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Abstract

A central challenge in reinforcement learning is designing data collection strategies
that efficiently evaluate multiple target policies via importance sampling. When
target policies are similar, exploiting those similarities in the behavior policy can
substantially improve sample efficiency. This article introduces a behavior policy
design, examining how different criteria for selecting a behavior policy influence
importance sampling estimator properties. We evaluate the resulting behavior
policies in downstream tasks, particularly in best policy selection problems. Ad-
ditionally, we demonstrate how effectively leveraging similarities among target
policies results in a more nuanced behavior policy design and enhances regret
bounds for best policy selection. To facilitate rigorous analysis, the article is
formulated within the stochastic bandit framework.

1 Introduction

Importance sampling (IS), see for instance [Owen, 2013], is a fundamental tool in Monte Carlo
simulations, primarily used to estimate more efficiently expectations under distributions other than
the sampling one. The IS literature traditionally addresses two key questions: (1) How to design an
optimal importance sampling distribution for a given target distribution and (2) how to determine the
required sample size for reliable estimation. In machine learning, IS is widely applied to evaluate
new objectives using existing data. However, re-weighting data without ensuring proper alignment
between the sampling and target distributions can result in high-variance estimators. As a result,
research has focused on variance reduction techniques [e.g. Bottou et al., 2013, Kuzborskij et al.,
2021, Sakhi et al., 2024] and coverage assumptions, often at the cost of introducing estimation bias
or inefficient sampling distributions. An important application of IS in machine learning is off-policy
evaluation (OPE) in (contextual) bandits [Wang et al., 2017, Agarwal et al., 2017, Gabbianelli et al.,
2024], where multiple target policies 7y, ..., 7 are evaluated using data collected under a behavior
policy. Recently, there has been renewed interest in IS’s original principles, that is, directly addressing
the problem of constructing a behavior policy to reduce the variance of the estimator [Hanna et al.,
2017, Papini et al., 2024, Jain et al., 2024, Liu et al., 2025, Chen et al., 2024, Russo and Pacchiano,
2025]. While prior work focuses on designing behavior policies for single target distributions, more
recent attention has been placed to simultaneously estimating multiple expectations [Demange-Chryst
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et al., 2023, Chen et al., 2024, Dann et al., 2023, Liu et al., 2025]. In Appendix A we provide a
detailed review of related work. This setting, where data collection should efficiently identify the
most valuable policy, remains underexplored and lacks theoretical guarantees. The present article
addresses the following questions:

Q1: How should a behavior policy T, be designed to effectively evaluate a given set of target
policies? Can it be efficient to use several behavior policies w}, ..., 7réw ?

To obtain a mathematically rigorous analysis, we study this question in the setting of stochastic
bandits, defined by the tuple (A, P, ), where A is a finite action space and P, : A — R is a probability
kernel mapping actions to rewards. We leave the extension to the RL setting as future work. We
assume that all reward distributions are R.-subgaussian, and denote the expected reward under action
a € Aas Q(a) = E[R(a)] := [y xdP,(x). A policy m = (m(a))aca is a probability distribution
over actions and its value is defined as v(w) = ), m(a)Q(a). This article is driven by the best-policy
selection problem, the identification from data of the best policy from a set Iy using a carefully
chosen behavior policy. The IS estimator of a policy 7 with respect to the sampling policy 7, is

defined as
—~ 1 - W(At)
n == R ’ 1
On () n;m%)t (M

where the pairs (A;, R;) are iid action-reward pairs obtained from the bandit model when playing
the policy 7. As mentioned previously, the choice of the behavior policy crucially impacts the IS
estimator’s performance. In this work, we consider different selection criteria for choosing a suitable
behavior policy and discuss the different properties of these. Based on our findings we suggest a
method that is both a theoretically feasible and an easily implementable way to find behavior policies
to evaluate a set of target policies. Since this method provides a practical way to design behavior
policies by using barycenters of a set of target policies, we call the strategy barycenter-design-based
policy evaluation (BD-PE). We analyze its theoretical limitations and show that if the target policies
lack sufficient structure, the constructed behavior policy may degrade in performance as the number
of policies increases. To address this issue, we propose an extension, clustered barycenter design
based policy evaluation (CBD-PE), which clusters target policies based on probabilistic similarity
and designs multiple behavior policies accordingly. This theoretically grounded approach enables
efficient scaling to large policy sets while maintaining strong performance guarantees.

Outline. In Section 2, we present an outline of the high-level idea behind the design of the behavior
policies. Our main results on BD-PE and CBD-PE are presented in Sections 3 and 4 respectively. Our
analysis focuses on the consequence of structural assumptions on the sample complexity of policy
evaluation and selection. Finally, in Section 5, we present an empirical evaluation of our methods,
and in Section 6, we discuss potential directions for future work..

2 Behavior policy design using barycentric projections

This section provides an overview of the proposed method, and the following sections are devoted
to its analysis. Given a set of target policies IIy := {m,..., 7N}, our approach comprises the
following steps:

1. We propose a sample-efficient behavior policy design, which yields one or more behavior
policies. This strategy leverages barycentric projections: each behavior policy is constructed
as the barycenter of a subset of target policies (where subsets can be determined by optional
policy clustering).

2. These behavior policies are then employed to collect data and evaluate the target policies
using importance sampling.

3. Finally, for best-policy selection, we choose the policy 7,, with the largest estimated value.
The practical novelty of this work is Step 1, i.e. how to design the behavior policy so that the final

choice in Step 2 is sample efficient. For Step 3 we provide (¢-¢)-excess risk guarantees, i.e. we show
that

P(R(Tn) <€) 21-4,



where the excess-risk (or regret) is defined as

R(7n) == v(ms) — v(7n) , 7. € argmax v(m;). )
i=1,...,N

At a high level, our behavior policy design proceeds in two stages. First, the set of target policies can
be partitioned into clusters based on policy similarity. Second, barycentric projections are applied
within each cluster to generate one behavior policy per cluster. This results in a number of behavior
policies equal to the chosen number of clusters M. For initial clarity, we first discuss the barycenter
approach assuming no clustering (M = 1).

Our approach utilizes barycenters of target policies, defined within the space of policies. To quantify
relationships between policy distributions, we employ f-divergences:

Definition 2.1. Ler w, 7, be two discrete probability distributions and f : (0,00) — R a convex
function with f(1) = 0. Additionally, we use the standard convention 0f(3) = 0. Then, an

f-divergence is defined by D ¢(7||m,) := > mp(a) f ( m(a) ) )

7 (a)

There are three popular examples in the RL literature that are particularly useful as they allow simple
closed form computations.

* A popular divergence from the IS literature is the KL divergence Dgp, with fxr,(z) =
x log(z), see [Chatterjee and Diaconis, 2018, Agapiou et al., 2017, Sanz-Alonso, 2018, Beh
etal., 2023].

* The x? divergence D, with f,2(z) = (z — 1)?, see [Gabbianelli et al., 2024]. This is
equivalent to the minimization of variances between the behavior policy and the set of target
policies, see [Jain et al., 2024, Chen et al., 2024, Liu et al., 2025].

* The Hellinger distance Dy with fye(z) = %(\/E — 1)2, see [Foster et al., 2024, Rohatgi
et al., 2025]. In contrast to the first two, the square-root of the Hellinger distance is even a

metric.

