
Under review as submission to TMLR

Utilising Gradient-Based Proposals Within Sequential
Monte Carlo Samplers for Training of Partial Bayesian Neu-
ral Networks

Anonymous authors
Paper under double-blind review

Abstract

Partial Bayesian neural networks (pBNNs) have been shown to perform competitively with
fully Bayesian neural networks while only having a subset of the parameters be stochastic.
Using sequential Monte Carlo (SMC) samplers as the inference method for pBNNs gives
a non-parametric probabilistic estimation of the stochastic parameters, and has shown im-
proved performance over parametric methods. In this paper we introduce a new SMC-based
training method for pBNNs by utilising a guided proposal and incorporating gradient-based
Markov kernels, which gives us better scalability on high dimensional problems. We show
that our new method outperforms the state-of-the-art in terms of predictive performance
and optimal loss. We also show that pBNNs scale well with larger batch sizes, resulting in
significantly reduced training times and often better performance.

1 Introduction

Bayesian Neural Networks (BNNs) are a class of machine learning models that incorporate uncertainty quan-
tification into deep learning. Previous research has shown the benefit Bayesian methods can bring to certain
problems within deep learning (Gal et al., 2017). However, computing the exact posterior distributions of
BNNs is a difficult task as traditional methods such as Markov chain Monte Carlo (MCMC) (Hastings, 1970)
are computationally poorly suited to exploring high dimensional spaces and dealing with large amounts of
data. Parametric methods such as variational inference are better suited to these difficulties, but only give an
approximation to the posterior distribution. These spaces have been found to be highly complex (Izmailov
et al., 2021) and therefore variational methods often give a poor approximation of the posterior.

Sequential Monte Carlo (SMC) samplers (Doucet et al., 2001) are an alternative to MCMC methods which
also provide an empirical estimate of the posterior distribution. SMC samplers are instantly parallelisable
(Varsi et al., 2021) and therefore can take advantage of the GPU resources commonly used in machine
learning to speed up the training process. MCMC methods often require a warm-up period to adapt the
hyperparameters, after which the chains can be parallelised. However, the hyperparameters must remain
fixed after this warm-up period to obey stationarity. This means that SMC samplers can be more flexible than
traditional MCMC methods when it comes to continual hyperparameter tuning. However, as a parametric
Bayesian method, SMC samplers still struggle with similar issues to MCMC in terms of dimensionality and
dataset size.

In recent years, partial Bayesian neural networks (pBNNs) have been proposed as a potential “model solution”
to the high dimensionality issue (Sharma et al., 2023). pBNNs only consider a subset of the parameters to
be stochastic and despite this reduced dimensionality, have been shown to have superior performance to that
of fully Bayesian neural networks (BNNs) (Sharma et al., 2023; Rochussen, 2024; Lim et al., 2024). More
formally, let f(x;θ,ψ) be a neural network model governed by a set of deterministic parameters (ψ) and
a set of stochastic parameters (θ) initially generated from a prior distribution q0(θ). If we have a dataset
(xn, yn)N

n=1 with a likelihood function p(yn|θ,ψ), then our training procedure has two objectives; to learn
the deterministic parameters from the dataset and to compute the posterior distribution p(θ|y1:N ,ψ). It

1

Under review as submission to TMLR

has been shown in previous work (Sharma et al., 2023) that placing the uncertainty on the first layer of the
pBNN empirically gives the best output. This may be because the majority of the randomness is aleatoric
and originates from the data. Therefore it is difficult, when applying VI, to chose a parametric distribution
to model the uncertainty correctly. This difficulty motivates non-parametric modeling of the uncertainty.

Using MCMC for the stochastic parameters would be theoretically invalid, as the target necessarily changes
at each iteration due to the update in the deterministic parameters. SMC is a more flexible sampling
approach and is therefore more suited this type of problem where the target is iteration dependent and leads
us to the main motivation for studying and applying SMC samplers to pBNNs.

In this paper, we introduce gradient-based Markov kernels into the pBNN training process to help us more
efficiently navigate the high dimensional spaces encountered in neural networks (NNs). More specifically, we
introduce a new class of guided SMC samplers with gradient-based Markov kernels for training pBNNs. We
then analyse both performance and runtime of the different proposal methods using multiple batch sizes. We
demonstrate that larger batch sizes can be used without compromising performance, enabling significantly
reduced training times. In most cases, our method outperforms the original Open Horizon SMC (OHSMC)
method (Zhao et al., 2024), with improvements particularly pronounced when the dimensionality of the
stochastic layer is high.

The paper is structured as follows. We provide a basic background of how SMC samplers work and how to
apply them to a pBNN setting (Section 2). We then introduce the Guided Open Horizon SMC framework
and how to incorporate gradient-based Markov kernels which will be compared to the random walk (RW)
approach in later experiments (Section 3). The experimental set up, datasets and parameters are given
(Section 4) where we also discuss the performance of the approaches on loss, classification accuracy (where
appropriate), runtime and other metrics. Finally, conclusions and further work suggestions are provided
(Section 6).

2 Partial Bayesian Neural Network Training by Sequential Monte Carlo Samplers

2.1 Sequential Monte Carlo Samplers

SMC samplers are a subset of Bayesian inference algorithms which are often used when directly sampling from
the posterior distribution is difficult. At the heart, SMC samplers sample from a sequence of distributions
and approximate the distribution via a weighted set of samples (particles).

We aim to sample from a (potentially unnormalised) target distribution π(θ). We initially sample a set of
J particles from a prior distribution with corresponding weights

θ
(j)
0 ∼ q0(·). (1)

Typically each particle is assigned an initial weight

w(j)
0 = π(θ(j)

0)
q0(θ(j)

0)
. (2)

After this initialisation, we start the main sampling loop, running for T iterations. At each new time step t,
the weights are normalised via

w̃(j)
t = w(j)

t∑J
j=1 w(j)

t

. (3)

In order to avoid particle degeneracy, we employ resampling into the SMC process. Resampling happens
when the effective sample size Jeff drops below a certain threshold. Typically this threshold is set to half
the number of samples. i.e. we resample when

J

2 > Jeff = 1∑J
i=1(w̃(j)

t)2
. (4)

2

Under review as submission to TMLR

Algorithm 1 SMC sampler for T iterations and J samples.

Sample {θ(j)
0 }J

j=1 from q0(·)
Set initial weights w(j)

0 using equation 2
for t = 1 to T do

for j = 1 to J do
Normalise weights using equation 3

end for
Calculate Jeff using equation 4
if Jeff < J/2 then

Resample [θ(1)
t ...θ

(J)
t] with probability [w̃(1)

t ...w̃(J)
t]

Reset all weights to 1
J

end if
for j = 1 to J do
θ

(j)
t ∼ qθ

t (·|θ(j)
t−1)

Update sample weights w(j)
t using equation 6

end for
end for

Many different forms of resampling can be used such as stratified, residual (Liu & Chen, 1998) and systematic
(Kitagawa, 1996). In our implementation we have used the multinomial resampling method (Douc et al.,
2005). If resampling occurs, the weights are then set to 1

J .

New particles are proposed using a Markov kernel

θ
(j)
t ∼ qθ

t (·|θ(j)
t−1) (5)

which is a chosen method used to propagate the samples generated at t − 1. The choice of this kernel will
be covered in later sections.

Once these new samples have been generated, we weight them according to the following update rule:

w(j)
t = w(j)

t−1
π(θ(j)

t)
π(θ(j)

t−1)
Lθ

t (θ(j)
t−1|θ(j)

t)
qθ

t (θ(j)
t |θ(j)

t−1)
, (6)

where Lθ
t (θt−1|θt) is denoted as the L-kernel, also known as the backward kernel. It is worth noting that

if resampling has occurred at the current iteration, then when performing the weight update, the previous
iteration weight is 1

J .

A thorough overview of this concept and SMC samplers as a whole can be found in (Del Moral et al., 2006).
The pseudocode for an SMC sampler implementation can be found in Algorithm 1.

Weights and Samples Terminology

We recognise that the term weights is often used as a synonym for neural network parameters. In this
paper when using the term weights, we are referring to the weights for the corresponding samples in
an SMC sampler as outlined in Section 2.1 and we will refer to the values neural network nodes as
parameters in order to avoid any confusion.

The term particles is often used interchangeably with samples in the SMC literature. In this paper,
we use both terms synonymously as some concepts are known more commonly by a certain noun.
For example, the term particle degeneracy is more common than sample degeneracy so in this case
we will use the former which may be more familiar to the audience.

3

Under review as submission to TMLR

2.1.1 Gradient Based Proposals for SMC Samplers

The RW kernel is computationally efficient due its ability to propose new moves without gradient evaluations.
However, it has been shown to struggle in high dimensional spaces. Gradient based Markov kernels such as
the Metropolis adjusted Langevin algorithm (MALA) are also commonly used in the MCMC (Roberts &
Tweedie, 1996) literature and have also been adapted for use in SMC methods in recent years (Rosato et al.,
2024).

MALA combines the Metropolis-Hastings acceptance criteria with Langevin dynamics, which utilises the
gradient information to propose new states in a way that efficiently explores the target distribution. Langevin
dynamics describes the evolution of a particle under both deterministic forces (gradient of the log-posterior)
and stochastic forces (Gaussian noise). The proposed state is computed as:

θ′ = θ + h2

2 ∇ log π(θ) + hP (7)

where h is the step size, ∇ log π(θ) is the gradient of the log-posterior at θ, and P ∼ N (0, I) is Gaussian
noise. The proposed state θ′ is accepted with a probability given by the Metropolis-Hastings acceptance
criterion:

α(θ,θ′) = min
(

1,
π(θ′)q(θ|θ′)
π(θ)q(θ′|θ)

)
(8)

θ =
{
θ′ if u < α(θ,θ′),
θ otherwise.

(9)

where q(θ′|θ) is the proposal density of equation 7 and u is a random variable drawn from a uniform
distribution u ∼ U(0, 1). This step ensures that the Markov chain has the desired stationary distribution.

