
Generating Data In Planning: SAS+ Planning Tasks of a Given Causal Structure

Michael Katz and Shirin Sohrabi
IBM T.J. Watson Research Center

1101 Kitchawan Rd, Yorktown Heights, NY 10598, USA
michael.katz1@ibm.com, ssohrab@us.ibm.com

Abstract

The need for data in planning has long been established, by,
e.g., machine learning based approaches. The existing data,
however, is quite limited. There exists only a relatively small
amount of hand-crafted planning domains, mostly introduced
through International Planning Competitions. Further, this
collection of domains is not necessarily diverse: many of
these domains are some variants of the transportation prob-
lem.
In this work, we alleviate the shortage in existing planning
tasks by automatically generating tasks of a particular causal
structure. Given any graph G, we show how to create a SAS+

planning task with the causal graph isomorphic to G. We
create a large collection of planning tasks by randomly gen-
erating graphs of various structural restrictions and creating
planning tasks for these graphs, but also, more importantly,
we provide the community with a tool that allows for on-
demand generation of additional, possibly larger tasks. Our
experimental evaluation ensures that the generated collection
is interesting for the current state of affairs in classical cost-
optimal planning, showing the performance of state-of-the-art
symbolic search and explicit heuristic search based planners.

Introduction
Since the first planning tasks encoded in STRIPS language
back in 1971 (Fikes and Nilsson 1971), data, a.k.a. plan-
ning tasks, was the corner stone and one of the main drivers
of research in planning. With the beginning of International
Planning Competitions (IPC) in 1998 (McDermott 2000)
came the increase in the availability of planning tasks, with
the current estimate of slightly over 70 domains, including
some variants in different formalisms. All these domains are
hand-crafted, although some correspond to machine trans-
lation from a different problem (Palacios and Geffner 2009;
Bonet, Palacios, and Geffner 2009; Grastien and Scala 2018;
Sohrabi et al. 2018). Not only that most of these domains
are hand-crafted, the collection is not necessarily diverse.
Many of these domains are some variants of the transporta-
tion problem.

A major focus in classical planning was on heuristic
search, with heuristics automatically obtained for planning
tasks, exploiting the task structure. Few examples that ex-
plicitly exploit the causal structure include the causal graph

heuristic (Helmert 2004) and the structural pattern heuris-
tics (Katz and Domshlak 2010; Katz and Keyder 2012).
Others, such as pattern databases (PDBs) (Edelkamp 2001)
exploit the causal information in e.g., pattern selection
(Haslum et al. 2007). Merge-and-shrink heuristics (Helmert,
Haslum, and Hoffmann 2007) use the causal graph for guid-
ing the merge process. Most existing heuristics that work
on the multi-valued representation exploit the causal in-
formation in one way or another. Further, starting with
the seminal work of Bäckström and Nebel (1995), the re-
search on the complexity of planning tasks had a major fo-
cus on the characterization of planning fragments by their
causal graph structure (Domshlak and Brafman 2002; Katz
and Domshlak 2007; 2008; Giménez and Jonsson 2008;
2009; Katz and Keyder 2012; Bäckström and Jonsson 2013;
Aghighi, Jonsson, and Ståhlberg 2015; Bäckström, Jonsson,
and Ordyniak 2019), as well as some local structural char-
acteristics, such as k-dependence (Katz and Domshlak 2007;
Giménez and Jonsson 2012), showing these fragments to be-
long to a variety of complexity classes. For these two rea-
sons, various planners performance heavily relies on the var-
ious structural characteristics of the input planning task.

The aim of this work is to generate planning tasks of a
specific predefined structure. Here, we focus on the charac-
terization of planning tasks by the structure of their causal
graphs. Given a collection of multi-valued variables and a
graph representing causal connections between these vari-
ables, we propose a way of generating SAS+ actions, initial
state and a goal, in a way that the causal graph of the re-
sulting task will match the input graph. Our aim is to be
able to automatically generate a diverse collection of plan-
ning tasks, as large as needed for various purposes. One such
example purpose is learning a good planner selection strat-
egy (Sievers et al. 2019; Ma et al. 2020). Another possible
purpose is an additional source of benchmarks for empirical
evaluation of new planning algorithms. We test the gener-
ated collection with two modern cost-optimal planners that
represent the two popular state-of-the-art approaches to cost-
optimal planning. For symbolic search, we chose the planner
SYMBA∗ (Torralba et al. 2014), winner of the sequential op-
timal track of International Planning Competition 2014 and
one of the planners in the winning portfolio of IPC 2018



(Katz et al. 2018). For heuristic search, we chose A∗ with
LM-cut heuristic (Helmert and Domshlak 2009), a compo-
nent of many modern heuristics search based planners. Our
experiments confirm that (i) the generated collection is chal-
lenging for both heuristic search and symbolic search based
planners, and (ii) there is no clear dominance to any of the
techniques.