For a fixed divergence we will study the behavior policies 7k1, THel and m,2 as the solutions of
the problems

N
T, € arg min 1 ZDb(m,w), v € {KL, Hel, x?}. 3)

TEA 4 N i=1
The new policy m, is called the barycenter of 7y, ..., 7 with respect to the chosen divergence.
It is important to note that the three divergences directly give closed-form solutions while other
divergences (such as total variation) may not. This means that the proposed method does not
suffer from any additional computational cost. Furthermore, we note that the mean distance in (3)
can be replaced by the maximum distance. However, this modification generally does not yield
a closed-form solution. Instead, it requires solving another convex program that, with additional
computational cost, scales in the number of target policies N. Although this is possible in general,

we will restrict the analysis to the setting where a closed-form solution exists.

In order to estimate the value of the target policies we use plain vanilla importance sampling with
samples drawn from the designed behavior policy. A crucial factor for low estimation error in IS is a
small maximal importance weight:

m(a)
O1s = max max .

m€lly a€A m,(a)
In fact, the excess-risk bounds scale in the sample complexity quadratically in o1g, see Proposition
3.2 below. We show that barycentric projections using mean divergences provide uniform control
over the maximal importance weights for our design of behavior policies, see Table 1. For a more
extensive discussion we refer the reader to Appendix B.
The importance weight bounds suggest that the y2-distance is the way to go, in particular for
N > K. However, as these are only upper bounds, we will also consider the KL in the following
sections. In Section 3, we show that the bounds are tight for Mean-KL and Mean-x2, in the sense
that there are simple bandit models reaching such importance weights.

The performance of IS can degrade significantly when the behavior and target poli-
cies are substantially misaligned, leading to potentially large importance weights.
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treated separately to reduce the sample complexity caused by large -
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1. Cluster (if needed) policies into M clusters. ®
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2. Compute M barycentric policies.
3. Use cluster wise importance sampling. K

A general outline is provided in Algorithm 1, with full details in Sections 4 and 5.

Algorithm 1 Best policy selection using clustered barycenter design

Require: Target policies I, number of clusters M > 1 (M = 1: no clustering), sample sizes n;,
divergence for barycenter projections.
Ensure: Selected best policy 7,

1: Cluster target policies Il into M > 1 clusters K1, ..., Ky (e.g. with Algorithm 2)

2: For each cluster K;, compute barycenter behavior policies wéj ) according to (3).

3: Collect datasets D) = (R AV of size n; using all 7"’

4: For each cluster K, compute 5 (7;) according to (5): 5" (m;) = % Sy %Rﬁj) for
all m; € Kj; b

5: Select best policy: 7,, < arg max; oY )(m).

This algorithm provides a theoretically grounded and implementable method for designing behavior
policies to effectively evaluate a set of target policies and select the best one. Note that if target policies
are already well-aligned, clustering may be unnecessary. Guidance for choosing M is provided in
Section 4.1, and Figure 2 presents an experimental study corroborating our theoretical findings.

3 Policy evaluation with barycenter behavior policy design

In this section, we provide excess risk bounds and additionally show that, without clustering, certain
policy sets can be hard to evaluate.

3.1 Regret upper bound for barycenter behavior policy design

As mentioned above, we will focus on the behavior policies 7kr,, THel and 7,2 as the solutions of (3).
The corresponding IS estimator for arbitrary policies 7 is given by:

A crucial simple fact about importance sampling with respect to any of these behavior policies is the
boundedness of importance weights. It is important to note that the subsequent theoretical analysis

Table 1: Simple closed form solutions for barycentric projections and upper bounds on maximal
importance weights. /N are the number of target policies, K the number of arms.

Divergence Closed Form Solution Bound on org
Mean-KL m(a) = % Zf\il mi(a) N

Mean-y2 m(a) /O, mi(@)? | min{N, VNK)
2
Mean-Hellinger | 7, o (% SV \/m(a)> N2




relies solely on this boundedness and is applicable to any behavior policy with similarly bounded
importance weights.

Lemma 3.1. If wf(-) = %()) are the importance sampling weights of m € Il with respect to
Ty € {TKL, THel, Ty2 }, then the maximal importance weight

o5 = max max wy(a 4

5 m€lly a€A b( ) @

is bounded by N for txy, min{ N,V NK} for m,> and N2 for Tyel.

The proof can be found in Appendix B. It is important to note that for /' > N all of these bounds
are not dependent on the number of arms. This indicates that choosing 7kt,, Ty2 Or THe1 can be
extended to the continuous armed setting. We discuss this extension in Appendix C.2. Furthermore,
the boundedness of importance weights simplifies the analysis and corresponds to a uniform coverage
assumption, a common requirement in the OPE literature, see, for instance, Wang et al. [2024]. In
our considered behavior policy design framework, the crucial quantity is oy, a constant that can be
interpreted as a measure of how well the behavior policy aligns with the set of target policies. As
such, controlling oyg is of central importance. We will come back to this topic in Section 4 where we
suggest clustering methods to strongly decrease the importance weights.

Since the simple form of the barycenter behavior policy design implies bounded weights, the regret
(as defined in Equation 2) of the IS estimator is easy to estimate. Assuming R.-subgaussian rewards,
Hoeffding’s inequality immediately implies

2n
P(0 () — v(m) > €) < exp (‘(1%2;15)2> '

Hence, given § € (0, 1), with probability at least 1 — & we have

1 N 1 N
> An - 7R* 1 ~ | An > - 7R* 1 ~
olm) 2 ) — =Ry og (5 ). 8(n) 2 o() = =Ry o ()
for all m € IIy. These computations outline the key steps in proving the following proposition. The
detailed proof is given in Appendix C.3.

Proposition 3.2. For arbitrary § € (0,1) and ¢ > 0, let
2R%0% log (&
n > n(e,0) = 2aislos (5)
€
many iid pairs (A¢, Rt)}_, of action and rewards be generated by a behavior policy with importance
weights bounded by o1g, and T, := arg max; U, (m;). Then

P(R(7,) <e)>1-34.

From the above result, we observe that the sample size n(e, §) required for achieving a small regret
with high probability scales with o7s, reaching its worst case when o1g € { N, min{v/ KN, N}, N2},
depending on the chosen behavior policy. This means that when the behavior policy is poorly aligned
with the target policies, the sample complexity increases linearly or even quadratically in the number
of target policies, making evaluation inefficient. To understand this inefficiency, consider the naive
approach of evaluating each target policy individually. In this case, o1 = 1, but we would need to
sample separately for each of the policies, leading to a total sample complexity of n > %.
Therefore, BD-PE is more sample efficient only if o1s < v/N. The following lower bound further
underscores that this condition does not always hold, emphasizing the need for a more nuanced
approach for the barycenter behavior policy design.

3.2 Lower bound

In this section, we provide lower bounds on the importance weights and the resulting excess risk for
the behavior policies mk, and 2. These bounds illustrate that the proposed behavior policies have
limitations when the set of target policies have unpleasant structure and the amount of target policies
increases. The proofs of both results can be found in Appendix C.4. We begin with the lower bound
for the importance weights of 7mkr,.



Proposition 3.3. For arbitrary N > 3 there exists a multi-armed bandit model (A™N), Pp(x) and a
set of target policies HE\],V) = {7T§N), . 771'§\,N)} such that O'I(év) >on = % and

P(R(7n) > €) > \/% exp (_2:1%)

for all € > 0 sufficiently small.

Remark 3.4. In Proposition 3.3, we stated that € needs to be sufficiently small. Our proof is based on
a specific construction of a two-armed stochastic bandit with deterministic rewards r1 > ro, and a set
of target policies. By "sufficiently small" we mean that ¢ < A where A represents the gap between
the best policy and the remaining policies, which all share the same value. In our construction, this
gap can be explicitly expressed as

1 1 2
Il VN > 3.
A(N NV 1))< N+1>r1>0, N >3

Consequently, the gap scales with r1 > 0 but remains independent of its specific value.