In our implementation of the SMC Sampler, we do not use the Metropolis criteria, instead relying on the
weight update to decide how much each particle contributes to the mean and variance estimate which
means we can forgo the accept/reject criteria normally implemented. Without the acceptance criteria the
distribution we are targeting would not be the stationary one. However, if we choose an L-kernel which
marginalises out the previous targeted distributions, we ensure that we draw samples from the posterior.
This allows us to use the unadjusted Langevin dynamics as a Markov kernel within the sequential importance
sampling framework. The weight update for an SMC Sampler with Langevin dynamics becomes equal to

w(j)
t = w(j)

t−1
π(θ(j)

t)
π(θ(j)

t−1)
LP

t (−P(j)∗)
qP

t (P(j)
t−1)

(10)

where Pt−1 is the Gaussian noise sampled at t−1 and P∗ is this noise having undergone an update step. We
have expanded upon the explanation of the Langevin proposal in Appendix B.1. The use of this in an SMC
context is given in Algorithm 2. The full justification of this proposal and details on the L-kernel associated
with it can be found in Rosato et al. (2024) and for completeness a brief derivation is given in Appendix B.

4

Under review as submission to TMLR

Algorithm 2 SMC Sampler with Langevin Dynamics for T iterations and J samples.

Sample {θ(j)
0 }J

j=1 ∼ q0(·)
Set initial weights w(j)

0 to equation 2
for t = 1 to T do

for j = 1 to J do
Normalise weights using equation 3

end for
Calculate Jeff using equation 4
if Jeff < J/2 then

Resample [θ(1)
t ...θ

(J)
t] with probability [w̃(1)

t ...w̃(J)
t]

Reset all weights to 1
J

end if
for j = 1 to J do

P ∼ N (0, I)
θ

(j)
t = θ

(j)
t−1 + h2

2 ∇ log π(θ(j)
t−1) + hP

Update sample weights w(j)
t using equation 10

end for
end for

Sample Diversity

While we have discussed particle degeneracy and effective sample size (ESS), it’s important to high-
light the role of particle diversity, which is essential for Sequential Monte Carlo (SMC) samplers to
accurately approximate posterior distributions.

When the ESS falls below a predefined threshold, resampling is triggered not only to mitigate particle
degeneracy but also to promote particle diversity, ensuring that the particle population continues to
explore high-probability regions of the target distribution.

A well-chosen Markov kernel can also improve particle diversity. For example, Langevin dynamics
incorporate gradient information to help guide particles toward more informative regions of the pos-
terior. This targeted movement improves both exploration and ESS, contributing to better posterior
approximation.

2.2 SMC for pBNNs, Stochastic Gradient and Open Horizon SMC

The SMC sampler in Algorithm 1 can be applied to sample the posterior distribution of the stochastic part
of the pBNN with π(θ,ψ) = p(yn|θ,ψ)q0(θ) ∝ p(θ | y1:N ,ψ). However, it remains to be shown how to
learn the deterministic part of the pBNN, in particular, when there is a large number of data-points D. For
example, the "SMC sampler for pBNN" (SMC-pBNN) algorithm given in (Zhao et al., 2024) and Algorithm 4
sequentially loops over the entire dataset and computes gradients after a full pass of the dataset. While this
guarantees accurate gradient estimation and posterior convergence, it incurs high computational cost.

The Stochastic Gradient SMC (SGSMC) Algorithm 5 builds upon this by instead using a mini-
batch/subdataset of data. If we denote a batch size M where 1 ≤ M ≤ D then let SM :=
{SM (1), SM (2), . . . , SM (M)} be a set of batch indices. We can then approximate our log-likelihood with
respect to ψ as

log p(y1:N |ψ) ≈ N

M
log p(ySM

|ψ), (11)

5

Under review as submission to TMLR

by only considering the subset of data ySM
. Moreover, the SMC sampler also allows us to simultaneously

compute an approximation of the gradient of this approximation to the log-likelihood

N

M
∇ψ log p(ySM

|ψ) = N

M
Ep(θ|ySM

,ψ) [∇ψ log p(ySM
|θ;ψ)] ≈ N

M

J∑
j=1

w̃(j)∇ log p(ySM |θ(j);ψ). (12)

Note that this approximation is biased due to the presence of the normalised weights, w̃(j).

This stochastic gradient is computed using the subdataset ySM
, and the expectation is taken over the random

batch indices. The SGSMC algorithm iteratively updates the particles and weights using the stochastic
gradient approximation. At each iteration of the gradient optimisation, a subdataset is sampled, and then
the SMC sampler is applied on this subdataset to estimate the gradient and update the pBNN deterministic
parameters. However, the SGSMC algorithm does not really sample the posterior p(θ | y1:N ,ψ). More
specifically, at each iteration, the algorithm sequentially loops over the data points in the subdata, and the
posterior distribution we obtain is a crude approximate p(θ | ySM

,ψ) on this subdata. This motivated (Zhao
et al., 2024) to come up with a so-called open-horizon SMC (OHSMC) sampler to tackle these issues. The
pseudocode for OHSMC is given in Algorithm 6.

At its heart, OHSMC merges the loop of the stochastic optimisation for ψ and the loop of the SMC sampling
in a principled way. Specifically, at each iteration of OHSMC, the algorithm randomly samples a subdataset,
and then approximates the gradient equation 12 and the target posterior distribution concurrently. Crucially,
the OHSMC can process the subdataset in parallel, while SGSMC sequentially loops over the elements in the
subdataset. Empirically, OHSMC also provides better approximation to the target posterior distribution by
linking the posterior distribution estimates across iterations. Unlike SGSMC, which independently restarts
from the prior distribution at each step, OHSMC uses the posterior from the previous iteration as the starting
point for the next. This warm-start strategy improves computational efficiency and maintains continuity in
the posterior distribution estimation.

Both SGSMC and OHSMC significantly reduce the computational load by processing only subsets of the
data, making them suitable for large datasets. The algorithms can be adapted to various latent vari-
able models, enhancing their applicability across different domains. OHSMC offers practical advantages in
implementation, particularly in environments like JAX and TensorFlow, by avoiding dynamic input size
issues inherent in SGSMC. Overall, the SGSMC and OHSMC methods provide robust, scalable solutions for
Bayesian inference in large datasets, balancing computational efficiency with accuracy. However, there are
a few challenges in OHSMC which remain unsolved, laying the groundwork for our improvements. We have
provided pseudocode for all of the discussed algorithms in Appendix A.

3 Guided OHSMC

We introduce a scalable framework which builds upon the OHSMC algorithm. The main criticism of the
original OHSMC is that it is based on a bootstrap version of Algorithm 1. Namely, they invoke a Markov
kernel that leaves invariant with respect to the previous posterior distribution. An explanation of invariance
is given in Appendix C. We hereby adapt it in Algorithm 3 by making the Markov kernel leave invariant the
current posterior distribution. This gives us a guided improvement of the original OHSMC by incorporating
information from the target posterior distribution. Consequently, this guided version yields a more effective
importance proposal leading to better statistical efficiency, as evidenced in the new weight update equation 6.
Another improvement we deliver is better scalability in high-dimensional θ. Unlike (Zhao et al., 2024) which
essentially uses a RW Markov kernel (Metropolis et al., 1953) (Givens & Raftery, 1996), we propose to use
gradient-based Markov kernels, in particular, the unadjusted Langevin dynamics outlined in Section 2.1.1
to better explore the high-dimensional latent space (Girolami & Calderhead, 2011; Neal, 2012; Liu & Liu,
2001). Moreover, by using the unadjusted Langevin dynamics, it unlocks a cancellation of the forward and
backward kernel evaluations in the weight update equation 6, thanks to the reversibility of the Langevin
process (Dai et al., 2022), so that the weight update is now tractable.

However, as our weight update is also conditional on the deterministic parameters, we have to alter it for
the pBNN context

6

Under review as submission to TMLR

Algorithm 3 Guided open-horizon sequential Monte Carlo (GOHSMC)

Require: Training data (xn, yn)N
n=1, number of samples J, initial parameters ψ0, prior distribution q0(·),

learning rate ϵ, and batch size M
Ensure: The MLE estimate ψt

Initialize samples {θ(j)
0 }J

j=1 ∼ q0(·)
Initialize weights according to equation 14
for t = 1, 2, . . . until convergence do

Draw sub dataset ySM (t) ⊂ y1:N
Calculate Jeff using equation 4
if Jeff < J/2 then

Resample [θ(1)
t ...θ

(J)
t] with probability [w̃(1)

t ...w̃(J)
t]

Reset all weights to 1
J

end if
for j = 1 to J do

Propagate particles θ(j)
t ∼ qθ

t (·|θ(j)
t−1;ψt−1)

Update weight w(j)
t with equation 13

end for
Normalize weights using (3)
g(ψt−1) = N

M

∑J
j=1 w̃(j)

t ∇ log p(ySM
t

|θ(j)
t ;ψt−1)

Update parameter ψt = ψt−1 + ϵg(ψt−1)
end for

w(j)
t = w(j)

t−1
π(θ(j)

t |ψt−1)
π(θ(j)

t−1|ψt−2)
LP

t (−P(j)∗)
qP

t (P(j)
t−1)

(13)

and

w(j)
0 = π(θ(j)

0 |ψ0)
qθ

0(θ(j)
0)

(14)

where we note that there is no optimisation of the deterministic parameters, ψ0, upon initialisation.

Inhibiting Overfitting with pBNNs

It is reasonable to ask why our method is less susceptible to overfitting compared to other methods
such as Deep Kernel Learning (DKL) (Wilson et al., 2015). In DKL, the composition uses a de-
terministic neural network as the first layer to transform the input data and feeds the transformed
data to a stochastic Gaussian process as the final layer. Subsequent research has found that this
method can sometimes be effected by overfitting and the effects can be worse than that experienced
in non-Bayesian alternatives (Ober et al., 2021).

In our method, stochastic and deterministic parameters are optimized jointly, while in DKL, MLE is
performed only once before the posterior computation. The uncertainty in the stochastic layers prop-
agates through the network during training, influencing the gradients of the deterministic parameters
in the later layers. We postulate that this is why it has been found in (Sharma et al., 2023) that it is
more beneficial to have the stochastic layers at the beginning of the architecture. This interaction acts
as a form of regularization and helps mitigate overfitting. Unlike typical deterministic optimization,
this approach implicitly incorporates uncertainty from the earlier layers into the learning dynamics
of the later ones.