The rest of the paper is structured as follows. We start with
introducing the planning formalism and the notation used
throughout the paper. We then move to construction, where
we first describe various causal graph structures and the way
these graphs can be constructed, and then describe the con-
struction of planning tasks given a causal graph. Next, we
present the experimental evaluation, including describing
the way we have created our collection. Finally, we discuss
the related work, and conclude with the summary of our re-
sults and future work.

Preliminaries
A SAS+ planning task (Bäckström and Nebel 1995) is given
by a tuple 〈V, A, s0, s∗〉, where V is a set of state variables,
A is a finite set of actions. Each state variable v ∈ V has a fi-
nite domain dom(v). Each pair 〈v, ϑ〉 of variable v ∈ V and
its value ϑ ∈ dom(v) is called a fact. By Fv we denote the
set {〈v, ϑ〉 | ϑ ∈ dom(v)} of facts for the variable v, and the
set of all facts is denoted by F :=

⋃
v∈V Fv . A (partial) as-

signment to the variables V is called a (partial) state. Often
it is convenient to view partial state p as a set of facts with
〈v, ϑ〉 ∈ p if and only if p[v] = ϑ. For a partial assignment p,
V(p) ⊆ V denotes the subset of state variables instantiated
by p. Partial state p is consistent with state s if p ⊆ s. We
denote the set of states of a planning task by S. s0 is the ini-
tial state, and the partial state s∗ is the goal. Each action a is
a pair 〈pre(a), eff (a)〉 of partial states called preconditions
and effects. By prv(a) we denote the part of the precondition
that corresponds to variables that do not participate in ac-
tion’s effects, prv(a) = {〈v, ϑ〉 ∈ pre(a) | v 6∈ V(eff (a))},
also called prevail condition. An action cost is a mapping
C : A → R0+. An action a is applicable in a state s ∈ S if
and only if pre(a) is consistent with s. Applying a changes
the value of v ∈ V(eff (a)) to eff (a)[v]. The resulting state
is denoted by sJaK. An action sequence π = 〈a1, . . . , ak〉 is
applicable in s if there exist states s0, · · · , sk such that (i)
s0 = s, and (ii) for each 1 ≤ i ≤ k, ai is applicable in si−1

and si = si−1JaiK. We denote the state sk by sJπK. π is a
plan iff π is applicable in s0 and s∗ is consistent with s0JπK.
We denote by P(Π) (or just P when the task is clear from
the context) the set of all plans of Π. The cost of a plan π,
denoted by C(π) is the summed cost of the actions in the
plan.

A central role in what follows is played by a standard
structure in classical planning, called causal graph (Helmert
2004). The causal graph CGΠ of a task Π is a digraph with
vertices V . An arc (v, v′) is in CGΠ iff v 6= v′ and there
exists an action a ∈ A such that (v, v′) ∈ [V(eff (a)) ∪
V(pre(a))] × V(eff (a)). For an action a, by Ea we denote
the set of all such arcs, and by EA′ we denote the union of
all sets of arcs Ea for a ∈ A′.

