
Multi-task Representation Learning for Pure
Exploration in Bilinear Bandits

Anonymous Author(s)
Affiliation
Address
email

Abstract

We study multi-task representation learning for the problem of pure exploration1

in bilinear bandits. In bilinear bandits, an action takes the form of a pair of arms2

from two different entity types and the reward is a bilinear function of the known3

feature vectors of the arms. In the multi-task bilinear bandit problem, we aim4

to find optimal actions for multiple tasks that share a common low-dimensional5

linear representation. The objective is to leverage this characteristic to expedite the6

process of identifying the best pair of arms for all tasks. We propose the algorithm7

GOBLIN that uses an experimental design approach to optimize sample allocations8

for learning the global representation as well as minimize the number of samples9

needed to identify the optimal pair of arms in individual tasks. To the best of10

our knowledge, this is the first study to give sample complexity analysis for pure11

exploration in bilinear bandits with shared representation. Our results demonstrate12

that by learning the shared representation across tasks, we achieve significantly13

improved sample complexity compared to the traditional approach of solving tasks14

independently.15

1 Introduction16

Bilinear bandits (Jun et al., 2019; Lu et al., 2021; Kang et al., 2022) are an important class of17

sequential decision-making problems. In bilinear bandits (as opposed to the standard linear bandit18

setting) we are given a pair of arms xt ∈ Rd1 and zt ∈ Rd2 at every round t and the interaction19

of this pair of arms with a low-rank hidden parameter, Θ∗ ∈ Rd1×d2 generates the noisy feedback20

(reward) rt = x⊤
t Θ∗zt + ηt. The ηt is a random 1-subGaussian noise.21

A lot of real-world applications exhibit the above bilinear feedback structure, particularly applications22

that involve selecting pairs of items and evaluating their compatibility. For example, in a drug23

discovery application, scientists may want to determine whether a particular (drug, protein) pair24

interacts in the desired way (Luo et al., 2017). Likewise, an online dating service might match a pair25

of people and gather feedback about their compatibility (Shen et al., 2023). A clothing website’s26

recommendation system may suggest a pair of items (top, bottom) for a customer based on their27

likelihood of matching (Reyes et al., 2021). In all of these scenarios, the two items are considered as28

a single unit, and the system must utilize available feature vectors (xt, zt) to learn which features of29

the pairs are most indicative of positive feedback in order to make effective recommendations. All30

the previous works in this setting (Jun et al., 2019; Lu et al., 2021; Kang et al., 2022) exclusively31

focused on maximizing the number of pairs with desired interactions discovered over time (regret32

minimization). However, in many real-world applications where obtaining a sample is expensive33

and time-consuming, e.g., clinical trials (Zhao et al., 2009; Zhang et al., 2012), it is often desirable34

to identify the optimal option using as few samples as possible, i.e., we face the pure exploration35

scenario rather than regret minimization.36

Moreover, in various decision-making scenarios, we may encounter multiple interrelated tasks such as37

treatment planning for different diseases (Bragman et al., 2018) and content optimization for multiple38

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

websites (Agarwal et al., 2009). Often, there exists a shared representation among these tasks, such as39

the features of drugs or the representations of website items. Therefore, we can leverage this shared40

representation to accelerate learning. This area of research is called representation learning and has41

recently generated a lot of attention in machine learning (Bengio et al., 2013; Li et al., 2014; Maurer42

et al., 2016; Du et al., 2020; Tripuraneni et al., 2021). There are many applications of this multi-task43

representation learning in real-world settings. For instance, in clinical treatment planning, we seek44

to determine the optimal treatments for multiple diseases, and there may exist a low-dimensional45

representation common to multiple diseases. To avoid the time-consuming process of conducting46

clinical trials for individual tasks and collecting samples, we utilize the shared representation and47

decrease the number of required samples.48

The above multi-task representation learning naturally shows up in bilinear bandit setting as follows:49

Let there be M tasks indexed as m = 1, 2, . . . ,M with each task having its own hidden parameter50

Θm,∗ ∈ Rd1×d2 . Let each Θm,∗ has a decomposition of Θm,∗ = B1Sm,∗B
⊤
2 , where B1 ∈ Rd1×k151

and B2 ∈ Rd2×k2 are shared across tasks, but Sm,∗ ∈ Rk1×k2 is specific for task m. We assume52

that k1, k2 ≪ d1, d2 and M ≫ d1, d2. Thus, B1 and B2 provide a means of dimensionality53

reduction. Furthermore, we assume that each Sm,∗ has rank r ≪ min{k1, k2}. In the terminology of54

multi-task representation learning B1,B2 are called feature extractors and xm,t, zm,t are called rich55

observations (Yang et al., 2020, 2022; Du et al., 2023). The reward for the task m ∈ {1, 2, . . . ,M}56

at round t is57

rm,t = x⊤
m,tΘm,∗zm,t + ηm,t = x⊤

m,tB1︸ ︷︷ ︸
g⊤
m,t

Sm,∗ B
⊤
2 zm,t︸ ︷︷ ︸
vm,t

+ηm,t = g⊤
m,tSm,∗vm,t + ηm,t. (1)

Observe that similar to the learning procedure in Yang et al. (2020, 2022), at each round t = 1, 2, · · · ,58

for each task m ∈ [M], the learner selects a left and right action xm,t ∈ X and zm,t ∈ Z . After the59

player commits the batch of actions for each task {xm,t, zm,t : m ∈ [M]}, it receives the batch of60

rewards {rm,t : m ∈ [M]}. Also note that in (1) we define the g̃m,t ∈ Rk1 , ṽm,t ∈ Rk2 as the latent61

features, and both g̃m,t, ṽm,t are unknown to the learner and needs to be learned for each task m62

(hence the name multi-task representation learning).63

In this paper, we focus on pure exploration for multi-task representation learning in bilinear bandits64

where the goal is to find the optimal left arm xm,∗ and right arm zm,∗ for each task m with a65

minimum number of samples (fixed confidence setting). First, consider a single-task setting and let66

Θ∗ have low rank r. Let the SVD of the Θ∗ = UDV⊤. Prima-facie, if U and V are known then67

one might want to project all the left and right arms in the r × r subspace of U and V and reduce68

the bilinear bandit problem into a r2 dimension linear bandit setting. Then one can apply one of69

the algorithms from Soare et al. (2014); Fiez et al. (2019); Katz-Samuels et al. (2020) to solve this70

r2 dimensional linear bandit pure exploration problem. Following the analysis of this line of work71

(in linear bandits) one might conjecture that a sample complexity bound of Õ(r2/∆2) is possible72

where ∆ is the minimum reward gap and Õ(·) hides log factors. Similarly, for the multi-task setting73

one might be tempted to use the linear bandit analysis of Du et al. (2023) to convert this problem74

into M concurrent r2 dimensional linear bandit problems with shared representation and achieve a75

sample complexity bound of Õ(Mr2/∆2). However, these matrices (subspaces) are not known and76

so there is a model mismatch as noted in the regret analysis of bilinear bandits (Jun et al., 2019; Lu77

et al., 2021; Kang et al., 2022). Thus it is difficult to apply the r2 dimensional linear bandit sample78

complexity analysis. Following the regret analysis of bilinear bandit setting by Jun et al. (2019);79