Next, we give the lower bound for the case that 7,2 is chosen as the behavior policy.

Proposition 3.5. For arbitrary N > 3 there exists a multi-armed bandit model (A™N) | Pr(x)) and a
set of target policies HE\J,V) = {7T§N), - ,7T§VN)} such that U;{y) >on = % and

P(R(7n) > €) 2 \/LT” b <_2:N)

for all € > 0 sufficiently small.

With the last two results we have established lower bounds showing that for certain target policies in
a bandit model, o1g can almost reach its maximum value of V.

This implies that the probability of incurring large is directly influenced by the largest importance
weight, which in turn depends on the chosen behavior policy. The observed findings indicate that
ensuring a reasonable size for o1g requires more careful selection of the behavior policy 7. Otherwise,
the sample complexity can grow unfavorably, highlighting the necessity of a more nuanced behavior
policy design.

3.3 On the relationship between the barycenter and the target policies

Despite the barycenter behavior policy design’s promise of bounded importance weights, our previous
analysis revealed that the bound may be quite large. Potentially, this may lead to poor performance in
policy evaluation unless certain structural assumptions are made about the set of target policies. In
the following section, we show that the policy evaluation can be significantly improved by assuming
proximity between each target policy 7 € Il and the barycenter 7. Specifically, if each 7; € Tl
satisfies D, (m; | m) < 71, where ¢ € {KL, x2} for some 1 > 0, then a tighter upper bound on the
weight function can be established, leading to improved sample complexity in our regret analysis.
The following statement gives an upper bound on og in terms of 7. The detailed proof is given in
Appendix C.5.

Proposition 3.6. Suppose that D, (r; | mp) < nfor 1 € {KL, x?} and assume m,(a) > 0 for all
a € A, then it holds that

2 24/2
Ulsgmin<N,1+ U + " ) .

min, m(a) min, 7 (a)

As aresult, we can explicitly characterize the sample complexity in terms of 7. For ¢ € (0,1) and
€ > 0, a sample size

min, m(a) min, 7 (a)

2
n > n(e,8) = 2R?log(N/§) min <N,1+ 2n i 2y/2n ) 2



ensures that P(R(7,,) < €) > 1 — §. A drawback of the derived sample complexity is the fact
that it can become large when min, 7, (a) is very small. This issue can be effectively alleviated by
introducing a safe behavior policy, directly analogous to safe or defensive importance sampling from
classical IS literature [Owen and Zhou, 2000]. This policy incorporates regularization in the form of
(@) == (1 — Nmxi(a) + Mu(a), a€ A, Xe(0,1)

where u is a uniform policy over A. The "safe" aspect stems from this regularization, which guarantees
a minimum probability of selecting any action, thus preventing the importance weights from becoming
unbounded and causing estimation failure when min, 7(a) is small. Choosing A = A(n) = 7 ensures
that the upper bound on the importance weights remain independent of min, 7(a) as 7 tends to zero.
We provide a detailed analysis of the safe behavior policy in Appendix C.6.

4 Best policy selection using clustered behavior policy design

In the previous section, we showed that selecting the best policy based on barycenter behavior policy
design requires certain similarity assumptions on the set of target policies. Specifically, we showed
that the maximal importance weights can be upper bounded in terms of the f-divergence between
each target policy and the barycenter of the set, when the f-divergence correspond to the KL or
x2. Considering all possible behavior policies, ensuring a small f-divergence may be challenging
in general, a natural approach is to partition the set of target policies into clusters with small f-
divergences and then apply policy evaluation based on the barycenter behavior policy design to each
cluster.

In the following, we introduce an improved method that employs multiple behavior policies, each
constructed as the barycenter corresponding to a fixed divergence in (3) to a subset of I ;. Our regret
analysis can be extended to this setting, demonstrating that the required sample sizes for achieving
a low regret scale with the number of clusters and the maximal weights within each cluster. The
specific design of the clusters will be discussed in Section 5. Importantly, the proposed clustering
strategy does not require any additional interactions with the bandit environment. Moreover, based
on our upper bounds, we derive a decision rule (7) that evaluates the effectiveness of clustering and
guides the selection of a suitable cluster size.

4.1 Clustered based policy evaluation

We begin the discussion by proposing an improved structured importance sampling approach using

clustered sets of target policies. Decompose the set of target policies Iy = {ry,...,mx} into M
disjoint clusters K, := {r\"), i = 1,..., N;} of sizes N; ! and define
(4)
‘ w," (a
o) = (Jmax  max %
=h Ny € N; im0 (a)

forall j = 1,..., M. In our subsequent analysis, we will consider the uniform maximal weight over
all clusters defined as )

0c:= max o

J=1,...\ M

For instance, following Lemma 3.1 the value o. can always be bounded depending on the chosen

divergence. We will describe a specific clustering algorithm in Section 5 with the overall goal to

achieve small values of m(;j ) To evaluate the policies within each cluster we construct the clustered

importance sampling estimators
1 & 7 (AEJ ) ) G)

’\(j)( )= — R c K. (5)
vy (m) . . : , T i
L 7715”(14?)) ' 7

for ﬂéj) € {ﬂgg, ﬂggl, 7r>(<j2)} of the corresponding clusters K;, ;7 € {l,...,M}. Here,
(Agj), R,gj ))?il are iid pairs of action and rewards generated by the behavior policy wéj ) and the

overall sample size is n = Zj\il n;. The clustered best policy selection is then defined as

T = argmax {max 0 (m)}. (6)
je{1,... M}y TEK;

'We can easily use cluster algorithms as K-means, see Section 5.




4.2 Clustered regret analysis

In this section, we derive regret bounds of the proposed clustered best-policy selection approach. For
simplicity, we make the following (mainly notational) assumption on the value of the excess risk per
cluster.

Assumption 4.1. Let 7, = argmax, cqy, v(7) and 70 = argmax ey, v(m)forj=1,..., M,

then (i) v(m,) = v(ﬂ,(kl)) and (ii) U(m(ﬂl)) - ’U(Tfij)) > A for some A > 0andall j =2,..., M.
To quantify the upper regret bound, we need to control the probability that the best policy is selected
within cluster K; that contains the best policy. The full proof is given in Appendix D.1

Proposition 4.2. Suppose that Assumption 4.1 is in place, and n1 = - - - = nyy. Furthermore, let
€ (0,1)ande € (0,A]. If

QMREO'E log ((M—2)(N1;-1)+N+JVI)

2 )

n=ny-M >n(e,0):=
€

then P(7,, ¢ K1) <§.

Having established the high probability guarantee for 7,, € K1, we can derive the overall regret
bound of the clustered best-policy selection.

Theorem 4.3. Suppose that Assumption 4.1 is in place, and n1 = --- = nyy. Furthermore, let
d€(0,1), e € (0,AL If

OM R202 log( 2EN+MAM—1)(N1+1)
n = nl . M Z n(g,(s) = *Jc Og( ) )

o2
then
P(R(T,) <e)>1-9.

We provide the full proof of Theorem 4.3 in Appendix D.2. Note that Theorem 4.3 depends on the
problem-dependent minimal gap A assuming that € € (0, A]. We present a problem-independent
version for the expected excess risk in the appendix, see Corollary D.2.