Another structure typically used in planning for comput-
ing relaxation based heuristics is relaxed planning graph
(Hoffmann and Nebel 2001), which is a layered graph of
facts and actions, describing action application in the plan-
ning task, under value accumulating semantic. The layers
are added until a fixpoint is reached, that is no new fact can
be achieved. The first fact layer F1 thus corresponds to the
facts from the initial state, and the last layer is also a fact
layer, and it is equal to the preceding fact layer. Each action
layer Ai consists of all actions from A that are applicable in
Fi, that is Ai = {a ∈ A | pre(a) ⊆ Fi}. The next fact layer
Fi+1 is then constructed by adding to Fi all facts achieved
by the actions in Ai, namely Fi+1 = Fi ∪

⋃
a∈Ai

eff (a).
Finally, SAS+ representation is often not provided

directly, and is translated from STRIPS representation
(Helmert 2006). The multi-valued variables in SAS+ then
correspond to invariant groups of pairwise mutually exclu-
sive facts (mutexes), where exactly one such fact is true in
any state reachable from the initial state. Each such invariant
group over STRIPS facts corresponds to a set of facts at most
one of which can be true in any given state that is reachable
from the initial state. If there exist such states where no facts
are true, then an additional value is added, representing that
none of the facts in the invariant group is true.

Construction
We start our construction by defining a graph to be served
as the causal graph of the constructed task. For that, we fo-
cus here on the following causal graph structures: chain, di-
rected chain, fork, inverted fork, star, bipartite graph, di-
rected bipartite graph, tree, polytree, and directed acyclic
graph, complete graph, and random graph. For some of
these structures, namely directed chain, fork, inverted fork,
and complete graph the graphs are fully defined by the num-
ber of nodes (modulo automorphisms). In other cases, we in-
troduce randomness into the graph construction. In what fol-
lows, we first describe how we handle these cases, and then
how a task with the given causal structure is constructed.

Directed Bipartite Graph: A full directed bipartite graph
is constructed by first randomly partitioning the nodes
into left and right and then introducing an edge from each
node on the left to each node on the right.
Bipartite Graph: A full undirected bipartite graph is con-
structed by first randomly partitioning the nodes into left
and right and then introducing an edge from each node on
the left to each node on the right, and vice versa.
Directed Chain: A directed chain of n nodes v1, . . . , vn
is created by adding the edges (vi, vi+1) for each 1 ≤ i <
n.
Chain: An undirected chain of n nodes v1, . . . , vn is cre-
ated as follows. For each 1 ≤ i < n, we randomly decide
whether to add an edge (vi, vi+1), with probability p. If
no such edge is added, we add the edge (vi+1, vi) and if
the edge (vi, vi+1) was added, we decide with probability
p whether to add the edge (vi+1, vi).
Tree: A directed tree of n nodes v1, . . . , vn is constructed
by choosing for each node vi a parent randomly out of the
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Figure 1: Selected causal graph structures: (a) fork, (b) in-
verted fork, (c) polytree, (d) directed bipartite graph, (e)
chain, and (f) complete graph .

nodes v1, . . . , vi−1.

Polytree: For a polytree, we start with a tree constructed
as above, and then for each edge switch its direction with
probability p.

Directed Acyclic Graph: A directed acyclic graph of
n nodes v1, . . . , vn is constructed by choosing for each
node vi at least one parent randomly out of the nodes
v1, . . . , vi−1. We do that by going over all the preced-
ing nodes and deciding with probability p whether to add
an edge from the preceding node to the current node. If
no edges were added, we repeat until at least one edge is
added for each node (except the first one).

Random Graph: For each pair of nodes vi and vj we
randomly decide whether to add a directed edge from vi
to vj .

Fork: A fork is a directed tree with all non-root nodes be-
ing leafs, with their parent being the root node. A fork
over nodes v1, . . . , vn is created by adding the edges
(v1, vi) for each 1 < i ≤ n.

Inverted Fork: An inverted fork is a directed polytree
with one leaf node and all non-leaf nodes being roots,
with their only child node being the leaf node. An inverted
fork over nodes v1, . . . , vn is created by adding the edges
(vi, v1) for each 1 < i ≤ n.

Star: A star structure has one central node with all other
nodes connected with the central node only. A star over
nodes v1, . . . , vn is created as follows. For each 1 < i ≤
n, we randomly decide whether to add an edge (v1, vi),
with probability p. If no such edge is added, we add the
edge (vi, v1) and if the edge (v1, vi) was added, we decide
with probability p whether to add the edge (vi, v1).