Lu et al. (2021); Kang et al. (2022) we know that the effective dimension is actually (d1 + d2)r.80

Similarly for the multi-task representation learning the effective dimension should scale with the81

learned latent features (k1 + k2)r. Hence the natural questions to ask are these:82

1) Can we design a single-task pure exploration bilinear bandit algorithm whose83

sample complexity scales as Õ((d1 + d2)r/∆
2)?84

85

2) Can we design an algorithm for multi-task pure exploration bilinear ban-86

dit problem that can learn the latent features and has sample complexity that scales as87

Õ(M(k1 + k2)r/∆
2)?88

In this paper, we answer both these questions affirmatively. In doing so, we make the following novel89

contributions to the growing literature of multi-task representation learning in online settings:90

1) We formulate the multi-task bilinear representation learning problem. To our knowledge, this is91

the first work that explores pure exploration in a multi-task bilinear representation learning setting.92

2

2) We proposed the algorithm GOBLIN for a single-task pure exploration bilinear bandit setting93

whose sample complexity scales as Õ((d1 + d2)r/∆
2). This improves over RAGE (Fiez et al., 2019)94

whose sample complexity scales as Õ((d1d2)/∆
2).95

3) Our algorithm GOBLIN for multi-task pure exploration bilinear bandit problem learns the latent96

features and has sample complexity that scales as Õ(M(k1 + k2)r/∆
2). This improves over97

DouExpDes (Du et al., 2023) whose samples complexity scales as Õ(M(k1k2)/∆
2).98

Preliminaries: We assume that ∥x∥2 ≤ 1, ∥z∥2 ≤ 1, ∥Θ∗∥F ≤ S0 and the r-th largest99

singular value of Θ∗ ∈ Rd1×d2 is Sr. Let p := d1d2 denote the ambient dimension, and100

k = (d1 + d2)r denote the effective dimension. Let [n] := {1, 2, . . . , n}. Let x∗, z∗ :=101

argmaxx,z x
⊤Θ∗z. For any x, z define the gap ∆(x, z) := x⊤

∗ Θ∗z∗ − x⊤Θ∗z and further-102

more ∆ = minx ̸=x∗,z̸=z∗ ∆(x, z). Similarly, for any arbitrary vector w ∈ W define the gap103

of w ∈ Rp as ∆(w) := (w∗ −w)
⊤
θ∗, for some θ∗ ∈ Rp and furthermore, ∆ = minw ̸=w∗ ∆(w).104

If A ∈ Rd×d
≥0 is a positive semidefinite matrix, and w ∈ Rp is a vector, let ∥w∥2A := w⊤Aw105

denote the induced semi-norm. Given any vector b ∈ R|W| we denote the w-th component as106

bw. Let ∆W :=
{
b ∈ R|W| : bw ≥ 0,

∑
w∈W bw = 1

}
denote the set of probability distributions107

onW . We define Y(W) = {w −w′ : ∀w,w′ ∈ W,w ̸= w′} as the directions obtained from the108

differences between each pair of arms and Y∗(W) = {w∗ −w : ∀w ∈ W\w∗} as the directions109

obtained from the differences between the optimal arm and each suboptimal arm.110

2 Pure Exploration in Bilinear Bandits for Single Task111

In this section, we consider pure exploration in a single-task bilinear bandit setting as a warm-up112

to the main goal of learning representation for multi-task bilinear bandit. To our knowledge, this113

is the first study of pure exploration in bilinear bandits in single-task setting. We first recall the114

single-task bilinear bandit setting as follows: At every round t = 1, 2, . . . the learner observes the115

reward rt = x⊤
t Θ∗zt + ηt where the low rank hidden parameter Θ∗ ∈ Rd1×d2 is unknown to the116

learner, xt ∈ Rd1 , zt ∈ Rd2 are visible to the learner, and ηt is a 1-sub-Gaussian noise. We assume117

that the matrix Θ∗ has a low rank r which is known to the learner and d1, d2 ≫ r. Finally recall that118

the goal is to identify the optimal left and right arms x∗, z∗ with a minimum number of samples.119

We propose a phase-based, two-stage arm elimination algorithm called G-Optimal Design for Bilinear120

Bandits (abbreviated as GOBLIN). GOBLIN proceeds in phases indexed by ℓ = 1, 2, . . . as this is a121

pure-exploration problem and the total number of samples is controlled by the total phases which122

depends on the intrinsic problem complexity. Each phase ℓ of GOBLIN consists of two stages; the123

estimation of Θ∗ stage, which runs for τEℓ rounds, and pure exploration in rotated arms stage that124

runs for τGℓ rounds. We will define τEℓ in Section 2.1, while rotated arms and τGℓ are defined in125

Section 2.2. At the end of every phase, GOBLIN eliminates sub-optimal arms to build the active126

set for the next phase and stops when only the optimal left and right arms are remaining. Now we127

discuss the individual stages that occur at every phase ℓ of GOBLIN.128

2.1 Estimating Subspaces of Θ∗ (Stage 1 of ℓ-th phase)129

In the first stage of phase ℓ, GOBLIN estimates the row and column sub-spaces Θ∗. Then uses these130

estimates of row and column sub-spaces to reduce the bilinear bandit problem in the original ambient131

dimension p := d1d2 to a lower effective dimension k := (d1 + d2)r. To do this, GOBLIN first132

vectorizes the x ∈ Rd1 , z ∈ Rd2 into a new vector w ∈ Rp and then solves the E-optimal design133

in Step 3 of Algorithm 1 (Pukelsheim, 2006; Jun et al., 2019; Du et al., 2023). Let the solution to134

the E-optimal design at the stage 1 of ℓ-th phase be denoted by bE
ℓ . Then GOBLIN samples each135

w for ⌈τEℓ bE
ℓ,w⌉ times, where τEℓ = Õ(

√
d1d2r/Sr) (step 7 of Algorithm 1). We discuss Rounding136

Procedures in Appendix A.4. Let Θ̂ℓ be estimate of Θ∗ in stage 1 of phase ℓ. GOBLIN estimates this137

by solving the following well-defined regularized minimization problem with nuclear norm penalty:138

Θ̂ℓ = argmin
Θ∈Rd1×d2

Lℓ(Θ) + γℓ∥Θ∥nuc, Lℓ(Θ) = ⟨Θ,Θ⟩ − 2
τE
ℓ

τE
ℓ∑

s=1

⟨ψ̃ν(rs ·Q(xsz
⊤
s)),Θ⟩ (2)

where Q(·), ψ̃ν(·), are appropriate functions stated in Definition 1, 3 respectively in Appendix A.3.139