Remark 4.4. For simplicity, we assumed that the number of samples is distributed equally across
clusters. However, sample allocation could be optimized by considering the respective o.;, as the
effectiveness of IS estimators depends on o.,. This means that more samples should be allocated to
clusters of target policies that have a high o.,. Note that o.; can be calculated explicitly for each
cluster without suffering from a high additional cost.

Let us conclude this section with a comparison of sample complexity with and without clustering.

First, note that for M = 1, i.e. no clustering is applied, the sample complexity (ignoring the
2 2

logarithmic terms) simplifies to 211*#. This means that CBD-PE yields a sample complexity

improvement if

Mo? < ofy. ¥

Thus, the effectiveness of CBD-PE is directly tied to the reduction in o relative to o1g. We emphasize
that we have access to the set of target policies I . Therefore, we can compute o, and o1g without
interacting with the bandit environment. This implies that one can evaluate the effectiveness of
the clustering without incurring additional sampling costs. In the next section, we will numerically
quantify this effect.

S Empirical evaluation

In order to implement Algorithm 1 we construct a specific clustering approach. Motivated by
Proposition 3.6, we seek to achieve small values of aé‘” by minimizing the respective divergence of
all policies within the cluster. Therefore, one can adapt standard cluster algorithms to create clusters

with small f-divergences and then apply CBD-PE as discussed in the subsequent sub-sections.



Clustering with respect to f divergences Clustering algorithms are widely used to partition items
into groups based on similarity. Typically, these methods operate within a metric space, where
distances between elements satisfy standard metric properties. However, in probability spaces,
distributions can also be grouped based on divergence measures rather than traditional metrics.
Notably, the squared Hellinger distance has the additional property that its square root defines
a proper metric, enabling the use of standard clustering techniques such as KMeans. Since all
KL, x2 and Hellinger distances belong to the family of f-divergences, we can leverage clustering
results obtained via the Hellinger distance to infer meaningful groupings. A detailed theoretical
justification for this approach is provided in Chaudhuri and McGregor [2008]. The description of the
Hellinger-based clustering approach can be found in Algorithm 2.

Numerical validations To clearly visualize the effects, we empirically evaluate the proposed
clustering approach on an extreme toy example. Our experiment aims to demonstrate that the
proposed regret bounds improve when the target policy set exhibits a structured form. To verify this,
we test whether (7) holds. For this experiment, we generate sets of softmax target policies of size
N = 1000 in a 100-armed bandit setting with gaussian-distributed rewards by sampling weights
for each arm and rescaling to softmax policies with a temperature parameter of 1. The maximal
mean reward is set to 3 for arm 1, linearly decaying by 0.05 until arm 100. A detailed discussion
on the construction can be found in Appendix E. The optimal target policy achieves a value of 2.77.
We compare BD-PE and CBD-PE for different numbers of clusters M applied in Algorithm 2 and
for the barycenters with respect to the KL and the y? divergence. Importantly, the total number of
samples used remains the same in each approach. When clustering is applied, samples are uniformly
distributed across all clusters. First, we record the resulting values of M Jf for different numbers of
clusters M. Recall, for M = 1 we recover the case . = o1g. Afterwards, we observe that increasing
the cluster size lowers the effect on o.. This underscores the discussion at the end of Section 4.1.
For practitioners it is important to find a suitable cluster size. The results are shown in Figure 2
(a). They show clustering significantly improves the value of Mo? until a cluster size of M = 10.
This suggests that an improved regret is expected by adjusting the number of clusters. Therefore,
we evaluate the average regret of the proposed approach across varying sample sizes for BD-PE
and CBD-PE with different numbers of clusters. Additionally, we include a Monte Carlo approach
as a baseline, corresponding to the case where M = 1000. Note that, a minimum sample size of
n = 1000 is required. The results are shown in Figure 2 (b), where we observe the best performance
for M = 10. Conversely, too large or too small number of clusters result in higher regrets on average.

(a) Average value of Mo? (b) Average regret

T T T T —_@— xLobrE
105 . o— KL || —f— KL-CBD-PE , M=10
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X —— MC
0.5
~ 3 -
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L | ! | | = | 001 [ | I I | | | |
1 5 10 20 100 500 100 200 500 1000 2000 5000 10000
Number of clusters Number of samples n

Figure 2: Comparison of (a) the values of M o2 and (b) the regret for different numbers of clusters
M averaged over 1000 independent runs.

6 Conclusion

In this work, we addressed the question on how to effectively design one or more behavior policies
to perform best-policy selection based on importance sampling estimators. Using barycenter behav-
ior policies (with and without clustering of target policies) we provide theoretical and numerical
validations on the performance. The results focus on the identification of the best policy rather
than only obtaining accurate value estimates. By introducing clustering we also provide a simple
practical solution to scale up the approach to many target policies, that does not require any additional



interaction with the underlying bandit environment. We observe that incorporating clustering signifi-
cantly reduces regret, highlighting the advantage of cluster-based behavior policies and validating our
theoretical findings, providing a positive answer to the questions posed in Question Q1.

Future research could explore extensions of these theoretical results to contextual bandits and MDPs,
such as applications of IS in reinforcement learning [Jain et al., 2024, Papini et al., 2024]. Extensions
would require a generalized clustering methodology that can effectively account for variations across
different contexts and states. Another promising direction for future work is the sequential integration
of policy evaluation and selection. Specifically, one could adaptively eliminate underperforming
clusters throughout the clustered policy evaluation process, enhancing efficiency of decision-making.
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A Related work

Multiple policy evaluation and behavior policy optimization. Our work is closely related to the
emerging field of multiple policy evaluation and the closely connected behavioral policy optimization.
The literature can be divided into two parts, evaluating the target sampling directly from the underlying
target policies [Dann et al., 2023] or evaluating them using data from a different policy, the so called
behavior policy [Liu et al., 2025, Chen et al., 2024, Jain et al., 2024]. Regarding the first setting,
the simplest approach is to use Monte Carlo simulation directly. As this requires a large amount
of samples, Dann et al. [2023] have proposed to reuse samples across target policies based on a
dissimilarity measure in the context of Reinforcement Learning. In favorable cases, this leads to
a sample complexity that is sub-linear in the number of target policies. Similarity is measured on
a trajectory level, meaning if the same action is played in the same state across target policies to
reuse the samples. This is different from our information-theoretic similarity measure suitable for
probability distributions. In the latter case, the goal is to collect suitable data with a behavior policy
and use techniques like Importance Sampling to evaluate the set of target policies. In Chen et al.
[2024] they first compute a coarse estimation of the visitation distribution and then minimize the
variance of visitation distribution of the behavior policy and the estimated ones of the set of target
policies. Similarly, Jain et al. [2024] take a sequential approach by designing a behavior policy that
minimizes the average Mean-Squared Error(MSE) between the behavior policy and a set of target
policies. Liu et al. [2025] also minimize trajectory-level variance to guide behavior policy design
using a similarity measure based on variance. More recently, Russo and Pacchiano [2025] have
developed (¢, 6)-PAC guarantees in an RL setting where different policies have to be evaluated for
multiple reward functions. Additionally, in another line of research, Papini et al. [2024] introduce the
behavioral policy optimization problem in the context of policy gradient methods, aiming to collect
data that minimizes the variance of policy gradient estimates. In contrast, our work gives a general
approach and considers different multiple target policies and explores similarities with respect to f
divergences.

