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Abstract

Classically, data interpolation with a parametrized model class is possible as long
as the number of parameters is larger than the number of equations to be satis-
fied. A puzzling phenomenon in deep learning is that models are trained with
many more parameters than what this classical theory would suggest. We propose
a theoretical explanation for this phenomenon. We prove that for a broad class
of data distributions and model classes, overparametrization is necessary if one
wants to interpolate the data smoothly. Namely we show that smooth interpolation
requires d times more parameters than mere interpolation, where d is the ambi-
ent data dimension. We prove this universal law of robustness for any smoothly
parametrized function class with polynomial size weights, and any covariate dis-
tribution verifying isoperimetry (or a mixture thereof). In the case of two-layer
neural networks and Gaussian covariates, this law was conjectured in prior work
by Bubeck, Li and Nagaraj. We also give an interpretation of our result as an
improved generalization bound for model classes consisting of smooth functions.

1 Introduction

Solving n equations generically requires only n unknowns1. However, the revolutionary deep learn-
ing methodology revolves around highly overparametrized models, with many more than n parame-
ters to learn from n training data points. We propose an explanation for this enigmatic phenomenon,
showing in great generality that finding a smooth function to fit d-dimensional data requires at least
nd parameters. In other words, overparametrization by a factor of d is necessary for smooth inter-
polation, suggesting that perhaps the large size of the models used in deep learning is a necessity
rather than a weakness of the framework. Another way to phrase the result is as a tradeoff between
the size of a model (as measured by the number of parameters) and its “robustness” (as measured
by its Lipschitz constant): either one has a small model (with n parameters) which must then be
non-robust, or one has a robust model (constant Lipschitz) but then it must be very large (with nd
parameters). Such a tradeoff was conjectured for the specific case of two-layer neural networks
and Gaussian data in [BLN21]. Our result shows that in fact it is a universal phenomenon, which
applies to essentially any parametrized function class (including in particular deep neural networks)
as well as a much broader class of data distributions. As in [BLN21] we obtain an entire tradeoff
curve between size and robustness: our universal law of robustness states that, for any function class
smoothly parametrized by p parameters, and for any d-dimensional dataset satisfying mild regularity
conditions, any function in this class that fits the data below the noise level must have its (Euclidean)
Lipschitz constant larger than

√
nd
p .

Theorem 1 (Informal version of Theorem 3). Let F be a class of functions from Rd → R and let
(xi, yi)

n
i=1 be i.i.d. input-output pairs in Rd × [−1, 1]. Assume that:

1. F admits a Lipschitz parametrization by p real parameters, each of size at most poly(n, d).
1As in, for instance, the inverse function theorem in analysis or Bézout’s theorem in algebraic geometry.

See also [YSJ19, BELM20] for versions of this claim with neural networks.
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2. The distribution µ of the covariates xi satisfies isoperimetry (or is a mixture theoreof).

3. The expected conditional variance of the output (i.e., the “noise level”) is strictly positive,
denoted σ2 := Eµ[V ar[y|x]] > 0.

Then, with high probability over the sampling of the data, one has simultaneously for all f ∈ F:

1

n

n∑
i=1

(f(xi)− yi)2 ≤ σ2 − ε ⇒ Lip(f) ≥ Ω̃

(
ε

√
nd

p

)
.

Remark 1.1. For the distributions µ we have in mind, for instance uniform on the unit sphere, there
exists with high probability some O(1)-Lipschitz function f : Rd → R satisfying f(xi) = yi for
all i. Indeed, with probability 1 − e−Ω(d) we have ||xi − xj || ≥ 1 for all 1 ≤ i 6= j ≤ n so long
as n ≤ poly(d). In this case we may apply the Kirszbraun extension theorem to find a suitable f
regardless of the labels yi. More explicitly we may fix a smooth bump function g : R+ → R with
g(0) = 1 and g(x) = 0 for x ≥ 1, and then interpolate using the sum of radial basis functions

f(x) =

n∑
i=1

g(||x− xi||)yi.

In fact this construction requires only p = n(d + 1) parameters to specify the values (xi, yi)i∈[n]

and thus determine the function f . Hence p = n(d+ 1) parameters suffice for robust interpolation,
i.e. Theorem 3 is essentially best possible for L = O(1). A similar construction shows the same
conclusion for any p ∈ [Ω̃(n), nd], essentially tracing the entire tradeoff curve. This is because
one can first project onto a fixed subspace of dimension d̃ = p/n, and the projected inputs xi

now have pairwise distances at least Ω

(√
d̃/d

)
with high probability. The analogous construction

on the projected points now requires only p = d̃n parameters and has Lipschitz constant L =

O

(√
d/d̃

)
= O

(√
nd
p

)
.