The Q(·) takes input the rank-one matrix xsz
⊤
s which is obtained after reshaping ws. Finally, set the140

regularization parameter γℓ := 4

√
2(4+S2

0)Cd1d2 log(2(d1+d2)/δ)

τE
ℓ

. This is in step 8 of Algorithm 1.141

3

2.2 Optimal Design for Rotated Arms (Stage 2 of ℓ-th phase)142

In stage 2 of phase ℓ, GOBLIN leverages the information about the learned sub-space of Θ∗ to rotate143

the arm set and then run the optimal design on the rotated arm set. Once we recover Θ̂ℓ, one might144

be tempted to run a pure exploration algorithm (Soare et al., 2014; Fiez et al., 2019; Katz-Samuels145

et al., 2020; Zhu et al., 2021) to identify x∗ and z∗. However, then the sample complexity will scale146

with d1d2. In contrast GOBLIN uses the information about the learned sub-space of Θ∗ to reduce the147

problem from ambient dimension d1d2 to effective dimension (d1 + d2)r. This reduction is done as148

follows: Let Θ̂ℓ = ÛℓD̂ℓV̂
⊤
ℓ be the SVD of Θ̂ℓ in the ℓ-th phase. Let Ûℓ

⊥ and V̂ℓ
⊥ be orthonormal149

bases of the complementary subspaces of Ûℓ and V̂ℓ respectively. Let Xℓ and Zℓ be the active set of150

arms in the stage 2 of phase ℓ. Then rotate the arm sets such that new rotated arm sets are as follows:151

X ℓ = {x = [ÛℓÛ
⊥
ℓ]

⊤x | x ∈ Xℓ},Zℓ = {z = [V̂ℓV̂
⊥
ℓ]

⊤z | z ∈ Zℓ}. (3)

Let Ĥℓ = [ÛℓÛ
⊥
ℓ]

⊤Θ̂ℓ[V̂ℓV̂
⊥
ℓ]. Then define vectorized arm set so that the last (d1 − r) · (d2 − r)152

components are from the complementary subspaces as follows:153

Wℓ=
{[
vec

(
x1:rz

⊤
1:r

)
;vec

(
xr+1:d1

z⊤1:r
)
;vec

(
x1:rz

⊤
r+1:d2

)
;vec

(
xr+1:d1

z⊤r+1:d2

)]
∈ Rd1d2 : x ∈ Xℓ, z ∈ Zℓ

}
θ̂ℓ,1:k=[vec(Ĥℓ,1:r,1:r);vec(Ĥℓ,r+1:d1,1:r);vec(Ĥℓ,1:r,r+1:d2

)], θ̂ℓ,k+1:p=vec(Ĥℓ,r+1:d1,r+1:d2
). (4)

which implies ∥θ̂k+1:p∥2 = O
(
d1d2r/τ

E
ℓ

)
by Lemma 3 in Appendix A.1. So the last p − k154

components of θ̂ℓ are very small compared to the first k components. Hence, GOBLIN has now155

reduced the d1d2 dimensional linear bandit to (d1 + d2)r dimensional linear bandit using (3), (4).156

This is shown in step 10 of Algorithm 1.157

Now in stage 2 of phase ℓ, GOBLIN implements G-optimal design (Pukelsheim, 2006; Fiez et al.,158

2019) in the rotated arm set X ℓ,Zℓ defined in (3). To do this, first GOBLIN defines the rotated vector159

w = [x1:d1
; z1:d2

] ∈ Rp that belong to the set Wℓ. Then GOBLIN solves the G-optimal design160

(Pukelsheim, 2006) as follows:161

b̂G
ℓ = argmin

bw

max
w,w′∈Wℓ

∥w −w′∥2(∑w∈W bww w⊤+Λℓ/n)−1 . (5)

This is shown in step 11 of Algorithm 1 and Λℓ is defined in (6). It can be shown that sampling ac-162

cording to b̂G
ℓ leads to the optimal sample complexity. This is discussed in Remark 1 in Appendix A.2.163

The key point to note from (5) is that due to the estimation in the rotated arm space Wℓ we are164

guaranteed that the support of supp(b̂G
ℓ) ≤ Õ(k(k + 1)/2) (Pukelsheim, 2006). On the other hand,165

if the G-optimal design of Fiez et al. (2019); Katz-Samuels et al. (2020) are run in d1d2 dimension166

then the support of b̂G
ℓ will scale with d1d2 which will lead to higher sample complexity. Then167

GOBLIN samples each w ∈ Wℓ for ⌈τGℓ bG
ℓ,w⌉ times, where τGℓ := ⌈ 8(B

ℓ
∗)

2ρG(Y(Wℓ)) log(4ℓ
2|W|/δ)

ϵ2ℓ
⌉.168

Note that the total length of phase ℓ, combining stages 1 and 2 is (τEℓ + τGℓ) rounds. Finally, observe169

that stage 1 design is on the whole arm setW whereas stage 2 design is on the refined active setWℓ.170

Let the observed features in stage 2 of phase ℓ be denoted by Wℓ ∈ RτG
ℓ ×p, and rℓ ∈ RτG

ℓ be the171

observed rewards. Define the diagonal matrix Λℓ as172

Λℓ = diag[λ, . . . , λ︸ ︷︷ ︸
k

, λ⊥ℓ , . . . , λ
⊥
ℓ︸ ︷︷ ︸

p−k

] (6)

where, λ⊥ℓ := τGℓ−1/8k log(1 + τGℓ−1/λ)≫ λ. Deviating from Soare et al. (2014); Fiez et al. (2019)173

GOBLIN constructs a regularized least square estimator at phase ℓ as follows174

θ̂ℓ = argmin
θ∈Rp

1

2
∥Wℓθ − rℓ∥22 +

1

2
∥θ∥2Λℓ

. (7)

This regularized least square estimator in (7) forces the last p− k components of θ̂ℓ to be very small175

compared to the first k components. Then GOBLIN builds the estimate θ̂ℓ from (7) only from the176

observations from this phase (step 13 in Algorithm 1) and eliminates sub-optimal actions in step 14177

in Algorithm 1 using the estimator θ̂ℓ. Finally GOBLIN eliminates sub-optimal arms to build the178

next phase active setWℓ and stops when |Wℓ| = 1. GOBLIN outputs the arm inWℓ and reshapes it179

to get the x̂∗ and ẑ∗. The full pseudocode is presented in Algorithm 1.180
4

Algorithm 1 G-Optimal Design for Bilinear Bandits (GOBLIN)
1: Input: arm set X ,Z , confidence δ, rank r of Θ∗, spectral bound Sr of Θ∗, S, S⊥

ℓ :=
8d1d2r
τE
ℓ S2

r
log
(

d1+d2

δℓ

)
, λ, λ⊥ℓ := τGℓ−1/8(d1+d2)r log(1+

τG
ℓ−1

λ). Let p := d1d2, k := (d1+d2)r.