Off-policy evaluation. Our work is somewhat orthogonal to the well-studied problem of off-policy
evaluation (OPE) [Li et al., 2011, Bottou et al., 2013, Swaminathan and Joachims, 2015]. In OPE,
data has already been collected using a fixed and often known behavior policy. IS estimators are then
used to evaluate the set of target policies. However, as the behavior policy is fixed and can be rather
arbitrarily, there can be a mismatch between the target and behavior policies. The focus of these
works is to refine the estimator instead of selecting a suitable behavior policy. Several techniques
have been proposed to mitigate variance due to policy mismatch. Clipping IS weights is a widely used
approach [lonides, 2008, Thomas et al., 2015, Bottou et al., 2013], as is introducing a pessimistic
bias into the estimator [Swaminathan and Joachims, 2015, London and Sandler, 2019, Jin et al., 2021,
Rashidinejad et al., 2021, Jin et al., 2022]. Another variance-reduction method is Self-Normalized
IS, which stabilizes estimates while maintaining practical effectiveness [Kuzborskij et al., 2021,
Hesterberg, 1995]. Many of these approaches assume uniformly bounded importance weights, an
assumption recently relaxed by Gabbianelli et al. [2024] through the introduction of an exploration
parameter -y, which implicitly constrains importance weights. This perspective aligns with the idea of
selecting a "safe" behavior policy, which is formalized in this work.

B Proofs of Section 2

In this section we provide the calculations for the divergences summarized in Table 1. We start with
the computation of the mean-KL divergence.

Lemma B.1. Let Iy = {71,..., 7N} be a set of target policies. We define the arithmetic mean T as

N
1
T(ag) = ﬁZm(ak) forevery ke K.

i=1

Furthermore, let Dy, (Ilx|m) = % Zf\il Dy, (7, my) be the average right KL divergence. Then
it holds true that
N

DKL(HN|7Tb) = <H(7T) — ]:t]ZH(ﬂ—z)> + DKL(f|7Tb),

=1
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where H(m) = =% . 4, (a) log 7(a) is the entropy. Furthermore, choosing m, = T minimizes the
average right KL divergence.

Proof. We can compute the average KL divergence as follows:

Dxri,(Ily|p) = Dxr,(m;, mp)

2=
M-

«
I
—

mi(ax)

;i (ax) log o (ar)

I
2|~
-

-
Il
A
o
Mm
=

I
2|
-

N
mi(ax) log m;(ay) Z Z ;i (ax) log mp(a)
i=1 k€K

lzlekEK 1 N
= N;H —%logwb(ak)ﬁgm ag
= (H(W) - ;ZH(M)> - Z log my(ak )7 (ax) — H(T)
=1 keK

N
= <H(7T) - ;]ZH(MO - Z log s (ax )7 (ak) + Z 7(ak) log 7T (ax)
i=1

kEK keK
1 N
- <H(7r) - ¥ ZH(m)> + Dk (7|ms)

With this form of the average right KL divergence, we now want to choose p, such that this term is
minimized. We can see that we can split the formula into two parts

N
DKL(HN|7T(,) = (H(Tl’) — ;ZH(WQ) + DKL(f|7Tb).

We immediately see that the first part is independent of the choice of 7. This implies that we only
have to minimize the second term. The KL divergence of two distributions is minimized, if both
distributions are the same, because then log £ = 0. Overall this says that Dy, (I |7,) is minimized
for the choice of m, = 7.

Another common measure from the class of f-divergences is the Hellinger distance. The Hellinger

distance has the property, that the square root is also a metric.

Lemma B.2 (Mean-Hellinger Distance). The minimizer of the mean-Hellinger divergence,

min Z Dy (m; || )

TEA 4
is given in closed form by
2
| (# 2 vml@)
™ (a) =
2
K N
Dbt (% 2im1 V 71'i(b))
Proof. First note that
| MK
1 Z Dra(mi || ) = 5 ;;(m—(a) +7(a) - 2/m(a) 7(a) ).



Up to an additive constant 55z >, , mi(a), we equivalently minimize

K 1 N
3 [% m(@) = + > Vm(@) 7r<a)} .
a=1 =1
That is, N
7rrneig [% m(a) — m(a) W(a)} , where m(a Z::

Form the Lagrangian with multiplier A for the simplex constraint:

L(m,A) =Y _[27(a) —m(a)y/7(a)] + AD_w(a) - 1).

a a

Differentiating with respect to 7(a) and setting to zero gives

__mfa) _ _mfa)
5_2\”(&)—%)\—0 =Vl - L+23

Since 1 + 2 is constant across a, we deduce

Vrla) xm(a) = w(a) x m(a)? = (

>

> V)

i=1

z|=

Normalizing over a = 1, ..., K yields the claimed form. O

Note, that the x2 divergence is closely related to the variance, therefore the following result is also
important for the variance optimization problem.

Lemma B.3 (Mean-Y? Divergence). The solution to

min — ZD (mi||m),  with Dy (m;||m) := Z (M(a)ﬁza;T(a))7

a

is given in closed form by

Proof. We rewrite the objective as

Ignoring constants, we solve

min Z Z ﬂ-l

TEA 4

Forming the Lagrangian with multiplier A:

> mi(a)®
L(m, ) = Ea th)\ E m(a) —1].
Setting derivative with respect to 7(a) to zero:

_Zi mi(a)?

@ T A=0 = m(a)?x) ma)

Normalizing gives the claimed result. O
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Note that optimizing the mean variance has the objective as minimizing the mean x?, i.e.
2
Z > mi(a) '
— ()
Therefore, the same Lagrangian argument as in Lemma B.3 applies, yielding the same closed-form

solution.

Last, we consider the max variance, which is a popular optimization goal in the literature, but as it
turns out, does not have a closed-form solution.

In the table we did not list the objectives, if one tries to minimize the maximum distance of for
example the KL or the variance. Next, we will state for both of these cases another computation in
form of solving an additional program is required.

Lemma B.4 (Max-KL Divergence). The problem

min  ma D ;
‘n’EAAiE{l,..i(N} kL (i)

can be written as the convex program

mi{l t s.t. Dgp(mi||7w) <t,Vi, Z?T(a) =1, w(a) > 0.

a

Proof. Introduce auxiliary variable ¢ and rewrite:

71'1'((1)
m(a)

Each KL constraint is convex in 7, so the overall program is convex. This has no closed-form solution
and instead requires to solve an additional convex program. O

nﬂpglt s.t. Zm(a) log <t, Vi.
a

Lemma B.5 (Max-Variance of Importance Weights). The problem

2
min max Zm(a)

TeALie(l,...,N} m(a)

a

can be formulated as the convex program
: mi(a)
min ¢ s..
™, Z 7(a)
a
Proof. Introduce auxiliary ¢ and rewrite the problem:

. mi(a)? .

1. < .

nTrrntnt s.t g ( <t, Vi
a

7(a)

2

<t,Vi, Zﬂ'(a) =1, w(a) > 0.

a

Each constraint is convex in 7(a) since 1/m(a) is convex. This does not have a closed-form solution
and instead requires to solve a convex program. O

C Proofs and additional details of Section 3

In this section, we give the omitted proofs and additional details of Section 3.

C.1 Bounding the Importance weights

Next, we provide the proof for the bounds on o1g depending on the chosen behavior policy.

Lemma C.1 (Upper Bound on IS Weight under x?-Barycenter). Let A be an action set with | A| = K,
and let {m},{il C A be N probability distributions over A. Define their x>*-barycenter by

Y mi(a)?

me(a) = .
DONPRYD DARE A(JE

16




Then the maximum importance-sampling weight

mi(a)
g|s — max
i€[N],acA Ty2(a)

satisfies the bound

ois < min{ N, VNK}.
Proof. First, let us consider the case K > N, then we get

a ORVONENOE
X (@ b J

J

b J

where we applied /> m;(b)> < >, 7;(b) and used that the policies are probability distributions.
Next, let us consider the case X' < N. By definition,

mi(a) 2op /22 i (b)?
me(a) > mi(a)?