The effectiveness of this method in reducing overfitting remains underexplored. While it shows
potential, there is currently limited theoretical evidence supporting its impact, making it a valuable
area for further investigation.

7

Under review as submission to TMLR

4 Experiments

The following experiments were conducted using the JAX framework (Bradbury et al., 2018) on an NVIDIA
A100 GPU. The stochastic parameters were initialised from a standard normal distribution N (0, I) and the
deterministic ones were initialised using JAX’s standard technique, Xavier initialisation (Glorot & Bengio,
2010). The full experimental set up and hyperparameters are given in Appendix D. In tables our method is
denoted as GOHSMC Langevin and in graphs it is labelled as "lv".

4.1 UCI Regression Datasets

The first experiments we have undertaken are on six common UCI regression datasets; The Red Wine Quality,
the White Wine Quality and the California Housing, Concrete Compressive Strength, Yacht Hydrodynamics
and Naval Propulsion. Further details on these datasets are provided in Appendix D. As a baseline we also
compared against five other common Bayesian approaches; the OHSMC algorithm, Variational Inference
(VI) (Graves, 2011), Stochastic Gradient HMC (SGHMC) (Chen et al., 2014), Stochastic Weight Averaging
Gaussian (SWAG) (Maddox et al., 2019) and Stein Variational Gradient Descent (Liu & Wang, 2019).

The network architectures are simple feed forward networks with three dense layers, connected by a GeLU
activation function (Hendrycks & Gimpel, 2023). The only difference between the networks used in each
experiment is the size of the first layer; the dimensionality of the first layers are 350 for the Yacht dataset,
450 for California and Concrete datasets, 600 for the Red Wine and White Wine dataset and 900 for the
Naval dataset. The first layers were sampled by the SMC samplers while the rest of the layers were optimised
by the Adam optimiser (Kingma & Ba, 2015) using a learning rate of 0.01. The RW scale and Langevin
kernel were 0.01 and 1/Ndata respectively, while each method used 100 samples.

Each experiment was run for 200 epochs with the parameters giving the best validation loss saved for use
on the test dataset. We implemented a 60%, 30% and 10% train, validation and test split for both datasets
and averaged the results over 5 runs. Three different batch sizes were chosen for each dataset; 50, 100, 200
for CH and 20, 50, 100 for the rest. We used larger batch sizes for the California Housing dataset due to its
larger size and we report the Root Mean Squared Error (RMSE), R2 and bias statistics for each batch size
and dataset as well as the standard deviation for each metric. The results of these experiments for the 100
batch size for California Housing and batch size 50 for the rest of the datasets can be seen in Table 1 and
Table 2. The full results across all batch sizes can be seen in Appendix E.1 and Appendix E.2.

Method California (100) Concrete (50) Yacht (50) Red Wine (50) White Wine (50) Naval (50)

GOHSMC Langevin 0.5401 ± 0.1498 0.3318 ± 0.1290 0.0546 ± 0.0411 0.6419 ± 0.2235 0.7078 ± 0.2555 0.0010 ± 0.0000
OHSMC RW 0.5854 ± 0.1404 0.4357 ± 0.1898 0.1684 ± 0.1434 0.6587 ± 0.2073 0.7319 ± 0.2713 0.0052 ± 0.0020
SGHMC 0.5392 ± 0.1066 0.5832 ± 0.2950 0.8171 ± 0.4055 0.6536 ± 0.2386 0.7123 ± 0.2534 0.0154 ± 0.0082
SWAG 0.5385 ± 0.1178 0.3494 ± 0.1085 0.0615 ± 0.0321 0.7289 ± 0.2655 0.7460 ± 0.2267 0.0128 ± 0.0095
VI 0.6408 ± 0.1104 0.3885 ± 0.2050 0.1024 ± 0.0775 0.6570 ± 0.1741 0.7422 ± 0.2774 0.0103 ± 0.0082
SVGD 0.6393 ± 0.1224 0.6316 ± 0.3308 0.6194 ± 0.3167 0.6677 ± 0.2036 0.7173 ± 0.2684 0.0081 ± 0.0020

Table 1: Comparison of RMSE results for different methods. Bold indicates best result per dataset and
batch size is indicated in the brackets.

Method California (100) Concrete (50) Yacht (50) Red Wine (50) White Wine (50) Naval (50)
R2/Bias R2/Bias R2/Bias R2/Bias R2/Bias R2/Bias

GOHSMC Langevin 0.7897 / 0.0021 0.8741 / -0.0245 0.9965 / 0.0036 0.3146 / 0.0003 0.3483 / -0.0149 0.9887 / 0.0003
OHSMC RW 0.7410 / -0.0105 0.8499 / -0.0007 0.9656 / 0.0121 0.3024 / -0.0041 0.3395 / -0.0054 0.4760 / 0.0005
SGHMC 0.7795 / 0.0024 0.6402 / -0.0162 0.1325 / 0.1270 0.2583 / -0.0148 0.3454 / 0.0052 -3.1611 / 0.0021
SWAG 0.7985 / -0.0025 0.8813 / 0.0019 0.9940 / 0.0025 0.1179 / 0.0205 0.2536 / -0.0073 0.6632 / 0.0029
VI 0.6823 / 0.0610 0.8237 / -0.0453 0.9857 / 0.0153 0.2932 / -0.0076 0.2878 / -0.0175 -0.7818 / 0.0019
SVGD 0.6941 / 0.0074 0.5623 / -0.0323 0.4830 / 0.1765 0.2510 / -0.0234 0.3458 / -0.0008 -0.1579 / -0.0014

Table 2: Comparison of R2 and Bias results for different methods. Bold indicates best per metric.

Table 3 presents the number of times each method achieved the best performance across evaluation metrics.
GOHSMC Langevin consistently outperforms other methods, achieving the highest count across both R2
and bias metrics, with SWAG ranking second but at a considerable distance. Notably, GOHSMC demon-
strates particularly strong performance at larger batch sizes, suggesting it can deliver comparable results
to the smaller batch sizes while also reducing training time. While some overlap exists in the error bars

8

Under review as submission to TMLR

across methods and datasets, the consistent superiority of GOHSMC’s results provides empirical support
for its effectiveness. We acknowledge that further Monte Carlo runs could reduce the variance in these esti-
mates, potentially providing even stronger evidence of the method’s advantages. This represents a promising
direction for future research.

Method Best RMSE Count Best R2 Count Best Bias Count
GOHSMC Langevin 12 10 9
OHSMC RW 0 0 3
SGHMC 2 1 0
SVGD 0 0 2
SWAG 3 7 3
VI 1 0 1

Table 3: Count of best performance per method across RMSE, R2, and Bias for regression datasets.

4.2 Classification

Model performance was evaluated on test set accuracy and loss. Training was conducted for 30 epochs and
to ensure robustness, we performed 10 training runs with different random seeds for each kernel method,
reporting the mean and standard deviation of the test accuracy and loss. For both datasets the parameters
were saved which corresponded with the best validation loss. These saved parameters were then used at test
time.

4.2.1 MNIST

For the first classification experiment, we evaluate the Markov Kernels on the MNIST dataset (LeCun et al.,
1998).

For the NN architecture we have chosen the LeNet-5 architecture (Lecun et al., 1998). It consists of 2
convolutional layers followed by 2 dense layers and utilises the Tanh activation function. During training,
the Adam optimiser (Kingma & Ba, 2015) with a learning rate of 0.002 was used for the deterministic
parameters and we compare the results on three different batch sizes; 100, 500, 1000.

The first convolutional layer was chosen as the Bayesian layer which had a dimensionality of 160. Each
SMC Sampler used 100 samples and the step size/RW variance scale was set to 0.01. The results from this
experiment can be seen in Table 4. We compared the two SMC methods, OHSMC with a RW proposal and
GOHSMC with a Langevin proposal as well as SGHMC and VI.

Table 4: Comparison of Methods on MNIST with Different Batch Sizes

Markov Kernel MNIST
Batch Size 100 Batch Size 500 Batch Size 1000

Test Loss (std) Test Accuracy (std) Test Loss (std) Test Accuracy (std) Test Loss (std) Test Accuracy (std)
OHSMC RW 0.0532 (0.0076) 98.43% (0.15) 0.0422 (0.0024) 98.71% (0.09) 0.0377 (0.0020) 98.81% (0.09)
GOHSMC Langevin 0.0541 (0.0047) 98.42% (0.15) 0.0412 (0.0039) 98.73% (0.10) 0.0389 (0.0020) 98.79% (0.09)
SGHMC 0.0685 (0.0052) 97.88% (0.16) 0.0971 (0.0030) 96.99% (0.10) 0.1472 (0.0094) 95.63% (0.30)
VI 0.0780 (0.0046) 97.60% (0.13) 0.0530 (0.0038) 98.36% (0.07) 0.0511 (0.0034) 98.42% (0.06)

4.2.2 FashionMNIST

For our second classification experiment, we evaluate the methods on another common image classification
benchmark dataset in deep learning, the FashionMNIST dataset (Xiao et al., 2017). This dataset consists of
70,000, 28 x 28, grayscale images depicted 10 different categories of fashion products. The training set has
60,000 data points and the test set has 10,000.

The NN architecture for this is a larger CNN than used in our MNIST experiment. It consists of a convo-
lutional layer succeeded by a batch normalisation (Ioffe & Szegedy, 2015) layer and a max pooling (Nagi

9

Under review as submission to TMLR

et al., 2011) layer, this is then repeated with this second convolutional layer having a larger parameter size.
This is then followed by 2 dense layers and the ReLU activation function (Agarap, 2019) was used.

The first convolutional layer was the chosen again as the Bayesian layer and had a dimensionality of 320.
The SMC Samplers share the same set up as the first experiment except 50 samples were used and we tested
it on the same 3 batch sizes; 100, 500 and 1000. The results from this experiment can be seen in Table 5.
We compared the same methods as in Section 4.2.1.

