
Under review as a conference paper at ICLR 2023

ACTOR-CRITIC ALIGNMENT FOR
OFFLINE-TO-ONLINE REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep offline reinforcement learning has recently demonstrated considerable
promise in leveraging offline datasets, providing high-quality models that signif-
icantly reduce the online interactions required for fine-tuning. However, such a
benefit is often diminished due to the marked state-action distribution shift, which
causes significant bootstrap error and wipes out the good initial policy. Exist-
ing solutions resort to constraining the policy shift or balancing the sample replay
based on their online-ness. However, they require online estimation of distribution
divergence or density ratio. To avoid such complications, we propose deviating
from existing actor-critic approaches that directly transfer the state-action value
functions. Instead, we post-process them by aligning with the offline learned pol-
icy, so that the Q-values for actions outside the offline policy are also tamed. As
a result, the online fine-tuning can be simply performed as in the standard actor-
critic algorithms. We show empirically that the proposed method improves the
performance of the fine-tuned robotic agents on various simulated tasks.

1 INTRODUCTION

Offline reinforcement learning (RL) provides a novel tool that allows offline batch data to be lever-
aged by RL algorithms without having to interact with the environment (Levine et al., 2020). This
opens up new opportunities for important scenarios such as health care decision making, and goal-
directed dialog learning. Due to the limitation of offline data, it generally remains beneficial and
necessary to fine-tune the learned model through online interactions, and ideally the latter will enjoy
a faster learning curve thanks to the favorable initialization.

Unfortunately, it has been long observed that a direct offline-to-online (O2O) transfer often leads
to catastrophic degradation of performance in the online stage, which is unacceptable in critical
applications including medical treatment and autonomous driving. A key cause lies in the significant
shift of state distribution at online phase compared with the offline data (Fujimoto et al., 2019;
Kumar et al., 2019; Fu et al., 2019; Kumar et al., 2020a). As a result, the Bellman backup suffers a
compounded error (Farahmand et al., 2010; Munos, 2005), because the Q-value has not been well
estimated for the state-actions lying outside the offline distribution.

A number of solutions have been developed to address this issue. The most straightforward approach
is importance sampling (Laroche et al., 2019; Gelada & Bellemare, 2019; Zhang et al., 2020; Huang
& Jiang, 2020), which requires an additional effort of estimating the behavior policy, and suffers
from high variance, especially when it differs markedly from the learned policy (a more realistic
issue for the offline setting than the conventional off-policy setting). The model-based approach,
on the other hand, also suffers from the distribution shift in state marginals and actions (Mao et al.,
2022; Kidambi et al., 2020; Yu et al., 2020; Janner et al., 2019). It may exploit the model to pursue
out-of-distribution states and actions where the model mis-believes to yield a high return. So they
also require detecting and quantifying the shift. In addition, they suffer from standard challenges
plaguing model-based RL algorithms such as long horizon and high dimensionality.

Dynamic programming proffers lower variance and directly learns the value functions and policy.
Several approaches have been proposed to combat distribution shift. A natural idea is to constrain the
policy to the proximity of the behavior policy, and this has been implemented by using probability
divergences in (Nair et al., 2020; Siegel et al., 2020; Peng et al., 2019; Wu et al., 2019; Kumar
et al., 2019), or by behavior cloning regularization (Zhao et al., 2021; Fujimoto & Gu, 2021). A

1

Under review as a conference paper at ICLR 2023

second class of approaches resort to pessimistic under-estimate of the state-action values (Kumar
et al., 2020b; Kostrikov et al., 2021), especially for out-of-distribution actions that could have an
unjustified high value. Conservative Q-learning (CQL, Kumar et al., 2020b) has been shown to
produce a relatively safer O2O transfer in balanced replay (Lee et al., 2022), which further prioritizes
the experience transitions that are closer to the current policy.

Unfortunately, all these methods require online estimation of distribution divergence or density ratio
(for priority score or regularization weight). Excess conservatism can also slow down the online
fine-tuning. A third category of methods avoid these complications by estimating the epistemic
uncertainty of the Q-function, so that out-of-distribution actions carry a larger uncertainty which in
turn yields conservative target values for Bellman backup (Jaksch et al., 2010; O’Donoghue et al.,
2018; Osband et al., 2016; Kumar et al., 2019). However, it is generally hard to find calibrated
uncertainty estimates, especially for deep neural nets (Fujimoto et al., 2019).

To resolve the aforementioned issues, we propose a novel alignment step for actor-critic RL that
can be flexibly inserted between offline and online training, dispensing with any estimation of Q-
function uncertainty, distribution divergence, or density ratio. Our key insight is drawn from soft
actor-critic (SAC, Haarnoja et al., 2018), where the optimal entropy-regularized policy is simply the
softmax of the Q-function. Now that the Q-function is generally problematic for out-of-distribution
actions while the policy learned offline is assumed trustworthy (though still needs fine-tuning), it is
natural to align the critic to the actor upon the completion of offline learning, so that the Q function
is tamed to be consistent with the policy under the softmax function, especially for those actions
that lie outside the behavior policy. As a result, the online fine-tuning will only need to take the
simple form of the standard SAC, and empirically the proposed method outperforms state-of-the-art
fine-tuned robotic agents on various simulated tasks.

Our contributions and novelty can be summarized as follows:

• We propose a novel O2O RL approach that outperforms or matches the current SOTAs.
• Our approach does not rely on offline pessimism or conservatism, allowing it to transfer to a

broader range of offline models.
• We propose, for the first time, discarding Q-values learned offline as a means to combat distribu-

tion shift in O2O RL. We also design a novel reconstruction ofQ-functions for online fine-tuning.
• When offline data is not available at online fine-tuning – a very realistic scenario due to data

privacy concerns, our method remains applicable and stable, while strong competitors such as
balanced replay cease being applicable.

2 RELATED WORK

Decision transformer (Chen et al., 2021) and trajectory transformer (Janner et al., 2021) have re-
cently been shown effective for offline reinforcement learning, where the batch trajectories’ likeli-
hood is maximized auto-regressively to model action sequences conditioned on a task. Zheng et al.
(2022) extended them to online decision transformers (ODTs) by populating the replay buffer with
online ODT rollouts labeled with hindsight experience replay. As a result, sequence modeling be-
comes effective for online fine-tuning. Our method remains in the actor-critic framework, and we
demonstrate similar or superior empirical performance to ODT.

Behavior cloning often plays an important role in effective O2O RL. It can take the form of con-
straining the policy around the behavior policy under certain probability discrepancy measure, or
simply imposing least square or cross-entropy regularizer to drive the policy to imitate transitions
(Zhao et al., 2021; Fujimoto & Gu, 2021). Such a regularizer often requires delicate annealing,
and to this end, Zhao et al. (2021) designed heuristic rules based on reward feedback. Recently,
Kostrikov et al. (2022) employ behavior cloning to guide the extraction of policy from an expectile-
based implicit Q-learning.

It is noteworthy that behavior cloning is also commonly used in imitation learning, where the goal
is to imitate instead of outperforming the demonstrator, differing from the O2O setting. A number
of efforts have been made to fuse it with RL for improvement (Lu et al., 2021). A similar line
of research is to boost online learning from demonstration, (e.g., Hester et al., 2018; Reddy et al.,
2019). However, they focus on accelerating online learning by utilizing offline data, and are not
concerned about the safety or performance drop in porting the pre-trained policy to online.

2

Under review as a conference paper at ICLR 2023

3 PRELIMINARY

We follow the standard protocol that formulates a RL environment as a Markov decision process
(MDP). An MDP M is often described as a 5-tuple (S,A,P, r, γ), where S is the state-space, A
is the action space, P : S × A → ∆(S) is the transition function, R : S × A → R is the reward
function, and γ ∈ [0, 1) is a discount factor. A policy is a distribution π(a|s) ∈ ∆(A), and the agent
aims to find a policy that maximizes the expected return Eπ[

∑∞
t=0 γ

trt].