1.1 Speculative implication for real data

To put Theorem 1 in context, we compare to the empirical results presented in [MMS+18]. In the
latter work, they consider the MNIST dataset which consists of n = 6 × 104 images in dimension
282 = 784. They trained robustly different architectures, and reported in Figure 4 the size of the
architecture versus the obtained robust test accuracy (third plot from the left). One can see a sharp
transition from roughly 10% accuracy to roughly 90% accuracy at around 2 × 105 parameters
(capacity scale 4 in their notation). Moreover the robust accuracy keeps climbing up with more
parameters, to roughly 95% accuracy at roughly 3× 106 parameters.

How can we compare these numbers to the law of robustness? There are a number of difficulties
that we discuss below, and we emphasize that this discussion is highly speculative in nature, though
we find that, with a few leaps of faith, our universal law of robustness sheds light on the potential
parameter regimes of interest for robust deep learning.

The first difficulty is to evaluate the “correct” dimension of the problem. Certainly the number of
pixels per image gives an upper bound, however one expects that the data lies on something like a
lower dimensional sub-manifold. Optimistically, we hope that Theorem 1 will continue to apply for
an appropriate effective dimension which may be rather smaller than the literal number of pixels.
This hope is partially justified by the fact that isoperimetry holds in many less-than-picturesque
situations, some of which are stated in the next subsection.

The next difficulty is to estimate/interpret the noise value σ2. From a theoretical point of view,
this noise assumption is necessary for otherwise there could exist a smooth classifier with perfect
accuracy in F , defeating the point of any lower bound on the size of F . We tentatively would like
to think of σ2 as capturing the contribution of the “difficult” part of the learning problem, that is σ2

could be thought of as the non-robust generalization error of reasonably good models, so a couple
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of % of error in the case of MNIST. With that interpretation, one gets “below the noise level” in
MNIST with a training error of a couple of %. We believe that versions of the law of robustness
might hold without noise; these would need to go beyond representational power and consider the
dynamics of learning algorithms.

Finally another subtlety to interpret the empirical results of [MMS+18] is that there is a mismatch
between what they measure and our quantities of interest. Namely the law of robustness talks
about two things: the training error, and the worst-case robustness (i.e., the Lipschitz constant). On
the other hand [MMS+18] measures the robust generalization error. Understanding the interplay
between those three quantities is a fantastic open problem. Here we take the perspective that a
small robust generalization error should imply a small training error and a small Lipschitz constant.
Another important mismatch is that we stated our universal law of robustness for Lipschitzness in
`2, while the experiments in [MMS+18] are for robustness in `∞. We believe that a variant of the
law of robustness remains true for `∞, a belief again partially justified by how broad isoperimetry
is (see next subsection).

With all the caveats described above, we can now look at the numbers as follows: in the [MMS+18]
experiments, smooth models with accuracy below the noise level are attained with a number of
parameters somewhere in the range 2×105−3×106 parameters (possibly even larger depending on
the interpretation of the noise level), while the law of robustness would predict any such model must
have at least nd parameters, and this latter quantity should be somewhere in the range 106 − 107

(corresponding to an effective dimension between 15 and 150). While far from perfect, the law
of robustness prediction is far more accurate than the classical rule of thumb # parameters ' #
equations (which here would predict a number of parameters of the order 104).

Perhaps more interestingly, one could apply a similar reasoning to the ImageNet dataset, which
consists of 1.4 × 107 images of size roughly 2 × 105. Estimating that the effective dimension is a
couple of order of magnitudes smaller than this size, the law of robustness predicts that to obtain
good robust models on ImageNet one would need at least 1010 − 1011 parameters. This number is
larger than the size of current neural networks trained robustly for this task, which sports between
108− 109 parameters. Thus, we arrive at the tantalizing possibility that robust models for ImageNet
do not exist yet simply because we are a couple orders of magnitude off in the current scale of neural
networks trained for this task.

