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ABSTRACT

This paper addresses online learning with “corrupted” feedback. Our learner is
provided with potentially corrupted gradients g̃t instead of the “true” gradients
gt. We make no assumptions about how the corruptions arise: they could be the
result of outliers, mislabeled data, or even malicious interference. We focus on
the difficult “unconstrained” setting in which our algorithm must maintain low
regret with respect to any comparison point ∥u∥ ∈ Rd. The unconstrained setting
is significantly more challenging as existing algorithms suffer extremely high
regret even with very tiny amounts of corruption (which is not true in the case
of a bounded domain). Our algorithms guarantee regret ∥u∥G(

√
T + k) when

G ≥ maxt ∥gt∥ is known, where k is a measure of the total amount of corruption.
When G is unknown we incur an extra additive penalty of (∥u∥2 +G2)k.

1 INTRODUCTION

In this paper, we consider unconstrained online convex optimization (OCO) under the presence of
adversarial corruptions. In general, OCO is a framework in which a learner iteratively outputs a
prediction wt ∈ W , then observes a vector gt = ∇ℓt(wt) for some convex loss function ℓt :W → R,
and then incurs a loss of ℓt(wt). The learner’s performance over a time horizon T is evaluated by the
regret relative to a fixed competitor u ∈ W , denoted as RT (u)

RT (u) :=

T∑
t=1

⟨gt, wt − u⟩ ≥
T∑

t=1

ℓt(wt)− ℓt(u)

The inequality above follows by convexity of ℓt. Classical results in this field consider a bounded
domain W with known diameter D and a Lipschitz bound G ≥ maxt ∥gt∥. In this setting, the
standard minimax-optimal result is RT (u) ≤ O(GD

√
T ) (Zinkevich, 2003; Abernethy et al., 2008).

Our work focuses on the unconstrained case W = Rd, where it is typical to aim for a regret
guarantee that scales not with a uniform diameter bound D, but with the norm of the comparator ∥u∥.
Such bounds are often called “comparator adaptive” (because they adapt to the comparator u), or
“parameter-free” (because this adaptivity suggests that the algorithms require less hyperparameter
tuning). In this unconstrained setting, the classical algorithms achieve RT (u) = Õ(∥u∥G

√
T )

(Mcmahan & Streeter, 2012; McMahan & Orabona, 2014; Orabona & Pál, 2016; Orabona, 2014)
(which is also optimal).

We are interested in a harder variant of the OCO framework with “corrupted” gradients. Specifically,
instead of any direct information about the function ℓt, after each round the learner is provided with a
vector g̃t that should be interpreted as an estimate of gt = ∇ℓt(wt). Our aim is to obtain a regret that
scales as ∥u∥G(

√
T + k) for all u ∈ W , where k is some measure of the degree to which g̃t ̸= gt

that will be formally defined in Section 2. Roughly speaking, k can be interpreted as the number of
rounds in which g̃t ̸= gt. Notably, the desired rate is robust to adversarial corruptions in the sense that
it allows k = O(

√
T ) before the bound becomes worse than the optimal result without corruptions.

Our dual challenges of corrupted g̃t and unconstrainedW are naturally motivated by problems in
practice. The unconstrained setting is ubiquitous in machine learning - consider the classical logistic
regression setting, for which it is unusual to impose constraints. The corrupted g̃t in contrast is less
commonly studied, but represents a common practical issue: the computed gradients may not be good
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estimates of a “true” gradient, either due to the presence of statistical outliers, numerical precision
issues in the gradient computation, or mislabeled or otherwise damaged data.

We distinguish two different settings in our results: one in which the algorithm is provided with
prior knowledge of a number G ≥ maxt ∥gt∥, and one in which it is not. This is a common
dichotomy in unconstrained OCO, even without corruptions. In the former case, the classical result
of Õ(∥u∥G

√
T ) is obtainable, while in the latter case it is not: instead the optimal results are

RT (u) ≤ Õ(∥u∥maxt ∥gt∥
√
T +∥u∥3 maxt ∥gt∥) (Cutkosky, 2019a; Mhammedi & Koolen, 2020),

or Õ(∥u∥maxt ∥gt∥
√
T + ∥u∥2 +maxt ∥gt∥2) by Cutkosky & Mhammedi (2024). The later excels

particularly whenever G is not excessively large: G ≤ ∥u∥
√
T .