2: LetW1←W, ℓ← 1, τG0 := log(4ℓ2|X |/δ). Define Λℓ as in (6), Bℓ
∗ := (8

√
λS2 + λ⊥ℓ S

(2),⊥
ℓ).

3: Define a vectorized arm w := [x1:d1
; z1:d2

] and w ∈ W . Let τEℓ :=

√
8d1d2r log(4ℓ2|W|/δℓ)

Sr
. Let

the E-optimal design be bE
ℓ := argminb∈△W

∥∥(∑
w∈W bwww⊤)−1∥∥.

4: while |Wℓ| > 1 do
5: ϵℓ = 2−ℓ, δℓ = δ/ℓ2.
6: (Stage 1:) Explore the Low-Rank Subspace
7: Pull arm w ∈ W exactly

⌈
b̂E
ℓ,wτ

E
ℓ

⌉
times and observe rewards rt, for t = 1, . . . , τEℓ .

8: Compute Θ̂ℓ using (2).
9: (Stage 2:) Reduction to low dimensional linear bandits

10: Let the SVD of Θ̂ℓ = ÛℓD̂ℓV̂
⊤
ℓ . Rotate arms in active setWℓ−1 to buildWℓ following (4).

11: Let b̂G
ℓ := argminbw

maxw,w′∈Wℓ
∥w −w′∥2(∑w∈W bww w⊤+Λℓ/n)−1 .

12: Define ρG(Y(Wℓ)) := minbw maxw,w′∈Wℓ
∥w −w′∥2(∑w∈W bww w⊤+Λℓ/n)−1 .

13: Set τGℓ :=⌈ 8(B
ℓ
∗)

2ρG(Y(Wℓ)) log(4ℓ
2|W|/δℓ)

ϵ2ℓ
⌉. Then pull arm w ∈ W exactly

⌈
b̂G
ℓ,wτ

G
ℓ

⌉
times

and construct the least squares estimator θ̂ℓ using only the observations of this phase where
θ̂ℓ is defined in (7). Note that θ̂ℓ is also rotated following (4).

14: Eliminate arms such thatWℓ+1 ←Wℓ\{w ∈ Wℓ : maxw′∈Wℓ
⟨w′ −w, θ̂ℓ⟩ > 2ϵℓ}

15: ℓ← ℓ+ 1
16: Output the arm inWℓ and reshape to get the x̂∗ and ẑ∗

2.3 Sample Complexity Analysis of single task GOBLIN181

We now analyze the sample complexity of GOBLIN. We first present the sample complexity theorem182

for single task GOBLIN.183

Theorem 1. (informal) With probability at least 1− δ, GOBLIN returns the best arms x∗, z∗, and184

the number of samples used is bounded by Õ
(

(d1+d2)r
∆2 +

√
d1d2r
Sr

)
.185

Discussion 1. In Theorem 1 the first quantity is the number of samples needed to identify the best186

arms x∗, z∗ while the second quantity is the number of samples to learn Θ∗. Note that the magnitude187

of Sr would be free of d1, d2 since Θ∗ contains only r nonzero singular values and ∥Θ∗∥ ≤ 1, and188

hence we assume that Sr = Θ(1/
√
r) (Kang et al., 2022). So the sample complexity of single task189

GOBLIN scales as Õ((d1+d2)r
∆2). However, if one runs RAGE (Fiez et al., 2019) on the arms in X ,Z190

then the sample complexity will scale as Õ(d1d2

∆2).191

Proof (Overview) of Theorem 1: Step 1 (Subspace estimation in high dimension): We denote192

the vectorized arms in high dimension as w ∈ W . We run the E-optimal design to sample the193

arms in W . Note that this E-optimal design satisfies the distribution assumption of Kang et al.194

(2022) which enables us to apply the Lemma 3 in Appendix A.1. This leads to ∥Θ̂ℓ −Θ∗∥2F ≤195
C1d1d2r log(2(d1+d2)/δ)

τE
ℓ

for some C1 > 0. Also, note that in the first stage of the ℓ-th phase by196

setting τEℓ =

√
8d1d2r log(4ℓ2|W|/δℓ)

Sr
and sampling each arm w ∈ W exactly ⌈b̂E

ℓ,wτ
E
ℓ ⌉ times we are197

guaranteed that ∥θ∗
k+1:p∥2 = O(d1d2r/τ

E
ℓ). Summing up over ℓ = 1 to

⌈
log2

(
4∆−1

)⌉
we get that198

the total sample complexity of the first stage is bounded by Õ(
√
d1d2r/Sr).199

Step 2 (Effective dimension for rotated arms): We rotate the arms w ∈ W in high dimension to get200

the rotated arms w ∈ Wℓ in step 10 of Algorithm 1. Then we show that the effective dimension of w201

scales 8k log
(
1 + τGℓ−1/λ

)
when λ⊥ℓ =

τG
ℓ−1

8k log(1+τG
ℓ−1/λ)

in Lemma 7 of Appendix A.5. Note that202

5

this requires a different proof technique than Valko et al. (2014) where the budget n is given apriori203

and effective dimension scales with log(n). This step also diverges from the pure exploration proof204

technique of Fiez et al. (2019); Katz-Samuels et al. (2020) as there is no parameter λ⊥ℓ to control205

during phase ℓ, and the effective dimensions in those papers do not depend on phase length.206

Step 3 (Bounded Support): For any phase ℓ, we can show that 1 ≤ ρG(Y(Wℓ)) ≤ p/γ2Y where,207

γY = max{c > 0 : cY ⊂ conv(W ∪ −W)} is the gauge norm of Y (Rockafellar, 2015). Note208

that this is a worst-case dependence when ρG(Y(Wℓ)) scales with p. Substituting this value of209

ρG(Y(Wℓ)) in the definition of λ⊥ℓ we can show that Λℓ does not depend on w or y = w − w′.210

Then following Theorem 21.1 in Lattimore and Szepesvári (2020) we can show that the G-optimal211

design b̂G
ℓ is equivalent to D-optimal design b̂D

ℓ = argmaxb log

∣∣∣∑w∈Wℓ
bww w⊤+Λℓ

∣∣∣
|Λℓ| . Then using212

Frank-Wolfe algorithm (Jamieson and Jain, 2022) we can show the support b̂G
ℓ or equivalently b̂D

ℓ is213

bounded by at most 8k log(1+τG
ℓ−1/λ)(8k log(1+τG

ℓ−1/λ)+1)

2 . This is shown in Lemma 9 (Appendix A.5).214

Step 4 (Phase length and Elimination): Using the Lemma 9, concentration Lemma 5, and using215

the log determinant inequality in Lemma 7 and Proposition 1 (Appendix A.5) we show that the216

phase length in the second stage is given by τGℓ = ⌈ 8(B
ℓ
∗)