1.2 Related work

Theorem 1 is a direct follow-up to the conjectured law of robustness in [BLN21] for (arbitrarily
weighted) two-layer neural networks with Gaussian data. Our result does not actually prove their
conjecture, because we assume here polynomially bounded weights. While this assumption is
reasonable from a practical perspective, it remains mathematically interesting to prove the full
conjecture for the two-layer case. We prove however in Section A that the polynomial weights as-
sumption is necessary as soon as one considers three-layer neural networks. Let us also mention the
[GCL+19, Theorem 6.1] which showed a lower bound Ω(nd) on the VC dimension of any function
class which can robustly interpolate arbitrary labels on all well-separated input sets (x1, . . . , xn).
We also note that a relation between high-dimensional phenomenon such as concentration and
adversarial examples has been hypothesized before, such as in [GMF+18].

In addition to [MMS+18], several recent works have experimentally studied the relationship
between a neural network scale and its achieved robustness, see e.g., [NBA+18, XY20, GQU+20].
It has been consistently reported that larger networks help tremendously for robustness, beyond
what is typically seen for classical non-robust accuracy. We view our universal law of robustness
as putting this empirical observation on a more solid footing: scale is actually necessary to achieve
robustness.

The law of robustness setting is closely related to the interpolation setting: in the former
case one considers models optimizing “beyond the noise level”, while in the latter case one
studies models with perfect fit on the training data. The study of generalization in this in-
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terpolation regime has been a central focus of learning theory in the last few years (see e.g.,
[BHMM19, MM19, BLLT20, NKB+20]), as it seemingly contradicts classical theory about regu-
larization. More broadly though, generalization remains a mysterious phenomon in deep learning,
and the exact interplay between the law of robustness’ setting (interpolation regime/worst-case
robustness) and (robust) generalization error is a fantastic open problem. Interestingly, we note
that one could potentially avoid the conclusion of the law of robustness (that is, that large models
are necessary for robustness), with early stopping methods that could stop the optimization
once the noise level is reached. In fact, this theoretically motivated suggestion has already been
empirically tested and confirmed in the recent work [RWK20], showing again a close tie between
the conclusions one can draw from the law of robustness and actual practical settings.

Classical lower bounds on the gradient of a function include Poincaré type inequalities, but they
are of a qualitately different nature compared to the law of robustness lower bound. We recall that
a measure µ on Rd satisfies a Poincaré inequality if for any function f , one has Eµ[‖∇f‖2] ≥
C · Var(f) (for some constant C > 0). In our context, such a lower bound for an interpolating
function f has essentially no consequence since the variance f could be exponentially small. In
fact this is tight, as one easily use similar constructions to those in [BLN21] to show that one can
interpolate with an exponentially small expected norm squared of the gradient (in particular it is
crucial in the law of robustness to consider the Lipschitz constant, i.e., the supremum of the norm of
the gradient). On the other hand, our isoperimetry assumption is related to a certain strenghtening
of the Poincaré inequality known as log-Sobolev inequality (see e.g., [Led01]). If the covariate
measure satisfies only a Poincaré inequality, then we could prove a weaker law of robustness of the
form Lip & n

√
d

p (using for example the concentration result obtained in [BL97]). For the case of
two-layer neural networks there is another natural notion of smoothness (different from `p norms
of the gradient) that can be considered, known as the Barron norm. In [BELM20] it is shown that
for such a notion of smoothness there is no tradeoff à la the law of robustness, namely one can
simultaneously be optimal both in terms of Barron norm and in terms of the network size. More
generally, it is an interesting challenge to understand for which notions of smoothness there is a
tradeoff with size.

1.3 Isoperimetry

Concentration of measure and isoperimetry are perhaps the most ubiquitous features of high-
dimensional geometry. In short, they assert in many cases that Lipschitz functions on high-
dimensional space concentrate tightly around their mean. Our result assumes that the distribution µ
of the covariates xi satisfies such an inequality in the following sense.
Definition 1.1. A probability measure µ on Rd satisfies c-isoperimetry if for any bounded L-
Lipschitz f : Rd → R, and any t ≥ 0,

P[|f(x)− E[f ]| ≥ t] ≤ 2e−
dt2

2cL2 . (1.1)

In general, if a scalar random variable X satisfies P[|X| ≥ t] ≤ 2e−t
2/C then we say X is

C-subgaussian. Hence isoperimetry states that the output of any Lipschitz function is O(1)-
subgaussian under suitable rescaling. Distributions satisfying O(1)-isoperimetry include high di-
mensional Gaussians µ = N

(
0, Idd

)
and uniform distributions on spheres and hypercubes (normal-

ized to have diameter 1). Isoperimetry also holds for mild perturbations of these idealized scenarios,
including2:

• The sum of a Gaussian and an independent random vector of small norm [CCNW21].
• Strongly log-concave measures in any normed space [BL00, Proposition 3.1].
• Manifolds with positive Ricci curvature [Gro86, Theorem 2.2].