Algorithm 1 Construction of a planning task according to a
given causal graph structure.
Input: Graph G = (V, E), number of facts n ≥ 2|V|

1: Partition n into |V| values dv≥2 such that
∑

v∈V dv =
n

2: Fv ← {〈v, ϑ〉 | 0 ≤ ϑ < dv} for all v ∈ V
3: s0[v]← 0 for all v ∈ V
4: k ← 0
5: A← ∅
6: Fk ← s0

7: while |Fk| < n or E \ EA 6= ∅ do
8: k ← k + 1
9: mk ← number of new facts for layer k

10: Fk, Ak−1 ← CREATELAYER(mk, Fk−1, A)
11: A← A ∪Ak−1

12: Select s∗ ⊆ Fk such that ∀v ∈ V, |s∗ ∩ Fv| ≤ 1
and s∗ ∩ (Fk \ Fk−1) 6= ∅

13: return Π = 〈V, A, s0, s∗〉

14: function CREATELAYER(m, F , A)
15: A′ ← ∅
16: F ′ ← F
17: while |F ′\F |<m or (m= 0 and E\EA∪A′ 6= ∅)

do
18: a← CREATEACTION
19: if Ea ⊆ E then
20: if Ea \ EA∪A′ = ∅ and Random(p) then
21: Continue
22: A′ ← A′ ∪ {a}
23: F ′ ← F ′ ∪ eff (a)

24: return F ′, A′

Complete Graph: A complete graph over nodes
v1, . . . , vn is created by adding the edges (vi, vj) and
(vj , vi) for all 1 ≤ i < j ≤ n.

Figure 1 exemplifies selected graph structures. Having de-
scribed how a causal graph for the future planning task is
constructed, we now switch to the next step, showing how
to construct a planning task with that causal graph.

Planning Task Construction
Given a graph G = (V, E) and a number of facts n ≥ 2|V|,
we construct the SAS+ planning task Π = 〈V, A, s0, s∗〉
with the causal graph G as follows. First, we choose the
domain size dv ≥ 2 for each of the multi-valued variables
v ∈ V and assume w.l.o.g. the values to be dom(v) =
{0, . . . , dv − 1}. The variables represent sets of mutually
exclusive facts (mutexes), and each such set corresponds to
one of the two types of mutexes, namely, either exactly one
or at most one of the values is true in all reachable states.
We randomly decide which variables belong to which cat-
egory. For the variables that represent the at-most-one case,
we dedicate the last domain value to represent the case when
none of the other facts are true. Next, w.l.o.g. we assume
s0[v] = 0 for all v ∈ V . Then, we construct the actions,
in layers, while constructing the relaxed planning graph. Fi-
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Figure 2: Mean generation time and 95% confidence intervals for each collection of tasks.

nally, the goal is chosen from the last fact layer of the re-
laxed planning graph, making sure that at least one of the
chosen facts is unique to the last fact layer and that at most
one fact is chosen per variable. In what follows, we describe
how actions are constructed. Starting with the initial state as
the first fact layer F0, we create actions for an action layer
Li by

(I) selecting a subset of facts from the fact layer Fi, en-
suring at most one fact is selected per variable,

(II) partitioning the selected set of facts into prevail con-
dition and non-prevail precondition, and

(III) choosing for all1 the variables of the precondition
facts a different value as its effect.

The constructed action is checked against the graph G,
ensuring that it contributes only edges that exist in G. If not,
the action is discarded. Additionally, if the constructed ac-
tion does not add any new causal edges and does not achieve
new facts, we randomly decide whether to keep it.

The generic approach to action construction described
above can be adapted to enforce particular properties. We
discuss three such cases in detail.

(A) The first case is enforcing the action to achieve at least
one new fact. For that, one can ensure in steps (I) and

1While SAS+ representation does not require to specify the pre-
condition when the effect is specified, in order to ensure maintain-
ing variables as mutexes of facts, we restrict ourselves here to al-
ways specifying the precondition in such cases.

(II) that the precondition includes facts for some vari-
ables v ∈ V that are not fully covered by the fact layer
Fi (that is Fv \ Fi 6= ∅), and in step (III) to choose one
of these facts Fv\Fi. Note that this can be done without
adding any edges to the causal graph, if a single fact is
chosen in step (I).

(B) The second case is enforcing the preconditions to in-
clude atoms from Fi \ Fi−1, enforced in step (I).

(C) The third case is enforcing adding a particular edge
〈v, v′〉 to the causal graph. This can be done by ensur-
ing that 〈v, ϑ〉 and 〈v′, ϑ′〉 are chosen in step (I), and
in step (II) at most one of these facts is chosen for the
prevail condition.

