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Abstract— Representation learning methods that dis-
cover task and/or data-specific characteristics are very
popular for a variety of applications. However, their ap-
plication to 3D medical images is restricted by the com-
putational cost and their inherent subtle differences in
intensities and appearance. In this paper, a novel repre-
sentation learning scheme for extracting representations
capable of distinguishing high-uptake regions from 3D 18F-
Fluorodeoxyglucose positron emission tomography (FDG-
PET) images is proposed. In particular, we propose a novel
position-enhanced learning scheme effectively incorporat-
ing semantic and position-based features through our pro-
posed Position Encoding Block (PEB) to produce highly
informative representations. Such representations incorpo-
rate both semantic and position-aware features from high-
dimensional medical data, leading to general representa-
tions with better performance on clinical tasks. To evaluate
our method, we conducted experiments on the challenging
task of classifying high-uptake regions as either non-tumor
or tumor lesions in Metastatic Melanoma (MM). MM is a
type of cancer characterized by its rapid spread to various
body sites, which leads to low survival rates. Extensive
experiments on an in-house and a public dataset of whole-
body FDG-PET images indicated an increase of 10.50%
in sensitivity and 4.89% in F1-score against the baseline
representation learning scheme while also outperforming
state-of-the-art methods for classifying MM regions of inter-
est. The source code will be available at https://github.
com/theoVag/Representation-Learning-Sem-Pos.

Index Terms— FDG-PET images classification,
Metastatic Melanoma, Position Encoding Block,
Representation Learning, Semantic sampling, VICReg

I. INTRODUCTION

Metastatic Melanoma (MM) is a form of cancer that can
spread throughout the body by giving metastases at many
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different sites and organs and is associated with very low
survival rates [1]. Its metastatic nature and the highly vari-
able tumor structure make MM very difficult to treat. Im-
munotherapy with novel immune checkpoint inhibitors and
targeted immunotherapies have recently shown significant
improvement in managing this disease and extending the
patient’s survival [2]. In the era of personalized medicine,
tight therapy monitoring is required in order to early predict a
patient’s response to treatment and tailor it accordingly. Two
image modalities that are often used in cancer monitoring
are the Positron Emission Tomography (PET) in conjunction
with Computed Tomography (CT). More specifically, 18F-
Fluorodeoxyglucose (FDG) PET images indicate high uptake
of FDG in tumor regions as compared to surrounding tissue
[3]. However, there is also a physiologically enhanced FDG
accumulation in organs like the brain and liver as well as in the
urinary tract due to the exception of the tracer. Clinicians can
extract quantitative biomarkers from the FDG images, such as
Standardized Uptake Values (SUV), Metabolic Active Tumor
Volume (MATV) or Total Lesion Glycolysis (TLG) [4].

However, the extraction of such biomarkers requires the
localization of tumor lesions from the FDG-PET images.
Manual segmentation of these images constitutes a labor-
intensive and time-consuming procedure that can significantly
stall the clinical workflow due to the large number and the
heterogeneity of tumor lesions of MM. In order to accelerate
the procedure many semi-automatic segmentation techniques,
such as fixed or adaptive thresholds, have been initially utilized
in the clinical environment [4]. With the recent advances in Ar-
tificial Intelligence (AI) many Deep Learning (DL) techniques
have been proposed for the segmentation and classification
of Regions of Interest (ROIs) in medical images and lesions’
localization [5]. Such DL-based segmentation techniques for
the delineation of tumor lesions from whole-body FDG-PET
images using variants of UNet [6], GANs [7] and Transformers
[8] have been proposed. Classification tasks concerning the
treatment evaluation [9] or the characterization of ROIs [10]
or patients suffering from cancer [11] have been evaluated with
promising results. However, training deep neural networks
necessitates large annotated databases of images that cannot
be obtained efficiently. In addition, many of the previous
segmentation techniques resulted in a large number of false
positive regions, which limited their clinical utilization. In
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this paper, we propose a data-efficient representation learning
based framework capable of accurately separating true tumor
lesions from non-tumor related uptake.

Recently, representation learning through Self-Supervised
Learning (SSL) has become very popular due to its ability to
learn useful representations without the need for large, manu-
ally annotated datasets. Our method employs VICReg, an SSL
framework, but incorporates supervision to guide the learning
process. Therefore, we present SSL methods because they are
closely related to our approach and provide essential context,
as understanding their strengths and challenges, especially in
the medical imaging domain, is crucial to our motivation.
Commonly in SSL techniques the model is initially pretrained
on unlabeled data through the comparison of augmented views
of the images to learn invariant and discriminative semantical
representations by minimizing their distance [12]. One of the
most common methodologies in SSL is contrastive learning,
which aims to learn representations of the data where similar
samples are close while dissimilar samples are far apart [13].
Other approaches, such as the VICReg [14], aim to apply
regularizations into the loss function to avoid collapse and
improve learning by promoting representations’ variance and
decorrelating the feature dimensions.

Although SSL has been applied to medical imaging, its
application to medical images has to alleviate limitations
opposed by their nature. High inter-class similarity and low-
intensity variation in medical images hinder the extraction of
discriminative features. Strong augmentations risk distorting
diagnostic information, while weak augmentations may lead to
trivial solutions. The problem is compounded by imbalanced
datasets with fewer disease-related images and potential bias
introduced during training, which limits model generalizabil-
ity. To this end, defining good pretext tasks for the training
is crucial for the quality of representations. Furthermore,
enriching the representations with spatial information beyond
the intensity details can significantly enhance the extracted
features. The requirement of representation learning for large
batch sizes can oppose significant computational burden in
using the whole 3D medical images without downsampling
[12], [15], [16]. Our method enhances semantic features
through trainable layers, yielding robust representations with
minimal computational overhead. This efficient representation
learning scheme employs class-related sampling and integrates
both semantic and positional features to generate useful rep-
resentations from FDG-PET ROIs.

In this paper, we propose a novel position-enhanced rep-
resentation learning scheme to produce representations com-
bining both semantic and 3D position information capable
of classifying ROIs of high uptake from FDG-PET images
from MM patients as tumor lesions or not. We introduce
the Position Encoding Block (PEB), which calculates and
integrates a position vector that includes the centroid location,
the bounding box size and the rotation vector, into a VICReg
[14] based framework that supports the learning of robust
representations that preserve their variety. These positional
details, integrated via the PEB, are critical for diagnosis as they
capture anatomical variations and typical tumor morphology,
thereby enhancing the quality of the extracted representations.

This methodology paves the way for the further utilization
of meaningful representations in enhancing DL-based classi-
fication accuracy in 3D medical images, such as whole-body
FDG-PET images of cancer patients. Our main contributions
are summarized as follows:

• The development of a novel representation learning
method to enhance the detection of MM tumor regions by
learning embeddings, which can encode tumors’ charac-
teristics from the 3D FDG-PET in the clinical workflow.

• A new 3D position-aware Position Encoding Block (PEB)
inside the representation learning method to introduce
spatial information to the feature vector. The combination
of semantic and position information in the representa-
tion vector provides enhanced representations where the
semantic features are influenced, amplified or suppressed,
according to the studied region’s anatomical position, size
and rotation.

Our method was extensively evaluated on both an in-house
and a public dataset of high-uptake regions from FDG-PET
images from MM patients. The proposed model achieved
superior results against state-of-the-art methods previously
used for MM classification. Comparison with multiple and
diverse schemes supports the additive value of the PEB
in the majority of them with an increase of AUC ranging
from approximately 1% to 5%. The proposed representation
learning method, when combined with a two-layer Multilayer
Perceptron (MLP) classifier trained on the same dataset as the
supervised backbone network without position information,
achieved an improvement of 4.04% in the F1-score, 2.83%
in Balanced Accuracy (B.Acc.) and 3.2% in Area Under
The Curve (AUC) compared to it. Additionally, considering
settings with limited annotated regions, when using only the
15% of the training set, the proposed method outperformed
the supervised ResNet18 version without position for 5.70%
in F1-score, 6.47% in B.Acc. and 5.18% in AUC.