Soft actor-critic To learn from offline data generated by a behavior policy, we will focus on off-
policy RL methods. In particular, the soft actor-critic method (SAC, Haarnoja et al., 2017; 2018)
learns a Q-function Qµ(s, a) with parameter µ, and a Gaussian policy πθ(a|s) whose sufficient
statistics are determined by a neural network with parameter θ. Let d be the empirical distribution
corresponding to the replay buffer, and we intentionally left it flexible on state, state-action, or
transition. Then SAC alternates between updating the critic and actor by minimizing the following
respective objectives:

LSAC
π (θ,d) := Es∼dEa∼πθ(·|s) [α log πθ(a|s)−Qµ(s, a)] , (1)

LSAC
Q (µ,d) := E(s,a,r,s′,d)∼d

[(
Qµ(s, a)− y(r, s′, d)

)2
]
, (2)

where y(r, s′, d) := r + γ(1− d)Ea′∼πθ(·|s′) [Qµ̄(s
′, a′)− α log πθ(a

′|s′)] . (3)

Here, α > 0 is the temperature parameter, and µ̄ is the delayed Q-function parameter. If πθ is based
on a universal neural network, its optimal value that minimizes LSAC

π (θ,d) admits a closed form:

πθ(a|s) = exp (1
αQµ(s, a))

/∑
a∈A

exp (1
αQµ(s, a)). (4)

In practice, one simply performs gradient descent steps on LSAC
π because even if the network is

universal, the value of θ that corresponds to the optimal solution (4) is hard to find.

It is important to note that adding a baseline function Z(s) to Qµ(s, a) does not change the optimal
πθ in (4), as long as Z(s) does not depend on a. Therefore, given πθ, Qµ(s, a) can be inferred as

Qµ(s, a) = Z(s) + α log πθ(a|s), (5)

where Z(s) provides additional freedom to fit other aspects of the problem; see Section 4.2.

4 ALIGNING CRITICS WITH ACTORS FOR OFFLINE-TO-ONLINE RL

We now detail our method that consists of three phases: offline, actor-critic (AC) alignment, and
online. The whole procedure is summarized in Table 5 in Appendix A.

4.1 OFFLINE TRAINING

Motivating our offline training is TD3+BC (Fujimoto & Gu, 2021), which runs TD3 (Fujimoto et al.,
2018) on the offline dataset with a behaviour cloning (BC) regularization (Bain & Sammut, 1995).
Similar approaches such as SAC+BC can be found in Nair et al. (2020). However, we replaced
TD3 with SAC to enable stochastic policies and to be consistent with the subsequent AC alignment,
where the Q-function is obtained in closed-form under maximum entropy RL. We also replaced the
BC regularization with a maximum likelihood (ML) regularizer, in order to be consistent with the
online phase that also uses an ML regularizer (see Section 4.3). As a result, we naturally name our
offline method as SAC+ML. We will compare our SAC+ML against TD3+BC in Appendix C.

Actor update. Let d be the empirical distribution of a mini-batch sampled from the offline dataset
D. The actor update of TD3+BC and SAC+ML aims to minimize the following respective objec-
tives:

LTD3+BC
π (θ,d) = E(s,a)∼dEb∼πθ(·|s)

[
− λQµ(s, b) + (b− a)2

]
, (6)

LSAC+ML
π (θ,d) = E(s,a)∼dEb∼πθ(·|s)

[
− λ

(
Qµ(s, b)− α log πθ(b|s)

)
− log πθ(a|s)

]
, (7)

3

Under review as a conference paper at ICLR 2023

where the hyperparameter λ balances Q values with the BC/ML regularization. In practice, we
employed the clipped double Q-learning technique (Hasselt, 2010) to train two Q-networks Qµ1

and Qµ2
. It is beneficial for both offline and online training (Fujimoto et al., 2018). λ is then set to

λ := ω /E(s,a)∼d[Qµ(s, a)], where Qµ := min{Qµ1 , Qµ2}, (8)

and ω is a predetermined hyper-parameter. So λ is recomputed after every critic update, requiring
almost no additional computation.

Critic update. SAC+ML follows the same critic update as SAC in (2), except for the doubleQ part:

LSAC+ML
Q (µi,d) := E(s,a,r,s′,d)∼d

[
(Qµi(s, a)− y(r, s′, d))

2
]

(9)

where y(r, s′, d) := r + γ(1− d)Ea′∼πθ(·|s′)(Qµ̄(s
′, a′)− α log πθ(a

′|s′)), (10)

and µ̄ is a delayed version of µ, a.k.a. target network, with Qµ̄(s, a) = mini∈{1,2}Qµ̄i
(s, a), akin

to Qµ. The temperature update tries to reduce the following objective over α > 0:

LSAC+ML
temp (α,d) := Es∼dEa∼πθ(·|s)

[
−α

(
log πθ(a|s)− H̄

)]
. (11)

Here, H̄ > 0 is the target entropy value, a hyper-parameter specified a priori. The Lagrange mul-
tiplier α is automatically tuned in (11), enforcing the upper bound of the entropy of πθ by H̄. The
pseudo-code of SAC+ML is relegated to Appendix A.

4.2 ACTOR-CRITIC ALIGNMENT

At the end of offline learning, the learned policy πθ0 often performs reasonably well, and is ready
for online fine-tuning. So we denote the policy with index 0. In conventional actor-critic, the critic is
supposed to be updated frequently enough to accurately pursue the state-action values for the current
policy. However, even if such updates are conducted proactively, the distribution shift problem in
O2O still plagues the critic under deep net approximation, because the Q-values are not trustworthy
beyond what has been visited under the behavior policy. So the over-estimated Q-values can rapidly
destroy the learned actor and critic through Bellman backup.

In order to avoid this issue, we propose taming the out-of-distribution Q-values by directly aligning
the critics with the actors, as a post-processing step for offline learning, or an initialization step for
online learning. In particular, inspired by (5), we choose to discard the Qµi

learned from the offline
phase, and reset them into1

Qi(s, a) = log πθ0(a|s) + Zψi
(s). (12)

The baseline Zψi
(s) can be naturally calibrated by minimizing the Bellman residual on offline data:

LSAC+ML
Z (ψi,d) := E(s,a,r,s′,d)∼d

[
(log πθ0(a|s) + Zψi

(s)− y(r, s′, d))2
]

(13)

where y(r, s′, d) := r + γ(1− d)Ea′∼πθ0
(·|s′) [log πθ0(a

′|s′) + Zψ(s
′)] , (14)

Zψ := min{Zψ1 , Zψ2}. (15)

Here, Zψ in (14) employs a standard semi-gradient. This optimization is simply a regression prob-
lem and can be conducted by Adam (Kingma & Ba, 2015). The details are deferred to Appendix A.1,
where pseudo-code is also given in Algorithm 1.

Generality. Thanks to this alignment step that disregards the Q-function learned offline, the offline
learning algorithm is not limited to SAC+ML, even though it is more favorable. In Section 6.3, we
will show that our alignment approach can be well applied to the offline policy learned from CQL.

4.3 ONLINE TRAINING

During the online fine-tuning, we restore the full flexibility of Q-functions by using the following
parameterization:

Qϕi
(s, a) := log πθ0(a|s) +Rϕi

(s, a), where Rϕi
(s, a) is initialized with Zψi

(s). (16)

1Compared with (5), it appears that we have set α there to 1, while its value at the end of offline learning
is rarely close to 1. This creates no contradiction, however, because log πθ0 will be used to parameterize the
online Q-function as in (16), and the α for online phase SAC is initialized to 1. So their product, passed through
the softmax, will recover πθ0 .

4

Under review as a conference paper at ICLR 2023

Such an initialization can be simply implemented by loading the weights of Zψi
and setting the

weights corresponding to action to zeros. It is noteworthy that one should refrain from constrain-
ing Q to closed-form manifold induced by the latest πθ throughout the online phase, i.e., setting
Qϕi

(s, a) to log πθ(a|s) + Zϕi
(s) for some trainable baseline Zϕi

. This is because it would lead to
no improvement of the policy. As such, we only leverage the closed-form for initialization.

The update on temperature is exactly the same as (11), and the update on critic resembles that of the
offline phase in (9), except that the training variable is now only Rϕi

(s, a). In particular, we adapt
SAC critic update to our Qϕ, along with standard tricks of target network and double Q-clipping:

LQ(ϕi,d) := E(s,a,r,s′,d)∼d

[(
log πθ0(a|s) +Rϕi

(s, a)− y(r, s′, d)
)2

]
, (17)

where y(r, s′, d) := r + γ(1−d)Ea′∼πθ(·|s′)
[
log πθ0(a

′|s′) +Rϕ̄(s
′, a′)− α log πθ(a

′|s′)
]
. (18)

The actor’s objective follows from the vanilla SAC, and can be written as follows with d being a
mini-batch sampled from the replay buffer, Rϕ := mini∈{1,2}Rϕi

, and Qϕ := log πθ0 +Rϕ:
Lπ(θ,d) := −Es∼dEa∼πθ(·|s) [Qϕ(s, a)− α log πθ(a|s)] , (19)

= −Es∼dEa∼πθ(·|s) [Rϕ(s, a)− α log πθ(a|s)]− Es∼dEa∼πθ(·|s)[log πθ0(a|s)]︸ ︷︷ ︸
penalizing deviation of πθ from πθ0

. (20)

Behavior cloning in (20). Naturally unfolding from SAC using the parameterization (16) is the
expectation of log-likelihood of πθ0 under πθ in (20), a maximum-likelihood term that enforces the
actions favored by the new policy πθ to also enjoy a high log-likelihood under the offline policy
πθ0 . Different from AdaBC (Zhao et al., 2021), we sidestepped an ad-hoc introduction of behavior
cloning regularization and tweaking of its weight. This regularization is not applied on the offline
data, but on the policy πθ0 achieved by offline learning. To be consistent, we also used the maximum-
likelihood regularization in the offline training.

