-boosted decision trees using the xgboost R package with default
hyperparameters. Specifically, we used roost mean square error as objective for regression. Each
model was trained using 50 boosting iterations (default parameter) with a maximum tree depth of 6
and a learning rate (eta) of 0.3.

MNIST We evaluated seven denoising methods on the MNIST dataset with additive Gaussian noise
of standard deviation σ = 0.2, applied independently to each pixel. Each method was applied to
20 randomly selected test images, and performance was measured using root mean squared error
(RMSE) against the clean image. The Noise2Self model was a convolutional neural network (CNN)
with three convolutional layers: Conv1→32 → ReLU→ Conv32→32 → ReLU→ Conv32→1. It was
trained using masked pixel regression, where approximately 10% of pixels were randomly set to zero
during each training iteration and the model was trained to reconstruct them. The loss was computed
only over masked pixels using mean squared error. We trained the Noise2Self model for 5 epochs
using the Adam optimizer with a learning rate of 10−3 and batch size 64.

The Nash-fused was trained using a message passing GNN representing each image as a 784-node
graph corresponding to a 28× 28 grid, with 4-neighbor connectivity and node features consisting of
the noisy intensity and normalized spatial coordinates. The underlying graph neural network had two
hidden layers with ReLU activations. We trained Nash-fused separately for each image using 300
steps of gradient descent with the Adam optimizer and learning rate 10−2.

Classical baselines included total variation (TV) denoising, fused lasso, Gaussian smoothing, and
non-local means (NLM). TV denoising used regularization weight 0.1. Fused lasso was formulated
as a convex optimization problem with an ℓ2 data fidelity term and isotropic TV penalty, solved using
cvxpy with the SCS solver. Gaussian filtering used a fixed kernel with standard deviation σ = 1.
NLM used the implementation from skimage.restoration with parameters h = 1.15 · σ̂
(where σ̂ is estimated from the image), patch size 3, and patch distance 5.

CNN: We also included a small convolutional neural network as a baseline for image denoising.
The model receives a noisy 28×28 grayscale image and predicts a clean version of the same dimen-
sions. Its architecture consists of four convolutional layers with ReLU nonlinearities, following
a standard encoder–decoder design: Conv1: 1→32 filters, kernel 3×3, padding 1, ReLU; Conv2:
32→64 filters, kernel 3×3, padding 1, ReLU; Conv3: 64→32 filters, kernel 3×3, padding 1, ReLU;
Conv4: 32→1 filter, kernel 3×3, padding 1, linear output.

The model is trained via mean squared error (MSE) between predicted and true clean pixels, using
Adam optimizer with a learning rate of 10−3 using five epochs, on a single image. See Figure 3
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Figure 3: performances of the different approaches for denoising 100 MNIST images in terms of
RMSE.

A.4 COMPARISON WITH MR.ASH

In figure 4a, we showcase a couple of examples where we compare Nash and mr.ash both in terms
of ELBO and fitted performance. The ELBO of Nash is particularly cumbersome to compute, as
it requires storing a large number of parameters (O(MP ), where M is the number of mixture
components in the prior and P is the number of covariates). In the example below, we display Mr.ash
ELBOmr.ash +

∑
j E log

p(βj |bj ,σ2
0)

qβ(β) . In practice we monitor convergence as in mr.ash Kim et al.
(2024) (and other commonly used variational method such as SuSiE-inf Cui et al. (2024)) by stopping
the iteration when ||βt+1 − βt||22 < 1e − 6. In Algorithm 2 below, we also provide a high-level
description of the differences between Nash and mr.ash.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50

−
40

0
−

35
0

−
30

0
−

25
0

−
20

0

Iteration

O
bj

ec
tiv

e

Nash
mr.ash

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

True coefficients

E
st

im
at

ed
 e

ffe
ct

Nash
mr.ash

−10 −5 0 5 10

−
10

−
5

0
5

10

Predicted

O
ut

 o
f t

ra
in

ni
ng

 d
at

a

Nash,
 rmse 1.165 

mr.ash,
 rmse 1.178 

(a) Comparison of mr.ash and Nash, when fitting y =
Xβ + ϵ for which n = 100 and p = 300 and 10
entries of β are non zero and sampled from a N(1,0.25)
and ϵi ∼ N(0, 1)
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Figure 4: Comparison of mr.ash and Nash in two case examples

Algorithm 2: Side-by-side pseudo-code comparison of the learning procedures for mr.ash and
Nash. We highlight in red the main computational differences between mr.ash and Nash

mr.ash Nash

Require: X, y, prior model g(θ).
1: repeat
2: for j = 1 to p do
3: r̄j ← r̄ + xj b̄j
4: b̃j ← x⊤

j r̄j

5: Update b̄j given b̃j
6: Update g(θ̂) given b̃j(M-step)
7: r̄ ← r̄j − xj b̄j
8: end for
9: Update g(θ̂) using (b̃j)j=1,...,P (E-step)

10: until convergence

Require: X, y, prior model g(θ).
1: repeat
2: for j = 1 to p do
3: r̄j = y −

∑
j′ ̸=j xj′ β̄j′

4: β̃j = x⊤
j r̄j

5: Update β̄j given β̃j

6:
7: r̄ ← r̄j − xj β̄j′

8: end for
9: Update g(θ̂) using (β̃j)j=1,...,P

10: until convergence
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Figure 5: Additional denoised image

Figure 6: Additional denoised image
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Figure 7: Additional denoised image

Figure 8: Additional denoised image
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Figure 9: Additional denoised image

Figure 10: Additional denoised image
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Figure 11: Additional denoised image
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