We randomly independently decide whether to enforce the
options (A)-(C) and whether to add edges to the causal
graph. Note that not all combinations are always possible.
In such cases, an action is not constructed in that iteration.
Each layer is constructed until a sufficient number of new
facts Fi+1 \ Fi is added. The construction is stopped when
all facts were achieved and all edges from G are reflected in
the causal graph of the constructed planning task. The lat-
ter is enforced in the last layer. The goal is then randomly
chosen from the last layer according to step (I), ensuring
that at least one of the facts is not achieved before the last
layer, analogously to how a precondition of an action is cho-
sen when enforcing the option (B). Algorithm 1 describes
the construction of a planning task from the given graph G,
where the function CREATEACTION creates a single action,



randomly choosing among the options described above.

Theorem 1 Given G and n, Algorithm 1 terminates in time
polynomial in |G| and n and returns a planning task with
the causal graph G.

Proof: The proof follows from the fact that in line 18 of Al-
gorithm 1, for some of the options for action creation must
eventually hold Ea ⊆ E and Ea \ EA∪A′ 6= ∅. Therefore,
CREATELAYER terminates and returns a layer with m new
facts or, if m = 0, with A′ such that EA∪A′ = E. As there
are only a constant number of options, a new fact is achieved
or a new causal graph edge is covered in time O(1) and
therefore CREATELAYER terminates in time O(m + |E|).
Since at least one new fact is added in each layer, Algorithm
1 terminates in time O(n|E|). Since the while loop in line 7
terminates only whenE\EA = ∅ and actions a are added to
A only if Ea ⊆ E, when the algorithm terminates we have
EA = E, and therefore the causal graph of the returned task
Π is exactly G. �

In order to create a PDDL task, the SAS+ task is then trans-
lated to the STRIPS fragment of PDDL, ignoring the facts that
correspond to the last value of the variables representing the
at-most-one case. PDDL preconditions are taken from SAS+

preconditions, add effects are taken from SAS+ effects, and
delete effects are taken from non-prevail preconditions. Note
that if the tasks are translated from STRIPS back to SAS+,
there is nothing that enforces that the same mutex groups
will be detected, as different planners implement different
translation procedures. Thus, the causal graph structure is
not necessarily preserved by translating to STRIPS and back
to SAS+.

Experimental Evaluation
We start by constructing the benchmark set, as described in
the previous section. Our benchmark set was generated as
follows. For each of the causal graph structures mentioned
above, and a value in [0.1, 0.25, 0.5, 0.75] for edge probabil-
ity (if needed), we create a collection of tasks. This results in
27 collections in our case, with 7 causal graph structures that
do not consider edge probabilities and 5 causal graph struc-
tures that do. For each such collection, we generate 512 in-
stances by uniformly choosing the number of atoms (4 vari-
ants), variables (4 variants), goal variables (4 variants), max-
imum prevail size (2 variants), maximum effect size (2 vari-
ants), and the upper bound on the minimum number of atoms
per layer (2 variants). Thus, our constructed benchmark
set consists of 13824 generated planning tasks. The bench-
mark set is available at https://github.com/IBM/structural-
benchmarks-PDDL. To give a general impression of typical
generation time, Figure 2 shows the mean generation time
and 95% confidence intervals for each collection. It is worth
mentioning that while in most collections task generation is
typically quick, in some collections, such as complete and
random, it can be quite time consuming. We note that these
causal structures are somewhat less interesting. Nonetheless,
we have decided to include these collections in our gener-
ated set.

Collection Comp PDBs Scorp LM-cut SYMBA∗

bipartite 105 73 182 180 59
bd-bipartite 96 78 137 107 72
chain 0.1 358 321 395 372 282
chain 0.5 349 327 389 359 288
chain 0.25 409 345 444 428 309
chain 0.75 320 304 391 333 261
complete 123 117 153 129 110
dag 0.1 113 94 179 166 77
dag 0.5 65 45 108 121 25
dag 0.25 66 50 134 108 15
dag 0.75 73 62 113 110 32
d-chain 382 341 416 391 296
fork 350 321 421 395 308
inverted fork 436 393 356 386 357
polytree 0.1 325 253 386 343 224
polytree 0.5 323 269 373 338 254
polytree 0.25 367 268 405 379 245
polytree 0.75 365 276 421 408 260
random 0.1 54 38 167 95 32
random 0.5 57 52 117 88 34
random 0.25 97 89 153 129 83
random 0.75 56 39 81 50 35
star 0.1 226 130 272 224 125
star 0.5 257 144 333 272 139
star 0.25 219 114 290 248 115
star 0.75 172 132 263 199 134
tree 364 277 433 402 245
Sum (13824) 6127 4952 7512 6760 4416