Due to the last condition above, we believe our results are realistic even under the manifold hypoth-
esis that high-dimensional data tends to lie on a lower-dimensional submanifold. This viewpoint
on learning has been studied for decades, see e.g. [HS89, KL93, RS00, TDSL00, NM10, FMN16].

2The first two examples satisfy a logarithmic Sobolev inequality, which implies isoperimetry [Led99, Propo-
sition 2.3].
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We also note that our formal theorem (Theorem 3) actually applies to distributions that can be
written as a mixture of distributions satisfying isoperimetry. Let us also point out that from a
technical perspective, our proof is not tied to the Euclidean norm and applies essentially whenever
Definition 1.1 holds. The main difficulty in extending the law of robustness to e.g. the earth-mover
distance seems to be identifying realistic cases which satisfy isoperimetry.

Our proofs will repeatedly use the following simple fact:
Proposition 1.2. [Ver18, Proposition 2.6.1],[vH14, Exercise 3.1] If X1, . . . , Xn are independent,
C-subgaussian, with mean 0, then 1√

n

∑n
i=1Xi is 18C-subgaussian.

2 A finite approach to the law of robustness

For the function class of two-layer neural networks, [BLN21] investigated several approaches to
prove the law of robustness. At a high level, the proof strategies there relied on various ways to
measure how “large” the set of two-layer neural networks can be (specifically, they tried a geometric
approach based on relating to multi-index models, a statistical approach based on the Rademacher
complexity, and an algebraic approach for the case of polynomial activations).

In this work we take here a different route: we shift the focus from the function classF to an individ-
ual function f ∈ F . Namely, our proof starts by asking the following question: for a fixed function
f , what is the probability that it would give a good approximate fit on the (random) data? For
simplicity, consider for a moment the case where we require f to actually interpolate the data (i.e.,
perfect fit), and say that yi are random ±1 labels. The key insight is that isoperimetry implies that
either the 0-level set of f or the 1-level set of f must have probability smaller than exp

(
− d

Lip(f)2

)
.

Thus, the probability that f fits all the n points is at most exp
(
− nd

Lip(f)2

)
so long as both labels

yi ∈ {−1, 1} actually appear a constant fraction of the time. In particular, using an union bound3,
for a finite function class F of size N with L-Lipschitz functions, the probability that there exists a
function f ∈ F fitting the data is at most

N exp

(
−nd
L2

)
= exp

(
log(N)− nd

L2

)
.

Thus we see that, if L �
√

nd
log(N) , then the probability of finding a fitting function in F is very

small. This basically concludes the proof, since via a standard discretization argument, for a
smoothly parametrized family with p (bounded) parameters one expects log(N) = Õ(p).

We now give the formal proof, which applies in particular to approximate fit rather than exact fit in
the argument above. The only difference is that we will identify a well-chosen subgaussian random
variable in the problem. We start with the finite function class case:
Theorem 2. Let (xi, yi) be i.i.d. input-output pairs in Rd × [−1, 1] such that:

1. The distribution µ of the covariates xi can be written as µ =
∑k
`=1 α`µ`, where each µ`

satisfies c-isoperimetry and α` ≥ 0,
∑k
`=1 α` = 1.

2. The expected conditional variance of the output is strictly positive, denoted σ2 :=
Eµ[V ar[y|x]] > 0.

Then one has:

P

(
∃f ∈ F :

1

n

n∑
i=1

(yi − f(xi))
2 ≤ σ2 − ε

)

≤ 4k exp

(
−nε

2

83k

)
+ 2 exp

(
log(|F|)− ε2nd

94cL2

)
.

3In this informal argument we ignore the possibility that the labels yi are not well-balanced. Note that the
probability of this rare event is not amplified by a union bound over f ∈ F .
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We start with a lemma showing that, to optimize beyond the noise level one must necessarily cor-
relate with the noise part of the labels. In what follows we denote g(x) = E[y|x] for the target
function, and zi = yi − g(xi) for the noise part of the observed labels (namely yi is the sum of the
target function g(xi) and the noise term zi).