One might argue that this interpretation is artificial because, after all, the log πθ0 term can be sub-
sumed into the free variable Rϕi

in (16), obliterating this BC regularizer in (20). This in fact makes
sense if the entire optimization is convex and the range of Rϕi

as a function set is closed under
addition with log πθ0 . However, since Rϕi is a neural network, such conditions do not hold true.
As a result, the composite form in (16) does play a crucial role in the good empirical performance,
which is manifested in our ablation study in Section 6.5.

In practice, we also introduced two techniques to stabilize online learning. The first β-clipping trick
addresses the excessively large magnitude of log πθ0 by capping its absolute values. The second
critic interpolation gives the flexibility to balance between safety transfer and policy improvement.
For the sake of space, they are deferred to Appendix A.2.

5 ILLUSTRATION OF ALIGNMENT UNDER DISTRIBUTION SHIFT

We first demonstrate how the critic alignment makes theQ-function more consistent with the real ac-
tions in the offline dataset, compared with the Q-values learned from offline actor-critic. We trained
SAC+ML on the halfcheetah-medium dataset, and sampled in-distribution states from it. To sample
out-of-distribution states, we resorted to the halfcheetah-expert dataset, and the details are available
in Appendix D. Figure 5 there further illustrates the difference of these two state distributions.

Figure 1 (top row) compares the Q-values learned from SAC+ML and our aligned/reconstructed
Q-values, where the state-action pair is sampled in-distribution. The bottom row shows a similar
comparison, but on out-of-distribution samples. The actions have 6 dimensions, and for the i-th
subplot, we perturbed the i-th dimension in [−1, 1], with all the other dimensions fixed. Clearly,
the offline learned Q-values are often inconsistent with the real action from the dataset, even for
in-distribution samples. But our alignment much improves the consistency, which encourages the
policy to stay close to the offline policies, safeguarding the process of transfer.

6 EXPERIMENTS

We next compared our actor-critic alignment method (ACA) with a number of state-of-the-art meth-
ods as summarized in Table 1. Although CQL was not developed for O2O transfer, we still included

5

Under review as a conference paper at ICLR 2023

Figure 1: SAC+ML Q-values v.s. aligned Q-values for in-distribution sample (top row) and out-of-
distribution sample (bottom row). Left y-axis: SAC+ML Q-values, right y-axis: aligned Q-values.
Since only the trend of each curve matters, we omit the y-axis tick values.

Table 1: Baseline algorithms for O2O RL. See acronyms below.

Flag Name Offline Online Description

→ SAC→ACA (Ours) SAC+ML Algorithm 3 Our method init from SAC+ML
→ SAC→SAC SAC+ML SAC SAC init from SAC+ML
→ CQL→BR CQL SAC w/ BR Balanced replay init from CQL
→ CQL→SAC CQL SAC SAC init from CQL
→ AWAC AWAC AWAC AWAC init from AWAC

SAC - SAC SAC from scratch

it due to its strong performance. Implementation of our ACA algorithm can be found anonymously
at Online Supplementary, along with the pre-trained models.

Our experiments aim to demonstrate:

• SAC→ACA matches or outperforms SOTAs, e.g., balanced replay (BR, Lee et al., 2022), ad-
vantage weighted actor critic (AWAC, Nair et al., 2020), and online decision transformer (ODT,
Zheng et al., 2022);

• Direct transfer such as SAC→SAC and CQL→SAC suffers significant performance drop;
• Transfer from offline method significantly outperforms training SAC online from scratch. We will

additionally present ablation studies to examine various components of ACA.

6.1 COMPARISON WITH BASELINE METHODS

We used three environments from the datasets D4RL-v2 (Fu et al., 2020), including HalfCheetah,
Hopper, and Walker2d. Each of them has five levels. All offline/online experiments ran 5 random
seeds. We ran all offline algorithms for 500 episodes with 1000 mini-batches each, and all on-
line experiments for 100 episodes with 1000 environment interactions each. This protocol is quite
commonly used. More implementation details are deferred to Appendix B.

Figure 2 shows the average return as a function of training episodes, achieved at each offline model
(left half of the subplots) and online model (right half). Since SAC→ACA and SAC→SAC share
the same offline method, their curves coincide on the left of the subplots, with the green curve shown
only (no blue) on the left. A similar situation occurs to CQL→BR and CQL→SAC, and only the
purple curve is shown on the left half (no pink).

In Figure 2, CQL→SAC (purple→pink) drops significantly on the expert level (fifth row) and
medium-expert level (fourth row). SAC→SAC (green→blue) drops in almost all cases, except
random (first row) and medium-replay (third row). It is clear that our SAC→ACA (green) barely
suffers performance drop. The only exception is Hopper-medium-expert, but all other methods (ex-
cept AWAC which performs poorly offline) also suffer a drop there, while ours recover most rapidly.
Besides, ours offers comparable policy improvement to the strongest baseline, which is CQL→BR
in most cases.

6

Under review as a conference paper at ICLR 2023

Figure 2: Comparing SAC→ACA (ours) with other baselines for offline-to-online RL. The shaded
areas stand for the standard deviation. Refer to Table 1 for legend meanings.

Table 2: Average normalized D4RL scores of various O2O methods. Outside parenthesis: scores at
the end of 100k online steps. Inside parenthesis: the increase of that score upon the end of offline
training. HC = HalfCheetah, H = Hopper, W = Walker2d.

Dataset Env Score(δ)
SAC→SAC CQL→SAC AWAC CQL→BR SAC→ACA (ours)

Random
HC 54.60(37.31) 54.00(28.70) 34.26(18.94) 84.36(59.06) 72.60(55.31)
H 17.62(9.69) 1.37(0.72) 16.85(3.03) 29.80(29.15) 81.85(73.92)
W 3.86(0.50) 3.91(3.25) 4.15(-0.58) 10.05(9.39) 12.42(9.06)

Medium
HC 75.20(28.86) 69.52(21.10) 50.48(1.54) 82.95(34.52) 66.58(20.25)
H 73.39(19.08) 89.77(16.30) 97.53(24.48) 98.14(24.67) 96.54(42.24)
W 79.63(-1.53) 81.78(-0.70) 1.93(-0.54) 76.36(-6.11) 74.66(-6.50)

Med.-Replay
HC 68.90(26.37) 63.91(18.01) 46.84(2.42) 78.36(32.46) 59.03(16.50)
H 74.04(25.22) 92.01(-3.95) 95.98(0.00) 97.25(1.28) 85.54(36.72)
W 85.40(23.21) 79.28(0.89) 80.81(2.97) 100.06(21.68) 85.17(22.98)

Med.-Expert
HC 82.15(-11.38) 87.85(46.77) 68.75(32.30) 91.80(50.73) 93.74(0.21)
H 65.44(-27.64) 80.46(-13.26) 73.13(47.50) 78.51(-15.22) 98.02(4.94)
W 87.18(-20.95) 107.03(-2.63) 45.21(4.45) 104.43(-5.22) 110.54(2.42)

Expert
HC 38.17(-55.42) 55.39(6.86) 21.23(14.83) 79.69(31.16) 93.14(-0.46)
H 28.20(-82.68) 67.88(-15.48) 57.97(-12.85) 68.55(-14.81) 110.21(-0.67)
W 67.76(-40.45) 81.92(-27.24) 110.68(0.80) 110.65(1.50) 109.59(1.38)

Total 901.54(-69.80) 1016.08(79.35) 805.80(139.29) 1190.96(254.23) 1249.65(278.31)

Since different baselines in Table 1 employ different offline methods, it is not reasonable to compare
fine-tuning methods based only on their online performance. Therefore, we provided in Table 2 the
increase of return achieved online compared with the final offline policy. As the numbers in the
parenthesis there show, SAC→ACA attains the highest improvement (as well as the final score), and
BR appears the best among all other baseline methods.