Table 1: Per-collection coverage of state-of-the-art planning
systems: Complementary (Comp), planning-PDBs (PDBs),
Scorpion (Sc), as well as A∗ with LM-cut heuristic and
SYMBA∗ planner. Bolded results indicate the best coverage
in a collection and overall.

Our evaluation of the constructed set aims at understand-
ing whether the set is sufficiently challenging for modern
cost-optimal planners. Therefore, we have selected the top-
performing cost-optimal planners from the most recent In-
ternational Planning Competition (IPC) 2018: Complemen-
tary (Franco et al. 2018), Planning-PDBs (Moraru et al.
2018), and Scorpion (Seipp 2018). We excluded the portfo-
lio planner Delfi (Katz et al. 2018), and included instead its
top performing components: the symbolic planner SYMBA∗

(Torralba et al. 2014) and explicit heuristic search with LM-
cut heuristic (Helmert and Domshlak 2009),2 both with h2

mutex detection (Alcázar and Torralba 2015). The planners

2While the components of Delfi also use symmetry based prun-
ing (Domshlak, Katz, and Shleyfman 2012) and partial order reduc-
tion (Wehrle and Helmert 2014), here we do not use these pruning
techniques.



Collection Comp PDBs Scorp LM-cut SYMBA∗

bd-bipartite 66 66 66 66 61
chain 0.1 6 6 6 6 5
chain 0.5 8 8 8 8 7
chain 0.25 19 19 19 19 20
chain 0.75 30 30 30 30 21
complete 108 108 108 108 104
fork 25 25 25 25 27
inverted fork 1 1 1 1 8
random 0.5 40 40 40 40 33
random 0.25 50 50 50 50 46
star 0.5 14 14 14 14 16
star 0.25 0 0 0 0 1
star 0.75 14 14 16 14 14
Sum other 154 154 154 154 154
Sum all 535 535 537 535 517

Table 2: Per-collection number of instances that proved to
be unsolvable.

are run on the entire constructed benchmark set, with the
timeout of 30 minutes and memory limit of 7.6GB allocated
to each run. The experiments were performed on Intel(R)
Xeon(R) CPU E7-8837 @2.67GHz machines.

Table 1 shows per-collection aggregated coverage com-
parison of the selected planners. Each task in a collection
contributes a value of 1 to the coverage if it was either solved
by the planner or the planner was able to prove the task to
be unsolvable. Otherwise, the task contributes 0. Separately,
Table 2 depicts the number of tasks in each collection that
were proved to be unsolvable. Note that the tested planning
systems perform very similarly in terms of unsolvability de-
tection. In contrast, when looking at tasks solved, the tested
planning systems perform very differently.

Going beyond aggregated coverage results, and focusing
on two planners with the lowest total time on average – LM-
cut and SYMBA∗, Figure 3 shows the per-task total time
for these planners. For the tasks solved by both approaches
within the time bound, there is no clear advantage to any of
the planners.Looking at the timeouts, there are 2963 cases
where SYMBA∗ times outs but LM-cut does not, and 103
cases where LM-cut times outs but SYMBA∗ does not.

We observe that for each of the tested planners, in each
of the collections, there still remains a significant number of
tasks not solved. Further, while some causal graph structures
correspond to seemingly easier planning tasks, at least for
the tested planners, there is a significant number of tasks
in each collection that were not solved by any of the tested
planners: from 54 in chain 0.25 to 427 in random 0.75, with
the average of 219 tasks in a collection, 5917 tasks overall.
Clearly, the generated tasks are challenging for the state of
the art in cost-optimal classical planning.
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Figure 3: Total time comparison ofA∗ with LM-cut heuristic
to SYMBA∗ planner.