Lemma 2.1. One has

P

(
∃f ∈ F :

1

n

n∑
i=1

(yi − f(xi))
2 ≤ σ2 − ε

)
≤ 2 exp

(
−nε

2

83

)
+P

(
∃f ∈ F :

1

n

n∑
i=1

f(xi)zi ≥
ε

4

)
.

Proof. The sequence (z2
i ) is i.i.d., with mean σ2, and such that |zi|2 ≤ 4. Thus Hoeffding’s inequal-

ity yields:

P

(
1

n

n∑
i=1

z2
i ≤ σ2 − ε

6

)
≤ exp

(
−nε

2

83

)
. (2.1)

On the other hand the sequence (zig(xi)) is i.i.d., with mean 0 (since E[zi|xi] = 0), and such that
|zig(xi)| ≤ 2. Thus Hoeffding’s inequality yields:

P

(
1

n

n∑
i=1

zig(xi) ≤ −
ε

6

)
≤ exp

(
−nε

2

83

)
. (2.2)

Let us write Z = 1√
n

(z1, . . . , zn), G = 1√
n

(g(x1), . . . , g(xn)), and F = 1√
n

(f(x1), . . . , f(xn)).
We claim that if ‖Z‖2 ≥ σ2 − ε

6 and 〈Z,G〉 ≥ − ε
6 , then for any f ∈ F one has

‖G+ Z − F‖2 ≤ σ2 − ε ⇒ 〈F,Z〉 ≥ ε

4
.

This claim together with (2.1) and (2.2) conclude the proof. On the other hand the claim itself
directly follows from:

σ2−ε ≥ ‖G+Z−F‖2 = ‖Z+G−F‖2 = ‖Z‖2 +2〈Z,G−F 〉+‖G−F‖2 ≥ σ2− ε
2
−2〈Z,F 〉 .

We can now proceed to the proof of Theorem 2:

Proof. First note that without loss of generality we can assume that the range of any function in F
is included in [−1, 1] (indeed clipping the values improves both the fit to any y ∈ [−1, 1] and the
Lipschitz constant). We also assume wlog that all functions in F are L-Lipschitz.

For clarity let us start with the case k = 1. By the isoperimetry assumption we have that√
d
c
f(xi)−E[f ]

L is 1-subgaussian. Since |zi| ≤ 2, we also have that
√

d
c

(f(xi)−E[f ])zi
L is 4-

subgaussian. Moreover, the latter random variable has zero-mean since E[z|x] = 0. Thus by
Proposition 1.2 we have:

P

(√
d

cnL2

n∑
i=1

(f(xi)− E[f ])zi ≥ t

)
≤ 2 exp

(
−(t/9)2

)
.

We rewrite the above as:

P

(
1

n

n∑
i=1

(f(xi)− E[f ])zi ≥
ε

8

)
≤ 2 exp

(
− ε2nd

94cL2

)
. (2.3)

Since we assumed that the range of the functions is in [−1, 1] we have E[f ] ∈ [−1, 1] and hence:

P

(
∃f ∈ F :

1

n

n∑
i=1

E[f ]zi ≥
ε

8

)
≤ P

(∣∣∣∣∣ 1n
n∑
i=1

zi

∣∣∣∣∣ ≥ ε

8

)
. (2.4)
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(This step is the analog of requiring the labels yi to be well-balanced in the example of perfect
interpolation.) By Hoeffding’s inequality, the above quantity is smaller than 2 exp(−nε2/83) (recall
that |zi| ≤ 2). Thus we obtain with an union bound:

P

(
∃f ∈ F :

1

n

n∑
i=1

f(xi)zi ≥
ε

4

)
≤ |F| · P

(
1

n

n∑
i=1

(f(xi)− E[f ])zi ≥
ε

8

)
+ P

(∣∣∣∣∣ 1n
n∑
i=1

zi

∣∣∣∣∣ ≥ ε

8

)

≤ 2|F| · exp

(
− ε2nd

94cL2

)
+ 2 exp

(
−nε

2

83

)
.

Together with Lemma 2.1 this concludes the proof for k = 1.