II. RELATED WORKS

Tumor detection and quantification is crucial for monitoring
and assessing treatments of MM. Earlier studies for segment-
ing tumor lesions from whole-body FDG-PET images included
threshold-based techniques and their combination with manual
corrections [4]. FDG-PET imaging quality for MM patients
was evaluated using SUV values and comparisons with liver
and background values in [17]. In [6], the authors presented
a public dataset including FDG-PET images of MM patients
among other types and evaluated nnUNet for the segmentation
task also aiming to reduce the number of false positive regions.
In our previous work [18], a clustering-based segmentation
method was combined with radiomics features and neural
networks to identify tumor lesions from the FDG-PET/CT
images. In this work, we propose a representation learning
method to produce representations that can accurately distin-
guish tumors from non-tumor regions by suppressing many
false positive regions and automatically without opposing
restrictions related to the region’s size.

AI-based classification methods have been widely pro-
posed for identifying and categorizing tumor-related regions
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or patients from FDG-PET/CT images. Convolutional Neural
Networks (CNNs) and, in particular, ResNet architectures
[19] were used to classify FDG-PET/CT patient images into
malignant, benign, and equivocal examinations, or regions
concerning lung cancer and lymphoma in [20] and [21]
respectively. In this direction, FDG-PET images solely were
utilized in [22], to classify whole-body scans as normal or
pathological using a lightweight fully convolutional solution.
However, identifying all ROIs inside the scans instead of
simply finding normal and abnormal scans can be crucial, as it
aids diagnosis by enabling the calculation of metrics, e.g. Total
Metabolic Tumor Volume (TMTV), which depends on precise
segmentation. A two-step procedure for the segmentation of
high uptake regions and their classification as prostate cancer-
related was combined with a 3D DenseNet model for PSMA
PET/CT images in [23]. In [10], a CNN combined with
two dense layers was applied to classify suspicious regions
concerning lung cancer and lymphoma. Previous works for
FDG-PET/CT images limited their effectiveness by employing
either 2D UNet or 2D transformer [24], which loses the 3D
spatial information, or by focusing on segmenting ROIs in only
specific anatomical regions such as lungs. Furthermore, using
only supervised learning requires large annotated databases
that are difficult to acquire in medical tasks.

Nevertheless, there has been limited research on AI-driven
classification to support the MM clinical workflow. Although
during the autoPET challenge, segmentation of FDG-PET
images for different cancers has been studied, limited works
focused on the MM case while also the presented results,
in terms of DSC overlap, false positive regions and their
generalizability, need further improvement before methods’
application to the clinical workflow [6]. A pilot study for
predicting treatment response and mortality of MM patients
used PET/CT and PET/MRI imaging and combined manually
calculated features with CNNs [25]. In [26] hyperprogression
of MM lesions was predicted by extracting radiomics fea-
tures from the manually segmented ROIs in FDG-PET/CT.
However, manual segmentation in whole-body 3D images is
a labor-intensive and time-consuming procedure that poses
challenges for its integration into clinical workflows. The
paper [27] proposes a threshold-based segmentation to extract
high-uptake regions and a CNN-based method to identify
tumorous patches from FDG-PET/CT images for MM. Based
on this work, they also presented a method using thresholding
and finetuning via nnUNet to segment MM patients’ images
and calculate features for treatment outcome prediction [9]. In
general threshold-based techniques are not robust against the
tumor heterogeneity of the whole body FDG-PET images as
regions often exhibit large intensity variations and lack well-
defined boundaries. Furthermore, they extracted small patches
resulting in a loss of the spatial context including the global
positioning in the body and the sizing details. Our method can
efficiently learn to produce useful representations that combine
the regions’ semantic and spatial information to effectively
reduce false positives and classify them as tumor lesions or
not.

Supervised DL techniques require large databases of an-
notated images, the construction of which is not cost-

effective due to the labor-intensive annotation procedure.
Self-supervision has recently been studied to alleviate this
requirement by learning useful representations without man-
ual annotations. In [28], a self-supervised method including
translation-aware features and adversarial and construction
loss for supporting the detection of pathologies in Optical
Coherence Tomography and X-ray images was proposed to
classify 2D patient images. For lung tumor classification from
CT, SSL-based schemes utilized a UNet to restore samples’
images from their augmentations [29] or a contrastive scheme
for samples from different anatomical regions [30]. However,
focusing only on a specific region, such as the lung, and
validation of only one dataset from one source restricts the
application to a group of regions with limited variability.
On the contrary, our work exploits each region’s location,
sizing, and rotation to produce better representations of the
regions inside the whole-body images of two datasets. The
authors in [31] utilized a mask autoencoder for pretraining and
self-supervision training aiming to extract anatomy-dependent
noise for low-dose PET/CT images. The study [32] presents a
UNet-based architecture with Atrous Spatial Pyramid Pooling
(ASPP) for multi-scale feature extraction in lymphoma tumor
segmentation from PET/CT images. These weak supervision
schemes might lead to suboptimal performance for infrequent
cases in the dataset while training with high computational
demands limits their scalability to whole-body 3D images. To
address this, our approach uses small boxes to reduce memory
usage, allowing larger batch sizes. Building on this procedure,
we sampled pairs of tumors and non-tumors through a tailored
learning scheme to alleviate the imbalance in the dataset and
learn semantic features.

Recently, research works aiming at combining anatomical or
positional features in the context of medical images have been
presented. For classification, [33] utilizes positional embed-
dings of horizontal and vertical strips within the transformer
architecture, but in a fully supervised scheme. Hierarchi-
cal contrastive learning to compare the representations from
coarse anatomical structures to finer ones in [34], focused on
splitting the 2D X-ray images into non-overlapping patches
which can limit its utilization in 3D images and classification
of small regions inside them. The [35] introduces positional
details by assigning a label to 2D slices related to the slice
number in a volume in a contrastive learning scheme restrict-
ing the backbone model to 2D feature extraction and consider-
ing only the relative position of the 2D slice. Similar to this,
[36] proposed 2D contrastive learning for CT classification,
utilizing weak supervision through kernel loss and positional
data by tracking the slice’s location. Moreover, the [37] aimed
at learning a position vector as a pretext with a boundary-based
reconstruction to capture spatial information for segmentation
tasks. Anatomical information has also been studied for SSL
through sampling patches from the same or different anatom-
ical regions, based on an atlas and a registration method, to
contrast them [30]. Although extracting neighboring patches
with similar anatomical information as a pretext task was
applied to low-dose CT [38], the method focused on denoising
and the position was used in terms of neighboring patches.
Learning the spatial relationship between imaging planes was
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applied in [39] for segmenting and classifying larger or specific
structures such as the heart and the knee. One recent work
incorporated positional priors for SSL pretraining for 3D
CT organ segmentation through establishing a pretext task,
that predicts class assignments of random cropped regions
based on their position according to the building blocks [40].
The [41] attempts to use as a pretext task a regression task
to recognize the part of the body for organ segmentation.
Most of the previous works suggest introducing position as
a pretext task but predicting spatial details alone cannot be
linked directly to producing features concurrently aware of
anatomy/position and class-specific information. In our work,
an enhanced position vector is embedded into a semantically
aware representation with learnable modules to regulate its
participation in the final representation and adapt the features’
importance according to the anatomical position inside the
whole body image.