7

Under review as a conference paper at ICLR 2023

6.2 COMPARISON WITH ONLINE DECISION TRANSFORMER

Since ODT is not based on dynamic programming, we compared it with SAC→ACA in this separate
section. As Zheng et al. (2022) experimented using 200k online samples and averaged over 10 seeds,
we ran SAC+ML with 5 additional seeds and ran 200k online steps for all 10 SAC+ML runs, to make
the comparison fair.

Table 3: Comparing SAC→ACA with online decision transformer (ODT), with a focus on the online
improvement upon offline policy (δODT and δACA).

Dataset Environment ODT(offline) ODT(200k) δODT SAC+ML ACA(200k) δACA

Medium
HalfCheetah 42.72±0.46 42.16±1.48 -0.56 46.40±0.30 72.67±3.01 26.28

Hopper 66.95±3.26 97.54±2.10 30.59 56.93±4.12 99.32±7.82 42.39
Walker2d 72.19±6.49 76.79±2.30 4.60 79.36±2.25 76.05±20.57 -3.30

Med.-Replay
HalfCheetah 39.99±0.68 40.42±1.61 0.43 42.18±0.53 64.29±2.97 22.11

Hopper 86.64±5.41 88.89±6.33 2.25 49.25±6.08 103.17±3.08 53.92
Walker2d 68.92±4.79 76.86±4.04 7.94 63.20±10.12 82.09±27.66 18.89

Total (w/o hopper-mr) 290.77 333.77 43.00 288.06 394.41 106.35
Total (all) 377.41 422.66 45.25 337.31 497.58 160.27

As shown in Table 3, for almost all medium and medium-replay tasks, our SAC→ACA outperforms
ODT in both final performance and performance increase (δ). We also note that ODT(offline) out-
performs SAC+ML in the hopper-medium-replay task by a large margin, which leaves our approach
more room to improve. Therefore, we made the same comparison by excluding the hopper-medium-
replay task. In this case, ODT and ours were initialized from roughly the same performance, and
ours still outperforms ODT in both total final performance and total performance increase.

6.3 FLEXIBILITY IN INITIALIZATION FROM DIFFERENT OFFLINE METHODS

A key advantage of our alignment method lies in the flexibility of leveraging any offline RL method,
as long as it outputs a parameterized Gaussian policy, because the Q-function is reset anyway. In
contrast, SOTA methods sometimes require certain properties in the offline method such as pes-
simism. For example, BR’s performance depends critically on the use of CQL.

To demonstrate our flexibility, we adopted CQL for offline learning and made a simple change to the
alignment step which, in (13), clips log πθ0 to 0 when it is negative. In comparison, we also tested
BR by using SAC+ML as the offline learner. Figure 3 shows the results of ACA/BR initialized from
SAC+ML/CQL. While the performance of our approach does not change much when initializing
from different offline models, BR shows significant performance drops when it is initialized from
SAC+ML, i.e. non-pessimistic offline training.

Figure 3: ACA and BR initialized from different offline methods. ACA could achieve similar per-
formance while initializing from both SAC+ML/CQL. BR requires CQL initialization.

6.4 ONLINE TRAINING WITHOUT OFFLINE DATA

When the application precludes the accessibility of offline data during online fine-tuning, we re-ran
the benchmarks for medium-replay, medium-expert, expert. There is obviously no reason to replay
offline data at random level, and empirically, we observed that online fine-tuning already performed
well on medium when no offline data was replayed.

8

Under review as a conference paper at ICLR 2023

Table 4: Scores for SAC→ACA at 100k online
steps, and its increase from offline result (in paren-
thesis). Comparison is made between with or
without offline data. HC = HalfCheetah, H = Hop-
per, W = Walker2d.

Dataset Env Score(δ)
w/ offline data w/o offline data

Med.-Replay
HC 59.03(16.50) 59.48(16.95)
H 85.54(36.72) 77.19(28.37)
W 85.17(22.98) 84.27(22.08)

Med.-Expert
HC 93.74(0.21) 93.81(0.28)
H 98.02(4.94) 105.67(12.59)
W 110.54(2.42) 110.93(2.81)

Expert
HC 93.14(-0.46) 90.76(-2.83)
H 110.21(-0.67) 109.22(-1.66)
W 109.59(1.38) 110.52(2.31)

Total 844.98(84.02) 841.84(80.88)

Figure 6 in Appendix F shows the online aver-
age return of our method without using offline
data, compared with other baselines which also
do not access offline data during online fine-
tuning. The balance replay algorithm requires
offline data. So compared with Figure 2, we
no longer have the purple line that corresponds
to CQL→BR. It turns out that all the other
baselines retain similar online performance as
in Figure 2, which had been shown inferior to
our SAC→ACA. Table 4 further highlights that
SAC→ACA does not exhibit significant change
in online performance in the absence of offline
data.

6.5 ABLATION STUDY

As mentioned in Section 4.3, log πθ0 in (20) can
be considered as a “behaviour cloning” regularization. One may wonder whether this, instead of
actor-critic alignment, is the primary contributor to the empirical effectiveness. We therefore con-
ducted the following ablation study, which answers this question in the negative.

In contrast to the parameterization of online Q-function in (16), we designed two alternatives. The
first directly copies the Q-function from the conclusion of offline learning, and then fine-tunes it
online. The second adopts the same decomposed parameterization as in (16), but initializes Rϕi

with the offline learned Qµi
, instead of Zψi

. As a result, log πθ0 +Rϕ, whose expectation serves in
the actor objective, becomes a regular offline-trained Q function with a regularizer log πθ0 , instead
of an actor-critic alignment. The update objectives of the two ablations are relegated to Appendix E.

Figure 4 shows that on tasks vulnerable to transfer risk such as hopper-medium and walker-medium
(second and third subplots), the two ablation alternatives suffer clear performance drop due to the
attributed error in the offline trained Q-functions. However, some tasks can be less vulnerable.
For example, on halfcheetah-medium, Figure 2 shows that SAC→SAC (green→blue) only suffers
a small amount of drop, although it employs no mechanism to combat distribution shift. In such a
task, the two ablation alternatives remain competitive to no surprise (first subplot).

Figure 4: Ablation study: We keep the actor update same as Eq (20), we however change the critic
update (details found in Appendix 6.5) to see show that the re-parameterized Q-function is critical.
BC only (ablation 1): Rϕ is seen as the online critic and is initialized by Qµ. Critic updates are
made as regular SAC critic update without our re-parameterization. It therefore can be seen as SAC
with behavior cloning regularized actor update. Rϕ init by Qµ (ablation 2): We keep the ACA
framework but initialize Rϕ by Qµ instead of Zψ to show the importance of the baseline.

7 CONCLUSION AND FUTURE WORK

We proposed a new actor-critic alignment method that allows safe offline-to-online reinforcement
learning and achieves strong empirical performance. To combat distribution shift, we designed a
novel approach that disregards offline learned Q-functions, and reconstructs it based on the learned
policy using a closed-form that is motivated from the entropy-regularized actor update. Since it does
not need an offline critic, online actor-critic fine-tuning is made possible for offline learned decision
transformer, as well as other supervised learning methods such as RvS (Emmons et al., 2022).

9

Under review as a conference paper at ICLR 2023

Reproducibility Statement. Our ACA implementation can be found anonymously at Online Sup-
plementary, along with the pre-trained offline models. More implementation details regarding offline
approaches and baselines are available in Appendix B, and our choice of hyper-parameters can be
found in Appendix I.

REFERENCES

Michael Bain and Claude Sammut. A framework for behavioural cloning. In Machine Intelligence
15, pp. 103–129, 1995.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. In Advances in Neural Information Processing Systems (NeurIPS), 2021.

Scott Emmons, Benjamin Eysenbach, Ilya Kostrikov, and Sergey Levine. RvS: What is essential
for offline RL via supervised learning? In International Conference on Learning Representations
(ICLR), 2022.

Amir-massoud Farahmand, Csaba Szepesvári, and Rémi Munos. Error propagation for approximate
policy and value iteration. In Advances in Neural Information Processing Systems, 2010.

Justin Fu, Aviral Kumar, Matthew Soh, and Sergey Levine. Diagnosing bottlenecks in deep q-
learning algorithms. In International Conference on Machine Learning (ICML), pp. 2021–2030,
2019.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning. In
Advances in Neural Information Processing Systems (NeurIPS), 2021.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International Conference on Machine Learning (ICML), pp. 1587–1596.
PMLR, 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning (ICML), 2019.

Carles Gelada and Marc G. Bellemare. Off-policy deep reinforcement learning by bootstrapping the
covariate shift. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 2019.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In International Conference on Machine Learning (ICML), pp. 1352–
1361. PMLR, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Confer-
ence on Machine Learning (ICML), pp. 1861–1870. PMLR, 2018.