We now turn to the case k > 1. We first sample the mixture component `i ∈ [k] for each data point
i ∈ [n], and we now reason conditioned on these mixture components. Let S` ⊂ [n] be the set of
data points sampled from mixture component ` ∈ [k], that is xi, i ∈ S`, is i.i.d. from µ`. We now

have that
√

d
c
f(xi)−E

µ`i [f ]
L is 1-subgaussian (notice that the only difference is that now we need to

center by Eµ`i [f ], which depends on the mixture component). In particular using the same reasoning
as for (2.4) we obtain (crucially note that Proposition 1.2 does not require the random variables to
be identically distributed):

P

(
1

n

n∑
i=1

(f(xi)− Eµ`i [f ])zi ≥
ε

8

)
≤ 2 exp

(
− ε2nd

94cL2

)
. (2.5)

Next we want to appropriately modify (2.4). To do so note that:

max
m1,...,mk∈[−1,1]

n∑
i=1

m`izi =

k∑
`=1

∣∣∣∣∣∑
i∈S`

zi

∣∣∣∣∣ ,
so that we can rewrite (2.4) as:

P

(
∃f ∈ F :

1

n

n∑
i=1

Eµ`i [f ]zi ≥
ε

8

)
≤ P

(
1

n

k∑
`=1

∣∣∣∣∣∑
i∈S`

zi

∣∣∣∣∣ ≥ ε

8

)
.

Now note that
∑k
`=1

√
|S`| ≤

√
nk and thus we have:

P

(
1

n

k∑
`=1

∣∣∣∣∣∑
i∈S`

zi

∣∣∣∣∣ ≥ ε

8

)
≤ P

(
k∑
`=1

∣∣∣∣∣∑
i∈S`

zi

∣∣∣∣∣ ≥ ε

8

√
n

k

k∑
`=1

√
|S`|

)
≤

k∑
`=1

P

(∣∣∣∣∣∑
i∈S`

zi

∣∣∣∣∣ ≥ ε

8

√
n

k

√
|S`|

)
.

Finally by Hoeffding’s inequality, we have for any ` ∈ [k], P
(∣∣∑

i∈S` zi
∣∣ ≥ t√|S`|) ≤

2 exp
(
− t

2

8

)
, and thus the last display is bounded from above by 2k exp

(
−nε

2

83k

)
. The proof can

now be concluded as in the case k = 1.

Finally we can now state and prove the formal version of the informal Theorem 1 from the introduc-
tion.
Theorem 3. Let F be a class of functions from Rd → R and let (xi, yi)

n
i=1 be i.i.d. input-output

pairs in Rd × [−1, 1]. Fix ε, δ ∈ (0, 1). Assume that:

1. The function class can be written as F = {fw,w ∈ W} withW ⊂ Rp, diam(W) ≤ W
and for any w1,w2 ∈ W ,

||fw1
− fw2

||∞ ≤ J ||w1 −w2||.

2. The distribution µ of the covariates xi can be written as µ =
∑k
`=1 α`µ`, where each µ`

satisfies c-isoperimetry, α` ≥ 0,
∑k
`=1 α` = 1, and k is such that 94k log(8k/δ) ≤ nε2.

3. The expected conditional variance of the output is strictly positive, denoted σ2 :=
Eµ[V ar[y|x]] > 0.
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Then, with probability at least 1−δ with respect to the sampling of the data, one has simultaneously
for all f ∈ F:

1

n

n∑
i=1

(f(xi)− yi)2 ≤ σ2 − ε ⇒ Lip(f) ≥ ε

29
√
c

√
nd

p log(60WJε−1) + log(4/δ)
.

Proof. DefineWL ⊆ W byWL = {w ∈ W : Lip(fw) ≤ L}. DenoteWL,ε for an ε
6J -net ofWL.

We have in particular |Wε| ≤ (60WJε−1)p. We apply Theorem 2 to FL,ε = {fw,w ∈ WL,ε}:

P

(
∃f ∈ FL,ε :

1

n

n∑
i=1

(yi − f(xi))
2 ≤ σ2 − ε

2
and Lip(f) ≤ 2L

)

≤ 4k exp

(
−nε

2

94k

)
+ 2 exp

(
p log(60WJε−1)− ε2nd

86cL2

)
.

Observe that if ‖f − g‖∞ ≤ ε
6 and ‖y‖∞, ‖f‖∞, ‖g‖∞ ≤ 1, then 1

n

∑n
i=1(yi − f(xi))

2 ≤ ε
2 +

1
n

∑n
i=1(yi− g(xi))

2. (We may again assume without loss of generality that all functions in F map
to [−1, 1].) Thus we obtain for any L > 0:

P

(
∃f ∈ F :

1

n

n∑
i=1

(yi − f(xi))
2 ≤ σ2 − ε and Lip(f) ≤ L

)

≤ 4k exp

(
−nε

2

94k

)
+ 2 exp

(
p log(60WJε−1)− ε2nd

86cL2

)
.