III. MATERIALS AND METHODS

A. Overview
The main architecture, as depicted in Fig. 1, consists of

the variant of the VICReg [14] scheme enhanced by the
PEB, which combines the semantic features extracted from
the CNN backbone and the spatial features. The augmentation
and sampling module initially creates pairs of regions with the
same class, (1) for a tumor pair or (2) for a non-tumor pair,
to be inserted in the representation learning framework. The
pair of regions passes through the backbone and the region’s
position is calculated and integrated with the output of the
backbone by the PEB. The enhanced vectors are inserted into
the projection head, and finally, its output is used to compute
the VICReg-based loss function.

B. Dataset
Private dataset: The in-house dataset consists of FDG-

PET/CT whole-body images from 44 patients diagnosed with
Metastatic Melanoma Stage IV [42]. The study was approved
by the Ethical Committee of the University of Heidelberg
(S-107/2012) and the Federal Agency for Radiation Protec-
tion (Bundesamt für Strahlenschutz, Z 5–22463/2–2012-016).
Whole-body PET/CT images were acquired on a dedicated
PET/CT system (Biograph mCT, S128, Siemens Co., Er-
langen, Germany). Each PET image underwent attenuation
correction, and the reconstruction of images was performed
iteratively using a matrix of (400 × 400) pixels and a voxel
size of 2.04 × 2.04 × 4 mm3. Experts produced the ground
truth segmentation masks, delineating the tumoral regions
semi-automatically by applying manual corrections to the
masks extracted by the clustering-based segmentation [18]. In
total, 3161 regions (389 tumors and 2772 non-tumors) were
indicated in 44 scans. For the experiments on the private
dataset, due to its small size, 50% of the dataset was used
as a test, and the remaining 50% for training supplemented by
the AutoPET training patients.

AutoPET grand challenge: This dataset originates from the
public AutoPET grand challenge dataset [6] which includes
1025 whole-body FDG-PET/CT images from patients with

NSCLC, melanoma, and malignant lymphoma, as well as
negative controls. From this dataset, we selected only the first
study from the patients diagnosed with malignant melanoma
to meet the study’s particular goals. This resulted in a dataset
of 177 FDG-PET/CT images. PET was obtained by a Siemens
Biograph mCT clinical scanner using a 3D-ordered subset
expectation maximization algorithm (matrix size 400 × 400
and voxel size of 2.04 × 2.04 × 3 mm3). In total, 15890
regions (2023 tumors and 13867 non-tumors) were indicated
in 177 scans. High uptake regions’ extraction from the datasets
was done based on the unsupervised clustering of our previous
research work [18]. Large organs, the Brain, Heart, Kidneys,
and Bladder, were manually excluded from the dataset to focus
on ROIs, which were more challenging to classify. The au-
toPET dataset was divided into train/validation and test splits
with 80% and 20% of the patients, respectively, by considering
the ratio of tumors/non-tumor regions to be approximately
constant across the splits. All FDG-PET images were initially
transformed to Standardized Uptake Values (SUV) normalized
by body weight (SUVbw) with the following equation [43]:

SUV(g/mL) =
Tissue Radioactivity (Bq/mL)

[ Injected Dose (Bq)/ Weight (g)]
(1)

where tissue activity was decay-corrected to account for the
time elapsed from injection to acquisition and weight refers
to the body weight.

C. Proposed representation learning scheme

1) Augmentation and Sampling module: Most commonly,
representation learning and SSL methods require pairs of
images or augmented views of the same image to learn useful
representations. However, in the context of medical images,
transformations alone are not adequate to learn representations
useful for classification [15]. Furthermore, in medical images,
such as FDG-PET images, intensity variations are more subtle
and object boundaries are less prominent. This fact limits the
capabilities of the SSL to extract useful information in contrast
to the natural images that include discriminative regions and
characteristics. We created pairs of regions of the same class to
drive the training scheme and the network to learn to produce
class-related representations through semantically aware com-
parisons as the pretext task. The use of these pairs enhances the
initially unsupervised representation learning by guiding the
model to focus on data similarities instead of explicit labels.
In addition, this sampling can be easily adapted to many SSL
techniques as demonstrated in TABLE I and it works well in
combination with the proposed PEB.

The manually annotated class labels from each dataset were
used to select the pairs of regions of the same class. The class-
specific sampling strategy was able to alleviate the highly
imbalanced dataset by inserting pairs of tumors and pairs
of non-tumor regions in each batch. With this method, the
initially relatively small number of tumor lesions led to a
substantially larger pool of pairs of regions from which we
can sample to train the network. In this regard, the framework
aims to maximize the agreement of different regions with
the same semantic meaning and learn a space where tumors
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Fig. 1: The left part presents the proposed representation learning scheme with the sampling module and the PEB, while the
right one shows the PEB architecture, which fuses the position information with the original embedding.

are separated from non-tumor regions. In the final setting,
we apply random sampling of pairs of regions with a higher
probability for tumors and include pairs with augmented views
with a 30% rate. This approach introduces easier examples
alongside the most challenging pairs of regions from the same
class. Five main augmentations were applied to the ROIs to
create an augmented version of the initial image: random affine
transformations, flip and rotate, gaussian noise and histogram
shifts with a probability of 80% each.

2) Main representation learning architecture: The main rep-
resentation learning architecture utilized to produce represen-
tations from the ROIs is based on VICReg, first introduced
in [14]. This architecture is suitable for extracting semantic
information from ROIs in medical imaging and for our specific
task of distinguishing high-uptake regions due to its main
properties. Firstly, the invariance term drives the representa-
tions of images of the same meaning closer by minimizing
their distance. Secondly, its variance regularization property
can mitigate the collapsing to trivial representations problem
of SSL techniques, which is a crucial challenge in medical
images where the differences in intensity and appearance are
subtle. Thirdly, the covariance term of the VICReg frame-
work decorrelates the features inside the embedding leading
to representations that preserve the useful information and
avoid redundant information in their features. Furthermore, the
VICReg architecture is favorable against other representation
learning techniques because it does not require large batch
sizes or a memory bank that could oppose excessive compu-
tational burden.

As it is depicted in Fig. 1, the main architecture is composed
of two branches, including an encoder, which is the backbone
that extracts the semantic features, the PEB that combines the
semantic and spatial information in one enhanced vector, the
projection head and the VICReg loss function. Initially, the two
ROIs, which include a pair of an image and its augmentation

or a pair of ROIs, I and I ′, belonging to the same class
as described earlier are inserted into the same backbone, a
ResNet18 in our case, to extract the semantic information.
Concurrently, each ROI’s position vector with respect to the
initial 3D scan is calculated, and the two vectors are inserted in
the PEB. The two representations, semantic and location, are
combined into one, resulting in one representation per image,
y = fθ(I) and y′ = fθ(I

′). Next, the enhanced vectors are
inserted into the projection head in order to be projected and
mapped to the z embeddings, z = hϕ(y) and z′ = hϕ(y

′)
that will be used for the calculations in the loss function.
The projection head, which consists of two MLPs, expands
the dimension to four times the dimension of the features
(features’ dimension is 512).

3) Loss function: The VICReg-based loss function, as de-
fined in [14], aims to minimize the distance between em-
beddings of the same images while simultaneously ensuring
that the variance of each dimension in the vector across the
batch remains above a threshold. Concurrently, it decorrelates
the features to preserve the information in the produced
representations. The main loss function is calculated by the
following equations.