Hado Hasselt. Double Q-learning. In Advances in Neural Information Processing Systems
(NeurIPS), 2010.

Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan,
John Quan, Andrew Sendonaris, Ian Osband, Gabriel Dulac-Arnold, John Agapiou, Joel Leibo,
and Audrunas Gruslys. Deep q-learning from demonstrations. In Proceedings of the AAAI Con-
ference on Artificial Intelligence (AAAI), 2018.

Jiawei Huang and Nan Jiang. From importance sampling to doubly robust policy gradient. In
International Conference on Machine Learning (ICML), 2020.

Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement
learning. Journal of Machine Learning Research, 11(51):1563–1600, 2010. URL http://
jmlr.org/papers/v11/jaksch10a.html.

10

http://jmlr.org/papers/v11/jaksch10a.html
http://jmlr.org/papers/v11/jaksch10a.html

Under review as a conference paper at ICLR 2023

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-
based policy optimization. In Advances in Neural Information Processing Systems (NeurIPS),
2019.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. In Advances in Neural Information Processing Systems (NeurIPS), 2021.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. MOReL: Model-
based offline reinforcement learning. In Advances in Neural Information Processing Systems
(NeurIPS), 2020.

Diederik P Kingma and Jimmy Lei Ba. Adam: A method for stochastic gradient descent. In ICLR:
International Conference on Learning Representations, pp. 1–15, 2015.

Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum. Offline reinforcement learning
with fisher divergence critic regularization. In International Conference on Machine Learning
(ICML), 2021.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit Q-
learning. In International Conference on Learning Representations (ICLR), 2022.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy q-
learning via bootstrapping error reduction. In Advances in Neural Information Processing Systems
(NeurIPS), 2019.

Aviral Kumar, Abhishek Gupta, and Sergey Levine. Discor: Corrective feedback in reinforce-
ment learning via distribution correction. In Advances in Neural Information Processing Systems
(NeurIPS), 2020a.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. In Advances in Neural Information Processing Systems (NeurIPS), 2020b.

Romain Laroche, Paul Trichelair, and Remi Tachet Des Combes. Safe policy improvement with
baseline bootstrapping. In International Conference on Machine Learning (ICML), 2019.

Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin. Offline-to-online
reinforcement learning via balanced replay and pessimistic q-ensemble. In Conference on Robot
Learning, pp. 1702–1712. PMLR, 2022.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Yao Lu, Karol Hausman, Yevgen Chebotar, Mengyuan Yan, Eric Jang, Alexander Herzog, Ted Xiao,
Alex Irpan, Mohi Khansari, Dmitry Kalashnikov, and Sergey Levine. AW-opt: Learning robotic
skills with imitation and reinforcement at scale. In 5th Annual Conference on Robot Learning,
2021.

Yihuan Mao, Chao Wang, Bin Wang, and Chongjie Zhang. MOORe: Model-based offline-to-online
reinforcement learning. arXiv preprint arXiv:2201.10070, 2022.

Rémi Munos. Error bounds for approximate value iteration. In Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI), 2005.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. AWAC: Accelerating online
reinforcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Brendan O’Donoghue, Ian Osband, Remi Munos, and Vlad Mnih. The uncertainty Bellman equation
and exploration. In International Conference on Machine Learning (ICML), 2018.

Online Supplementary. Supplementary material including code. https://www.dropbox.com/
sh/vo2pe2uio17vlb3/AADYSitHOZLIJRMQgxYpXtbza?dl=0.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped DQN. In Advances in Neural Information Processing Systems (NeurIPS), 2016.

11

https://www.dropbox.com/sh/vo2pe2uio17vlb3/AADYSitHOZLIJRMQgxYpXtbza?dl=0
https://www.dropbox.com/sh/vo2pe2uio17vlb3/AADYSitHOZLIJRMQgxYpXtbza?dl=0

Under review as a conference paper at ICLR 2023

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Siddharth Reddy, Anca D. Dragan, and Sergey Levine. SQIL: Imitation learning via reinforcement
learning with sparse rewards. arXiv preprint arXiv:1905.11108, 2019.

Noah Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael Neunert,
Thomas Lampe, Roland Hafner, Nicolas Heess, and Martin Riedmiller. Keep doing what worked:
Behavior modelling priors for offline reinforcement learning. In International Conference on
Learning Representations (ICLR), 2020.

Michita Imai Takuma Seno. d3rlpy: An offline deep reinforcement library. In NeurIPS 2021 Offline
Reinforcement Learning Workshop, December 2021.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea
Finn, and Tengyu Ma. MOPO: Model-based offline policy optimization. In Advances in Neural
Information Processing Systems (NeurIPS), 2020.

Ruiyi Zhang, Bo Dai, Lihong Li, and Dale Schuurmans. Gendice: Generalized offline estimation of
stationary values. In International Conference on Learning Representations (ICLR), 2020.

Yi Zhao, Rinu Boney, Alexander Ilin, Juho Kannala, and Joni Pajarinen. Adaptive behavior cloning
regularization for stable offline-to-online reinforcement learning. In Offline Reinforcement Learn-
ing Workshop at Neural Information Processing Systems, 2021.

Qinqing Zheng, Amy Zhang, and Aditya Grover. Online decision transformer. In International
Conference on Machine Learning (ICML), 2022. https://proceedings.mlr.press/
v162/zheng22c/zheng22c.pdf.

12

https://proceedings.mlr.press/v162/zheng22c/zheng22c.pdf
https://proceedings.mlr.press/v162/zheng22c/zheng22c.pdf

Under review as a conference paper at ICLR 2023

A ALGORITHM DETAILS

The pseudo-code of the offline, alignment, and online phases is provided in Algorithm 1, 2, and 3,
respectively.

Table 5: Learning in three phases for offline-to-online RL with actor-critic alignment

Phase Learnable
Component Description

Offline
training πθ(a|s), Qµ(s, a), α Run offline RL to obtain offline policy πθ(a|s)

and Q-function Qµ(s, a) .
Actor-critic
alignment Zψ(s) Fit the baseline Zψ(s) by minimizing the Bell-

man residue.
Online
training πθ(a|s), Rϕ(s, a), α Run actor-critic on policy πθ(a|s) and critic

Qϕ(s, a) := log πθ0(a|s) +Rϕ(s, a) , where
Rϕ(s, a) is initialized by Zψ(s).

Algorithm 1 Offline SAC+ML

Initialize parameters θ, α, ψi, µi, µ̄i for i ∈ {1, 2}
for each iteration do

sample mini-batch from dataset D
update α with Eq. (11)
update µi with Eq. (9) for i ∈ {1, 2}
update θ with Eq. (7)
update ψi with Eq. (13) for i ∈ {1, 2}
µ̄i ← τµi + (1− τ)µ̄i for i ∈ {1, 2}

end for

Algorithm 2 Actor-critic Alignment

Require: θ, α, ψi, µi, µ̄i, for i ∈ {1, 2}
Initialize parameters ϕi, ϕ̄i, for i ∈ {1, 2}
Set Rϕi(s, a)← Zψi(s), for i ∈ {1, 2}
Copy ϕ̄i ← ϕi
Copy θ0 ← θ
Reset α← 1
Delete µi and µ̄i, for i ∈ {1, 2}

A.1 OPTIMIZATION OF Zψi

Since the alignment objective (13) needs to access offline data, we blended it into the offline training
as shown in the second last step of Algorithm 1. It is noteworthy that this is only for the conve-
nience of implementation, and the ψi values do not have any influence on SAC+ML training itself.
Conversely, the optimized value of ψi provides a good initialization for a standalone optimization of
objective (13). In practice, we observed that the ψi found from offline training is good enough, and
we just directly used them to initialize the online critic Rϕi

.

A.2 TECHNIQUES TO STABILIZE ONLINE LEARNING

We propose β-clipping trick and critic interpolation to achieve better empirical performance. As
log πθ0 is unbounded below, the training can be numerically unstable, β-clipping trick bounds the
term to stabilize training. And critic interpolation gives the flexibility to balance between safety
transfer and policy improvement.