Since max; m;(a) < />, m;(a)?, it follows that for all a,

Now, we apply the Cauchy Schwarz inequality to obtain

N N
Z=> | w2 < K> > m(h)?=VKN.

beA \ j=1 b =1

This completes the proof. O

We can summarize our results and add the Hellinger distance in the following lemma.
Lemma C.2. If wj(-) := %()) are the importance sampling weights of m € 1l with respect to
Ty € {TKL, THel, Ty2 }, then the maximal weight

ors = max max wy(a 8
1S welly acA b( ) ( )

is bounded by N for wxy,, min{v KN, N} for w2 and N? for myel.

Proof. The proof for w1, follows directly from the definition. For > we can apply Lemma C.1.
Last, consider 7], it follows by the definition

A mi(a) — max mi(a) Z(lim>2.
Mo = o, ey Y

For the second term, we now apply Jensen to get

N 2
3 (}VZW(w)) < Z%Zm(aq . %21:1.

a’ i i

Next, we consider the first part and get

A
/
2|
BB
|l &
S/ ~—
N——
i)
Il
2
v[\')

mi(a) - @\
(A5 ve@) <k25—1 m(a)) )

which yields the desired upper bound. O
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C.2 A continuous armed extension

In this section, we elaborate how our approach also works in the case of continuous armed bandits.
First, note that our results do not scale with the number of arms, therefore we only need to check
the assumptions on the derived theorems. The only theorem, where we explicitly needed discrete
distributions is Lemma B.1. Fortunately, we can give a continuous extension of the theorem. Note
that for x? no extension is needed as Lemma B.3 already applies for the general case.

Lemma C.3. Let Iy = {m1,..., 7N} be a set of continuous distributions. Then, the solution to (3)
KL as an objective is given by
1
TKL -— N z; ;.
i=

We call this the continuous KL-barycenter.

Proof. First, we rewrite the average KL divergence and get

Dir(mnllm) = ZDKL (73 |ms)
1 N oo . mi(a)
= NZ/ mi(a)log (m,(a)) da
N oo
;V; / mi(a) log (mi(a ;VX_: / a)log (my(a)) da
= —Jb;H(m) Z/ a)log (mp(a)) da,

where H(m;) is the differential entropy of policy 7;. Note that, the first part is independent of
the behavior policy ;. Therefore, we will only consider the second part and get the following

optimization problem
maX—Z/ a)log (m(a)) da.

We can write this as a Lagrange optimization problem with the constraint that [ m,(a) da = 1. The
resulting Lagrange function is given by

Z / @) log (m(a)) - A [ m(a) da

Then, computing the derivative shows that

O

This shows that we can translate our results to the continuous setting, we only need to introduce some
further technical translations. In the case of density functions the importance weight is then defined
by w{g is then called the likelihood ratio and in the most general case, we need to introduce p := g;rz ,
which is the probability density of 7; with respect to 7, the so called Radon- Nikodym derivative.
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C.3 Proof of Proposition 3.2

Proof. Recall, that by assuming R..-subgaussian rewards, Hoeffding’s inequality immediately implies

P(@ () — v(r) > &) < exp (—(320’;)) |

Hence, given § € (0, 1), with probability at least 1 — & we have

v(m) > Op(m) — V%R*UIS\/@

for all m € Ily. Similarly, it holds that

ﬁn(’ﬂ') ( ) 1 R Ulsﬂlog

for all 7 € Tl . Furthermore, let 6 € (0,1) and 7,, := argmax;_; __y Un(7), then with probability
atleast 1 — 4,
1 N 1 N
v(Ty,) > Op(my,) — ——=Ryo154/log(—) > v,,(7,) — ——=R.0151/log(—
(7n) () o IS g(é) (74) — o IS g(é)
2 N
> v(my) — —Ryo log(—).
() = <= Ruosflos( )
It follows that
2
R(ﬂ'n) < :;%R*O-IS IOg(?%
with probability at least 1 — 4. O

C.4 Proof of Proposition 3.3

Proof. We define our multi-armed bandit model by A = (a1, as), 7T§N) =(1-+%,+%)andm,
(N) _ ( 1

=Ty +> 1 —1/N). The behavior policy computes as
2(N —1) (N-1)2+1
mi () = S, men(az) = S

Further, we consider deterministic rewards
R(al) =T, R(CLQ) =To, T1>T2 >0.

By the choice of 71, as such that the policies satisfy that v(7;) > v(me) = - -+ = v(7y), which
guarantees
"L mo(Ay) — i (A -
P(R(7n) > £) > P(Bn(m2) > Tp(m)) = P> WR(AQ >0) =P Z(A) > 0)
t=1 ¢ t=1
forall 0 < e < w(m) — v(ms). Next, we define
7r2(a1)—7r1(a1) 2N—N2
= = <0
malo) L 2(N-1)
" (02) ~mifas) __N?-2N
T2l ) — m1(A2 -2
= = 0
=2 7TKL<(12) "2 (N — 1)2 + 1T2 -
for N > 3. Note that it holds that
N -1 N-1
P(Z(A;) = z1) = mkL(ar) = 2? =21 and P(Z(A:) = 29) = mxr(ag) = 1-2 N =
such that 704
Z(Ay) = ZA4) == ~ Ber(zs)
zZ9 — 21
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Now, we define ro = (1 — A)ry for A > 0. Note that, it immediately follows r; > 7o and
v(my) > v(me). Furthermore, we get that

1-2 1-2/N
(S STy ey

B , (1-)) 1
L (e

g2 — 21 =

It then follows

2 1 /< 1 N 1—X )_ 1
m-a AN-DI\2AN-1)  (N=12 1) 1o

° 71'2(1415) — 7T1(At) o ~ . nzy
’ <Z ma(d) A 0) ’ <; > 5= Zl) ©)
1

V2n

where we applied Lemma 4.7.2 from Ash [1990], also documented for completeness just below the
next proof.

>

—Z1
exp(=nD(——"—z2))

With the definition of D, we get

— 1 — I
D( Zl |z2)) := — 1 log (— i ) +(1- i )log ( 2= ) :
zZ9 — 21 zZ9 — 21 zZ9 — 21 X9 Z9 — 21 1—I2

With the choice of A = 1/N — m > 0, for N > 3, we get

It then follows that

- s (At)—ﬂ'l(At) L nzy
P <Z WR(&) > o) P (Z Z(A) > — >

=1 t—1 72— 2
1
> exp(—nD T
> —— exp(-nD(—— |»)
> e (- (e (aeg)
exp | —n 0
= Van b 1+2 B\I-Z+ &
e (o (e (2% 0%))
= exp | —n 0
Von P 1+z - 2%+
1 I
2 exp (—n( 2 N22 N34)
2n 1+N1_N2+N3
1 < 2(N —2)N >>
= exp | —n YaYD
V2n (N + 2)2(N2 — 2N +2)
> 1 e < n>
[ —
~V2n P 20%
(10)
O

The idea of the following proof is the same compared to the last one. However, a different hardness
bandit construction is needed.
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Proof. Recall, that by assuming R..-subgaussian rewards, Hoeffding’s inequality immediately implies

2n
P(0 () — v(m) > €) < exp (‘(1%2;15)2> '