To the best of our knowledge, the setting of unconstrained OCO with corruptions has not been
studied before. Perhaps the closest works to ours are Zhang & Cutkosky (2022); Jun & Orabona
(2019); van der Hoeven (2019) and van Erven et al. (2021). Zhang & Cutkosky (2022); Jun &
Orabona (2019); van der Hoeven (2019) study the unconstrained setting, but assume that g̃t is a
random value with E[g̃t] = gt. In contrast, we assume no such stochastic structure on g̃t. On
the other hand, van Erven et al. (2021) does not make any assumptions about the nature of the
corruptions, but assumes thaW has finite diameter D. They considers an outlier corruption model:
S̄ = {t ∈ [T ] : gt ̸= g̃t} and its complement S = [T ] \ S̄. Thus S represents rounds with outliers
occurred. The online learner receives g̃t with only the knowledge of |S̄| ≤ k, algorithm developed
achieves RS(u) :=

∑
t∈S⟨gt, wt − u⟩ ≤ O(DG(

√
T + k)) by skipping evaluations on outlier

rounds. Our development will borrow some ideas from van Erven et al. (2021) with the aim to bound
RT (u) without skipping evaluations, but it turns out that the unconstrained domain provides unique
challenges that we must overcome, as detailed in Section 3.

The notion of adversarial corruption is common in the field of robust statistics, with early efforts
focusing primarily on the presence of outliers in linear regression (Huber, 2004; Cook, 2000; Thode,
2002). These insprired broader application in machine learning, asuch as Robust PCA (Candès et al.,
2011), anomaly detection (Raginsky et al., 2012; Delibalta et al., 2016; Zhou & Paffenroth, 2017;
Sankararaman et al., 2022), robust regression (Klivans et al., 2018; Cherapanamjeri et al., 2020; Chen
et al., 2022), and mean estimation (Lugosi & Mendelson, 2021). For a comprehensive review of
recent advances in this area, see Diakonikolas & Kane (2019).

Adversarial corruption also significantly impacts iterative algorithms other than OCO, prompting
considerable theoretical research within the framework of stochastic bandits (Lykouris et al., 2018;
Gupta et al., 2019; Ito, 2021; Agarwal et al., 2021) and stochastic optimization (Chang et al., 2022;
Sankararaman & Narayanaswamy, 2024).

Contributions and Organization In the case that the algorithm is given prior knowledge of G, we
provide an algorithm that achieves RT (u) = Õ(∥u∥G(

√
T + k)) in Section 4.1, with a matching

lower bound (see Section 4.2). Alternatively, when G is unknown, a regret bound with an additional
penalty of (∥u∥2 +G2)k is attained (see Section 5.2).

Meanwhile, we provide two specific applications of our results in Sections 4.3. First, we show that
our method can be used to solve stochastic convex optimization problems in some of the gradient
computations are altered in an arbitrary way. Second, we solve a natural “online” version of a
distributionally robust optimization problem. Before providing our main results, we introduce
notation and define our corruption model in Section 2.

2 NOTATION AND PROBLEM SETUP

Notation We consider ℓt :W → R as a convex function, where we considerW = Rd. Let wt ∈ W
be iterates from some online learning algorithm and denote gt = ∇ℓt(wt) as the “true” (sub)gradient.
Let g̃t be the the possibly corrupted that is observable to the learner. Define 1{·} as the indicator
function, where 1{TRUE} = 0,1{FALSE} = 0. Use | · | to denote the cardinality of a set, which
counts the number of elements in the set, and occasionally we use it as the absolute value of real
numbers. Let ∥ · ∥ denote the Euclidean norm. Denote R+ = {x ∈ R : x ≥ 0}. We define shorthand
notation for sets [T ] = {1, 2, . . . , T} and [a, T ] = {a, a + 1, . . . , T} for some a ∈ [T ]. We use
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B ⊆ [T ] to denote an index set, and B̄ = [T ] \ B for its complement. We use O(·) to hide constant
factors and Õ(·) to additionally conceal any polylogarithmic factors.

Problem Setup Instead of the true gradients gt, we our algorithms only receive po-
tentially corrupted gradients g̃t. Two natural measures to quantify corruptions are:

kcount :=

T∑
t=1

1{gt ̸= g̃t} (1) kdeviation :=
1

G

T∑
t=1

∥gt − g̃t∥ (2)

where G is a scalar that satisfies G ≥ maxt ∥gt∥ and is often referred to as the "Lipschitz constant".
The metric kcount counts the rounds in which g̃t ̸= gt but allowing for arbitrarily large deviations
∥g̃t − gt∥ in those rounds. This is suitable for detecting outlier effects and highlighted in studies such
as van Erven et al. (2021); Sankararaman & Narayanaswamy (2024). Conversely, kdeviation measures
the cumulative deviation, accommodating corruption in every round, making it optimal for identifying
subtle yet widespread errors or malicious activities, akin to the issues addressed in Lykouris et al.
(2018); Gupta et al. (2019); Ito (2021); Agarwal et al. (2021); Chang et al. (2022).