A.2.1 β-CLIPPING TRICK

As in the course of online learning, the magnitude of | log πθ0 | can sometimes be an/several order
larger than Rϕ, which leads to very instable critic training. Given πθ0(a|s) is parameterized by
squashed Gaussian distribution N(µs, σ

2
s), we clip the log πθ0 term, as follows

CLIPβ(log πθ0(a|s)) := SoftPlus
(
log πθ0(a|s)− Cβ(s)

)
+ Cβ(s) (21)

where Cβ(s) = min {log πθ0(µs − βσs|s), log πθ0(µs + βσs|s)} . (22)

13

Under review as a conference paper at ICLR 2023

Algorithm 3 Online training

Require: θ, θ0, α, ϕi, ϕ̄i from Algo. 2
if D is accessible then

Initialize replay buffer B with top N trajectories
else

Initialize replay buffer B ← ∅
end if
for each iteration do

sample a mini-batch from buffer B
update α with Eq. (11)
update ϕi with Eq. (30) for i ∈ {1, 2}
update θ with Eq. (29)
ϕ̄i ← τϕi + (1− τ)ϕ̄i

end for

Here, β is a hyper-parameter, and SoftPlus(x) = log(1 + exp(x)). Essentially it clips log πθ0(a|s)
at Cβ(s). This CLIPβ(·) operator bounds the log πθ0 term in a reasonable range, and also requires
minimal tuning of hyper-parameter, see Section G and Section H for details. Using CLIPβ , we define
Qβϕ as

Qβϕ(s, a) := CLIPβ(log πθ0(a|s)) +Rϕ(s, a). (23)

Now, the clipped online actor/critic updates can be summarized by

Lβπ(θ,d) = Es∼dEa∼πθ

[
α log πθ(a|s)−Qβϕ(s, a)

]
, (24)

LβQ(ϕi,d) = E(s,a,r,s′,d)∼d

[(
Qβϕi

(s, a)− y(r, s′, d)
)2

]
, (25)

y(r, s′, d) = r + γ(1− d)Ea′∼πθ(·|s′)

[
Qβϕ(s

′, a′)− α log πθ(a
′|s′)

]
. (26)

A.2.2 CRITIC INTERPOLATION

At the initial phase of online training, CLIPβ(log πθ0(a|s)) dominates the actor update, safeguarding
the policy. As training proceeds, Rϕ grows to overcome the barrier and starts to improve the policy.
Ideally, we wish to finely control such a junction so that the safety of O2O transition does not
excessively slow down the policy improvement. To this end, we introduce an interpolation between
closed-form initialized critic and restriction-free critic. We call it critic interpolation, which can be
written as

Qk,βϕ (s, a) := k
(

CLIPβ
(
log πθ0(a|s)

)
+Rϕ(s, a)︸ ︷︷ ︸

closed-from initialized critic

)
+ (1− k) Rϕ(s, a)︸ ︷︷ ︸

restriction-free critic

(27)

= k × CLIPβ
(
log πθ0(a|s)

)
+Rϕ(s, a). (28)

We set k = 1 at t = 0 to assert closed-form initialization. Then we linearly decay k during the
course of online training, allowing a transition from closed-form initialization to free SAC update.
The detailed decaying rate can be found in Appendix I.

A.3 CONCLUDED ONLINE TRAINING

Our final online update rules are summarized as follows:

Lonline
π (θ,d) = Es∼dEa∼πθ

[
α log πθ(a|s)−Qk,βϕ (s, a)

]
(29)

Lonline
Q (ϕi,d) = E(s,a,r,s′,d)∼d

[(
Qk,βϕ (s, a)− y(r, s′, d)

)2
]

(30)

y(r, s′, d) = r + γ(1− d)Ea′∼πθ(·|s′)

[
Qk,βϕ (s′, a′)− α log πθ(a

′|s′)
]
. (31)

14

Under review as a conference paper at ICLR 2023

B IMPLEMENTATIONS

Overall, all our implementations are from or based on d3rlpy (Takuma Seno, 2021), a popular RL
library that specialized for offline RL. Using the same lib helps us to minimize the impact of imple-
mentation difference. Many of our baselines (see Table 9) are implemented upon SAC, with changes
proposed in their original papers, respectively.

B.1 GENERAL IMPLEMENTATION DETAILS

Evaluation protocol: All offline/online experiments ran 5 random seeds. We ran all offline algo-
rithms for 500 episodes with 1000 mini-batches each, and all online experiments for 100 episodes
with 1000 environment interactions each. After each episode, we conducted 10 evaluations and
computed the average return. Results reported are mean and std of average returns, over 5 random
seeds.

Choice of offline checkpoints: Evaluating in the offline phase, in fact, requires online interactions.
Therefore we do not pick the best-performed checkpoints. Instead, we use the last checkpoints as
our initialization models, for online.

Squashed Gaussian: For methods with stochastic policies, we parameterized their policies by uni-
modal Gaussian, and applied the squashed Gaussian trick (Haarnoja et al., 2018) to bound the range
of action to [−1, 1].
Buffer initialization: We followed the instructions in AWAC and BR papers on initializing online
replay buffers. For AWAC, we added all transitions in D to the buffer B. And for BR, we refer to
their original implementation at this URL for details. For SAC→SAC and CQL→SAC, we added
all transitions in D to the buffer B as well, as there is no explicit instructions or common protocols.
All replay buffer sizes were set to be 1e6, unless specified in the Appendix I.

B.2 OFFLINE

AWAC and CQL: We used d3rlpy implementations for AWAC and CQL.

SAC+ML: Our SAC+ML implementation was adapted from d3rlpy’s TD3+BC implementation,
with changing the actor update rule to Eq. (7), and adding the learning of baseline Zψ .

B.3 ONLINE

Training details for online: For all methods, we made a temperature (if applicable), a critic, and an
actor update after every environmental interaction, if there were enough transitions (i.e. more than
batch size) in the replay buffer. Target networks were all updated in a Polyak averaging fashion,
where the step size τ = 0.005 for all experiments. See Section I for more hyper-parameter details.
And online results, reported in tables, were also using the last checkpoints instead of best-performed
ones.

SAC: We used d3rlpy implementation for SAC.

SAC→SAC and CQL→SAC: We simply loaded offline-trained SAC+ML and CQL, respectively,
and then ran SAC online.

BR: We adapted all parts that related to the prioritized replay from the official BR implementation,
to a d3rlpy SAC implementation base, as the original BR paper also run SAC online.

ACA (ours:) Implementation of our approach can be found anonymously at Online Supplementary.
In addition to Algorithm 3, we also did gradient norm clipping to actor updates, which is commonly
used in RL implementations.

15

https://github.com/takuseno/d3rlpy
https://github.com/shlee94/Off2OnRL
https://github.com/shlee94/Off2OnRL

Under review as a conference paper at ICLR 2023

C SAC+ML VS. TD3+BC

We would like to emphasize that our goal is not to propose a stronger offline RL method. Table 6
is presented to show that our SAC+ML modification performs comparably to the original SOTA
method, TD3+BC.

TD3+BC results in Table 6 were copied from appendix C.3 of their paper (Fujimoto & Gu, 2021).
The evaluation protocol is identical to theirs: (1) all experiments were done in D4RL-v2 datasets;
(2) and the results reported were from the last evaluation step, averaged over 5 random seeds.

Table 6: SAC+ML vs. TD3+BC

Dataset Environment TD3+BC SAC+ML

Random
HalfCheetah 11.0±1.1 17.3±2.7

Hopper 8.5±0.6 7.9±0.3

Walker2d 1.6±1.7 3.4±2.1

Medium
HalfCheetah 48.3±0.3 46.3±0.2

Hopper 59.3±4.2 54.3±3.4

Walker2d 83.7±2.1 81.2±1.6

Medium-Replay
HalfCheetah 44.6±0.5 42.5±1.7

Hopper 60.9±18.8 48.8±20.4

Walker2d 81.8±5.5 62.2±4.9

Medium-Expert
HalfCheetah 90.7±4.3 93.5±4.0

Hopper 98.0±9.4 93.1±7.8

Walker2d 110.1±0.5 108.1±1.6

Expert
HalfCheetah 96.7±1.1 93.6±0.8

Hopper 107.8±7 110.9±1.6

Walker2d 110.2±0.3 108.2±0.3

Total 1013.2 971.3

D ILLUSTRATION DISTRIBUTION SHIFT

Figure 5 shows the histogram of the ℓ1 norm of state vectors from the halfcheetah-medium-v2 and
halfcheetah-expert-v2 datasets. Clearly, there is a distribution shift. So we can obtain in-distribution
sample and out-of-distribution samples (with respect to the medium dataset) by (1) sample a tran-
sition from medium dataset and (2) sample from 98% to 100% percentile of the expert dataset (in
terms of the ℓ1 norm of the state vector), so that it is out-of-distribution for a medium agent.

Figure 5: Histogram of ℓ1 norm of state vectors in halfcheetah medium and expert datasets.