The first assumption ensures that for any w ∈ WL, there is w′ ∈ WL,ε with ‖fw −
fw′‖∞ ≤ ε

6 . The second assumption shows the probability just above is at most δ when

L = ε
29
√
c

√
nd

p log(60WJε−1)+log(4/δ) . This concludes the proof.

3 Deep neural networks

We now specialize the law of robustness (Theorem 3) to multi-layer neural networks. We consider
a rather general class of depth D neural networks described as follows. First, we require that the
neurons are partitioned into layers L1, . . . ,LD, and that all connections are from Li → Lj for
some i < j. This includes the basic feed-forward case in which only connections Li → Li+1 are
used as well as more general skip connections. We specify (in the natural way) a neural network by
matrices Wj of shape |Lj | ×

∑
i<j |Li| for each 1 ≤ j ≤ D, as well as 1-Lipschitz non-linearities

σj,` and scalar biases bj,` for each (j, `) satisfying ` ∈ |Lj |. We use fixed non-linearities σj,` as
well as a fixed architecture, in the sense that each matrix entry Wj [k, `] is either always 0 or else it
is variable (and similarly for the bias terms).

To match the notation of Theorem 3, we identify the parametrization in terms of the matrices (Wj)
and bias terms (bj,`) to a single p-dimensional vector w as follows. A variable matrix entryWj [k, `]
is set to wa(j,k,`) for some fixed index a(j, k, `) ∈ [p], and a variable bias term bj,` is set to wa(j,`)

for some a(j, `) ∈ [p]. Thus we now have a parametrization w ∈ Rp 7→ fw where fw is the neural
network represented by the parameter vector w. Importantly, note that our formulation allows
for weight sharing (in the sense that a shared weight is counted only as a single parameter). For
example, this is important to obtain an accurate count of the number of parameters in convolutional
architectures.

In order to apply Theorem 3 to this class of functions we need to estimate the Lipschitz constant
of the parametrization w 7→ fw. To do this we introduce three more quantities. First, we shall
assume that all the parameters are bounded in magnitude by W , that is we consider the set of neural
networks parametrized by w ∈ [−W,W ]p. Next, for the architecture under consideration, denote
Q for the maximum number of matrix entries/bias terms that are tied to a single parameter wa for
some a ∈ [p]. Finally we define

B(w) =
∏
j∈[D]

max(‖Wj‖op, 1).

8



Observe that B(w) is an upper bound on the Lipschitz constant of the network itself, i.e., the map
x 7→ fw(x). It turns out that a uniform control on it also controls the Lipschitz constant of the
parametrization w 7→ fw. Namely we have the following lemma:
Lemma 3.1. Let x ∈ Rd such that ‖x‖ ≤ R, and w1,w2 ∈ Rp such that B(w1), B(w2) ≤ B.
Then one has

|fw1(x)− fw2(x)| ≤ B2
QR
√
p‖w1 −w2‖ .

Moreover for any w ∈ [−W,W ]p with W ≥ 1, one has

B(w) ≤ (W
√
pQ)D.

Proof. Fix an input x and define gx by gx(w) = fw(x). A standard gradient calculation for
multi-layer neural networks directly shows that ‖∇gx(w)‖∞ ≤ B(w)QR so that ‖∇gx(w)‖ ≤
B(w)QR

√
p. Since the matrix operator norm is convex (and nonnegative) it follows that B(w) ≤

B(w1)B(w2) ≤ B2
on the entire segment [w1,w2] by multiplying over layers. Thus ‖∇gx(w)‖ ≤

B
2
QR
√
p on that segment, which concludes the proof of the first claimed inequality. The second

claimed inequality follows directly from ‖Wj‖op ≤ ‖Wj‖2 ≤W
√
pQ.