In order to provide a unified way to study those two distinct corruption measures in Equation (1) and
(2), we assume that our algorithm is provided with a number k that satisfies:

|B| := |{t ∈ [T ] : ∥gt − g̃t∥ ≥ G}| ≤ k (3) 1

G

T∑
t=1

min (∥gt − g̃t∥, G) ≤ k (4)

where B particular denotes rounds of corruption with a big deviation. Notice that

|B| ≤ min (kcount, kdeviation)
1

G

T∑
t=1

min (∥gt − g̃t∥, G) ≤ min (kcount, kdeviation)

Hence, it suffices to design algorithms remain robust with a given k satisfies Equation (3) and (4)
where k can be set either as kcount or kdeviation for appropriate type of corruptions that is encountering.

3 CHALLENGES IN UNCONSTRAINED DOMAIN

Dealing with corruptions with an unconstrained domain is significantly more challenging than one
with a bounded domain - even if the corruptions are so “small” that ∥gt − g̃t∥ ≤ G. In a boundedW
with a diameter D, an algorithm that completely ignores the possibility of corruptions and directly
runs on g̃t may have low regret. This can be seen as follows: since ∥u − wt∥ ≤ D for every
u,wt ∈ W , we have:

T∑
t=1

⟨gt, wt − u⟩ ≤
T∑

t=1

⟨g̃t, wt − u⟩+
T∑

t=1

∥gt − g̃t∥∥wt − u∥ ≤
T∑

t=1

⟨g̃t, wt − u⟩+ kGD

In this case, ∥u− wt∥ ≤ D prevents the algorithm from straying too far from the comparator u.

The situation is much more difficult in the unconstrained setting. Algorithm for this setting typically
produce outputs wt that potentially grow exponentially fast in order to quickly compete with com-
parators that are very far from the starting point. However, this also means the algorithm is especially
fragile to corruption since the growth of wt can be highly sensitive to deviations in ∥gt − g̃t∥. Even a
small deviation could cause wt to move extremely far away and therefore incur a very high regret.
This phenomenon is illustrated in Figure 1 with the KT-bettor algorithm Orabona & Pál (2016), which
is a standard example of an unconstrained learner.

In Figure 1, we considered ℓt(w) = |x− 1| for all t. Figure 1a and 1b demonstrate k = 20 gradients
being corrupted by setting g̃t = −gt during rounds t ∈ [300, 300 + k − 1] = [300, 319] over a time
span of T = k2 = 400. This results in an exponential deviation away from the comparator u = 1
and so incurs a high regret. Finally, we show that this problem becomes exacerbated as k increases
by simulating k ∈ [20, 30, 40, 50, 60, 70] for T = k2 in figure 1c.
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(a) (b) (c)

Figure 1: KT-bettor with ℓ(w) = |w − 1| and comparator u = 1 (a)-(b): T = 400 and corruption
happens during t ∈ [300, 319]. (c): Ratio between Regret with corruptions and without corruptions
with various total corrupted rounds k ∈ [20, 30, 40, 50, 60, 70] and T = k2.

In receiving possibly corrupted gradients g̃t, our general approach is to first employ a gradient
clipping step with some threshold ht that outputs a “clipped” version g̃ct , defined as follows:

g̃ct =
g̃t
∥g̃t∥

min (ht, ∥g̃t∥) (5)

This preprocessing step “corrects” some corruption effect when ht is appropriately chosen. For
example, in the case of ht = G ≥ maxt ∥gt∥, then g̃ct is always “less corrupted” than g̃t, as
∥g̃ct − gt∥ ≤ ∥g̃t − gt∥. Then g̃ct is used as a feedback to an online learner, yielding the following
expression for RT (u):

RT (u) :=

T∑
t=1

⟨gt, wt − u⟩ =
T∑

t=1

⟨g̃ct , wt − u⟩+
T∑

t=1

⟨gt − g̃ct , wt − u⟩ (6)

After this preprocessing, we design an algorithm that controls both of the above summations, even
without ever seeing the true gradients gt. Depends on whether G ≥ maxt ∥gt∥ is known or not,
the treatment to both steps differs. We introduce our developments for known and unknown G in
Section 4.1 and 5, respectively. Although our analysis only focused onW = R in those sections, a
dimension-free black box reduction from Cutkosky & Orabona (2018) facilitates the adaptation of
our approach toW = Rd as discussed in Appendix D.