2ρ(Y(Wℓ)) log(2|W|/δ)
(x⊤(θ̂ℓ−θ∗))2

⌉. This is discussed in217

Discussion 3 (Appendix A.5). We show in Lemma 10 (Appendix A.5) that setting this phase length218

and sampling each active arm inWℓ exactly ⌈b̂ℓ,wτ
G
ℓ ⌉ times results in the elimination of sub-optimal219

actions with high probability.220

Step 5 (Total Samples): We first show that the total samples in the second phase are bounded by221

O(k
γ2
Y
log(k log2(∆

−1)|W|
δ)⌈log2(∆−1)⌉) where the effective dimension k = (d1 + d2)r. Finally,222

we combine the total samples of phase ℓ as (τEℓ + τGℓ). The final sample complexity is given by223

summing over all phases from ℓ = 1 to
⌈
log2

(
4∆−1

)⌉
. The claim of the theorem follows by noting224

Õ(k/γ2Y) ≤ Õ(k/∆2).225

3 Multi-task Representation Learning226

In this section, we present the multi-task representation learning for the bilinear bandit setting. We227

now have M tasks, where each task m ∈ [M] has a reward model stated in (1). Here, the common228

feature extractors B1 ∈ Rd1×k1 and B2 ∈ Rd2×k2 are shared across the tasks. The learning proceeds229

as follows: At each round t = 1, 2, · · · , for each task m ∈ [M], the learner selects a left and230

right action xm,t ∈ X and zm,t ∈ Z . After the player commits the batch of actions for each task231

{xm,t, zm,t : m ∈ [M]}, it receives the batch of rewards {rm,t : m ∈ [M]}. Finally recall that the232

goal is to identify the optimal left and right arms xm,∗, zm,∗ for each task m with a minimum number233

of samples. We now state the following assumptions to enable representation learning across tasks.234

Assumption 1. (Low-rank Tasks) We assume that the hidden parameter Θm,∗ for all the m ∈ [M]235

have a decomposition Θm,∗ = B1Sm,∗B
⊤
2 and each Sm,∗ has rank r.236

This is similar to the assumptions in Yang et al. (2020, 2022); Du et al. (2023) ensuring the feature237

extractors are shared across tasks in the bilinear bandit setting.238

Assumption 2. (Diverse Tasks) We assume that σmin(
1
M

∑M
m=1 Θm,∗) ≥ c0

Sr
, for some c0 > 0, Sr239

is the r-th largest singular value of Θm,∗ and σmin(A) denotes the minimum eigenvalue of matrix A.240

This assumption is similar to the diverse tasks assumption of Yang et al. (2020, 2022); Tripuraneni241

et al. (2021); Du et al. (2023) and ensures the recovery of the feature extractors B1 and B2 shared242

across tasks.243

We now propose a phase-based, three-stage arm elimination algorithm GOBLIN for the multi-task244

setting. In GOBLIN each phase ℓ = 1, 2, . . . consists of three stages; the stage for estimation of245

feature extractors B1,B2, which runs for τEℓ rounds, the stage for estimation of Sm,∗ which runs246

for
∑

m τ̃Em,ℓ rounds, and a stage for pure exploration in rotated arms that runs for
∑

m τGm,ℓ rounds.247

We will define τEm,ℓ in Section 3.1, τ̃Em,ℓ in Section 3.2, while rotated arms and τGm,ℓ are defined in248

Section 3.3. At the end of every phase, GOBLIN eliminates sub-optimal arms to build the active249

set for the next phase and stops when only the optimal left and right arms are remaining. Now we250

discuss the individual stages that occur at every phase ℓ = 1, 2, . . . of multi-task GOBLIN.251

6

3.1 Estimating Feature extractors B1 and B2 (Stage 1 of phase ℓ)252

In the first stage of phase ℓ, GOBLIN leverages the batch of rewards {rm,t : m ∈ [M]} at every253

round t from M tasks to learn the feature extractors B1 and B2. To do this, GOBLIN first vectorizes254

the x ∈ X , z ∈ Z into a new vector w = [x1:d1 ; z1:d2] ∈ W and then solves the E-optimal design in255

step 3 of Algorithm 2. Similar to Section 2 the GOBLIN samples each w ∈ W for ⌈τEℓ bE
ℓ,w⌉ times256

for each task m, where τEℓ = Õ(
√
d1d2r/Sr) and bE

ℓ,w is the solution to E-optimal design on w.257

Let the sampled arms for each task m at round s be denoted by xm,s, zm,s which is obtained after258

reshaping ws. Then it builds the estimator Ẑℓ as follows:259

Ẑℓ= argmin
Θ∈Rd1×d2

Lℓ(Θ) + γℓ∥Θ∥nuc, Lℓ(Θ)=⟨Θ,Θ⟩ − 2

MτEℓ

M∑
m=1

τE
ℓ∑

s=1

⟨ψ̃ν(rm,s ·Q(xm,sz
⊤
m,s)),Θ⟩

(8)

Then it performs SVD decomposition on Ẑℓ, and let B̂1, B̂2 be the top-k1 and top-k2 left and right260

singular vectors of Ẑℓ respectively. These are the estimation of the feature extractors B1 and B2.261

3.2 Estimating Hidden Parameter Sm,∗ per Task (Stage 2 of phase ℓ)262

In the second stage of phase ℓ, the goal is to recover hidden parameter the Sm,∗ for each task m.263

GOBLIN proceeds as follows: First, let g̃m = x⊤B̂1,ℓ and ṽm = z⊤B̂2,ℓ be the latent left and right264

arm respectively for each m. Then GOBLIN defines the vector w̃ = [g̃m; ṽm] ∈ W̃m and then265

solves the E-optimal design in step 11 of Algorithm 2. It then samples for each task m, the latent266

arm w̃ ∈ W̃m for ⌈τ̃Em,ℓb̃
E
m,ℓ,w̃⌉ times, where τ̃Em,ℓ := Õ(

√
k1k2r/Sr) and b̃E

m,ℓ,w̃ is the solution to267

E-optimal design on w̃. Then it builds estimator Ŝm,ℓ for each task m in step 12 as follows:268

Ŝm,ℓ = argmin
Θ∈Rk1×k2

L′
ℓ(Θ) + γℓ∥Θ∥nuc, L′

ℓ(Θ)=⟨Θ,Θ⟩ − 2

τ̃Em,ℓ

τ̃E
m,ℓ∑
s=1

⟨ψ̃ν(rm,s ·Q(g̃m,sṽ
⊤
m,s)),Θ⟩ (9)

Once GOBLIN recovers the Ŝm,ℓ for each task m it has reduced the d1d2 bilinear bandit to k1k2269

dimension bilinear bandit where the left and right arms are g̃m ∈ Gm, ṽm ∈ Vm respectively.270