Table 5: Comparison of Methods on FashionMNIST with Different Batch Sizes

Markov Kernel FashionMNIST
Batch Size 100 Batch Size 500 Batch Size 1000

Test Loss (std) Test Accuracy (std) Test Loss (std) Test Accuracy (std) Test Loss (std) Test Accuracy (std)
OHSMC RW 0.3121 (0.0089) 89.18% (0.47) 0.2913 (0.0088) 89.88 (0.0042) 0.2899 (0.0062) 90.11 (0.35)
GOHSMC Langevin 0.2858 (0.0076) 90.05% (0.38) 0.2794 (0.0076) 90.32% (0.23) 0.2758 (0.0074) 90.48% (0.43)
SGHMC 0.3803 (0.0155) 86.71% (0.71) 0.4068 (0.0103) 85.83% (0.37) 0.4742 (0.0087) 83.48% (0.45)
VI 0.4322 (0.0239) 84.31% (1.08) 0.3798 (0.0179) 86.39% (0.84) 0.3581 (0.0154) 87.21% (0.62)

4.2.3 CIFAR10

For our final image classification experiment, we evaluate the methods on the CIFAR10 dataset (Krizhevsky,
2009). For this task we used the ResNet20 architecture (He et al., 2015) with feature response (Singh &
Krishnan, 2020), the same architecture used in (Izmailov et al., 2021). The network was trained for 200
epochs and we used a batch size of 100. We found that larger batch sizes led to sub optimal test metrics
and therefore decided to compare only on the smaller batch size.

The first layer has a dimensionality of 448 parameters and we used a step size/random walk scale of 0.01.
The rest of the parameters were trained using the AdamW optimiser (Loshchilov & Hutter, 2019) with a
cosine annealing schedule where the initial value of the learning rate is set to of 0.01 and we used 10 samples
for the SMC sampler. The results of these experiments can be found in Table 6.

Table 6: Comparison of SMC Methods on CIFAR10

Markov Kernel CIFAR10

Test Loss (std) Test Accuracy (std)

GOHSMC Langevin 0.4007 (0.0120) 87.27% (0.58)
OHSMC RW 0.4024 (0.0204) 87.02% (0.86)

4.2.4 Image Classification Results Discussion

Table 4, 5 and 6 show the test loss and test accuracy for the MNIST, FashionMNIST and CIFAR10 datasets
respectively. We can see that for both SMC methods, as the batch size increases the test accuracy increases
and the test loss decreases. For the other two Bayesian methods, we see the opposite happens in that the
test loss and accuracy decreases as the batch size increases for both MNIST and fashionMNIST. The RW
Markov kernel marginally outperforms the Langevin Markov kernel in terms of test accuracy on the MNIST
dataset, while Langevin performs better on the FashionMNIST and CIFAR10 datasets.

The reason for the better performance for large batch sizes may be due to the fact that the larger batch
gives a better approximation of the gradients over the full batch when scaled. The reason Langevin performs
better on the larger neural networks and regression network could be due to the fact that the first layer
sizes are larger than the MNIST architecture and Langevin is able to more efficiently navigate these higher
dimensionality probability spaces.

In our CIFAR10 experiments, we found that using a larger batch size led to poor convergence. For more
larger and more complex architectures like those used on CIFAR10, there seems to be a practical trade off;
larger batch sizes may provide a better gradient estimate but the can also hinder convergence unless training
is extended substantially. Due to resource constraints, we were not able to explore these configurations

10

Under review as submission to TMLR

Table 7: OOD Performance Metrics

Accuracy F1-Score Precision Recall Specificity AUROC
OHSMC RW 0.9744 ± 0.0009 0.9751 ± 0.0009 0.9516 ± 0.0016 0.9997 ± 0.0005 0.9491 ± 0.0017 0.9994 ± 0.0006
GOHSMC Langevin 0.9704 ± 0.0055 0.9710 ± 0.0056 0.9495 ± 0.0022 0.9936 ± 0.0115 0.9471 ± 0.0026 0.9966 ± 0.0045
SGHMC 0.8871 ± 0.0973 0.8667 ± 0.1238 0.9392 ± 0.0152 0.8244 ± 0.1945 0.9497 ± 0.0025 0.9682 ± 0.0333
VI 0.9737 ± 0.0008 0.9743 ± 0.0008 0.9503 ± 0.0015 0.9996 ± 0.0005 0.9477 ± 0.0016 0.9978 ± 0.0016

fully i.e. longer training schedules with larger batches, and thus chose not to report results that may reflect
undertrained models.

Appendix F provides a further analysis of both the run time results and validation calibration.

4.3 Out-of-distribution Analysis

We also tested all four methods on a benchmark out-of-distribution (OOD) problem. We trained the larger
CNN outlined in the FashionMNIST experiment on the in distribution (ID) data (MNIST) data and then
introduce the out of distribution (OOD) samples (FashionMNIST) at test time. The model is evaluated on
its ability to distinguish between OOD samples ID samples (MNIST). We compare the same methods as in
Section 4.2.1.

After training the network on MNIST, we use an energy-based (Liu et al., 2021) detection method. We learn
an energy threshold using a validation dataset of OOD samples. After this, we create a mixed dataset of ID
and OOD samples and use the threshold learned at validation time to determine which data points are ID
or OOD. The results of these experiments can be found in Table 7 and the AUROC curves can be found in
Figure 1.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e
(T

PR
)

AUROC Curves for Each Method

rw (AUROC: 0.999)
lv (AUROC: 0.997)
sghmc (AUROC: 0.968)
vi (AUROC: 0.998)
Random Guess

Figure 1: AUROC curves for each method averaged over 5 runs.

11

Under review as submission to TMLR

On the OOD problem, we can see in Table 7 that the VI, RW and Langevin have very similar results. This
shows that despite the network not being fully Bayesian, we see no drop off in performance in the uncertainty
task.

5 Conclusion

In this paper we introduce gradient based proposals into the SMC sampler algorithm for use in the train-
ing of pBNNs. Specifically we have introduced Langevin dynamics as part of the Markov kernel and have
demonstrated on nine benchmark datasets, that we can outperform the current state-of-the-art SMC meth-
ods. This new proposal also allows us to use a larger batch size while gaining performance which in turn
can reduce the training time of pBNNs. It is also worth noting that as the dimensionality of the first layer
increased, the performance benefit of Langevin over RW was more pronounced. We also note that although
only the first layer is stochastic, it performs comparatively on the uncertainty quantification tasks to full
BNN techniques such as SGHMC and VI.

An interesting finding of this study is that the GOHSMC method consistently outperforms OHSMC when the
dimensionality of the stochastic layer is higher. Notably, OHSMC RW only clearly outperforms GOHSMC
Langevin on the MNIST dataset, where the first-layer dimensionality is smallest (160 parameters). On
all other datasets, GOHSMC generally achieves better performance—not only compared to OHSMC but
also against most baseline methods. While there is some overlap in error bars across methods on certain
datasets, the consistent performance of GOHSMC across all datasets and batch sizes indicates a potential
overall advantage. To strengthen this conclusion, additional Monte Carlo runs would help reduce variance
and provide further insight, making this a promising direction for future research.

5.1 Limitations and Further Work

Memory and Runtime Limits Increased batch size comes at a memory cost. Further work on balancing
the training time cost and memory cost would be very useful for future research. Our current codebase is
not optimised to deal with larger Neural Networks such as ResNet (He et al., 2015). Creating an optimised
library with an automated memory and runtime balancing feature would be invaluable in future pBNN
research. We have also not fully exploited the parallel nature of SMC samplers in our implementation.
Using a parallel resampling scheme (Varsi et al., 2021) could potentially reduce runtime.

Other Gradient Based Proposals So far, we have only introduced Langevin dynamics as a gradient
based proposal. However, there are other gradient based proposals that are also worth exploring such as
Hamiltonian Monte Carlo (HMC) (Neal, 2011). One potential problem with HMC is the need to tune both
the step size and the number of leapfrog steps. Three different approaches to solving this could be taken;
first, the No U-Turn algorithm could be used as a Markov kernel (Devlin et al., 2024). This algorithm
has a U-turn termination criteria embedded into the algorithm which automatically tunes the number of
leapfrog steps the algorithm should run for. Second, an adaptive HMC Markov kernel could be used instead
(Buchholz et al., 2020). Third, using the ChEES criterion (Hoffman et al., 2021) in an SMC sampler
framework (Millard et al., 2025) would allow us to tune the trajectory length during a warm-up period. A
study to compare different gradient based Markov kernel methods would be interesting and useful. All of
these methods would involve using multiple gradient evaluations due to the many step leapfrog process so
there would be a greater computational overhead than the methods introduced in this paper. It would then
be interesting to investigate whether the increased computational cost is offset by the increased performance
of the more sophisticated approach.

References
Abien Fred Agarap. Deep Learning Using Rectified Linear Units (ReLU), 2019.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin,
George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX: Com-
posable Transformations of Python+NumPy Programs, 2018. URL http://github.com/google/jax.

12

http://github.com/google/jax

Under review as submission to TMLR

Alexander Buchholz, Nicolas Chopin, and Pierre E. Jacob. Adaptive Tuning of Hamiltonian Monte Carlo
Within Sequential Monte Carlo, 2020.

Tianqi Chen, Emily Fox, and Carlos Guestrin. Stochastic Gradient Hamiltonian Monte Carlo. In Interna-
tional Conference on Machine Learning, pp. 1683–1691. PMLR, 2014.

Chenguang Dai, Jeremy Heng, Pierre E. Jacob, and Nick Whiteley. An Invitation to Sequential Monte Carlo
Samplers. Journal of the American Statistical Association, 117(539):1587–1600, 2022.

Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. Sequential Monte Carlo Samplers. Journal of the Royal
Statistical Society Series B: Statistical Methodology, 68(3):411–436, 2006.

Lee Devlin, Matthew Carter, Paul Horridge, Peter L. Green, and Simon Maskell. The No-U-Turn Sampler
as a Proposal Distribution in a Sequential Monte Carlo Sampler Without Accept/Reject. IEEE Signal
Processing Letters, 31:1089–1093, 2024. doi: 10.1109/LSP.2024.3386494.

Randal Douc, Olivier Cappé, and Eric Moulines. Comparison of Resampling Schemes for Particle Filtering,
2005. URL https://arxiv.org/abs/cs/0507025.

Arnaud Doucet, Nando de Freitas, and Neil J. Gordon. An Introduction to Sequential Monte Carlo Methods.
In Arnaud Doucet, Nando de Freitas, and Neil J. Gordon (eds.), Sequential Monte Carlo Methods in
Practice, pp. 3–14. Springer, New York, NY, 2001.

Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep Bayesian Active Learning with Image Data, 2017.

Mark Girolami and Ben Calderhead. Riemann Manifold Langevin and Hamiltonian Monte Carlo Methods.
Journal of the Royal Statistical Society Series B: Statistical Methodology, 73(2):123–214, 2011.

Geof H Givens and Adrian E Raftery. Local Adaptive Importance Sampling for Multivariate Densities with
Strong Nonlinear Relationships. Journal of the American Statistical Association, 91(433):132–141, 1996.

Xavier Glorot and Yoshua Bengio. Understanding the Difficulty of Training Deep Feedforward Neural
Networks. In Proceedings of the thirteenth international conference on artificial intelligence and statistics,
pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.

Alex Graves. Practical Variational Inference for Neural Networks. Advances in Neural Information Processing
Systems, 24, 2011.

W. K. Hastings. Monte Carlo Sampling Methods Using Markov Chains and Their Applications. Biometrika,
57(1):97–109, 1970.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image Recognition,
2015.

Dan Hendrycks and Kevin Gimpel. Gaussian Error Linear Units (GELUs), 2023. URL https://arxiv.
org/abs/1606.08415.

Matthew Hoffman, Alexey Radul, and Pavel Sountsov. An Adaptive-MCMC Scheme for Setting Trajectory
Lengths in Hamiltonian Monte Carlo. In Arindam Banerjee and Kenji Fukumizu (eds.), Proceedings of
The 24th International Conference on Artificial Intelligence and Statistics, volume 130 of Proceedings of
Machine Learning Research, pp. 3907–3915. PMLR, 13–15 Apr 2021. URL https://proceedings.mlr.
press/v130/hoffman21a.html.

Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift, 2015.

Pavel Izmailov, Sharad Vikram, Matthew D. Hoffman, and Andrew Gordon Wilson. What Are Bayesian
Neural Network Posteriors Really Like? CoRR, abs/2104.14421, 2021. URL https://arxiv.org/abs/
2104.14421.

13

https://arxiv.org/abs/cs/0507025
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://proceedings.mlr.press/v130/hoffman21a.html
https://proceedings.mlr.press/v130/hoffman21a.html
https://arxiv.org/abs/2104.14421
https://arxiv.org/abs/2104.14421

Under review as submission to TMLR

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International Confer-
ence on Learning Representations (ICLR), 2015. URL https://arxiv.org/abs/1412.6980.

Genshiro Kitagawa. Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models. Jour-
nal of Computational and Graphical Statistics, 5(1):1–25, 1996. URL http://www.jstor.org/stable/
1390750.

Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. Technical Report TR-
2009, University of Toronto, Toronto, Canada, 2009. URL https://www.cs.toronto.edu/~kriz/
learning-features-2009-TR.pdf.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-Based Learning Applied to Document Recognition.
Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

Yann LeCun, Corinna Cortes, and CJ Burges. The MNIST Database of Handwritten Digits.
http://yann.lecun.com/exdb/mnist, 1998.

Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient Backprop. In Neural
Networks: Tricks of the Trade, pp. 9–50. Springer, 2002.

Derek Lim, Theo Moe Putterman, Robin Walters, Haggai Maron, and Stefanie Jegelka. The Empirical
Impact of Neural Parameter Symmetries, or Lack Thereof, 2024. URL https://arxiv.org/abs/2405.
20231.

Jun S. Liu and Rong Chen. Sequential Monte Carlo Methods for Dynamic Systems. Journal of the American
Statistical Association, 93(443):1032–1044, 1998. URL http://www.jstor.org/stable/2669847.

Jun S. Liu and Jun S. Liu. Monte Carlo Strategies in Scientific Computing, volume 10. Springer, 2001.

Qiang Liu and Dilin Wang. Stein Variational Gradient Descent: A General Purpose Bayesian Inference
Algorithm, 2019. URL https://arxiv.org/abs/1608.04471.

Weitang Liu, Xiaoyun Wang, John D. Owens, and Yixuan Li. Energy-Based Out-of-Distribution Detection,
2021. URL https://arxiv.org/abs/2010.03759.

Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization, 2019. URL https://arxiv.
org/abs/1711.05101.

Wesley Maddox, Timur Garipov, Pavel Izmailov, Dmitry Vetrov, and Andrew Gordon Wilson. A Simple
Baseline for Bayesian Uncertainty in Deep Learning, 2019. URL https://arxiv.org/abs/1902.02476.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation of State
Calculations by Fast Computing Machines. Journal of Chemical Physics, 21(6):1087–1092, 1953. doi:
10.1063/1.1699114.

Andrew Millard, Joshua Murphy, Daniel Frisch, and Simon Maskell. Incorporating the ChEES Criterion
into Sequential Monte Carlo Samplers, 2025. URL https://arxiv.org/abs/2504.02627.

Jawad Nagi, Frederick Ducatelle, Gianni A. Di Caro, Dan Cireşan, Ueli Meier, Alessandro Giusti, Farrukh
Nagi, Jürgen Schmidhuber, and Luca Maria Gambardella. Max-Pooling Convolutional Neural Networks
for Vision-Based Hand Gesture Recognition. In 2011 IEEE International Conference on Signal and Image
Processing Applications (ICSIPA), pp. 342–347, 2011. doi: 10.1109/ICSIPA.2011.6144164.

Radford M. Neal. MCMC Using Hamiltonian Dynamics, pp. 113–162. Chapman and Hall/CRC, 2011. doi:
10.1201/b10905.

Radford M. Neal. Bayesian Learning for Neural Networks, volume 118. Springer Science & Business Media,
2012.

Sebastian W. Ober, Carl E. Rasmussen, and Mark van der Wilk. The Promises and Pitfalls of Deep Kernel
Learning, 2021. URL https://arxiv.org/abs/2102.12108.

14

https://arxiv.org/abs/1412.6980
http://www.jstor.org/stable/1390750
http://www.jstor.org/stable/1390750
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://arxiv.org/abs/2405.20231
https://arxiv.org/abs/2405.20231
http://www.jstor.org/stable/2669847
https://arxiv.org/abs/1608.04471
https://arxiv.org/abs/2010.03759
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1902.02476
https://arxiv.org/abs/2504.02627
https://arxiv.org/abs/2102.12108

Under review as submission to TMLR

G. O. Roberts and R. L. Tweedie. Exponential Convergence of Langevin Distributions and Their Discrete
Approximations. Bernoulli, 2(4):341–363, 1996.

Tommy Rochussen. Structured Partial Stochasticity in Bayesian Neural Networks, 2024. URL https:
//arxiv.org/abs/2405.17666.

Conor Rosato, Joshua Murphy, Alessandro Varsi, Paul Horridge, and Simon Maskell. Enhanced SMC2:
Leveraging Gradient Information from Differentiable Particle Filters Within Langevin Proposals, 2024.
URL https://arxiv.org/abs/2407.17296.

Mrinank Sharma, Sebastian Farquhar, Eric Nalisnick, and Tom Rainforth. Do Bayesian Neural Networks
Need to Be Fully Stochastic?, 2023.

Saurabh Singh and Shankar Krishnan. Filter Response Normalization Layer: Eliminating Batch Dependence
in the Training of Deep Neural Networks, 2020. URL https://arxiv.org/abs/1911.09737.

Alessandro Varsi, Simon Maskell, and Paul G. Spirakis. An O(log2N) Fully-Balanced Resampling Algorithm
for Particle Filters on Distributed Memory Architectures. Algorithms, 14(12), 2021. ISSN 1999-4893. doi:
10.3390/a14120342. URL https://www.mdpi.com/1999-4893/14/12/342.

Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P. Xing. Deep Kernel Learning, 2015.
URL https://arxiv.org/abs/1511.02222.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: A Novel Image Dataset for Benchmarking
Machine Learning Algorithms, 2017.

Zheng Zhao, Sebastian Mair, Thomas B. Schön, and Jens Sjölund. On Feynman–Kac Training of Partial
Bayesian Neural Networks, 2024.

15

https://arxiv.org/abs/2405.17666
https://arxiv.org/abs/2405.17666
https://arxiv.org/abs/2407.17296
https://arxiv.org/abs/1911.09737
https://www.mdpi.com/1999-4893/14/12/342
https://arxiv.org/abs/1511.02222

Under review as submission to TMLR

A SMC for pBNNs, SGSMC and OHSMC Pseudocode

Algorithm 4 SMC Sampler for pBNN

Require: Training data (xn, yn)N
n=1, number of samples J, initial parameters ψ0, prior distribution q0(·),

learning rate ϵ
Ensure: The MLE estimate ψt

for t = 1, 2, . . . until convergence do
Draw {θ(j)

0 }J
j=1 ∼ π(θ)

w(j)
0 = 1

J for j = 1, 2, . . . , J
l0(ψ0) = 0
for n = 1 to N do

Calculate Jeff using equation 4
if Jeff < J/2 then

Resample [θ(1)
t ...θ

(J)
t] with probability [w̃(1)

t ...w̃(J)
t]

Reset all weights to 1
J

end if
for j = 1 to J do

Propagate particles θ(j)
t ∼ qθ

t (·|θ(j)
t−1;ψt−1)

w(j)
t = w(j)

t−1p(yn|θ(j)
i ;ψi−1)

ln(ψt−1) = ln−1(ψt−1) − log(
∑J

j=1 w(j)
t)

end for
Normalize weights using (3)

end for
Update parameter ψt = ψt−1 + ϵ∇lN (ψt−1)

end for

Algorithm 5 Stochastic Gradient SMC (SGSMC)

Require: Training data (xn, yn)N
n=1, number of samples J, initial parameters ψ0, prior distribution q0(·),

learning rate ϵ, and batch size M
Ensure: The MLE estimate ψt

for t = 1, 2, . . . until convergence do
Draw sub dataset ySM (t) ⊂ y1:N

Draw {θ(j)
0 }J

j=1 ∼ π(θ)
w(j)

0 = 1
J for j = 1, 2, . . . , J

for n = 1 to M do
Calculate Jeff using equation 4
if Jeff < J/2 then

Resample [θ(1)
t ...θ

(J)
t] with probability [w̃(1)

t ...w̃(J)
t]