4 ROBUST LEARNING WITH KNOWLEDGE OF LIPSCHITZ CONSTANT

In this section, we proceed under the assumption that G ≥ maxt ∥gt∥ is known a priori. We therefore
will set ht = G for all iterations in the definition g̃ct (see Equation 5).

4.1 THE ALGORITHM AND REGRET GUARANTEE

As motivated in Section 3, Equation (5) is a preprocessing step on g̃t with ht = G, thus outputs g̃c as
a feedback to online learner. The regret in Equation (6) can be further upper bounded as:

RT (u) ≤
T∑

t=1

⟨g̃ct , wt − u⟩+
(
max

t
|wt|+ |u|

)∑
t∈B
|gt − g̃ct |+

∑
t∈B̄

|gt − g̃ct |


≤

T∑
t=1

⟨g̃ct , wt − u⟩+
(
max

t
|wt|+ |u|

)(∑
t∈B
|gt − g̃t|+G|B̄|

)

≤
T∑

t=1

⟨g̃ct , wt − u⟩+ kG
(
max

t
|wt|+ |u|

)
(7)

where B is defined in Equation (3), B̄ = [T ] \ B. The second line is due to |gt − g̃ct | ≤ |gt − g̃t| ≤
G,∀t ∈ B̄. The last inequality is due to the corruption model presented in Equation (4).

The main challenge arises from the term kGmaxt |wt| in Equation (7), which could be extremely
large (potentially exponential in t as shown in Lemma 8 Zhang & Cutkosky (2022)). Even if maxt |wt|
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is bounded by O(
√
T ), a worst-case scenario with k = O(

√
T ) could still yield linear regret. This

issue is reminiscent of challenges identified by Zhang & Cutkosky (2022), who studied stochastic
corruptions with E[g̃t] = gt. Taking inspiration from their solution, we consider a composite loss
function ℓ̃t(w) = ⟨g̃ct , w⟩+ rt(w), where rt :W → R+ is convex. By feeding ∇ℓ̃t(wt) to an online
learner, the following relation reveals through rearrangement and the convexity of ℓ̃t:

T∑
t=1

⟨g̃ct , wt − u⟩ =
T∑

t=1

ℓ̃t(wt)− ℓ̃t(u)− rt(wt) + rt(u) ≤
T∑

t=1

⟨∇ℓ̃t(wt), wt − u⟩ − rt(wt) + rt(u)

Thus the true regret RT (u) can be decomposed as:

RT (u) ≤
T∑

t=1

⟨g̃ct +∇rt(wt), wt − u⟩︸ ︷︷ ︸
goal 1: RA

T (u)≤Õ(|u|G
√
T )

+ kGmax
t
|wt| −

T∑
t=1

rt(wt)︸ ︷︷ ︸
goal 2: OFFSET≤Õ(1)

+ kG|u|+
T∑

t=1

rt(u)︸ ︷︷ ︸
goal 3: MAINTAIN≤Õ(|u|Gk)

(8)

Equation (8) suggests that if we could choose A and rt such that RA
T (u) ≤ Õ(|u|G

√
T ), OFFSET

is O(1) and MAINTAIN is Õ(|u|Gk), this would imply RT (u) ≤ Õ(|u|G(
√
T + k)). We choose rt

from a family of Huber losses first proposed by Zhang & Cutkosky (2022) and displayed in Equation
(9) with c = kG, α = ϵ/kG:

rt(w; c, α) =

{
c(lnT |w| − (lnT − 1)|wt|) |wt|lnT−1

(
∑t

i=1 |wi|lnT+αlnT )1−1/ lnT , |w| > |wt|
c|w|lnT 1

(
∑t

i=1 |wi|lnT+αlnT )1−1/lnT , |w| ≤ |wt|
(9)

This rt(w) has two important properties: polynomial growth when |w| ≤ |wt| and linear growth
otherwise. The polynomial growth ensures

∑
t rt(wt) is large enough to ensure OFFSET = O(1). The

linear growth is slow enough to prevent
∑

t rt(u) from blowing, ensuring MAINTAIN ≤ Õ(|u|Gk).
Both bounds are provided in Lemma 8, Appendix C.

With the specified rt, the final step is to design an algorithm A that ensures RA
T (u) ≤ Õ(|u|G

√
T ).