Hence, given 0 € (0, 1), with probability at least 1 — ¢ we have

v(m) = n(m) —

for all m € IIy. Similarly, it holds that

N
R.o1s log(g)

1
V2n

Up(m) > v(m) — \/%R*UIS log(%)

for all 7 € II . Furthermore, let § € (0,1) and 7,, := argmax;_; __n Un (), then with probability

.....

atleast 1 — 6,
1 N 1 N
v(T,) > Up(my,) — —R.0 log(—) > 0, (s ——R,0o log(—
() () V2n IS g(é) () — NeT IS g(é)
2 N
> v(my) — —R0 log(—).
( ) \/% IS g( 5 )
It follows that
2 N
R(7n) < \\/QR*UIS log(),
with probability at least 1 — 4. O
Next, we give the case for .
Proof. We define our multi-armed bandit model by A = (a1,a2,...,an), 7T£N) =
(1,0,...,0),m (N) =(0,1,...,0),. 771(\, ) = = (0,0,...,1). The behavior policy computes as
1 1
7TX2(Q1) = N — e = 7TX2(G,N) = N .
Further, we consider deterministic rewards
R(a1) :==r1, R(ag) :=r2, 711 >722>0.
By the choice of 71,9 as such that the policies satisfy that v(7;) > v(m2) = - -+ = v(7y), which
guarantees
o (Ay) — mi(Ay) -
P(R(7,) > €) > P(Up(m2) > Un(m1)) Z —R(At) >0) =: IP(Z Z(At) > 0)
t=1 t=1
forall 0 < e < w(m) — v(ms). Next, we define
7T2(a1)—771(a1) 0—-1
= = =-N 0
21 7TKL(a1) 1 1/N 1 ry <
and
PO ) 1 C2) N
Ty2(az)
for N > 3. Note that it holds that
1 1
P(Z(As) = z1) = my2(ar) = N = and P(Z(Ay) =2z)=1-me(a)=1- N = %2
such that 704
24 = 24D = g
zZ9 — 21
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Now, we define ro = (1 — A)ry for A > 0. Note that, it immediately follows r; > 7o and
v(my) > v(me). Furthermore, we get that

29 — 21 = N7’1(2—A)

It then follows
Z1 NT1 1

e — 2 :NT1(2—)\)_2—)\'

t=1

(11)

- 71'2(1415) —7T1(At) L nzy
P<Z7TKL(At) R(A, ) P(ZZ (Ay) >—Z2_Z1>
]_ _

where we applied Lemma 4.7.2 from Ash [1990], also documented for completeness just below this
proof.

With the definition of D, we get

— 1 — I
D(— L |la)) i= ——— log (— & ) +(1—— )log ( Z ) .
zZ9 — 21 zZ9 — 21 zZ9 — 21 X9 Z9 — 21 1—I2

With the choice of A =1 — % > 0, for N > 3, we get

It then follows that

"L mo(Ay) — w1 (Ay) B I _nz;
P (Z T(At)R(At) > 0) =P <Z Z(Ay) > - z1>
1

t=1 t=1
> —— exp(—nD(—— |[z2))
\/% Z2 — 21
> 1 exp(—n( 1 log( 1 )))
= Von 1+ 2 l+ & -5+
1 1 N2 —2N —2
\/ﬂeXp(n(1+2210g(1+N3—N2+2N+2>>)
_ 1 eXp(_ﬂ( 1 N2 —2N —2 ))
~V2n 1+ 2 N3 —N2+2N +2
1 N* —2N3 —2N?
:meXp<_"(N5N4+4N3+4N+4)>
> L exp(—n>
T p—
(12)
O

Lemma C.4 (Lemma 4.7.2 in Ash [1990]). For k > np it holds true that
1
P(Bin(n,p) > k) > ————————exp(—nD(k/n ,
(Binn,p) 2 ) 2 s exp(-nD(k /)

where D(:||) is the Binary entropy function.
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C.5 Proof of Proposition 3.6

Proof. First, note that the x? divergence and KL divergence can be lower bounded by the squared
Hellinger distance in the sense that

Diy(rim) = 5 Y (Ve — vVm(a@) < 3 Dxalmi | m) < x| ).

aEA

Hence, by assumption it holds that D% (m;, 7,) < 1 implying that, for all a € A,

(Vata) - V(@) <29, (13)

Leti € {1,...,N} and a € A be arbitrary. First note that :bgzg < N is always satisfied by

construction of 7. For m;(a) < m(a) we obviously have :ZEZ% < 1. Next, consider the case

m;(a) > mp(a): Using (13), we have

0 < v/mi(a) < V20 + Vm(a) .
Vmi(a \/7"' VT V21

er W = e

The assertion follows by taking the square on both sides. O

This implies that

C.6 Upper bound of the weights for the safe policy

Proposition C.5. Suppose that D,(7; | my) < nfor v € {KL,x2} foralli € {1,...,N} and
my(a) > 0 forall a € A. For any \ € (0, 1) it holds that

mi(a) <min< N 7 1 Jr277KJr 2v/2nK >
1—X"1-=X\ A V1= MW\

Moreover, suppose that n < 1 and let \(n) := /7, then

Ogsafe ‘= Max
T e mhp(a)

. N 1 2.2/
< —_— | .
Usafem1n<1_\/ﬁ71_\/ﬁ+2\/ﬁK+ m)

Proof. Recall, that the x? divergence and the KL divergence is lower bounded by the squared
Hellinger distance. Leti € {1,..., N} and a € A be arbitrary. First, in the case 7;(a) < mky(a),

we have
mi(a) < m(a) < 1
(@) — (1=Nmp(a) +A/K — 1 =X~
In the case m;(a) > mp(a), it holds that

0 < Vmia) <20+ Vm(a),

and therefore, we have

mi(a) _ 20+ 2y/%y/m(@) + m(a)

Toge(a) (1=XNmp(a) + A/ K
< 20K + 2v/20\/my(a) mp(a)

A O Mm(a )+>\/K\/)\/K T A= Nm(a) + MK

MK J/a K 1
== 22 Amo(a vE + 3

<
- \/ ) ()+)\/K\/1f)\f
277K 1
< +2./2n
o= f
which verifies the first claim. The second claim is a direct consequence. O
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D Proofs and additional details of Section 4
In this section, we provide the omitted proofs and additional discussions of Section 4.

D.1 Proof of Proposition 4.2
Proof. First, observe that

PR, ¢ K1) =P( U {max 3V () — max 5V (x) > A})

j=2,....M "meK; TeEK,
M
<Y P(max 39 (7) — max oM () > min(A,¢))
— TeEK; TeKy
J_

P () _ (1) >
(}ggg v () — max () = €)

o

<
||
N

and we proceed by considering each probability in the last line separately. Let j € {2,..., M} and
decompose as follows

max 37 (m) — max 50 (r) = max 5 (r) — (@) + o@?) — v(@D)

(1)

+o(m") — max o (7)

TeKy

< 50) (1) — w(x ) )y _ ~(1)
< magx 59(r) — v(r) + o) — max 5(m)

almost surely due to the assumption U(?Tij )) - v(m(‘l)) < 0. Hence, we have

P(max 9% (1) — max 9 () > ¢) < P(| max 39 (x) — v(z)| > £/2)

nEK; TeKy TEK;

+P(jo(xlV) = max 50 ()| > £/2).
TeK,
Forall j € {1,..., M} it holds that

5D () — (> £) < 5D () — () > & (Y _ 70 (> €
P(| max ;7 () —v (s )|72)7P(7{%‘}§§ v (m)—o(m”) 2 3)+P(o(m:) max Oy (m)=3)