16

Under review as a conference paper at ICLR 2023

Figure 6: When offline data are not accessible, vs. other baselines

E ABLATION STUDY OF ACTOR-CRITIC ALIGNMENT

Here we write out the detailed formula of the critic objective in the two ablation studies in Section
6.5.

Lablation1
Q (ϕi,d) = E(s,a,r,s′,d)∼d

[(
Rϕ(s, a)− y(r, s′, d)

)2
]

(32)

y(r, s′, d) = r + γ(1− d)Ea′∼πθ(·|s′)

(
Rϕ(s

′, a′)− α log πθ(a
′|s′)

)
(33)

Lablation2
Q (ϕi,d) = E(s,a,r,s′,d)∼d

[(
Qk,βϕ (s, a)− y(r, s′, d)

)2
]

(34)

y(r, s′, d) = r + γ(1− d)Ea′∼πθ(·|s′)

(
Qk,βϕ (s′, a′)− α log πθ(a

′|s′)
)

(35)

F MORE RESULTS ON ONLINE TRAINING WITHOUT OFFLINE DATA

The distributional shift issue would clearly be severer when offline data are not accessible during
the online phase. To be more conservative, we therefore set βw/o = 1.5βw/ for experiments without
offline data, excluding random and medium levels as both used no offline data for our main results
already. (βw/ denotes the hyper-parameter we used for our main results, see Table 8 for details.) All
other hyper-parameters remained unchanged.

G SENSITIVITY ON β

Figure 7 shows that the performance of SAC→ACA is not very sensitive to the choice of β.

17

Under review as a conference paper at ICLR 2023

Figure 7: Results for different β

Besides, one could choose β without any online iteration, rather than tuning by grid search, which
is impractical in offline RL or O2O RL. One could compare the clipping threshold |Cβ(s)| to the
magnitude of |Zψ(s)|, where Cβ(s) is as defined in Eq. (22).

β is reasonable if these values are comparable, or Cβ(s) is slightly larger than than |Zψ(s)|. So
the clipped log πθ0 term creates a barrier for the online critic to overcome, which in turn makes the
transfer safe. This allows one to avoid running online evaluations to tune β, as the evaluation of
|Zψ(s)| and |Cβ(s)| can be done completely offline. We show the comparison between |Zψ(s)| and
|Cβ(s)| in Figure 8.

18

Under review as a conference paper at ICLR 2023

H MAGNITUDE COMPARISON BETWEEN |Zψ| AND |Cβ|

Figure 8: x-axis stands for different random seeds (corresponding to different pretrained SAC+ML
models). For each random seed, we randomly sampled an episode {(si, ai, si+1, ri) : i =
1, 2, . . . , T} from corresponding offline dataset. We then computed {|Cβ(si)|} and {|Zψ(si)|} to
make box plots, where outliers were omitted for better visualization. We used the same βs as in
Table 8 to make this plot.

Figure 8 shows that |Cβ(s)| and |Zψ(s)| have comparable values. The empirical performance al-
ready outperforms all baselines even though we did not extensively match their magnitude for every
task. It in turn implies that tuning β requires minimal effort, in additional to the advantage that β
can be chosen completely via offline comparison.

19

Under review as a conference paper at ICLR 2023

I HYPER-PARAMETERS

Table 7: Specific hyper-parameters for different baselines. Please refer to the original paper for the
meaning of hyper-parameter names.

Algo. Hyper-param name Value

SAC+ML ω 30
AWAC λ 1.0

CQL conservative weight 10
of actions sampled 10

BR

offline buffer size 2.5e6
online buffer size 2.5e5

density ratio estimation network arch. [|S|+ |A|, 256, 256, 1]
density ratio estimation network temp 5

ρ 0.75
ACA π grad norm clip 0.25

Table 8: Hyper-params used for our main results reported in section 6.1. x
y−→ z represents that k

decays from x to z using y episodes.

hyper-param HalfCheetah Hopper Walker2d

Random
N (# of init trajs) 0
β (β-clipping) 7

k (interpolation) 1
10−→ 0

Medium
N 0
β 7
k 1

20−→ 0.5

Medium-replay
N 50
β 7
k 1

20−→ 0.5

Medium-expert
N 50
β 15
k 1

N/A−−→ 1

Expert
N 50
β 15
k 1

N/A−−→ 1

20

Under review as a conference paper at ICLR 2023

Table 9: General hyper-parameters. ACA and BR stand for SAC→ACA and CQL→BR, respec-
tively, for the sake of space.

CQL SAC+ML ACA SAC→SAC BR CQL→SAC SAC (scratch) AWAC (off) AWAC (on)

Phase offline online offline online
Based on SAC? Yes No

General hyper-params

π Arch. [|S|+ |A|, 256, 256, 1]
Q Arch. [|S|+ |A|, 256, 256, 1]
Z Arch. [|S|, 256, 256, 1] N/A for online
Q nets 2
Z nets 2 N/A
τ (Polyak avg.) 0.005
Activation ReLU
Optimizer Adam for all
Adam params betas = (0.9, 0.999), eps = 1e-8, weight decay = 0
π lr 1e-4 3e-4 3e-4
Q lr 3e-4 3e-4 3e-4
α lr 1e-4 3e-4 3e-4 N/A
Z lr 3e-4 3e-4 N/A for online
episodes 500 100
it/ep 1000
batch/it 1
Batch size 256

Hyper-params for the base SAC impl.

Entropy target H̄ |A| N/A
Uni-model Gaussian Yes N/A
Squashed Gaussian Yes N/A

21

Under review as a conference paper at ICLR 2023

J IMPLICIT Q-LEARNING

We run IQL with the same experimental setting as Figure 2

Figure 9: IQL

We observed that IQL is struggling with online improvement. This is in fact also observed by
ODT (Zheng et al., 2022). See Table 10.

Table 10: IQL

Dataset Env Reported by ODT Our reproduction
IQL(offline) IQL(200k) δIQL IQL(offline) IQL(100k) δIQL SAC+ML ACA(100k) δACA

Random
HC - - - 9.37 9.45 0.07 17.29 72.60 55.31
H - - - 8.81 8.81 0.00 7.93 81.85 73.92
W - - - 5.46 5.44 -0.02 3.36 12.42 9.06

Medium
HC 47.37 47.41 0.04 46.61 46.76 0.15 46.33 66.58 20.25
H 63.81 66.79 2.98 55.62 52.48 -3.14 54.31 96.54 42.24
W 79.89 80.33 0.44 78.08 80.91 2.83 81.16 74.66 -6.50

Med.-Replay
HC 44.10 44.14 0.04 44.40 44.85 0.45 42.53 59.03 16.50
H 92.13 96.23 4.10 73.07 73.08 0.01 48.82 85.54 36.72
W 73.67 70.55 -3.12 74.64 73.03 -1.61 62.19 85.17 22.98

Med.-Expert
HC - - - 83.18 79.80 -3.38 93.53 93.74 0.21
H - - - 44.61 44.42 -0.19 93.08 98.02 4.94
W - - - 95.52 98.59 3.06 108.12 110.54 2.42

Expert
HC - - - 94.07 94.10 0.03 93.59 93.14 -0.46
H - - - 105.64 102.52 -3.12 110.88 110.21 -0.67
W - - - 108.98 109.10 0.13 108.21 109.59 1.38

Total (med & med-replay) 400.97 405.45 4.48 372.42 371.11 -1.30 335.35 467.53 132.19
Total (all) - - - 928.06 923.35 -4.71 971.34 1249.65 278.31

22

Under review as a conference paper at ICLR 2023

K DEMONSTRATION OF MOTIVATION

How we design the experiment?

- We load pre-trained models from medium/expert level

- Disable critic update, target update, data collecting, etc. (In other words, only keep actor and
entropy update.)

- The actor/entropy update are the same SAC actor/entropy update.

- Run update on random dataset to simulate OOD data

- We run total 10k steps and evaluate its performance every 100 steps.

to test how different offline/aligned Q-functions affects the actor update.

(a) CQL (aligned) vs. CQL (b) SAC+ML (aligned) vs. SAC+ML

Figure 10: Our alignment (applied on both CQL and SAC+ML) could attain the offline performance
better than the original performance.

Takeaway 1: our reparameterization is able to attain its offline performance better than other base-
lines.

Takeaway 2: our reparameterization applies to different offline critics, as we also mentioned in
Section 6.3.

23

Under review as a conference paper at ICLR 2023

As SAC+ML collapse really quick, we opt it out for further comparison. We provide more compar-
ison of CQL vs. aligned CQL.

Figure 11: Aligned CQL vs. CQL.

Table 11: Expert level policies are more fragile.