On the surface, this may seem straightforward as RA
T involves the observed value g̃ct + ∇rt(wt)

rather than the unobserved values gt. One might therefore hope to simply apply a standard OCO
algorithm out-of-the-box. Unfortunately, g̃ct +∇rt(wt) may be as a large as G+ k, and so such an
approach would yield only RA

T (u) ≤ O(|u|(G+ k)
√
T ). Fortunately, we known how the choice of

wt will influence ∇rt(wt). This suggests applying tools from optimistic online learning (Rakhlin &
Sridharan, 2013), whose regret depends only on the “unpredictable” component of the loss sequence
(i.e. g̃ct ). We employ the optimism framework of Cutkosky (2019b). This requires two algorithms,
A1,A2, which must both be online learners obtaining the optimal rate in parameter-free literature
(e.g.: Mhammedi & Koolen (2020); Jacobsen & Cutkosky (2022); Zhang et al. (2024)). At a high
level, A1 is run “as normal”, while A2 is responsible for “correcting” the output of A1 to exploit
with the known form of∇rt(wt). See Appendix B for details. Note that standard optimistic methods
require ∇rt(wt) to not depend on wt and so do not immediately apply; we employ a modification
inspired by Zhang & Cutkosky (2022) to account for this.

Our algorithm and analysis forW = R is specified in Algorithm 1 and Theorem 1. The straightfor-
ward extension toW = Rd is provided in Theorem 11, which essentially replaces the |u| in Theorem
1 with ∥u∥ forW = Rd with no dependence on d.

Algorithm 1 Robust Online Learning in Unconstrained Domain with G

Require: Time horizon T , Lipschitz consntant G. Two independent online learnering algorithms
A1,A2 with optimal rate in parameter-free literature (e.g.: Mhammedi & Koolen (2020)) where
a concrete example is the assumption in Theorem 7 (they can be the same algorithm). Corruption
parameter k. Base algorithm parameters ϵ. Regularization relevant parameters: c, α.

1: Initialize:
Initialize A1,A2 with ϵ.

2: for t = 1 to T do
3: Receive xt from A1

4: # The next steps “correct” xt via our modified optimistic update.
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5: Recieve yt from A2

6: Solve for wt: wt = xt − yt∇rt(wt)
7: # End optimism correction.
8: Play wt, suffer loss ⟨gt, wt⟩, receive g̃t
9: Compute g̃ct through Equation (5) with ht = G.

10: Compute regularizer rt(w; c, α) as defined in Equation (9)
11: Send g̃ct +∇rt(wt), and (1 + k lnT )G to A1

12: Send −⟨g̃ct +∇rt(wt),∇rt(wt)⟩, and (1 + k lnT )2G2 to A2

13: end for

Theorem 1. Suppose gt, g̃t satisfies assumptions in Equation (3) and (4). Set c = kG, α = ϵ
kG for

some ϵ > 0. For T ≥ 3, Algorithm 1 runs on g̃ct guarantees

RT (u) ≤ Õ
[
ϵ+ |u|G

(√
T + k

)]
Theorem 1 shows that the penalty for corrupted gradients is at most Õ(|u|Gk). This result has a
few intriguing properties. First, so long as k ≤

√
T , the penalty is subasymptotic to the standard

uncorrupted regret bound Õ(|u|G
√
T ). That is, we can tolerate k up to

√
T essentially “for free”.

Next, observe that for u = 0, the regret is ϵ no matter what k is. Constant regret at the origin is
typical for unconstrained algorithms, but is especially remarkable for our corrupted setting. Imagine
a scenario in which we define 0 to represent some “default” action. Our bound then suggests that no
matter how much corruption is present, we never do significantly worse than this default.

4.2 LOWER BOUNDS

We present a lower bound in Theorem 2 with proofs deferred in Appendix E. This result shows that
the upper bound of Theorem 1 is tight. In addition, we provide a second lower bound as Theorem 16
in Appendix E, which has the matching log factor.

Theorem 2. For every D > 0, there exists a comparator u∗ ∈ Rd such that ∥u∗∥ = D, g̃1, · · · , g̃T
and g1, · · · , gT such that ∥gt∥, ∥g̃t∥ ≤ 1,

∑T
t=1 1{g̃t ̸= gt} = k:

T∑
t=1

⟨gt, wt − u∗⟩ ≥ Ω
[
∥u∗∥

(√
T + k

)]

4.3 EXAMPLES

Here, we provide implication of Algorithm 1 to stochastic convex optimization and distributionally
robust optimization. Example illustrated also applies toW = Rd.

Stochastic convex optimization with corruptions OCO and convex stochastic optimization are
connected through the classical Online-to-Batch Conversion Orabona (2019). Below, we present the
implications of Theorem 1 stochastic convex optimization in a setting where k gradient evaluations
are arbitrarily corrupted.