Related Work
The idea of generating domain models as well as specific
planning tasks has been explored in planning community,
with a major focus on learning domain models from traces,
for classical planning (e.g., (Yang, Wu, and Jiang 2007;
Zhuo et al. 2010; Tian, Zhuo, and Kambhampati 2016)) and
HTN planning (e.g., (Hogg, Muñoz-Avila, and Kuter 2008;
Hogg, Kuter, and Muñoz-Avila 2010; Hogg, Muñoz-Avila,
and Kuter 2016)). The work on learning domain models of-
ten assumes an existence of a complete model where the plan
traces or plan examples are generated from. Some aspects
of these domain models are then learned or reconstructed
from successful plan traces. Some examples include learn-
ing action preconditions (Zhuo et al. 2009), or refine incom-
plete action descriptions (Zhuo, Nguyen, and Kambhampati
2013).

Probably a more related to our current work is the work on
generating problem instances for CSP/SAT problems (e.g.,
(Achlioptas et al. 2000; Xu et al. 2005)). There are also sev-
eral online tools/services such as the “Tough SAT Project”
or “SATLIB” that generate CNF formulas encoding “dif-
ficult” problems (e.g., (Yuen and Bebel 2017; Hoos and
Stützle 2000)). Producing hard satisfiable instances has sev-
eral advantages one of which is to advance the research field
in SAT/CSP by providing a suite of problems that can be
used for evaluation of solvers. Further, these instances can
be polynomial-time reduced to STRIPS in theory, but also
in practice (Porco, Machado, and Bonet 2011). The authors
provide a tool to translate multiple NP-complete computa-
tional problem instances (including SAT, CLIQUE, Direct-
edHamiltonianPath, etc.) into an NP-Complete fragment of
STRIPS that they call STRIPS-1. In that fragment, the actions



are either delete-free or can be applied at most once. While
the fragment is somewhat limited, the approach can be used
for creating additional benchmark sets for planning. Unfor-
tunately, the work has not yet received the attention it de-
serves, and the instances or the tool are not currently widely
used. It is worth mentioning that our suggested approach to
generating random PDDL instances is a somewhat different
task than generating random CNF formula, and then trans-
lating to STRIPS. Our focus is on being able to control the
causal structure of the generated problem, which is not pos-
sible with the aforementioned methods.

Another highly related work is the work on random plan-
ning tasks generation for the purpose of analyzing the phase
transition in classical planning (Bylander 1996; Rintanen
2004). The authors propose a variety of models for sampling
the space of STRIPS planning problem instances, exploring
the possibility of phase transition at some constant ratio of
the number of actions to the number of state variables. These
models correspond to a constrained set of problem instances,
restricting the sizes of preconditions and effects, and reduc-
ing the chances of generating trivially unsolvable tasks. Un-
fortunately, the proposed methods for generating tasks do
not yield tasks of a desired structure and it is not clear what
additional restrictions can be imposed in order to obtain such
tasks.

Summary

In this work, we have presented an approach that allows to
generate planning tasks with the causal graph of a specific
given structure. Further, we cast these tasks into a STRIPS
fragment of PDDL, allowing using as an input to any PDDL
planner that supports the STRIPS fragment, as most ma-
ture planning systems do. We have generated a benchmark
set of 27 task collections characterized by the causal graph
structure, with 512 tasks in each collection, summing up to
13824 ground PDDL tasks in total. Our experimental evalua-
tion clearly shows that the generated benchmark set is chal-
lenging for both the heuristic search based and the symbolic
search based planners. In the hope to facilitate further re-
search and enable better comparison of planning tools, we
make our tool publicly available to the planning community.

For future work, we intend to explore additional structural
restrictions of planning tasks, such as, e.g., k-dependence
(Katz and Domshlak 2007), as well as possibly additional
causal graph structures. Further, we would like to investigate
the phase transition in planning according to structural char-
acterization of planning tasks. We conjecture that phase tran-
sition might appear at different number of actions to state
variables ratios for different causal graph structures. As an
additional future work, we would like to explore the usage of
generating planning tasks for the purpose of learning a plan-
ner selection strategy. Finally, we would like to explore the
possibility of generating lifted PDDL tasks of a meaningful
causal structure. For that, we would need to understand how
to characterize the ground concept of causal graph structure
on a lifted level.
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