Invariance loss: The invariance loss is calculated by the
mean of the squared distance between the pairs of the outputs
of the two branches of the architecture. This term aims to bring
the representations of the views of each pair of regions closer
to each other. Given an image xi in a batch and yi its pair (P )
drawn from the same class, their representations, produced by
one of the two branches. are denoted Zx and Zy , respectively.

s (Zx, Zy) =
1

n

∑
i

dist2(zxi
, zyi

), dist = ∥zxi
− zyi

∥2
(2)

where each branch includes n vectors of size d, zxi and zyi

denotes representations of two regions of the same class.
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Variance loss: For the variance term v, the standard devia-
tion for each one of the d dimensions of the batch of vectors
is used in a hinge function as calculated below:

v(Z) =
1

d

d∑
j=1

max (0, γ − σ (z[, j], ϵ)) (3)

where σ denotes the standard deviation regularized with ϵ
(a small value to avoid unstable calculations), z[, j] denotes
the values from the j dimension of the Z which equals to a
vector with the jth variable of all representations in the batch
Z. Finally, the target standard deviation value along each j
dimension of the batch is γ = 1.

Covariance loss: The covariance matrix of Z is defined as:

C(Z) =
1

n− 1

n∑
i=1

(zi − z̄) (zi − z̄)
T (4)

where z̄ is the mean of zi. The covariance loss term c(z)
equals the sum of the squared off-diagonal elements of C(z)
divided by the number of dimensions d. By driving the off-
diagonal elements of the covariance matrix toward zero, it
decorrelates the features and reduces redundant information.

c(Z) =
1

d

∑
i ̸=j

[C(Z)]2i,j (5)

Weighted average: The loss of each batch is calculated as the
weighted average of the three terms (predefined λ = 25, µ =
25, ν = 1).

ℓ (Zx, Zy) = λs (Zx, Zy) + µ [v(Zx) + v (Zy)] +

+ ν [c(Zx) + c (Zy)]
(6)

The Loss function is calculated for the entire dataset D.

Loss =
∑
i∈D

∑
x,y∼P

ℓ (zxi
, zyi

) (7)

D. Position vector

This section presents the position vector that enhances the
semantic features from the backbone. In medical images, the
characterization of ROIs is not only affected by the intensity
fluctuations but also by the region’s location inside the body,
the region’s size, and the rotation according to the axes.
Positional details can adapt the features according to the spatial
context as ROIs have different shape or texture characteristics
in the different anatomical regions. We calculated a position
vector based on these three observations: (i) The position of a
region inside the body in FDG-PET plays an important role in
its characterization. Some regions contain tumor lesions with
less frequency than others. Different positions will enable dif-
ferent features inside the embedding with more participation.
(ii) The size of the bounding box of a region can also provide
useful information for the classification. For example, regions
that extend to a very small distance in one axis may refer
to artifacts. (iii) The three angles that the region creates with
respect to the x, y, and z axes in the three-dimensional space
complement the position of the centroid and provide a more
detailed position in the space.

Considering the above, we calculate and insert into our
network a position vector for each region with the following
structure:

[cx, cy, cz, sx, sy, sz, θx, θy, θz] (8)

For each ROI, the centroid (c) is computed from its coordi-
nates inside the image, and the size (s) is determined from
the bounding box dimensions using straightforward measure-
ments. The calculation of the rotation vector with the axes
angles is presented below:

R =

 R00 R01 R02

R10 R11 R12

R20 R21 R22

 (9)

θx = arctan 2 (R21, R22) (10)

θy = arctan 2

(
−R20,

√
R2

21 +R2
22

)
(11)

θz = arctan 2 (R10, R00) (12)

where R is the rotation matrix, and θx, θy , θz are the angles
with the axes.

E. Enhanced representations with the Position Encoding
Block (PEB)

On the right side of Fig 1, the PEB is presented. This
module takes as inputs the semantic features vector from the
backbone and the position vector calculated for each ROI
and outputs the final position enhanced vector, which is a
representation effectively combining the semantic and position
information. Initially, the position vector is multiplied by
trainable weights of the same size, which, during training,
regulate the weight/importance of each value of the position
vector to the formulation of the combined vector. Layer
normalization is applied to both the semantic and location
feature vectors to normalize activations across channels in each
layer and enhance training stability. A linear layer to linearly
project the position vector to a space with a dimension equal to
the dimension of the semantic feature vector is applied after
the multiplication. The two feature vectors are concatenated
(symbol C in Fig. 1) across the channel dimension, resulting
in a vector of 2 · 512 = 1024 size. In the first part of the
PEB, the semantic and position vectors are concatenated to
create a space where the position and semantic information
lie in separate dimensions. In this setup, the semantic and
the position information are encoded in different batches of
dimensions without mixing them up. Then the linear layer
mixes these dimensions and projects them to a space with
half dimensions. This is done for two reasons, first to facilitate
implementation while maintaining a consistent vector size of
512 and secondly the weights of this layer effectively combine
the information by assigning each feature from the position
and semantic vector different importance in creating the final
vector.

We evaluated the strength of our representations on the
task of tumor classification. In Fig. 2, the overall downstream
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Fig. 2: Overview of the downstream task for ROI classifica-
tion. Every input region passes through our pre-trained model,
and a simple multi-layer perception in order to be classified
into a tumor or nontumor class.

task is presented. The ROI is inserted into the backbone to
extract the initial semantic features. Concurrently, the position
vector, including the ROI’s centroid, size, and rotation details,
is computed. Both vectors pass through PEB to output the
final representation. An MLP classifier is then trained for
ROI classification. Please note that any other classifier or task
could also be used to evaluate our pretrained model. During
inference, labels are not required, and the position vector for
any region or patch can be computed at minimal cost.

F. Implementation details

The proposed framework is implemented using the PyTorch
library [44] on an NVIDIA GeForce RTX 3060 GPU with
12GB memory. For the representation learning, the encoders
in the two branches of our model are shared using the same
ResNet18 [19] architecture and the same weights parameters.
The projection head that maps the representations to the
embeddings where the loss function is calculated, includes
two fully connected layers with 4×512 = 2048 neurons while
batch normalization and ReLU activation function are included
only in the 1st hidden layer [14]. For training, a batch size
of 128 was used for a maximum of 2000 epochs, with early
stopping applied after 600 epochs of no improvement. The
network was optimized using LARS [45] optimizer with an
initial learning rate of 0.5, weight decay 1e-6 and momentum
0.9 to enable the model’s training with this batch size. A cosine
warmup scheduler with 60 warmup epochs was also used to
enhance training. For the implementation of the representation
learning schemes, Lightly library [46] was adapted.

For the classification scheme, the classification head consists
of 2 linear layers (with size 128 and 2) followed by ReLU
and Softmax activation functions, respectively. We employed
a Focal loss function with α = 0.55 and γ = 2.0 to enhance
the training of difficult samples. The model was trained with an
AdamW optimizer [47], learning rate 1e-4 and early stopping
with patience of 200 epochs. The former data augmentations
were applied to alleviate the highly imbalanced dataset. The
images were standardized to have a mean value equal to zero
and a standard deviation equal to one to facilitate training.
During the downstream classification task for each region, one
bounding box centered on the region’s centroid and with a size
of 16 in each dimension was created, leading to a final box
size of 16x16x16. Then, these boxes are fed into the network

to learn the representations and classify them as tumor lesions
or not.

For the external validation in the private dataset, the slice
thickness is resampled to 3mm, and the images were cropped
at the approximate height of thighs to match the imaging
of the autoPET dataset. We split the autoPET dataset in
train/validation/test to keep the unseen test set for evaluation.
The pretraining of the representation learning method is done
on the training/validation set of the autoPET which includes a
larger number of patients. Afterwards, the classification MLP
was trained on the public training set or the private training
set respectively, and evaluated on the test sets.