Corollary 3 (Stochastic Convex Optimization via Online to Batch). Suppose L :W → R is convex
and E[ℓt(w)] = L(w), gt = ∇ℓt(wt) and Et[gt] ≤ G. Algorithm 1 have access to g̃t such that∑T

t=1 1{gt ̸= g̃t} ≤ k, then Algorithm 1 guarantees

E

[
L

(∑T
t=1 wt

T

)
− L(u)

]
≤ Õ

ϵ+ |u|G
(√

T + k
)

T



Proof. The proof leverages the standard online to batch conversion (Theorem 3.1 in Orabona (2019)
by setting αt = 1), then combining with the regret bounds from Theorem 1.
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Distributionally robust optimization Distributionally robust optimization is a form of robust
stochastic optimization on training data sampled from distribution P that is not the same as the
population distribution Q (Ben-Tal et al., 2009; 2015). Typically, Q is considered as uniform, but the
actual training data collection process might be biased, meaning P is different to Q. In this situation,
stochastic optimization which treats each training example with equal weight is no longer appropriate.

Namkoong & Duchi (2016) formalized this framework as the following model with respect to a set of
losses ℓ1, . . . ℓT , and an uncertainty set Pk = {P ∈ ∆T : Df (P ||Q) ≤ C(k, T )}, where Df (P ||Q)
is the f -Divergence, for a convex function f : R+ 7→ R with f(1) = 0.

argmin
w

sup
P∈Pk

T∑
t=1

ptℓt(w)

the decision variable from above formulation takes account into the worst case distributional un-
certainty, hence is intuitively associated with improving generalization error given an appropriate
uncertainty set Pk (Sagawa et al., 2019).

Distributionally robust optimization is increasingly relevant in the training of large language models,
where training data are sourced from different domains (Xie et al., 2023). This is due to data from
some domain are relatively atypical in comparison to others in representing the overall population
distribution (Oren et al., 2019). Although empirical gain has been observed by incorporating
distributionally robust optimization, the scalability has always been a primary concern for model
training (Levy et al., 2020; Qi et al., 2021). Therefore, we consider a natural “online” version of
distributionally robust optimization model proposed by Namkoong & Duchi (2016), with its online
analogous metric formulated as:

sup
P∈Pk

T∑
t=1

pt(ℓt(wt)− ℓt(u))

We present the implication of Algorithm 1 to this problem with respect to total variation DTV and
Kullback-Leibler divergence DKL. In particular, we assume ℓt is convex and Q is uniform.
Corollary 4 (Online Distributionally Robust Optimization). Suppose g̃t ∈ ∇ℓt(wt) and |g̃t| ≤ G.
Algorithm 1 runs on g̃t guarantees

sup
P∈Pk

T∑
t=1

pt(ℓt(wt)− ℓt(u)) ≤ Õ

ϵ+ |u|G
(√

T + k
)

T


for DTV ≤ k

T . In addition, in the case where DKL ≤ 2k2

T 2 the same guarantee is achieved.

Proof. We begin with the case of DTV (P ||Q) = 1
2

∑T
t=1 qt|

pt

qt
− 1| ≤ k

T , where qt = 1
T . First, we

link the regret incurred by Algorithm 1 that runs on gt, and we denote the unobservable gradient as
g̃t =

pt

qt
gt

T∑
t=1

pt(ℓt(wt)− ℓ(u)) ≤
T∑

t=1

pt⟨gt, wt − u⟩ =
T∑

t=1

qt⟨gt, wt − u⟩+
T∑

t=1

qt

(
pt
qt
− 1

)
⟨gt, wt − u⟩

=
1

T

(
T∑

t=1

⟨gt, wt − u⟩+
T∑

t=1

⟨g̃t − gt, wt − u⟩

)
since 1

G

∑T
t=1 ∥gt − g̃t∥ ≤

∑T
t=1 |1 −

pt

qt
| ≤ 2k, g̃t, gt satisfies Equation (2), hence Theorem 1

provides the guarantee:

T∑
t=1

pt(ℓt(wt)− ℓ(u)) ≤ Õ

ϵ+ |u|G
(√

T + k
)

T


In terms of DKL, we exploit the Pinsker’s inequality DTV ≤

√
2DKL, Hence DKL ≤ 2k2

T 2 yields to
the same results.
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5 ROBUST LEARNING WITH UNKNOWN LIPSCHITZ CONSTANT

In this section, we consider G ≥ maxt ∥gt∥ is unknown. Since we do not know G, we cannot set
ht = G for all t as in Section 4. So, we first develop an alternative approach to learn ht on-the-fly
in order to supply Equation (5) as a pre-processing step. Then we show an compatible algorithm in
maintaining small true regret RT (u) as defined in Equation (6).