TeK;

<P( U {79 () — (@) > eN+P(EY) - 59 (x) > 2)

WEKj
< (N ey
( J —+ 1) eXP(_?RzJE)
6271
= (N; + 1)eXp(_W)’

where we have used Hoeffding’s inequality for R.-subgaussian rewards. In total we obtain

_ e2n e2n M
P(m, ¢ K1) < (M —1)(N1 +1) eXP(—W) +eXP(—W);(NJ +1)
— exp(— V(N 4+ M+ (M = 2)(Ny + 1)
~ P oM R0 !
which is bounded by ¢ by the choice n > n(e, d). O

Remark D.1. The derived upper bound could be further tightened by leveraging the fact that
all policies within a cluster are inherently "similar". Specifically, we could refine the bound by
incorporating the observation that the difference |0(m) — 0(7)| remains small for any pair of policies
7 and 7 within the same cluster. However, this refinement would only lead to an improvement in the
logarithmic factor of the bound. Given its limited impact on the overall result, we omit this adjustment
Sfor simplicity.
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D.2 Proof of Theorem 4.3

Proof. Letm, = argmax, .y, v(7)and 7, be defined in (6). Using the law of total probability we
obtain

Pu(my) —v(Tn) > &) =P, ¢ K1)P(v(me) —v(T) > | Tn ¢ K1)
+P(7, € K1)P(v(mi) —v(Tn) > € | T € K1)
<P(7n ¢ K1) +Po(my) —o(Tn) 2 e | Tn € K7)
<P(Fn ¢ K1) +P(|v(m) — 0 (m)| > €/2 | 7n € K1)
—HP’(|A(1 (me) —v(Tn)| > €/2 | T, € K7).
Firstly, by the proof of Proposition 4.2 we have
e2n
P(@, ¢ K1) < (N+ M+ (M —2)(N; + 1))exp(—m).
Secondly, due to Assumption 4.1, 7, € K;, we have
2

g™

P(jv(me) = 0 ()] = €/2 | w0 € K1) = P(lo(m) — 030 (m)| 2 £/2) < 2exp(— MRI2)

where we have again used Hoeffding’s inequality and the choice n = n(e, ¢). Finally, we consider
the last term

P([o5) () = v(Ta)| 2 /2 | o € K1) S PO (m) = 0(@n) > €/2 | Tn € K1)
+Pw(@,) =0V (1) > /2 | 7p € K1)

Using the fact v( )(71'*) < ﬁﬁll) (7,,) conditioned on 7,, € K7, it holds that

PO (1) — 0(Fn) > €/2 | Tn € K1) <POW @) —v(7n) > /2 | 7n € K1)
P( Y { W (m) —v(m) > e/2} | 7n € K1)

=B(_U {3(m) ~o(r) > ¢/2))
< 3 PED(r) - v(r) > ¢/2)

TeK,

E?’l

= M5

where we have used Hoeffding’s inequality. Similarly, since v(7,) < v(m,) almost surely, by
Hoeffding’s inequality we obtain

P(v(7n) — 0 (m,) > €/2 | Tn € K1) < P(v(my) — 0 (1) > €/2 | Tn € K1)
=P(v(m,) — 0 (m,) > ¢/2)
e2n

< (=5 Rz, )
Overall, we proved that

e’n

P(o(ms) = v(Fn) > &) < (N1 +3+ N+ M+ (M = 2)(N1 + 1)) exp(—575—)
=24 N+M+(M—1)(N + 1))exp(—%1;02)-

2M R2 02 log( 2+N+M+(J;I—1)(N1+1) )

Choosing n = n(e,d) = —= the righthand side simplifies to § and the
claim follows. O
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D.3 Problem-independent expected regret bound

Corollary D.2. Suppose that Assumption 4.1 is in place, and ny = --- = ny;. For any M €
{1,..., N} the regret is bounded by

) Amax MN, 2M 3/2 log(N /)
< N oV V. J
E[R(7,))] < T (1 + Nty > +V2M3/?R, 0, m

)

wheren = M - nq.

Proof. Let Aj :=v(m,) — ’U(?Tij)),j = {1,..., M}. Without loss of generality assume that A; = 0
and A; > Oforall j ={2,..., M} with A; < max; A; =: Apax. For arbitrary n > 0, we have

E[R(#n))] = E[v(m.) — v(@)]

> El(w(m) —v@)r.ex,]+ > El(v(m) — v(@a)lz,ex,]
J:A;>n J:A;<n

> AnaxP(Fn € Kj)+ Y nP(fn € K)
JiA;>n JiA;<n

AmaXP An An b
Z (}ng}év (7r)>71:1éz}mév (7)) +nM
J:A>n

IN

IN

where we have used Z]M=1 1%, ex, = 1 almost surely. By the proof of Proposition 4.2, for j €
{2,..., M} with A; > n we have

A~ o 2n
P(Trrré&% O () > max bn(m)) < (Nj + N1+ 2) exp <_2]\;R§a§> '

Thus, for the choice of

, - \/ log(N /n)2M R202

n

we achieve an overall expected regret bound

2
. n°n
BREDIS 3 Doy + M+ D (- sz )+

2
nn
§ Amax(N+MN1 +2M)exp <WR%0'3> +77M
A MN, 2M , log(N /)
< 1 —_— IM32R, 00| ——Y—
< ( +— N>+f R.o m

E Details on experimental setup
In this section, we provide details on the experimental setup and the full algorithm for the clustering
procedure.
The clustering algorithm is given in Algorithm 2.
The experiments are conducted by following the procedure below:
1. We construct a multi-armed bandit environment by defining a reward distribution and the
number of arms. The reward distribution for each arm follows a Gaussian distribution.
Specifically, we set the number of arms to 100, with the highest mean reward of 3 assigned

to arm 1, decreasing linearly by 0.05 per arm until arm 100. The variance is sampled
uniformly and independent from (1, 3).
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Al

gorithm 2 Hellinger-based clustering for behavior policy design

Require: Number of clusters M, set of target policies I1

. . . . . 1
Ensure: Cluster assignments and computed behavior policies {7y, - - -, TRY,

Ju—

M

: Initialize an empty set Ilsqrttargets
. i .
¢ for Tiyee € N

Compute element-wise square ro0t: T arper = 1/ Marget

Add Trgqularget to qurttargets
end
Apply KMeans clustering to Ilsq ttargets:
clusters < KMeans(Ilsqrttargets; M, Metric = D)
for j =1to M:
Compute behavior policies 77 according to chosen f-divergence, ensuring it remains a valid
probability distribution
end

2. We set the number of target policies to N = 1000. For each policy and each arm, we
sample a weight uniformly from (1,2). To introduce structured dependencies among
target policies, we form groups of policies that prioritize specific arms by adding an ad-
ditional random weight sampled uniformly from (1,10) on those arms. In particular,
we create 6 groups of the following sizes [25, 50, 25, 825, 50, 25|, with preferred arms
[[2],[3, 5], [22, 24, 34], [23, 99], [99], [53]]. To ensure that every policy assigns positive prob-
ability to all arms, we transform the sampled weights into softmax policies using a tempera-
ture parameter of 1.

3. Given the set of target policies, we apply Algorithm 2 to obtain the KL-barycenters and the
x2-barycenters corresponding to different clusters.

4. Finally, we compute the importance sampling estimates for all target policies using a fixed
sample size. In the case of clustering, the samples are distributed uniformly across the
clusters.
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