Reset all weights to 1
J

end if
for j = 1 to J do

Propagate particles θ(j)
t ∼ qθ

t (·|θ(j)
t−1;ψt−1)

w(j)
t = w(j)

t−1p(ySM (t)|θ
(j)
i ;ψi−1)

end for
Normalize weights using (3)

end for
g(ψt−1) = N

M

∑J
j=1 w̃(j)

t ∇ log p(ySM
t

|θ(j)
t ;ψt−1)

Update parameter ψt = ψt−1 + ϵg(ψt−1)
end for

16

Under review as submission to TMLR

Algorithm 6 Open-horizon sequential Monte Carlo (OHSMC)

Require: Training data (xn, yn)N
n=1, number of samples J, initial parameters ψ0, prior distribution q0(·),

learning rate ϵ, and batch size M
Ensure: The MLE estimate ψt

Draw {θ(j)
0 }J

j=1 ∼ π(θ)
w(j)

0 = 1
J for j = 1, 2, . . . , J

for t = 1, 2, . . . until convergence do
Draw sub dataset ySM (t) ⊂ y1:N
Calculate Jeff using equation 4
if Jeff < J/2 then

Resample [θ(1)
t ...θ

(J)
t] with probability [w̃(1)

t ...w̃(J)
t]

Reset all weights to 1
J

end if
for j = 1 to J do

Propagate particles θ(j)
t ∼ qθ

t (·|θ(j)
t−1;ψt−1)

w(j)
t = w(j)

t−1p(ySM (t)|θ
(j)
i ;ψi−1)

end for
Normalize weights using (3)
g(ψt−1) = N

M

∑J
j=1 w̃(j)

t ∇ log p(ySM
t

|θ(j)
t ;ψt−1)

Update parameter ψt = ψt−1 + ϵg(ψt−1)
end for

17

Under review as submission to TMLR

B Langevin L-kernel derivation for section 3

The following work gives the derivation for the L-kernel where we utilise the reverse momentum in the weight
update.

B.1 Proposal

Langevin dynamics for a single time step can be described via the following equation

θt = θt−1 + ϵ2

2 ∇ log π(θt−1) + ϵPt−1 (15)

This process is equivalent to the leapfrog integrator for a single timestep

P∗ = Pt−1 + ϵ

2∇ log π(θt−1) (16)

θt = θt−1 + ϵP∗ (17)

And the proposal at the corresponding timestep can be written as qt(θt|θt−1). We would like the proposal
to reflect the stochastic momentum introduced and the Langevin dynamics. Therefore we must introduce a
change of variables from Pt−1 to θt. The change of variables can be described by

Y = g(X) (18)

pY (y) = pX(x)
∣∣∣∣dg(X)

dX

∣∣∣∣−1
(19)

In our case Y = θt, X = Pt−1 and g(X) = fLMC(θt−1, Pt−1), therefore our proposal can be rewritten from
a proposal on θ to a proposal on P:

qθ
t (θt|θt−1) = qθ

t (fLMC(θt−1, Pt−1)|θt−1)

= qP
t (Pt−1)

∣∣∣ dfLMC (θt−1,Pt−1)
dPt−1

∣∣∣−1 (20)

Where fLMC is the Langevin dynamics used to propagate our samples and
∣∣∣ dfLMC (θt−1,Pt−1)

dPt−1

∣∣∣−1
is the

determinant of the transformation from θt−1 −→ θt given our momentum Pt−1. The initial momentum is
usually sampled from a normal distribution

Pt−1 ∼ N (0,M) (21)

M is known as the mass matrix which governs the covariance of the distribution from which we pull our
momentum. In our implementation we have set this mass matrix to be the identity matrix. Therefore the
proposal can be given as

qθ
t (θt|θt−1) = N (Pt−1; 0,M)

∣∣∣ dfLMC (θt−1,Pt−1)
dPt−1

∣∣∣−1
(22)

B.2 L-kernels

Langevin is a reversible process, therefore the momentum which would take us from θt −→ θt−1 is the opposite
of the one that takes us originally from θt−1 −→ θt after the momentum update given by equation 16.
Therefore, we can rewrite the L-kernel Lθ

t (θt−1|θt) using the same change of variables process used in the
proposal (given by equation 19), but using the reverse momentum P∗.

18

Under review as submission to TMLR

Lθ
t (θt−1|θt) = Lθ

t (fLMC(θt, −P∗)|θt)

= LP
t (−P∗)

∣∣∣ dfLMC (θt,−P∗)
dP∗

∣∣∣−1

= N (−P∗; 0,M)
∣∣∣ dfLMC(θt,−P∗)

dP∗

∣∣∣−1

(23)

Due to the reversible nature of the Langevin dynamics, the determinants in both the proposal in equation 22
and L-kernel in equation 23 are equivalent, and therefore cancel in the final weight update.

B.3 pBNN context

The gradient of the Langevin dynamics is conditioned on the deterministic parameters which are the same
for both the forwards and backwards moves.

θt = θt−1 + ϵ2

2 ∇ log π(θt−1|ψt−1) + ϵPt−1 (24)

Therefore we can simply define our proposal and L-kernel in the context of a pBNN respectively as

qθ
t (fLMC(θt−1, Pt−1)|θt−1,ψt−1) = qP

t (Pt−1|ψt−1)
∣∣∣ dfLMC (θt−1,Pt−1)

dPt−1

∣∣∣−1
(25)

However, the momentum is drawn from a Gaussian distribution independent of both θ and ψ. Therefore

qθ
t (fLMC(θt−1, Pt−1)|θt−1,ψt−1) = qP

t (Pt−1)
∣∣∣ dfLMC(θt−1,Pt−1)

dPt−1

∣∣∣−1

= N (Pt−1; 0,M)
∣∣∣ dfLMC (θt−1,Pt−1)

dPt−1

∣∣∣−1 (26)

Lθ
t (fLMC(θt, −P∗)|θt,ψt−1) = N (−P∗; 0,M)

∣∣∣ dfLMC (θt,−P∗)
dP∗

∣∣∣−1
(27)

19

Under review as submission to TMLR

C Invariance Explanation

In statistics, an invariant or stationary distribution refers to a property that leaves it unchanged under
certain operations. For example, a Markov kernel is said to be invariant with respect to a distribution if
applying the kernel leaves the target distribution π(θ) unchanged. A Markov kernel/process is a stochastic
process that satisfies the Markov property:

P (θ(k+1) | θ(k),θ(k−1), . . .) = P (θ(k+1) | θ(k)), (28)

i.e., the future state depends only on the current state. A transition kernel can be denoted by q(θ′ | θ), and
we often require that π is invariant under this kernel:

π(θ′) =
∫

q(θ′ | θ) π(θ) dθ. (29)

This condition ensures that the distribution π is preserved by the Markov process: if θ(k) ∼ π, then θ(k+1) ∼ π
as well.

In Markov Chain Monte Carlo (MCMC): We design the transition kernel so that the target distribution
is invariant. After running MCMC for long enough, samples approximate this stationary distribution.

In SMC: In SMC, we simulate a sequence of distributions as new data arrives. We use Markov kernels
(like MCMC moves) between steps. These kernels are often chosen so that they leave the previous posterior
invariant. A full explanation of this concept can be found in (Del Moral et al., 2006).

20

Under review as submission to TMLR

D Experiment Parameters and Set Up

In order to achieve optimal results on some of the experiments, the step size had to be altered for certain
batch sizes when using the baseline comparisons. These hyperparameters are outlined in Table 8.

Table 8: Learning rate/step sizes for the baseline comparison methods.

Method Regression MNIST FashionMNIST OOD

S BS M BS L BS S BS M BS L BS S BS M BS L BS S BS M BS L BS

SGHMC 0.0001 0.0001 0.0001 0.001 0.001 0.0005 0.001 0.001 0.0002 0.001 0.001 0.001
VI 0.0001 0.0001 0.0001 0.001 0.001 0.0002 0.001 0.001 0.0002 0.001 0.001 0.001
SWAG 0.001 0.001 0.001 – – – – – – – – –
SVGD 0.01 0.01 0.01 – – – – – – – – –

Table 9 gives a summary of the number of features and data points for each regression dataset.

Dataset Number of Datapoints Number of Features
Yacht Hydrodynamics 308 6
Red Wine Quality 1,599 11
White Wine Quality 4,898 11
California Housing 20,640 8
Concrete Strength 1,030 8
Naval Propulsion 11,934 16

Table 9: Summary statistics of regression datasets.

21

Under review as submission to TMLR

E Further Regression Results

E.1 RMSE Results

Table 10: RMSE results across methods and datasets. Bold indicates best performance for each batch size
on each dataset.