5.1 ADAPTIVE THRESHOLDING

In this section, we introduce the two “tracking mechanisms” FILTER (Algorithm 6) and TRACKER
(Algorithm 7) and the parameters αt, βt as defined in Equation (11) and (12). These mechanisms and
quantities form the foundation for algorithm design to achieve desired regret bound in Section 5.2.

The corruption model in Equation (3) naturally restricts the number of “big” g̃t, since it implies that
at most k values of t can have ∥g̃t∥ > 2G (See Lemma 17). Based on this observation, we draw
inspiration from van Erven et al. (2021) and propose a simple way to learn a “threshold” ht on-the-fly
which provides an estimate of G. This mechanism is named as FILTER and is displayed as Algorithm
6 in Appendix F.

FILTER maintains a “checkpoint” h which serves as a rough estimate of the future clipping threshold
ht+1. Both the threshold ht and check point h start with some initial value τG > 0. The checkpoint
h remains the same until k + 1 instances where ∥g̃t∥ ≥ h are observed, at which point h is
doubled. At iterations in which a single ∥g̃t∥ ≥ h is observed, the threshold is finely adjusted as
ht+1 = ht + h/(k + 1). The thresholds h1, · · · , hT are supplied to (5) to truncate g̃t to g̃ct such that
∥g̃ct∥ ≤ ht.
Notice that h only doubles if it is guaranteed that some gt satisfies h ≤ ∥gt∥, so that at most
O(k log2G/τG) rounds have h ≤ ∥gt∥. Denote rounds where gradients are clipped as P̄ = {t ∈
[T ] : g̃t ̸= g̃ct}, the doubling criterion in h allows FILTER to guarantee |P̄| ≤ Õ(k) (See Lemma 18).
This means only a small fraction of g̃t are truncated when ht has not yet became a good lower bound
estimate in G. This FILTER strategy improves upon a method with a similar purpose in van Erven
et al. (2021); it uses only constant space rather than O(k) space.

Using FILTER, we can decompose the regret in Equation (6) by using g̃t = g̃ct for t ∈ P:

RT (u) =

T∑
t=1

⟨g̃ct , wt − u⟩+
∑
t∈P
|gt − g̃ct | (|wt|+ |u|)︸ ︷︷ ︸

corruption error

+
∑
t∈P̄

|gt − g̃ct | (|wt|+ |u|)︸ ︷︷ ︸
truncation error

(10)

In addition to the expected “corruption error”, the price to pay for not knowing G is to pick up an
additional “truncation error”. Thus for all t ∈ P̄ , the learner needs to be informed that its decision wt

should be decreased to guarantee the overall “truncation error” is under control. To this end, we use
ht+1 from FILTER to compute a triggering signal αt ∈ [0, γα] for a to-be-specified γα as shown in
equation (11). This αt quantity (which first appeared appeared in Cutkosky & Mhammedi (2024)) is
used to specify a new regularization term that causes wt to decrease. Since ht+1 > ht only when
t ∈ P̄ , we have αt > 0 and an active regularization only at those rounds. Overall, the FILTER outputs
ht+1 in such a way as to allow

∑
t αt = Õ(1) which is crucial for later algorithm design.

Taking a similar approach in managing the “truncation error”, we also employed a doubling strategy
to keep a rarely-changing estimate of maxt |wt| as zt, which we call TRACKER as shown in Algorithm
7, Appendix G. βt ∈ [0, γβ ] is then computed with zt+1 as shown in Equation (12) with the property
of βt > 0 only when wt has noticeably big magnitude. Thus the interpretation of βt is an “alert” to an
online learner that the wt value may need to decrease to prevent “corruption error” from accumulating.
Similarly, the TRACKER outputs zt+1 which allows for

∑
t βt = Õ(1).

αt = γα ·
(ht+1 − ht)/ht+1

1 +
∑t

i=1(hi+1 − hi)/hi+1

(11) βt = γβ ·
(zt+1 − zt)/zt+1

1 +
∑t

i=1(zi+1 − zi)/zi+1

(12)
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5.2 THE ALGORITHM AND REGRET ANALYSIS

In this section, we design an online learner A operating onW = R and relying on feedback g̃ct , ht+1

from FILTER, such that |g̃ct+1| ≤ ht+1. We will eventually achieve RT (u) ≤ Õ(|u|(
√
T + k) +

(|u|2 +G2)k) by integrating ingredients from the preceding sections. We begin with a simplification
of Equation (10) that combinates the “corruption error” and “truncation error”:

RT (u) ≤
T∑

t=1

⟨g̃ct , wt − u⟩+ (kG+ |P̄|(G+ hT ))︸ ︷︷ ︸
A≤Õ(kG)

(
max
t∈P
|wt|+ |u|

)
(13)

Equation (13) reveals the same problematic dependence on Õ (kGmaxt |wt|) encountered in Section
4.1. This shared challenge motivated us to take similar approach: use a regularization function
ϕt :W → R+ to “cancel” excess terms. The chosen ϕt is a combination of rt(w) is the same form
as Equation (8) and a quadric regularizer with and at = αt + βt which were independently defined
as Equation (11) and (12), respectively.