IV. EXPERIMENTS AND RESULTS

A. Evaluation scheme and metrics
Two validation schemes were employed to assess the clas-

sification performance of the proposed method, tailored to
each dataset’s inherent properties. The public dataset included
more patients and regions, while the private dataset with fewer
patients was used to evaluate the model’s generalizability. For
the classification evaluation, F1-score, sensitivity, precision,
specificity, B.Acc. (simple accuracy was not discriminative
due to the imbalanced dataset) and AUC will be provided.
Statistical significance was validated by applying the Wilcoxon
signed-rank test (with α = 0.05) for the pair of models that
achieved the best metrics in each experiment (the best and
second best models are denoted with bold font and underline
respectively, while ∗ symbol in tables denotes p − value <
0.05).

B. Results
1) Comparison of state-of-the-art image-based representa-

tion techniques with and without position vector: Some of
the most representative image-based representation techniques
will be compared in Table I. The following methods were
used to present a comprehensive comparison of representation
methods as they include a contrastive learning scheme (Sim-
CLR [48] ), clustering-based methods (SWAV [49], SMOG
[50]), methods based on memory banks (MOCO [51], BYOL
[52]), the well established DINO method [53], a supervised
variation of SSL [54] and the baseline VICReg [14] scheme.

Multiple metrics are presented to provide insights for the
validation in the highly imbalanced dataset of regions while
the semantic sampling strategy, training parameters and the
backbone, ResNet18, were kept constant. Each pair of the table
shows the original scheme with the sampling module, and the
same scheme with the addition of the proposed positional mod-
ule. From these comparisons, we can conclude that position
enhancement improved the classification accuracy in terms of
F1-score and most other metrics. The largest improvements
were observed in SWAV, MOCO, and VICReg, where F1-score
increased by 2–5%, while smaller gains of 1–1.5% were noted
in SIMCLR, Supervised, and DINO with the addition of posi-
tion. Finally, SMOG and BYOL metrics indicated a very small
increase between baseline and position-enhanced variation. In
Table I green arrow indicates an increase in the metric with the
addition of PEB while the red a decrease. All models showed
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statistically significant differences between their original and
position-enhanced versions, except for MOCO. The three
conclusive metrics, F1-score, B.Acc. and AUC increased with
PEB in all models except for a slight reduction in BYOL’s
B.Acc. We have to note that in this setting the VICReg+pos
outperformed the supervised contrastive learning in all metrics
except specificity and precision which will be discussed in
the following paragraph. Taking into consideration the best
classification results among all the representation learning
schemes, VICReg with the PEB achieved the best results with
an F1-score of 75.34% and also a high sensitivity (sens) of
80.58% together with a precision (prec) of 70.74%, B.Acc. of
87.75% and AUC 96.29%.

TABLE I: Comparison of representation learning methods with
and without the PEB.

Method Sens
(%)

Spec
(%)

Prec
(%)

F1
(%)

B.Acc
(%)

AUC
(%)

Supervised [54] 72.70 95.63 71.76 72.23 84.17 93.89
Supervised+pos 80.58↑ 93.95↓ 67.03↓ 73.18↑ 87.27↑ 96.06↑∗
SIMCLR [48] 76.90 95.11 70.60 73.62 86.01 93.74
SIMCLR+pos 82.41↑ 94.15↓ 68.26↓ 74.67↑ 88.28↑ 95.37↑∗
SWAV [49] 76.12 94.15 66.51 70.99 85.13 93.79
SWAV+pos 76.38↑ 95.27↑ 71.15↑ 73.67↑ 85.83↑ 95.75↑∗
SMOG [50] 72.97 95.43 70.92 71.93 84.20 94.27
SMOG+pos 78.48↑ 94.19↓ 67.34↓ 72.48↑ 86.34↑ 95.40↑∗
DINO [53] 74.28 95.11 69.88 72.01 84.70 93.96
DINO+pos 80.05↑ 94.23↓ 67.93↓ 73.49↑ 87.14↑ 95.47↑∗
BYOL [52] 71.13 94.55 66.58 68.78 82.84 93.08
BYOL+pos 69.29↓ 95.23↑ 68.93↑ 69.11↑ 82.26↓ 94.58↑∗
MOCO [51] 69.82 95.51 70.37 70.09 82.67 93.83
MOCO+pos 76.12↑ 95.03↓ 70.05↓ 72.96↑ 85.57↑ 94.57↑
VICReg [14] 70.08 95.59 70.82 70.45 82.84 91.64
VICReg+pos 80.58↑ 94.91↓ 70.74↓ 75.34↑ 87.75↑ 96.29↑∗
pos: proposed scheme with Position Encoding Block.
∗: Statistical significant differences

In Table II, supervised contrastive learning and its PEB-
enhanced variant are compared with the proposed scheme
using a decision threshold selected from a grid search over
values from 0.3 to 0.9 in increments of 0.05, ensuring com-
parable precision and specificity with the supervised method.
This approach enables a more accurate assessment of the re-
maining metrics. The proposed VICReg scheme outperformed
supervised contrastive learning with our PEB by 0.83% and
standard supervised contrastive learning by a larger margin
of 3.60% in the F1-score. The proposed scheme achieved the
highest values across all metrics, demonstrating its superiority.

TABLE II: Comparison between supervised contrastive and the
proposed scheme.

Method Th Sens
(%)

Spec
(%)

Prec
(%)

F1
(%)

B.Acc
(%)

Supervised [54] 0.50 72.70 95.63 71.76 72.23 84.17
Supervised+pos 0.65 74.02 96.44 76.01 75.00 85.23
VICReg+pos 0.60 75.33∗ 96.44 76.33∗ 75.83∗ 85.88∗
pos: proposed scheme with Position Encoding Block. Th: Threshold
∗: Statistical significant differences

In Table III the proposed method was compared with
Volume Contrast (VoCo) which is a recent contrastive learning
method that utilizes position information in pretraining for 3D
medical images. In these results, we can observe that even

though VoCo aims to learn representations by predicting the
sub-volumes’ position, in our dataset its performance in 4 out
of 6 metrics, e.g. F1-score 66.29%, was lower than our pro-
posed. The supervised version of VoCo achieved a 2% increase
in the F1-score but it could not reach the proposed 75.34%. In
VoCo, supervision was a segmentation-based approach, a fact
that could limit its contribution to the classification task. For
comparison with the weakly supervised positional 2D (WSP-
contr) method [36], we employed the ResNet18 backbone
from the study, adjusting only the temperature parameter after
experimentation to better suit our dataset. Additionally, the
2D classification results were transformed in the same 3D
region set using an overlap threshold of 0.5 to declare an
identified region. The observed decrease in performance can be
attributed to the limitations of the 2D slice position that cannot
model all 3D spatial information. Furthermore, 2D slice-based
modeling risks overlooking small tumor regions or erroneously
classifying large non-tumorous areas as tumors.

TABLE III: Comparison on related representation learning
techniques with positional encoding.

Method Sens
(%)

Spec
(%)

Prec
(%)

F1
(%)

B.Acc
(%)

AUC
(%)

VoCo [40] 61.52 96.21 71.43 66.10 78.86 88.09
VoCo supervised 59.95 97.54∗ 78.97∗ 68.15 78.74 86.31
WSP-Contr [36] 71.35 92.26 57.48 63.67 81.81 87.99
Proposed 80.58∗ 94.91 70.74 75.34∗ 87.75∗ 96.29
∗: Statistical significant differences

2) Quantitative and Qualitative comparison with state-of-the-
art on the downstream task: In this section, we present ex-
periments comparing classification performance on both the
autoPET dataset and the private dataset. For the classification
of regions from PET/CT images for malignant melanoma
a CNN variation (CNN Var) with two convolutional blocks
followed by two linear layers was used in [27]. Further-
more, a related variant (CNN Var2) designed for general
FDG-PET scans [22] was utilized with the number of filters
(32,64,128,265). A CNN based on the AlexNet architecture
has also previously been utilized for PET/CT classification in
[10]. For our experiments, we utilized fewer layers because our
regions were of size 16, which means that we can downsample
fewer times, leading to an architecture with 5 convolutional
layers where the first two and the last one include Maxpool
layers. A DenseNet variant [23] previously used for classifying
uptake in PSMA PET/CT images was also compared in this
study. The preprocessing steps were the same for all the
compared models to provide a fair comparison.