Concrete 20 50 100
GOHSMC Langevin 0.3494 ± 0.1397 0.3318 ± 0.1290 0.3437 ± 0.1799
OHSMC RW 0.4040 ± 0.1278 0.4357 ± 0.1898 0.4146 ± 0.2587
SGHMC 0.4031 ± 0.0709 0.5832 ± 0.2950 0.7994 ± 0.3779
SWAG 0.3320 ± 0.1171 0.3494 ± 0.1085 0.3526 ± 0.1250
VI 0.4225 ± 0.1169 0.3885 ± 0.2050 0.3954 ± 0.2240
SVGD 0.5422 ± 0.1932 0.6316 ± 0.3308 0.7106 ± 0.4050
California 50 100 200
GOHSMC Langevin 0.6438 ± 0.1817 0.5401 ± 0.1498 0.5363 ± 0.1359
OHSMC RW 0.5944 ± 0.1464 0.5854 ± 0.1404 0.5744 ± 0.1316
SGHMC 0.5265 ± 0.1133 0.5392 ± 0.1066 0.5705 ± 0.1281
SWAG 0.5337 ± 0.1043 0.5385 ± 0.1178 0.5356 ± 0.1249
VI 0.6633 ± 0.1353 0.6408 ± 0.1104 0.6327 ± 0.1148
SVGD 0.6297 ± 0.1360 0.6393 ± 0.1224 0.6658 ± 0.1373
Yacht 20 50 100
GOHSMC Langevin 0.0790 ± 0.0547 0.0546 ± 0.0411 0.0515 ± 0.0329
OHSMC RW 0.1952 ± 0.1306 0.1684 ± 0.1434 0.1656 ± 0.1280
SGHMC 0.3737 ± 0.3048 0.8171 ± 0.4055 0.8951 ± 0.4404
SWAG 0.0860 ± 0.0593 0.0615 ± 0.0321 0.0718 ± 0.0417
VI 0.1040 ± 0.0767 0.1024 ± 0.0775 0.3034 ± 0.3950
SVGD 0.4159 ± 0.2726 0.6194 ± 0.3167 0.7432 ± 0.4271
Red Wine 20 50 100
GOHSMC Langevin 0.6472 ± 0.1933 0.6419 ± 0.2235 0.6533 ± 0.2103
OHSMC RW 0.6716 ± 0.2124 0.6587 ± 0.2073 0.7034 ± 0.2755
SGHMC 0.6529 ± 0.2162 0.6536 ± 0.2386 0.7358 ± 0.2431
SWAG 0.7521 ± 0.2675 0.7289 ± 0.2655 0.7226 ± 0.2750
VI 0.6912 ± 0.3036 0.6570 ± 0.1741 0.6512 ± 0.1945
SVGD 0.6659 ± 0.1696 0.6677 ± 0.2036 0.7187 ± 0.2499
White Wine 20 50 100
GOHSMC Langevin 0.7063 ± 0.2493 0.7078 ± 0.2555 0.7140 ± 0.2618
OHSMC RW 0.7217 ± 0.2823 0.7319 ± 0.2713 0.7330 ± 0.2578
SGHMC 0.7043 ± 0.2497 0.7123 ± 0.2534 0.7217 ± 0.2543
SWAG 0.7826 ± 0.2726 0.7460 ± 0.2267 0.7573 ± 0.2610
VI 0.7461 ± 0.2643 0.7422 ± 0.2774 0.7384 ± 0.2692
SVGD 0.7220 ± 0.2430 0.7173 ± 0.2684 0.7357 ± 0.2844
Naval 20 50 100
GOHSMC Langevin 0.0000 ± 0.0000 0.0010 ± 0.0000 0.0010 ± 0.0000
OHSMC RW 0.0057 ± 0.0024 0.0052 ± 0.0020 0.0041 ± 0.0020
SGHMC 0.0092 ± 0.0057 0.0154 ± 0.0082 0.0191 ± 0.0113
SWAG 0.0184 ± 0.0126 0.0128 ± 0.0095 0.0110 ± 0.0075
VI 0.0080 ± 0.0032 0.0103 ± 0.0082 0.0122 ± 0.0103
SVGD 0.0085 ± 0.0031 0.0081 ± 0.0020 0.0111 ± 0.0046

22

Under review as submission to TMLR

E.2 R2 and Bias Results

We note that SGHMC performs poorly on the Naval dataset in terms of R2, as shown in Table 11. Its
performance also appears sensitive to increasing batch sizes, with R2 values significantly deteriorating on
the Yacht dataset. This behavior warrants further investigation to better understand the underlying causes.

Table 11: R2 and Bias across datasets and batch sizes. Bold indicates best performance for each batch size
on each dataset.

Concrete R2 (20) Bias (20) R2 (50) Bias (50) R2 (100) Bias (100)

GOHSMC Langevin 0.8746 ± 0.0309 -0.0401 ± 0.0350 0.8741 ± 0.0298 -0.0245 ± 0.0282 0.8657 ± 0.0215 -0.0339 ± 0.0074
OHSMC RW 0.8461 ± 0.0459 0.0031 ± 0.0365 0.8499 ± 0.0308 -0.0007 ± 0.0345 0.8120 ± 0.0129 -0.0686 ± 0.0330
SGHMC 0.8333 ± 0.0205 -0.0191 ± 0.0263 0.6402 ± 0.0661 -0.0162 ± 0.0465 0.3052 ± 0.1047 0.0333 ± 0.0859
SWAG 0.9010 ± 0.0121 -0.0097 ± 0.0218 0.8813 ± 0.0178 0.0019 ± 0.0281 0.8843 ± 0.0191 -0.0024 ± 0.0137
VI 0.7966 ± 0.0437 -0.0161 ± 0.0612 0.8237 ± 0.0308 -0.0453 ± 0.0266 0.8341 ± 0.0200 -0.0020 ± 0.0287
SVGD 0.6915 ± 0.0238 -0.0120 ± 0.0294 0.5623 ± 0.0468 -0.0323 ± 0.0606 0.4320 ± 0.0544 0.0373 ± 0.0812

California R2 (50) Bias (50) R2 (100) Bias (100) R2 (200) Bias (200)

GOHSMC Langevin 0.7893 ± 0.0077 -0.0014 ± 0.0082 0.7897 ± 0.0110 0.0021 ± 0.0193 0.7891 ± 0.0066 0.0036 ± 0.0275
OHSMC RW 0.7404 ± 0.0116 0.0223 ± 0.0332 0.7410 ± 0.0087 -0.0105 ± 0.0439 0.7506 ± 0.0139 0.0111 ± 0.0270
SGHMC 0.7915 ± 0.0084 -0.0015 ± 0.0300 0.7795 ± 0.0078 0.0024 ± 0.0241 0.7551 ± 0.0093 0.0089 ± 0.0252
SWAG 0.8017 ± 0.0044 0.0081 ± 0.0259 0.7985 ± 0.0114 -0.0025 ± 0.0226 0.7966 ± 0.0059 -0.0101 ± 0.0283
VI 0.6767 ± 0.0056 -0.0282 ± 0.0565 0.6823 ± 0.0074 0.0610 ± 0.0519 0.6986 ± 0.0040 -0.0421 ± 0.0468
SVGD 0.7105 ± 0.0085 0.0131 ± 0.0229 0.6941 ± 0.0092 0.0074 ± 0.0178 0.6702 ± 0.0110 0.0103 ± 0.0214

Yacht R2 (20) Bias (20) R2 (50) Bias (50) R2 (100) Bias (100)

GOHSMC Langevin 0.9933 ± 0.0029 -0.0007 ± 0.0172 0.9965 ± 0.0015 0.0036 ± 0.0064 0.9964 ± 0.0018 0.0049 ± 0.0121
OHSMC RW 0.9393 ± 0.0182 0.0459 ± 0.0496 0.9656 ± 0.0231 0.0121 ± 0.0171 0.9633 ± 0.0290 0.0270 ± 0.0319
SGHMC 0.8467 ± 0.0710 -0.0037 ± 0.0573 0.1325 ± 0.1097 0.1270 ± 0.1036 -0.0421 ± 0.0938 0.1092 ± 0.0579
SWAG 0.9956 ± 0.0016 0.0061 ± 0.0111 0.9940 ± 0.0020 0.0025 ± 0.0112 0.9927 ± 0.0038 0.0022 ± 0.0147
VI 0.9866 ± 0.0058 0.0157 ± 0.0242 0.9857 ± 0.0072 0.0153 ± 0.0284 0.9795 ± 0.0076 0.0083 ± 0.0307
SVGD 0.7834 ± 0.1050 0.0877 ± 0.0976 0.4830 ± 0.1708 0.1765 ± 0.1009 0.2858 ± 0.1524 0.1601 ± 0.1092

Red Wine R2 (20) Bias (20) R2 (50) Bias (50) R2 (100) Bias (100)

GOHSMC Langevin 0.2982 ± 0.0462 -0.0076 ± 0.0932 0.3146 ± 0.0525 0.0003 ± 0.0816 0.3147 ± 0.0607 -0.0183 ± 0.0707
OHSMC RW 0.3000 ± 0.1002 -0.0001 ± 0.1041 0.3024 ± 0.0666 -0.0041 ± 0.0899 0.2577 ± 0.0787 -0.0125 ± 0.1167
SGHMC 0.3102 ± 0.0757 0.0131 ± 0.0741 0.2583 ± 0.0806 -0.0148 ± 0.0803 0.1265 ± 0.0736 -0.0221 ± 0.0768
SWAG 0.0921 ± 0.1564 -0.0188 ± 0.0789 0.1179 ± 0.1829 0.0205 ± 0.0687 0.1397 ± 0.1136 -0.0045 ± 0.0850
VI 0.3006 ± 0.0549 -0.0522 ± 0.0594 0.2932 ± 0.0547 -0.0076 ± 0.0639 0.3081 ± 0.0652 -0.0362 ± 0.0626
SVGD 0.2787 ± 0.0701 -0.0143 ± 0.0855 0.2510 ± 0.0832 -0.0234 ± 0.0794 0.1677 ± 0.0892 -0.0383 ± 0.0889

White Wine R2 (20) Bias (20) R2 (50) Bias (50) R2 (100) Bias (100)

GOHSMC Langevin 0.3563 ± 0.0408 0.0016 ± 0.0574 0.3483 ± 0.0446 -0.0149 ± 0.0334 0.3586 ± 0.0454 -0.0024 ± 0.0180
OHSMC RW 0.3380 ± 0.0515 0.0148 ± 0.0369 0.3395 ± 0.0488 -0.0054 ± 0.0432 0.3301 ± 0.0419 -0.0477 ± 0.0236
SGHMC 0.3649 ± 0.0337 0.0110 ± 0.0383 0.3454 ± 0.0469 0.0052 ± 0.0256 0.3308 ± 0.0359 0.0033 ± 0.0211
SWAG 0.2556 ± 0.0716 -0.0211 ± 0.0404 0.2536 ± 0.0580 -0.0073 ± 0.0276 0.3118 ± 0.0362 0.0109 ± 0.0468
VI 0.2854 ± 0.0449 -0.0507 ± 0.0565 0.2878 ± 0.0384 -0.0175 ± 0.0719 0.3084 ± 0.0447 -0.0579 ± 0.0462
SVGD 0.3735 ± 0.0102 0.0308 ± 0.0397 0.3458 ± 0.0456 -0.0008 ± 0.0196 0.3131 ± 0.0611 -0.0023 ± 0.0190

Naval R2 (20) Bias (20) R2 (50) Bias (50) R2 (100) Bias (100)

GOHSMC Langevin 0.9966 ± 0.0011 0.0000 ± 0.0001 0.9887 ± 0.0040 0.0003 ± 0.0003 0.9896 ± 0.0013 -0.0001 ± 0.0002
OHSMC RW 0.3660 ± 0.2008 0.0001 ± 0.0005 0.4760 ± 0.0890 0.0005 ± 0.0014 0.7155 ± 0.0244 -0.0001 ± 0.0004
SGHMC -0.5518 ± 0.6850 -0.0010 ± 0.0012 -3.1611 ± 1.1624 0.0021 ± 0.0026 -5.4672 ± 2.1623 -0.0018 ± 0.0053
SWAG 0.6894 ± 0.3872 0.0007 ± 0.0039 0.6632 ± 0.2006 0.0029 ± 0.0025 0.8040 ± 0.1305 0.0020 ± 0.0020
VI -0.6682 ± 0.8484 0.0043 ± 0.0037 -0.7818 ± 0.6180 0.0019 ± 0.0046 -2.4403 ± 2.3917 -0.0043 ± 0.0086
SVGD 0.0040 ± 0.0000 -0.0005 ± 0.0000 -0.1579 ± 0.0709 -0.0014 ± 0.0004 -1.2253 ± 0.3884 -0.0020 ± 0.0005

23

Under review as submission to TMLR

F Further Classification Results and Figures

F.1 Validation and Loss Curves

We can see clearly in Figure 3 that on the FashionMNIST dataset, the validation loss starts to increase
which may indicate an overfitting to the training data. This is an example where pBNNs still need careful
validation calibration.