3.3 Optimal Design for Rotated Arms per Task (Stage 3 of phase ℓ)271

In the third stage of phase ℓ, similar to Algorithm 1, GOBLIN defines the rotated arm set Gm,Vm for272

each task m for these k1k2 dimensional bilinear bandits. Let the SVD of Ŝm,ℓ = Ûm,ℓD̂m,ℓV̂
⊤
m,ℓ.273

Define Ĥm,ℓ = [Ûm,ℓÛ
⊥
m,ℓ]

⊤Ŝm,ℓ[V̂m,ℓV̂
⊥
m,ℓ]. Then define vectorized arm set so that the last274

(k1 − r) · (k2 − r) components are from the complementary subspaces as follows:275

Wm,ℓ =
{[
vec

(
g̃m,1:rṽ

⊤
m,1:r

)
;vec

(
g̃m,r+1:k1 ṽ

⊤
m,1:r

)
;vec

(
g̃m,1:rṽ

⊤
m,r+1:k2

)
;vec

(
g̃m,r+1:k1 ṽ

⊤
m,r+1:k2

)]}
θ̂m,ℓ,1:k=[vec(Ĥm,ℓ,1:r,1:r);vec(Ĥm,ℓ,r+1:k1,1:r);vec(Ĥm,ℓ,1:r,r+1:k2)],θℓ,k+1:p=vec(Ĥm,ℓ,r+1:k1,r+1:k2).

(10)

This is shown in step 14 of Algorithm 2. Now we proceed similarly to Section 2.2. We construct276

a per-task optimal design for the rotated arm set Vm,Gm. Define the w = [g̃m,1:d1
; ṽm,1:d2

] and277

w̃ ∈ W̃m where g̃m ∈ Gm and ṽm ∈ Vm respectively. Following (5) we know that to minimize the278

sample complexity for the m-th bilinear bandit we need to sample according to G-optimal design279

b̂G
m,ℓ = argmin

bm,w

max
w,w′∈Wm,ℓ

∥w −w′∥2(∑w∈Wm
bm,ww w⊤+Λm,ℓ/n)−1 (11)

Then GOBLIN runs G-optimal design on the arm setWℓ following the (11). The GOBLIN samples280

each w ∈ Wm,ℓ for ⌈τGm,ℓb̂
G
m,ℓ,w⌉ times where b̂G

m,ℓ,w is the solution to the G-optimal design, and281

τGℓ is defined in step 17 of Algorithm 2. So the total length of phase ℓ, combining stages 1, 2 and 3 is282

(τEℓ +
∑

m τ̃Em,ℓ+
∑

m τGm,ℓ) rounds. Observe that stage 1, 2 design is on the whole arm setWm, W̃m283

whereas stage 3 design is on the refined active setWm,ℓ. Let at the stage 3 of ℓ-th phase the actions284

sampled be denoted by the matrix Wm,ℓ ∈ RτG
m,ℓ×k1k2 and observe rewards rm ∈ RτG

m,ℓ×k1k2 .285

7

Define the positive diagonal matrix Λm,ℓ according to (6) but set p = k1k2 and k = (k1 + k2)r.286

Then similar to Section 2.2 we can build for each task m only from the observations from this phase287

θ̂m,ℓ = argmin
θ

1
2∥Wm,ℓθ − rm∥22 + 1

2∥θ∥
2
Λm,ℓ

(12)

Finally GOBLIN eliminates the sub-optimal arms using the estimator θ̂m,ℓ to build the next phase288

active setWm,ℓ and stops when |Wm,ℓ| = 1. The full pseudo-code is given in Algorithm 2.289

Algorithm 2 G-Optimal Design for Bilinear Bandits (GOBLIN)
1: Input: arm set X ,Z , confidence δ, rank r of Θ∗, spectral bound Sr of Θ∗, S, S⊥

m,ℓ =

8k1k2r
τ̃E
m,ℓS

2
r
log(k1+k2

δℓ
), λ, λ⊥m,ℓ=

τG
m,ℓ−1

(8(k1+k2)r log(1+τG
m,ℓ−1/λ))

. Let p = k1k2, k = (k1 + k2)r.

2: LetW1←W, ℓ←1, τG0 = log(4ℓ2|X |/δ). Define Λm,ℓ as in (6), Bℓ
m,∗:=(8

√
λS2 + λ⊥ℓ S

(2),⊥
ℓ)

3: Define arm w = [x1:d1 ; z1:d2] and w ∈ W . Let τEℓ =

√
8d1d2r log(4ℓ2|W|/δℓ)

Sr
. Let E-optimal

design be bE
ℓ =argminb∈△W

∥∥(∑w∈W bwww⊤)−1
∥∥.

4: while |Wℓ| > 1 do
5: ϵℓ = 2−ℓ, δℓ = δ/ℓ2.
6: (Stage 1:) Explore the Low-Rank Subspace
7: Pull arm w ∈ W exactly ⌈b̂E

ℓ,wτ
E
ℓ ⌉ times for each task m and observe rewards {rm,t}

τE
ℓ

t=1.
8: Compute Ẑℓ using (8).
9: (Stage 2:) Build Ŝm,ℓ for each task m

10: Let B̂1,ℓ, B̂2,ℓ be the top-k1 left and top-k2 right singular vectors of Ẑℓ respectively. Build
g̃m = x⊤B̂1,ℓ and ṽm = z⊤B̂2,ℓ for all x ∈ X and z ∈ Z for each m.

11: Define a vectorized arm w̃ = [g̃m,1:k1 ; ṽm,1:k2] and w̃ ∈ W̃m for each m. Let τ̃Em,ℓ =√
8k1k2r log(4ℓ2|W|/δℓ)

Sr
, and b̃E

m,ℓ = argminbm∈△W̃m

∥∥(∑
w̃∈W̃m

bm,w̃w̃ w̃⊤)−1∥∥.

12: Pull arm w̃ ∈ W̃m exactly
⌈
b̃E
m,ℓ,w̃τ̃

E
m,ℓ

⌉
times and observe rewards rm,t, for t =

1, . . . , τ̃Em,ℓ, for each task m. Then compute Ŝm,ℓ using (9) for each m.
13: (Stage 3:) Reduction to low dimensional linear bandits for each task m
14: SVD of Ŝm,ℓ=Ûm,ℓD̂m,ℓV̂

⊤
m,ℓ. Rotate arms in active setWm,ℓ−1 to buildWm,ℓ using (10).

15: Let b̂G
m,ℓ=argminbm,w

maxw,w′∈Wm,ℓ
∥w −w′∥2(∑wm∈Wm

bm,wwm w⊤
m+Λm,ℓ/n)−1 .

16: Define ρG(Y(Wm,ℓ))=min
bm,w

max
w,w′∈Wm,ℓ

∥w−w′∥2
(
∑

w∈Wm
bm,ww w⊤+

Λm,ℓ

n)−1
.