In Table IV, the previously mentioned techniques for PET
images, a supervised ResNet18 model and the proposed
method were compared in classifying regions on the autoPET
dataset. The CNN Var [27], CNN Var2 [22] and the AlexNet
[55] variations achieved very similar results with an F1-score
of 72.43%, 73.28% and 73.06% in the classification task. The
DenseNet Var while achieving relatively high Precision, it
underperformed in the other metrics due to failing to identify
many true tumors. In terms of F1-score, B.Acc., and AUC,
the proposed model outperformed all the others by achieving
75.34%, 87.75%, and 96.29% while also indicating the best
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sensitivity by identifying 80.58% of the true tumor lesions.
The proposed framework was superior against the CNN Vars
and the AlexNet Var, showing a 2.06%-2.91% increase in F1-
score, and the supervised ResNet18 classification with approx-
imately a 4% increase. Statistical significance was confirmed
for the best performing models, where the proposed model
achieved higher value in 4 out of 6 metrics.

TABLE IV: Comparison with classification methods in the
autoPET dataset

Method Sens
(%)

Spec
(%)

Prec
(%)

F1
(%)

B.Acc
(%)

AUC
(%)

CNN Var [27] 75.85 94.87 69.30 72.43 85.36 91.38
CNN Var2 [22] 66.93 97.60∗ 80.95∗ 73.28 82.26 93.01
AlexNet Var [55] 77.95 94.59 68.75 73.06 86.27 94.83
DenseNet Var [23] 65.09 96.52 74.03 69.27 80.80 89.94
ResNet18 75.33 94.51 67.69 71.30 84.92 93.09
Proposed 80.58∗ 94.91 70.74 75.34∗ 87.75∗ 96.29∗
∗: Statistical significant differences

In Table V, the same experimental comparisons were im-
plemented for the private dataset in order to provide fur-
ther insights into the proposed model’s generalizability and
the effectiveness of the generated representations on similar
datasets with different acquisition parameters. For the pro-
posed methods, Proposed+Ft and Proposed w/o Ft, the weights
from the training on the autoPET dataset were loaded to test
their applicability to the second dataset and fine-tuning was
applied to the private training set in the 1st case. AlexNet
variation, DenseNet and ResNet18 models achieved similar
lower metrics with an F1-score of 67%, B.Acc. of 79%-80%,
and AUC of 89%-91% approximately. The CNN variation
achieved an approximate F1-score of 69.5%, B.Acc. of 82%,
and AUC of 90.96%, probably due to the less complex model,
which was trained efficiently in the smaller dataset. Better
performance was indicated by the CNN Var2 with an F1-score
of 71.23% and AUC of 93.55%. As an external validation, the
proposed scheme only pre-trained on the autoPET set (referred
to as ”Proposed w/o Ft”) was evaluated on the private test set.
In this regard, both the pre-trained and finetuned proposed
method enhanced the classification performance, outperform-
ing the other methods in most metrics. The proposed method
with finetune indicated similar to the autoPET experiments
metrics with F1-score, B.Acc., and AUC of 75.46%, 86.58%,
and 93.80%, respectively. The proposed pre-trained only on
the autoPET dataset without finetuning also achieved high
evaluation metrics, suggesting that our model generalizes well
with out-of-distribution samples.

Fig. 3 presents an example where it can be observed that
the proposed method identified most tumor lesions while also
suppressing some of the challenging false positive regions that
the other identified as tumors.

3) Interpretation of the learned representations: In this sec-
tion, visualization of the learned representations is conducted
through t-SNE [56] which can visualize the high dimensional
vectors to the 3D/2D space by preserving the structure of the
high dimensions. The representations of the same class should
be close to each other and separated from the representations
of the opposite class. In Fig. 4, the representations of ROIs
from the test set are presented. Regions of class tumors and

TABLE V: Comparison with classification methods in the
private dataset

Method Sens
(%)

Spec
(%)

Prec
(%)

F1
(%)

B.Acc
(%)

AUC
(%)

CNN Var [27] 69.95 94.63 69.19 69.57 82.29 90.96
CNN Var2 [22] 71.04 95.10 71.43 71.23 83.07 93.55
AlexNet Var [55] 62.84 96.05∗ 73.25∗ 67.65 79.44 89.02
DenseNet Var [23] 66.12 95.01 69.54 67.79 80.56 90.34
ResNet18 64.48 95.30 70.24 67.24 79.89 91.34
Proposed + Ft 78.14 95.01 72.96 75.46 86.58 93.80
Proposed w/o Ft 83.61 91.81 63.75 72.34 87.71 94.37
Proposed w/o Ft: only pre-trained on the autoPET. Ft:Finetune
∗: Statistical significant differences

non-tumor regions are presented with red and grey color,
respectively. In the 1st row, the t-SNE representations of both
baseline VICReg and the proposed indicate separation between
the classes, with one or two regions of concentrated tumor
representations, while there is also a region where tumors and
non-tumors are located very close to each other. The last are
the regions that are the most difficult to classify.

(a) VICReg (b) Proposed

Fig. 4: t-SNE representations and distance heatmap for the
VICReg and the proposed scheme. Red and grey color denotes
the tumor and non-tumor regions, respectively.

In the second row, a heatmap with the distances between
each vector pair, sorted by class, is presented. The vectors of
class non-tumor are shown first, and the tumors are shown in
the last. In this figure, regions of the same class inside the
boxes should have a small distance (closer to the blue color)
and regions of the opposite class a large distance (red). The
baseline VICReg presents a relatively smaller distance inside
the tumor class on the right bottom square, but there is not
a clear separation from the regions of the class non-tumor.
However, in the position-enhanced proposed scheme, we can
observe spatially closer regions being formed and on the right
bottom, there is a visually observable block of regions with a
lower distance between them and a higher distance from the
other representations.
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(a) GT (b) Proposed (c) VICReg w/o
PEB

(d) AlexNet var
[55]

(e) DenseNet var
[55]

(f) CNN var [27] (g) CNN var2
[22]

(h) ResNet18

Fig. 3: Classification comparison example. Blue and red regions indicate non-tumor and tumor regions, respectively. The
proposed scheme indicates overall better sensitivity while also suppressing false positive identification.

C. Ablation study
1) Ablation study on backbone selection and positional com-

ponents: The choice of the backbone can significantly affect
the results because it is responsible for the extraction of the
semantically discriminative features from the initial ROIs. We
experimented with some of the most common backbones for
image classification, ResNet variants (ResNet10, ResNet18,
ResNet50) [19], Squeeze-and-Excitation Networks (SENet)
[57], EfficientNet B0H2 [58] and Vision Transformer (ViT)
[59]. In Table VI, the classification results in the autoPET
dataset are presented for each one of the tested backbones.
We can observe that ResNet18 achieved the best F1-score
(75.34%), which can summarize the performance due to our
imbalanced dataset and, concurrently, large sensitivity, which
is important in clinical applications. The ResNet18, which is
a simpler structure than ResNet50 and ViT, achieved the best
results in our case. This is likely because we feed the network
3D ROIs with dimensions of 16 voxels, which exhibit less
complex appearances, allowing ResNet18 to efficiently extract
information and avoid overfitting.

Table VII summarizes the metrics from the ablation study
on the position components. The experiments included the
VICReg baseline without position, the inclusion of solely the
region’s centroid, the combination of centroid and size and the
proposed position vector. We can observe that the insertion
of the centroid improved the results except for the precision,
while the addition of size produced slight improvements. Fi-
nally, the complete position vector indicated the best values in
four out of six metrics with statistical significance confirmed,

TABLE VI: Comparison of the backbone networks.