This was the reason we saved the weights with the best validation loss as was done in (Zhao et al., 2024).
Another option would be to introduce an early stoppage routine (LeCun et al., 2002) which is commonly
employed in deep learning scenarios. The first option may be better for our scenario as often in stochastic
settings, there may be a time period when the samples move to regions of higher loss before finding a better
minimum, This can be seen clearly in validation loss plots in Figures 1 and 2.

One way to potentially increase the performance across all datasets could be to calculate the validation loss
after each batch is processed and save the best weights from this, as was done in (Zhao et al., 2024) however,
this significantly increases the training time, especially for smaller batches. Larger batch sizes seemed to
dampen the effect of overfitting to a certain extent, however if left for long enough without using one of the
previously suggested methods, the effect may worsen to a similar extent as the smaller batch sizes.

0 5 10 15 20 25 30
Epoch

10 1

100

Va
lid

at
io

n
Lo

ss

Validation Loss per Epoch
lv batch 100
rw batch 100
sghmc batch 100
vi batch 100
lv batch 500
rw batch 500
sghmc batch 500
vi batch 500
lv batch 1000
rw batch 1000
sghmc batch 1000
vi batch 1000

0 5 10 15 20 25 30
Epoch

100

4 × 10 1

6 × 10 1

Va
lid

at
io

n
Ac

cu
ra

cy

Validation Accuracy per Epoch

lv batch 100
rw batch 100
sghmc batch 100
vi batch 100
lv batch 500
rw batch 500
sghmc batch 500
vi batch 500
lv batch 1000
rw batch 1000
sghmc batch 1000
vi batch 1000

Figure 2: Validation loss and accuracy of each method and batch size for the MNIST Dataset, averaged over
10 runs.

0 5 10 15 20 25 30
Epoch

100

3 × 10 1

4 × 10 1

6 × 10 1

Va
lid

at
io

n
Lo

ss

Validation Loss per Epoch
lv batch 100
rw batch 100
sghmc batch 100
vi batch 100
lv batch 500
rw batch 500
sghmc batch 500
vi batch 500
lv batch 1000
rw batch 1000
sghmc batch 1000
vi batch 1000

0 5 10 15 20 25 30
Epoch

6 × 10 1

7 × 10 1

8 × 10 1

9 × 10 1

Va
lid

at
io

n
Ac

cu
ra

cy

Validation Accuracy per Epoch

lv batch 100
rw batch 100
sghmc batch 100
vi batch 100
lv batch 500
rw batch 500
sghmc batch 500
vi batch 500
lv batch 1000
rw batch 1000
sghmc batch 1000
vi batch 1000

Figure 3: Validation loss and accuracy of each method and batch size for the FashionMNIST Dataset,
averaged over 10 runs.

24

Under review as submission to TMLR

0 25 50 75 100 125 150 175 200
Epoch

100

4 × 10 1

6 × 10 1

2 × 100

Va
lid

at
io

n
Lo

ss

Validation Loss per Epoch
lv batch 100
rw batch 100

0 25 50 75 100 125 150 175 200
Epoch

10 1

Va
lid

at
io

n
Ac

cu
ra

cy

Validation Accuracy per Epoch

lv batch 100
rw batch 100

Figure 4: Validation loss and accuracy for both SMC methods and batch size for the CIFAR10 Dataset,
averaged over 5 runs.

F.2 Image Classification Runtime Results

Table 12 also shows the average run times in seconds with standard deviations for the image classification
datasets. As the batch size increases, the average training time decreases. We do see that RW is faster
than Langevin due to the fewer gradient calculations, but as discussed before, this can come at the cost of
better test metric results. It is worth noting that Langevin uses the same number of gradient computations
as a standard frequentist neural network. Therefore, if the architecture is set up optimally, it is possible to
run pBNN’s in a comparable run time to non-Bayesian neural networks. In Appendix F.3 we have provided
results to show that when using a comparable runtime between RW and Langevin that the results are very
similar to if they are run for the same amount of epochs.

Table 12: Comparison of Training Times on Classification Datasets in seconds

Markov Kernel MNIST Fashion MNIST
Batch Size 100 Batch Size 500 Batch Size 1000 Batch Size 100 Batch Size 500 Batch Size 1000

Random Walk 1386 (11) 505 (6) 407 (7) 1204 (5) 516 (6) 475 (7)
Langevin 1977 (15) 634 (8) 523 (9) 1745 (8) 751 (6) 718 (7)

F.3 Comparable Runtime Comparison

We decided also to run the MNIST and FashionMNIST image classification experiments as before but this
time compare the different proposals using a comparable runtime. In order to do this we let the RW proposal
run again for 30 epochs and then adjusted the Langevin method so it ran for a similar amount of time as
the random walk proposal, resulting in it training for fewer epochs. The results can be found in Tables 13
and 14 and the validation loss and accuracy curves for this runtime comparison can be found in Figures 5
and 6.

Table 13: Comparison of Methods on MNIST with Different Batch Sizes

Method Batch Size 100 Batch Size 500 Batch Size 1000
Test Loss (std) Test Acc (std) Runtime (std) Test Loss (std) Test Acc (std) Runtime (std) Test Loss (std) Test Acc (std) Runtime (std)

Random Walk 0.0517 (0.0046) 98.45% (0.09) 1005.86s (9.70) 0.0422 (0.0024) 98.71% (0.09) 442.87s (10.60) 0.0377 (0.0020) 98.81% (0.09) 384.19s (10.98)
Langevin 0.0522 (0.0042) 98.42% (0.18) 1065.61s (14.78) 0.0426 (0.0025) 98.72% (0.09) 392.05s (13.23) 0.0378 (0.0037) 98.80% (0.12) 340.09s (13.20)

25

Under review as submission to TMLR

Table 14: Comparison of Methods on FashionMNIST with Different Batch Sizes

Method Batch Size 100 Batch Size 500 Batch Size 1000
Test Loss (std) Test Acc (std) Runtime (std) Test Loss (std) Test Acc (std) Runtime (std) Test Loss (std) Test Acc (std) Runtime (std)

Random Walk 0.3157 (0.0107) 88.96% (0.48) 890.66s (48.64) 0.2922 (0.0068) 89.76% (0.46) 425.65s (9.43) 0.2899 (0.0062) 90.11% (0.35) 393.46s (10.84)
Langevin 0.2815 (0.0078) 90.17% (0.29) 932.94s (10.52) 0.2789 (0.0038) 90.30% (0.18) 451.03s (9.89) 0.2763 (0.0066) 90.38% (0.30) 422.78s (10.73)

0 5 10 15 20 25 30
Epoch

10 1

4 × 10 2

6 × 10 2

2 × 10 1

Va
lid

at
io

n
Lo

ss

Validation Loss per Epoch
lv batch 100
rw batch 100
lv batch 500
rw batch 500
lv batch 1000
rw batch 1000

0 5 10 15 20 25 30
Epoch

9.3 × 10 1

9.4 × 10 1

9.5 × 10 1

9.6 × 10 1

9.7 × 10 1

9.8 × 10 1

9.9 × 10 1

Va
lid

at
io

n
Ac

cu
ra

cy
Validation Accuracy per Epoch

lv batch 100
rw batch 100
lv batch 500
rw batch 500
lv batch 1000
rw batch 1000

Figure 5: Validation loss comparison between different methods for a fixed runtime on the MNIST dataset.

0 5 10 15 20 25 30
Epoch

3 × 10 1

4 × 10 1

5 × 10 1

Va
lid

at
io

n
Lo

ss

Validation Loss per Epoch
lv batch 100
rw batch 100
lv batch 500
rw batch 500
lv batch 1000
rw batch 1000

0 5 10 15 20 25 30
Epoch

8.2 × 10 1

8.4 × 10 1

8.6 × 10 1

8.8 × 10 1

9 × 10 1

Va
lid

at
io

n
Ac

cu
ra

cy

Validation Accuracy per Epoch

lv batch 100
rw batch 100
lv batch 500
rw batch 500
lv batch 1000
rw batch 1000

Figure 6: Validation loss comparison between different methods for a fixed runtime on the FashionMNIST
dataset.

26

	Introduction
	Partial Bayesian Neural Network Training by Sequential Monte Carlo Samplers
	Sequential Monte Carlo Samplers
	Gradient Based Proposals for SMC Samplers

	SMC for pBNNs, Stochastic Gradient and Open Horizon SMC

	Guided OHSMC
	Experiments
	UCI Regression Datasets
	Classification
	MNIST
	FashionMNIST
	CIFAR10
	Image Classification Results Discussion

	Out-of-distribution Analysis

	Conclusion
	Limitations and Further Work

	SMC for pBNNs, SGSMC and OHSMC Pseudocode
	Langevin L-kernel derivation for section 3
	Proposal
	L-kernels
	pBNN context

	Invariance Explanation
	Experiment Parameters and Set Up
	Further Regression Results
	RMSE Results
	R2 and Bias Results

	Further Classification Results and Figures
	Validation and Loss Curves
	Image Classification Runtime Results
	Comparable Runtime Comparison