Dataset Env CQL relative change (%) CQL (aligned) relative change (%)
@1k @2k @3k @4k @5k @1k @2k @3k @4k @5k

Medium
HalfCheetah -0.54 -3.53 -4.55 -6.71 -7.58 0.30 0.71 0.75 0.98 0.17

Hopper -19.62 -22.99 -22.27 -35.27 -64.43 -3.56 -2.68 -11.11 -9.52 -16.77
Walker2d -5.22 -11.74 -25.76 -30.89 -26.73 -0.12 -0.09 -0.40 -0.70 0.01

Avg. (medium) -8.46 -12.76 -17.53 -24.29 -32.91 -1.13 -0.69 -3.59 -3.08 -5.53

Expert
HalfCheetah -102.50 -102.32 -105.22 -105.48 -104.96 -68.42 -73.67 -68.21 -69.02 -62.44

Hopper -44.96 -51.07 -77.36 -80.78 -82.59 -12.83 -5.23 -9.44 -3.31 -19.33
Walker2d -32.15 -16.76 -29.06 -36.70 -34.42 -0.67 -0.54 -0.22 -0.26 -0.42

Avg. (expert) -59.87 -56.72 -70.55 -74.32 -73.99 -27.31 -26.48 -25.96 -24.20 -27.39
Avg. (expert excluding HC) -38.55 -33.92 -53.21 -58.74 -58.51 -6.75 -2.89 -4.83 -1.79 -9.87

Additional observation: near optimal policies are more fragile (even if we exclude HalfCheetah-
expert), which highlights our advantage in expert-level datasets.

24

Under review as a conference paper at ICLR 2023

L AWR OBJECTIVES

Akin to experiments we conducted in Section K, we run actor update only experiments with AWAC
(also categorized into AWR) actor objective instead of SAC actor objective. Critics are trained
offline by AWAC.

(a) AWAC 10k updates (b) AWAC 100 updates

Figure 12: (a) shows that AWAC also collapse to nearly zero performance. (b) shows that around 20
actor updates are already enough to destroy the performance.

25

Under review as a conference paper at ICLR 2023

M AVERAGED VERSION OF FIGURE 1

Figures 14 and 15 provide averaged versions of Figure 1 for in-distribution and out-of-distribution
samples, respectively. The approach used to generate these two figures is illustrated in Figure 13.

(a) Perturb action (b) Centralization (c) Multiple samples (d) Aggregation

Figure 13: Demonstration of how Figure 14 and Figure 15 are created. (a) Given a sample (s, a), we
perturb a along a dimension to plot Q(s, ã) and compare Q(s, ã) to Q(s, π(s)); (b) We plot Q(s, ã)
with its deviation from Q(s, π(s)), so that Q(s, π(s)) is centered at y = 0 and π(s) is centered
at x = 0; (c) Such a centralization allows us to place multiple samples (different s) in the same
plot, where points above the x-axis correspond to ”over-estimated” perturbations; (d) We aggregate
multiple samples by counting how many points are above 0. This way, the height of the red part in
the bar plot quantifies the fraction of points that are ”over-estimated”. For an ”over-estimated” point
(s, a), its x-coordinate stands for the distance between a and the policy favored action π(s).

Note: By ”over-estimation”, we mean for some a ̸= π(s) such that Q(s, a) > Q(s, π(s)), which in
a certain degree means that the critic Q is ”disagreeing” with the policy π.

Figure 14: Quantifying fraction of over-estimated perturbations for in-distribution samples.

26

Under review as a conference paper at ICLR 2023

Figure 15: Quantifying fraction of over-estimated perturbations for out-of-distribution samples.

Details: All agents are trained on halfcheetah-medium-v2 dataset. By in-distribution samples, we
refer to states drawn from the halfcheetah-medium-v2 dataset. By out-of-distribution samples, we
use samples from the halfcheetah-expert-v2 dataset. We randomly drew 200 samples per seed, which
results in a total of 1000 samples to make each plot.

27

Under review as a conference paper at ICLR 2023

N CONVERGENCE OF SOME TASKS

We run another 1M steps on top of the original 500k steps, for HalfCheetah-Medium-Expert,
HalfCheetah-Expert, Hopper-Expert, with experimental setting and hyperparams that are identical
to Figure 2.

However we found that HalfCheetah-Medium-Expert still have high variance. CQL suffer from
relatively high variance is also observed in TD3 (Fujimoto & Gu, 2021).

Figure 16: Run CQL until convergence.

We still observe unstable performance in Hopper-expert. Due to time limit, we are not able to run
HalfCheetah-medium-expert further longer, but it should not affect the results in Table 12 as the
online performance of HalfCheetah-medium-expert converged (roughly) to max score.

Table 12: New results with additional 1M CQL offline steps

Task CQL→SAC (prev.) CQL→SAC (new) CQL→BR (prev.) CQL→BR (new) Ours

HC-ME 87.85(46.77) 93.94(28.75) 91.80(50.73) 96.35(31.17) 93.74(0.21)
HC-E 55.39(6.86) 94.88(-0.98) 79.69(31.16) 97.67(1.82) 93.14(-0.46)
H-E 67.88(-15.48) 94.56(-13.95) 68.55(-14.81) 79.32(-29.19) 110.21(-0.67)

Total (three above) 211.12(38.15) 283.37(13.83) 240.04(67.08) 273.34(3.79) 297.09(-0.92)
Total (all) 1016.08(79.35) 1088.33(55.03) 1190.96(254.23) 1224.26(190.94) 1249.65(278.31)

As originally we claim we match BR’s performance, and we highlighted both BR and ours as the
strongest ones in Table 2. We do not see a nessceray change of this claim. The new results is in
fact favoring us in terms of performance improvement. Our ultimate advantage over BR is that ours
could attain similar performance while offline data is not accessible while BR is not even applicable.

28

Under review as a conference paper at ICLR 2023

O INITIALIZATION FROM BEST CHKPTS

We only saved checkpoints every 100 episodes. Therefore, we pick the best checkpoints among
them. Sub-figures that are not visible means the last checkpoint is the best checkpoint we saved.
(We determine the ”best” checkpoint by the averaged performance over all seeds.)

We do not observe significant differences between initialization from best checkpoints and last ones.

Figure 17: ACA initialized from best checkpoint, if last is not the best.

Figure 18: BR initialized from best checkpoint, if last is not the best.

29

Under review as a conference paper at ICLR 2023

P DOES OVER-FITTING AFFECT TRANSFER?

In addition to Section O, we initialize from checkpoints at 100k, 200k, 300k, 400k and 500k re-
spectively for walker2d-medium-v2, to see whether initialization from different checkpoints make a
difference.

Figure 19: CQL→SAC initialized from different checkpoints. Dashed lines are corresponding of-
fline performance.

We do not observe conclusive evidence showing that over-fitting might lead unstable transfer.

Q ASYMPTOTIC PERFORMANCE

Figure 20: Asymptotic performance

The blue curve uses the same hyper-parameter setting to Figure 2, where k decays from 1.0 to 0.5 in
20k steps. Keeping k = 0.5 seemed to slow down the achievement of expert performance. However,
one could always safely to decay k to 0 after the transfer is stable. The green curve linearly anneals
k to 0 using 200k steps and is able to reach D4RL expert score much faster.

30

Under review as a conference paper at ICLR 2023

R RANDOM INITIALIZATION

We initialize R(s, a) randomly

Figure 21: Randomly initialized R(s, a)

It is obvious that random initialization has poor performance as it violates our motivation.

31

	Introduction
	Related Work
	Preliminary
	Aligning Critics with Actors for Offline-to-Online RL
	Offline Training
	Actor-critic Alignment
	Online Training

	Illustration of Alignment under Distribution Shift
	Experiments
	Comparison with baseline methods
	Comparison with online decision transformer
	Flexibility in initialization from different offline methods
	Online training without offline data
	Ablation Study

	Conclusion and Future Work
	Algorithm Details
	Optimization of Zi
	Techniques to Stabilize Online Learning
	-clipping trick
	Critic interpolation

	Concluded Online Training

	Implementations
	General implementation details
	Offline
	Online

	SAC+ML vs. TD3+BC
	Illustration Distribution Shift
	Ablation Study of actor-critic alignment
	More results on online training without offline data
	Sensitivity on
	Magnitude comparison between |Z| and |C|
	Hyper-parameters
	Implicit Q-Learning
	Demonstration of Motivation
	AWR Objectives
	Averaged Version of Figure 1
	Convergence of Some Tasks
	Initialization from Best Chkpts
	Does Over-fitting Affect Transfer?
	Asymptotic Performance
	Random Initialization