Method Sens
(%)

Spec
(%)

Prec
(%)

F1
(%)

B.Acc
(%)

AUC
(%)

ResNet10 74.28 95.59 72.01 73.13 84.94 96.06
ResNet18 80.58 94.91 70.74 75.34∗ 87.75∗ 96.29∗
ResNet50 75.07 95.96∗ 73.90∗ 74.48 85.51 94.49
SENet 73.49 95.31 70.53 71.98 84.40 94.33
EfficientNet 77.95 95.03 70.55 74.06 86.49 95.56
ViT 80.84∗ 92.51 62.22 70.32 86.68 93.91
∗: Statistical significant differences

while it showed similar values in the rest.

TABLE VII: Ablation study on the position vector’s compo-
nents.

Method Sens
(%)

Spec
(%)

Prec
(%)

F1
(%)

B.Acc
(%)

AUC
(%)

VICReg 70.08 95.59∗ 70.82∗ 70.45 82.84 91.64
Cent 79.79 94.01 67.56 73.16 86.90 94.71
Cent+Size 80.05 94.26 68.54 73.85 87.16 95.42
Cent+Size+Rot 80.58∗ 94.91 70.74 75.34∗ 87.75∗ 96.29∗
∗: Statistical significant differences

2) Impact of the loss weights on the training: In Table VIII
different values have been tested for the weights in the loss
function. These values regulate the weight of the invariance,
variance and covariance term of the loss function in the
training procedure. The experimental values were selected in
relevance with the initial VICReg [14]. In the 1st and 2nd
rows, the requirement for both variance and covariance terms
is supported. We can also observe that equal weights in the
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former two terms achieved better results. The best results were
achieved for the values of λ = µ = 25, ν = 1 where the
model’s performance was superior in all metrics.

TABLE VIII: Ablation study on the loss weights λ, µ, ν.

λ µ ν Sens
(%)

Spec
(%)

Prec
(%)

F1
(%)

B.Acc
(%)

AUC
(%)

25 0 1 68.24 92.79 59.09 63.34 80.52 84.84
25 25 0 76.64 91.83 58.87 66.59 84.24 93.29
10 10 1 76.12 93.35 63.60 69.30 84.73 94.65
50 50 1 80.58 93.63 65.88 72.49 87.10 95.74
25 10 1 78.48 93.91 66.30 71.88 86.20 94.94
10 25 1 78.22 92.63 61.83 69.06 85.42 94.48
25 25 1 80.58∗ 94.91∗ 70.74∗ 75.34∗ 87.75∗ 96.29∗
∗: Statistical significant differences

3) Evaluating the impact of the PEB’s location and the sam-
pling module: In Table IX an ablation study concerning the us-
age of the position vector in the framework is presented. In the
first row, the position vector is introduced only in the classifi-
cation stage while the pretraining stage is performed without it.
Although adding the PEB enhances the classification accuracy,
the results indicate that the VICReg representation learning
with the PEB leads to better training and better predictive
features. The second row shows that employing the PEB
solely during representation learning but removing it during
classification training, results in lower performance. In the
third row, a fully supervised training of the architecture with
the position vector is presented. The training performance was
inferior compared to the implementation of semantic sampling
with the PEB, due to the poor training of the combined
ResNet18 with the PEB in a fully supervised manner. Training
the model in two steps, where the representation extraction
is learned from comparing class-related pairs including their
positional details and then adding the small MLP module on
top of it for the classification task was superior.

TABLE IX: Ablation study on the PEB block location.

Method Sens
(%)

Spec
(%)

Prec
(%)

F1
(%)

B.Acc
(%)

AUC
(%)

PEB only-on-clf1 77.43 94.27 67.35 72.04 85.85 94.72
PEB only-on-rep2 73.23 94.75 68.05 70.54 83.99 93.33
PEB supervised 76.90 93.03 62.74 69.10 84.97 94.30
Proposed 80.58∗ 94.91∗ 70.74∗ 75.34∗ 87.75∗ 96.29∗
∗: Statistical significant differences
1: only-on-clf: PEB only in the classification stage
2: only-on-rep: PEB only in the representation learning

In Table X an ablation study for the sampling module
and the PEB is provided. When utilizing either the sampling
module (row 2) or the PEB (row 3) individually, the model’s
performance improves compared to the baseline VICReg (row
1), achieving F1-scores of 70.45% and 71.73%, respectively,
versus the baseline F1 of 66.51%. A comparison of AUC
values using DeLong’s test between VICReg with and without
sampling did not show statistically significant differences (p
= 0.1509). Finally, the combination of both modules (row 4)
demonstrates its superiority by achieving the highest values in
most metrics including the most indicative ones: F1, B.Acc.
and AUC. Our statistical tests indicate that our proposed PEB
module has a higher impact on the performance than the

sampling module however, their combination reports the best
performance over four different metrics and the second-best
in the other two.

TABLE X: Ablation on the semantic and positional modules.

Method S Pos Sens
(%)

Spec
(%)

Prec
(%)

F1
(%)

B.Acc
(%)

AUC
(%)

VICReg – – 74.02 92.59 60.39 66.51 83.30 92.89
VICReg ✓ – 70.08 95.59∗ 70.82∗ 70.45 82.84 91.64
VICReg – ✓ 76.90 94.27 67.20 71.73 85.59 95.48
Proposed ✓ ✓ 80.58 94.91 70.74 75.34 87.75 96.29
∗: Statistical significant differences
S: Sampling module

4) Evaluating multimodal PET/CT approaches for Repre-
sentation Learning: Table XI presents an investigation into
whether PET, CT, or their combination in multimodal ap-
proaches yields stronger representations. The early fusion,
where PET and CT were inserted as two channels in the
model, slightly increased sensitivity and B.Acc. but resulted in
many false positives, lowering precision, probably due to CT
where tumors in some areas are not easily distinguishable. The
late fusion approach, where PET and CT passed through two
backbones and their output was concatenated with the PEB
to produce the final vector, performed even worse. The single
PET modality was superior in the three conclusive metrics
while having less computational burden.

TABLE XI: Ablation study on the modalities PET and CT.

Method Sens
(%)

Spec
(%)

Prec
(%)

F1
(%)

B.Acc
(%)

AUC
(%)

PET 80.58 94.91 70.74∗ 75.34∗ 87.75 96.29∗
PET+CT early fusion 82.94∗ 93.59 66.39 73.75 88.27∗ 95.71
PET+CT late fusion 74.54 95.11∗ 69.95 72.17 84.83 95.59
∗: Statistical significant differences

5) Influence of the training set size on model performance:
In Table XII, the performance of the proposed method was
compared against the supervised ResNet18 for different train-
ing set sizes. Each row shows the metrics achieved for 15%,
30%, 50% and 100% of the training set. It can be observed
that the proposed method trained with 50% of the initial data
achieved very high metrics, F1-score of 72.84%, which is
less than a 3% difference from the full dataset and AUC
values of approximately 95% while the supervised ResNet18
dropped at F1-score of 68% and AUC of 91.59%. In the 30%
of the dataset, the proposed model outperformed the fully
supervised in 2 out of 3 metrics while it also preserved these
values for the 15% of the dataset. Statistical significance was
confirmed for the paired comparisons of each model for each
data percentage. These results support the model’s efficiency
in settings with limited training samples where it can learn
better representations.

V. DISCUSSION

In this work, we developed a representation learning method
incorporating semantic and position information to produce
representations capable of distinguishing true tumor lesions
from non-tumor high-uptake regions from FDG-PET images
focused on MM patients. A class-specific sampling strategy is
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TABLE XII: Comparison results for different training set sizes.