17: Set τGm,ℓ=
8(Bℓ

m,∗)
2ρG(Y(Wm,ℓ)) log(4ℓ

2|Wm|/δℓ)
ϵ2ℓ

. Then pull arm w ∈ Wm for each task m

exactly ⌈b̂m,ℓ,wτ
G
m,ℓ⌉ times and construct the least squares estimator θ̂m,ℓ using only the

observations of this phase where θ̂m,ℓ is defined in (12).

18: Eliminate arms such thatWm,ℓ+1 ←Wm,ℓ\
{
wm ∈ Wm,ℓ : maxw′

m∈Wm,ℓ

〈
w′

m −wm, θ̂m,ℓ

〉
> 2ϵm,ℓ

}
19: ℓ← ℓ+ 1
20: Output the arm inWm,ℓ and reshape to get the x̂m,∗ and ẑm,∗ for each task m.

3.4 Sample Complexity analysis of Multi-task GOBLIN290

We now present the sample complexity of GOBLIN for the multi-task setting.291

Theorem 2. (informal) With probability at least 1−δ, GOBLIN returns the best arms xm,∗, zm,∗ for292

each task m, and the total number of samples is bounded by Õ
(

M(k1+k2)r
∆2 + M

√
k1k2r
Sr

+
√
d1d2r
Sr

)
.293

Discussion 2. In Theorem 2 the first quantity is the sample complexity to identify the best arms294

xm,∗, zm,∗ and the second quantity is the number of samples to learn Sm,∗ for each task m, Fi-295

nally the third quantity is the number of samples needed to learn Θ∗. Again we assume that296

Sr = Θ(1/
√
r) (Kang et al., 2022). So the sample complexity of multi-task GOBLIN scales as297

Õ(M(k1 + k2)r/∆
2). However, if one runs DouExpDes (Du et al., 2023) then its sample complexity298

will scale as Õ(M(k1k2)/∆
2).299

8

Proof (Overview) of Theorem 2: Step 1 (Subspace estimation in high dimension): The first steps300

diverge from the proof technique of Theorem 1. We now build the average estimator Ẑℓ to estimate the301

quantity Z∗ = 1
M

∑M
m=1 Θ∗,m using (8). This requires us to modify the Lemma 3 in Appendix A.1302

and apply Stein’s lemma (Lemma 1) to get a bound of ∥Ẑℓ−Z∗∥2F ≤
C1d1d2r log(2(d1+d2)/δ)∑

m τE
m,ℓ

for some303

C1 > 0. This is shown in Lemma 12 in Appendix A.7. Summing up over ℓ = 1 to
⌈
log2

(
4∆−1

)⌉
304

we get that the total samples complexity of the first stage is bounded by Õ(
√
d1d2r/Sr).305

Step 2 (Estimation of left and right feature extractors): Now using the estimator in (8) we get a306

good estimation of the feature extractors B1 and B2. Let B̂1,ℓ, B̂2,ℓ be the top-k1 left and top-k2 right307

singular vectors of Ẑℓ respectively. Then using the Davis-Kahan sin θ Theorem (Bhatia, 2013) in308

Lemma 14, 15 (Appendix A.7) we have ∥(B̂⊥
1,ℓ)

⊤B1∥, ∥(B̂⊥
2,ℓ)

⊤B2∥ ≤ Õ(
√
(d1 + d2)r/MτEm,ℓ).309

Step 3 (Estimation of Ŝm,ℓ in low dimension): Now we estimate the quantity Ŝm,ℓ ∈ Rk1×k2 for310

each taskm. To do this we first build the latent arms g̃m = x⊤
mÛℓ and ṽm = z⊤mV̂ℓ for all xm ∈ Xm311

and zm ∈ Zm for eachm, and sample them following theE-optimal design in step 12 of Algorithm 2.312

We also show in Lemma 16 (Appendix A.7) that σmin(
∑

w̃∈W̃ bw̃w̃w̃⊤) > 0 which enables us to313

sample following E-optimal design. Then use the estimator in (9). Then in Lemma 19 we show that314

∥Ŝm,ℓ − µ∗Sm,∗∥2F ≤ C1k1k2r log
(

2(k1+k2)
δℓ

)
/τEm,ℓ holds with probability greater than (1 − δ).315

Also, note that in the second phase by setting τ̃Em,ℓ =
√
8k1k2r log(4ℓ2|W|/δℓ)/Sr and sampling316

each arm w ∈ W exactly ⌈b̂E
ℓ,wτ̃

E
m,ℓ⌉ times we are guaranteed that ∥θ∗

k+1:p∥2 = O(k1k2r/τ̃
E
m,ℓ) in317

the ℓ-th phase. Summing up over ℓ = 1 to
⌈
log2

(
4∆−1

)⌉
across each task M we get that the total318

samples complexity of the second stage is bounded by Õ(M
√
k1k2r/Sr).319

Step 4 (Convert to k1k2 bilinear bandits): Once GOBLIN recovers Ŝm,τE
ℓ

it rotates the arm set320

following (10) to buildWm to get the k1k2 bilinear bandits. The rest of the steps follow the same321

way as in steps 2, 3 and 4 of proof of Theorem 1.322

Step 5 (Total Samples): We show the total samples in the third phase are bounded by323

O(k
γ2
Y
log(k log2(∆

−1)|W|
δ)⌈log2(∆−1)⌉) where the effective dimension k = (k1 + k2)r. The to-324

tal samples of phase ℓ is given by τEℓ +
∑

m(τ̃Em,ℓ+τ
G
m,ℓ). Finally, we get the total sample complexity325

by summing over all phases from ℓ= 1 to ⌈log2
(
4∆−1

)
⌉. The claim of the theorem follows by326

noting Õ(k/γ2Y) ≤ Õ(k/∆2).327

4 Experiments328

In this section, we conduct proof-of-concept experiments on both single and multi-task bilinear bandits.329

Figure 1: (Left) Single task (Right)
Multi-task environment

In the first experiment, we compare against the state-of-the-330

art algorithm RAGE (Fiez et al., 2019). We show in Figure 1331

(left) that GOBLIN requires fewer samples than the RAGE with332

an increasing number of arms. In the second experiment, we333

compare against the state-of-the-art algorithm DouExpDes (Du334

et al., 2023). We show in Figure 1 (right) that GOBLIN requires335

fewer samples than DouExpDes with an increasing number of336

tasks. As experiments are not a central contributions, we defer337

the experimental details to Appendix A.9.338

5 Conclusions and Future Directions339

In this paper, we formulated the first pure exploration multi-task representation learning problem. Our340

algorithm GOBLIN achieves a sample complexity bound of Õ((d1 + d2)r/∆
2) that improves upon341

Õ((d1d2)/∆
2) sample complexity of RAGE (Fiez et al., 2019) in a single-task setting. Our algorithm342

GOBLIN for multi-task pure exploration bilinear bandit problem learns the latent features and343

has sample complexity that scales as Õ(M(k1 + k2)r/∆
2) which improves over Õ(M(k1k2)/∆