Lemma 3.1 shows that when applying Theorem 3 to our class of neural networks one can always
take J = R(WQp)D (assuming that the covariate measure µ is supported on the ball of radius R).
Thus in this case the law of robustness (under the assumptions of Theorem 3) directly states that
with high probability, any neural network in our class that fits the training data well below the noise
level must also have:

Lip(f) ≥ Ω̃

(√
nd

Dp

)
, (3.1)

where Ω̃ hides logarithmic factors in W,p,R,Q, and the probability of error δ. Thus we see that the
law of robustness, namely that the number of parameters should be at least nd for a smooth model
with low training error, remains intact for constant depth neural networks. If taken at face value,
the lower bound (3.1) suggests that it is better in practice to distribute the parameters towards depth
rather than width, since the lower bound is decreasing with D. On the other hand, we note that (3.1)
can be strengthened to:

Lip(f) ≥ Ω̃

(√
nd

p log(B)

)
, (3.2)

for the class of neural networks such thatB(w) ≤ B. In other words the dependency on the depth all
but disappears by simply assuming that the quantity B(w) (a natural upper bound on the Lipschitz
constant of the network) is polynomially controlled. Interestingly many works have suggested to
keep B(w) under control, either for regularization purpose (for example [BFT17] relates B(w) to
the Rademacher complexity of multi-layer neural networks) or to simply control gradient explosion
during training, see e.g., [ASB16, CBG+17, MHRB17, MKKY18, JCC+19, YM17]. Moreover,
in addition to being well-motivated in practice, the assumption that B is polynomially controlled
seems also somewhat unavoidable in theory, sinceB(w) is an upper bound on the Lipschitz constant
Lip(fw). Thus a theoretical construction showing that the lower bound in (3.1) is tight (at some large
depth D) would necessarily need to have an exponential gap between Lip(fw) and B(w). We are
not aware of any such example, and it would be interesting to fully elucidate the role of depth in the
law of robustness (particularly if it could give recommendation on how to best distribute parameters
in a neural network).

4 Generalization Perspective

The law of robustness can be phrased in a slightly stronger way, as a generalization bound for
classes of Lipschitz functions based on data-dependent Rademacher complexity. In particular, this
perspective applies to any Lipschitz loss function, whereas our analysis in the main text was specific
to the squared loss. We define the data-dependent Rademacher complexity Radn,µ(F) by

Radn,µ(F) =
1

n
Eσi,xi

[
sup
f∈F

∣∣∣∣∣
n∑
i=1

σif(xi)

∣∣∣∣∣
]

(4.1)
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where the values (σi)i∈[n] are i.i.d. symmetric Rademacher variables in {−1, 1} while the values
(xi)i∈[n] are i.i.d. samples from µ.

Lemma 4.1. Suppose µ =
∑k
i=1 αiµi is a mixture of c-isoperimetric distributions. For finite F

consisting of L-Lipschitz f with |f(x)| ≤ 1 for all (f, x) ∈ F × Rd, we have

Radn,µ(F) ≤ O

(
max

(√
k

n
, L

√
c log(|F|)

nd

))
. (4.2)

The proof is identical to that of Theorem 2. Note that Radn,µ(F) simply measures the ability of
functions in F to correlate with random noise. Using standard machinery it implies the following
generalization bound:

Corollary 4.2. For any loss function `(t, y) which is bounded and 1-Lipschitz in its first argument
and any δ ∈ [0, 1], in the setting of Lemma 4.1 we have with probability at least 1 − δ the uniform
convergence bound:

sup
f∈F

∣∣∣∣∣E(x,y)∼µ[`(f(x), y)]− 1

n

n∑
i=1

`(f(xi), yi)

∣∣∣∣∣ ≤ O
(

max

(√
k

n
, L

√
c log(|F|)

nd
,

√
log(1/δ)

n

))
.

Proof. Using McDiarmid’s concentration inequality it is enough to bound the left hand side in ex-
pectation over (xi, yi). Using the symmetrization trick, one reduces this task to upper bound

Exi,yi,σi sup
f∈F

1

n

n∑
i=1

σi`(f(xi), yi) .

Fixing the pairs (xi, yi) and using the contraction lemma (see e.g., [SSBD14, Theorem 26.9]) the
above quantity is upper bounded by Radn,µ(F) which concludes the proof.

Of course, one can again use an ε-net to obtain an analogous result for continuously parametrized
function classes. The law of robustness, now for a general loss function, follows as a corollary (the
argument is similar to [Proposition 1, [BELM20]]). Let us point out that many papers have stud-
ied the Rademacher complexity of function classes such as neural networks (see e.g. [BFT17], or
[YKB19] in the context of adversarial examples). The new feature of our result is that isoperimetry
of the covariates yields improved generalization guarantees.
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