Supervised ResNet18 Proposed
Method F1(%) B.Acc(%) AUC(%) F1(%) B.Acc(%) AUC(%)
15% 63.50 81.79 89.92 69.20 88.26 95.10∗
30% 68.42 81.74 92.49 68.25 88.18 95.17∗
50% 68.03 80.73 91.59 72.84 86.03 95.51∗
100% 71.30 84.92 93.09 75.34 87.75 96.29∗
∗: Statistical significant differences

developed to compare ROIs with the same semantic meaning
and extract discriminative features. The semantic representa-
tion vector extracted by the backbone was then effectively
fused through the PEB with the position information of each
region inside the patient’s whole-body image. A VICReg-
based scheme is used to pretrain the ResNet18 backbone and
the PEB by utilizing both augmented views and pairs of ROIs
from the same class. This approach generates rich representa-
tions by preventing collapse to trivial solutions during training
and by decorrelating feature dimensions.

MM can give multiple metastases across the whole body,
making the manual segmentation of the tumor lesions a time-
consuming task, leading to crucial delays in the clinical work-
flow. In this regard, DL-based segmentation methods for the
automatic delineation of tumors have recently been proposed.
A major concern with these methods is the high number
of false positives, where regions with high uptake are not
tumor-related and may lead to assessment errors. The proposed
method was evaluated on a dataset containing high-uptake
regions from both tumor lesions and non-tumor-related uptake.
The reported metrics indicate high accuracy in distinguishing
these regions, outperforming existing classification systems
used for FDG-PET images. Most previous methods relied on
large annotated datasets for supervision, but obtaining such
data is time-consuming and impractical for clinical workflows.
In this regard, the proposed method can effectively be trained
by employing the semantic aware sampling strategy which can
generate pairs of ROIs with the same diagnostic meaning and
the enhanced VICReg based training scheme. Experimental
results (Table XII) have shown that the model can distinguish
the ROIs with an F1-score of 69.20% and Balanced Accu-
racy of 88.26% even with only 15% of the training dataset
while outperforming the fully supervised ResNet18 and the
compared classification methods when using 100% of the
dataset. The experimental results on two datasets (Tables IV
and V) support the model’s effectiveness and its generalization
capabilities with significant implications in accelerating and
enhancing the clinical workflow.

Although representation learning schemes, such as SSL,
have been extensively studied to alleviate the requirement for
large annotated databases for natural images, they are less
examined in the medical domain due to many challenges. One
limitation is the difficulty of selecting pairs for contrastive
learning in medical images where the datasets are imbalanced
or include a small number of patients. To this end, heavy
augmentations have been applied to support the pretext task
of comparing ROIs, but in medical images, they can alter the
anatomical and semantic characteristics. Selecting a suitable
pretext task for pretraining is challenging, and the effectiveness

of SSL depends on its alignment with the target application.
Furthermore, ROIs with different clinical information can
present very subtle differences in the grayscale intensities.
These challenges have been mitigated in this work firstly by
introducing semantic aware sampling where pairs of regions
with the same diagnostic class are used to enable the net-
work to learn class-aware discriminative representations. This
sampling strategy also alleviated the negative impact of the
imbalanced dataset by generating more tumor lesion pairs than
would be possible using only the limited number of tumorous
ROIs. Finally, considering the small variations in the intensity
and appearance of the ROIs from PET images led us to utilize
the VICReg scheme, which enables the representation learning
scheme to avoid collapse to trivial solutions and to decorrelate
features leading to strong representations. The impact of the
proposed class aware sampling module was supported by the
experiment in Table X where it substantially increased the F1-
score to 70.45% and precision to 70.82% against the usage of
the augmentations. Moreover, its combination with the PEB
further enhanced overall performance.

Representation learning schemes usually rely on utilizing
large batch sizes, which cannot be applied to large 3D whole-
body medical images due to restrictions in computational
resources and GPU memory. The proposed method utilizes
smaller high-uptake ROIs, enabling efficient network training
with large batch sizes. Using only ROIs without additional
information leads to loss of spatial information which is
important for the classification task. A comparative analysis
of the baseline model (without PEB) and the proposed model
with PEB demonstrates its minimal computational overhead.
The GPU memory usage increased by approximately 0.9%,
training time per epoch rose by about 0.54%, inference time
per patient remained unchanged at 0.09 seconds, and the
number of parameters grew from 38,409,024 to 38,938,953
(an increase of 1.38%).

In medical images, apart from the intensity variations, the
location inside the patient’s body, their size, and their general
position are crucial details for diagnosis. Some regions present
in general high-uptake but it doesn’t correspond to tumors.
Positional details are critical for diagnosis, as they account for
variability in the shape and texture of ROIs across anatomical
regions. For example, physiological uptake in tissues of the
liver, and lymphoid areas complicates the identification of
malignant lesions, especially in high-metabolism regions [60].
In this direction and considering our previous work [18], which
indicated that for regions with different sizes, different features
could lead to better diagnostic accuracy, we inserted the posi-
tion vector. The position vector consists of three components:
the region’s centroid, size, and rotation, which together provide
detailed spatial context. This design is validated by the ablation
study in Table VII, where the PEB increased the F1-score by
4.89% and AUC by 4.65%, as well as by the PEB location
ablation results in Table IX. In this regard, the proposed PEB’s
design and implementation can combine the semantic and
position vectors through learnable parameters and projections
to produce a representation vector where different semantic
features are affected by the position vector. The combination
of semantic information with the position information achieved
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superior classification accuracy in most of the representation
learning methods, compared in Table I, supporting the additive
knowledge of the PEB.

Although the proposed framework presented results indicat-
ing its superiority, there are some limitations to be addressed.
First, the input to the neural network was selected to be of
size (16,16,16) to incorporate adequate information and reduce
noise for both large and smaller ROIs. The region’s size is
held constant because this study focused on the ROI sampling
strategy and the PEB. In addition to that, even though the
proposed framework works well with limited annotated data,
it requires the availability of at least a small portion of them
for the semantic aware sampling. This was an assumption
to enhance the representation with discriminative features
for the task of classification and alleviate the restrictions
opposed by the medical images. Thirdly, in order to study
the position vector’s adaptability to a second dataset, we
conducted experiments where the backbone was pretrained
in the public dataset and used for the classification of the
second dataset. The origin point of the images should be
approximately in the same region, and the spacing should
be similar for both datasets. We mitigated this constraint by
automatically cropping and resampling the ROIs of the private
dataset, which led to very promising results. A future direction
could be to further adapt the position vector conditioned on
the input images by automatically locating reference points,
such as liver center or learnable points. Finally, the represen-
tations of suspicious regions from our proposed method could
be combined to produce representations of the patients that
will describe their current medical condition or stage. These
patient representations may then assist in automatic treatment
assessment and monitoring of disease progression between
follow-up scans, ultimately promoting personalized treatment.

VI. CONCLUSION

Representation learning is commonly utilized for its ability
to extract task-specific features; yet, its application in 3D
medical imaging is constrained by high computational costs
and subtle differences in image appearance. Detecting tumor
lesions in 3D FDG-PET images of MM patients requires either
manual delineation by experts or leveraging large annotated
databases to train deep neural networks with many limitations
such as the resulting false positive regions. The proposed
framework can mitigate these requirements by efficiently
handling fewer annotated images through a representation
learning scheme based on VICReg. This framework combines
the effective region sampling based on class-related semantic
details with the PEB to generate rich representations that
integrate semantic and positional information. This integration
is essential for accurately classifying high-uptake regions in
FDG-PET images as tumor lesions or non-tumor regions.
Extensive evaluation on both a public and a private dataset
supports the proposed methods’ applicability and high accu-
racy.
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