2)344

sample complexity of DouExpDes (Du et al., 2023). Our analysis opens an exciting opportunity to345

analyze representation learning in the kernel and neural bandits (Zhu et al., 2021; Mason et al., 2021).346

We can leverage the fact that this type of optimal design does not require the arm set to be an ellipsoid347

(Du et al., 2023) which enables us to extend this type of analysis to non-linear representations.348

9

References349

Agarwal, D., Chen, B.-C., and Elango, P. (2009). Explore/exploit schemes for web content optimiza-350

tion. In 2009 Ninth IEEE International Conference on Data Mining, pages 1–10. IEEE.351

Allen-Zhu, Z., Li, Y., Singh, A., and Wang, Y. (2017). Near-optimal discrete optimization for352

experimental design: A regret minimization approach. arXiv preprint arXiv:1711.05174.353

Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: A review and new354

perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828.355

Bhatia, R. (2013). Matrix analysis, volume 169. Springer Science & Business Media.356

Bragman, F. J., Tanno, R., Eaton-Rosen, Z., Li, W., Hawkes, D. J., Ourselin, S., Alexander, D. C.,357

McClelland, J. R., and Cardoso, M. J. (2018). Uncertainty in multitask learning: joint representa-358

tions for probabilistic mr-only radiotherapy planning. In Medical Image Computing and Computer359

Assisted Intervention–MICCAI 2018: 21st International Conference, Granada, Spain, September360

16-20, 2018, Proceedings, Part IV 11, pages 3–11. Springer.361

Du, S. S., Hu, W., Kakade, S. M., Lee, J. D., and Lei, Q. (2020). Few-shot learning via learning the362

representation, provably. arXiv preprint arXiv:2002.09434.363

Du, Y., Huang, L., and Sun, W. (2023). Multi-task representation learning for pure exploration in364

linear bandits. arXiv preprint arXiv:2302.04441.365

Fiez, T., Jain, L., Jamieson, K. G., and Ratliff, L. (2019). Sequential experimental design for366

transductive linear bandits. Advances in neural information processing systems, 32.367

Jamieson, K. and Jain, L. (2022). Interactive machine learning.368

Jun, K.-S., Willett, R., Wright, S., and Nowak, R. (2019). Bilinear bandits with low-rank structure.369

In International Conference on Machine Learning, pages 3163–3172. PMLR.370

Kang, Y., Hsieh, C.-J., and Lee, T. C. M. (2022). Efficient frameworks for generalized low-rank371

matrix bandit problems. Advances in Neural Information Processing Systems, 35:19971–19983.372

Katz-Samuels, J., Jain, L., Jamieson, K. G., et al. (2020). An empirical process approach to the union373

bound: Practical algorithms for combinatorial and linear bandits. Advances in Neural Information374

Processing Systems, 33:10371–10382.375

Kiefer, J. and Wolfowitz, J. (1960). The equivalence of two extremum problems. Canadian Journal376

of Mathematics, 12:363–366.377

Lattimore, T. and Szepesvári, C. (2020). Bandit algorithms. Cambridge University Press.378

Li, J., Zhang, H., Zhang, L., Huang, X., and Zhang, L. (2014). Joint collaborative representation with379

multitask learning for hyperspectral image classification. IEEE Transactions on Geoscience and380

Remote Sensing, 52(9):5923–5936.381

Lu, Y., Meisami, A., and Tewari, A. (2021). Low-rank generalized linear bandit problems. In382

International Conference on Artificial Intelligence and Statistics, pages 460–468. PMLR.383

Luo, Y., Zhao, X., Zhou, J., Yang, J., Zhang, Y., Kuang, W., Peng, J., Chen, L., and Zeng, J. (2017).384

A network integration approach for drug-target interaction prediction and computational drug385

repositioning from heterogeneous information. Nature communications, 8(1):573.386

Mason, B., Camilleri, R., Mukherjee, S., Jamieson, K., Nowak, R., and Jain, L. (2021). Nearly387

optimal algorithms for level set estimation. arXiv preprint arXiv:2111.01768.388

Maurer, A., Pontil, M., and Romera-Paredes, B. (2016). The benefit of multitask representation389

learning. Journal of Machine Learning Research, 17(81):1–32.390

Minsker, S. (2018). Sub-gaussian estimators of the mean of a random matrix with heavy-tailed entries.391

The Annals of Statistics, 46(6A):2871–2903.392

10

Pukelsheim, F. (2006). Optimal design of experiments. SIAM.393

Reyes, L. J. P., Oviedo, N. B., Camacho, E. C., and Calderon, J. M. (2021). Adaptable recommenda-394

tion system for outfit selection with deep learning approach. IFAC-PapersOnLine, 54(13):605–610.395

Rockafellar, R. (2015). Convex analysis. princeton landmarks in mathematics and physics.396

Shamir, O. (2011). A variant of azuma’s inequality for martingales with subgaussian tails. arXiv397

preprint arXiv:1110.2392.398

Shen, Q., Han, S., Han, Y., and Chen, X. (2023). User review analysis of dating apps based on text399

mining. Plos one, 18(4):e0283896.400

Soare, M., Lazaric, A., and Munos, R. (2014). Best-arm identification in linear bandits. Advances in401

Neural Information Processing Systems, 27.402

Stein, C., Diaconis, P., Holmes, S., and Reinert, G. (2004). Use of exchangeable pairs in the analysis403

of simulations. Lecture Notes-Monograph Series, pages 1–26.404

Tripuraneni, N., Jin, C., and Jordan, M. (2021). Provable meta-learning of linear representations. In405

International Conference on Machine Learning, pages 10434–10443. PMLR.406

Valko, M., Munos, R., Kveton, B., and Kocák, T. (2014). Spectral bandits for smooth graph functions.407

In International Conference on Machine Learning, pages 46–54. PMLR.408

Yang, J., Hu, W., Lee, J. D., and Du, S. S. (2020). Impact of representation learning in linear bandits.409

arXiv preprint arXiv:2010.06531.410

Yang, J., Lei, Q., Lee, J. D., and Du, S. S. (2022). Nearly minimax algorithms for linear bandits with411

shared representation. arXiv preprint arXiv:2203.15664.412

Zhang, D., Shen, D., Initiative, A. D. N., et al. (2012). Multi-modal multi-task learning for joint413

prediction of multiple regression and classification variables in alzheimer’s disease. NeuroImage,414

59(2):895–907.415

Zhao, Y., Kosorok, M. R., and Zeng, D. (2009). Reinforcement learning design for cancer clinical416

trials. Statistics in medicine, 28(26):3294–3315.417

Zhu, Y., Zhou, D., Jiang, R., Gu, Q., Willett, R., and Nowak, R. (2021). Pure exploration in kernel418

and neural bandits. Advances in neural information processing systems, 34:11618–11630.419

11