ϕt(w) = rt(w) + atw
2

This yields a regret decomposition directly through adding and subtracting in Equation (13):

RT (u) ≤
T∑

t=1

⟨g̃ct , wt − u⟩+
T∑

t=1

ϕt(wt)− ϕt(u)︸ ︷︷ ︸
goal 5:RA

T (u) small

+Amax
t∈[T ]

|wt| −
T∑

t=1

ϕt(wt)︸ ︷︷ ︸
goal 4:OFFSET small

+A|u|+
T∑

t=1

ϕt(u)︸ ︷︷ ︸
goal 6:MAINTAIN

(14)

The chosen regularization ϕt allows us to achieve simultaneously: (1) MAINTAIN ≤ Õ(|u|k + |u|2)
and (2) OFFSET ≤ O(G2k). The former (1) is due to αt, βt = 0 on most rounds because of the
structure of FILTER and TRACKER, hence

∑
t at =

∑
t αt +

∑
t βt = Õ(1). In addition

∑
t rt(u)

grows sublinearly with respect to T as discussed in Section 4.1. For the latter (2), in Appendix I, we
show:

OFFSET ≲ A2
∑

t:αt>0

1

αt
+A2

∑
t:βt>0

1

βt

Intuitively, both FILTER and TRACKER identify rounds requiring control of “truncation error” and
“corruption error”, and αt > 0 and βt > 0 for those rounds only. The design of FILTER and TRACKER
then makes the number of such rounds small.

It remains to choose a learner A such that RA
T (u) ≤ Õ(|u|G(

√
T + k) + |u|2k). Unfortunately,

this ϕt is not Lipschitz, which makes applying standard tools for constructing unconstrained online
learners difficult. We combat this by employing the “epigraph-based regularization” technique
recently developed by Cutkosky & Mhammedi (2024) in combination with our optimistic online
learning method (further explanations see Appendix H). Briefly, for any pair (wt, yt) with yt ≥ w2

t ,
we have:

RA
T (u) ≤

T∑
t=1

⟨g̃ct +∇rt(wt), wt − u⟩︸ ︷︷ ︸
RAw

T (u)

+

T∑
t=1

at(yt − u2)︸ ︷︷ ︸
R

Ay
T (u)

This is a sum of two regrets for the pair wt and yt with Lipschitz linear losses, subject to yt ≥ w2
t . We

solve this problem using a pair of unconstrained learners (Aw,Ay) that produce (ŵt, ŷt) ∈ R2 and
guarantee regret RAw

T (u), R
Ay

T (u). Then, we employ a black-box conversion from unconstrained-to-
constrained learning due to Cutkosky & Orabona (2018) to enforce the constraint: this involves a
projection ΠW : R2 → W := {(w, y) : y ≥ w2} and a certain technical correction to the gradient
feedback as highlighted in Green. Finally, selecting Aw using a similar optimistic algorithm as in
Section 4 (highlighted in Pink) and Ay as a standard unconstrained OCO algorithm with optimal rate
allowed us to achieve the desired overall regret.

Our algorithm is specified in Algorithm 2, followed by its regret guarantee in Theorem 5 (proved in
Appendix I). The extension of Algorithm 2 toW = Rd is provided in Theorem 25.
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Algorithm 2 Regularization by Epigraph and Optimism

Require: Time horizon T , FILTER as Algorithm 6, TRACKER as Algorithm 7. An algorithm Ay

with optimal rate in parameter-free literature (e.g.: Mhammedi & Koolen (2020)). Corruption
parameter k. Base algorithm parameters ϵ. Regularization relevant parameters: c, α (used to
define rt(w) via Equation (9) in Line 10) and γ, γα, γβ (used in Lines 8, 9 to define at)

1: Initialize:
Initialize Algorithm 3 as Aw with ϵ. Initialize Ay with ϵ
Initialize FILTER with τG (outputs ht as a conservative lower-bound guess for G )
Initialize TRACKER with τD (outputs zt as a conservative lower-bound guess for maxt |wt|).

2: for t = 1 to T do
3: Receive ŵt from Aw; Receive ŷt from Ay

4: Compute Operators in Definition 20 with ht ← ht + c lnT, γ ← γ
5: # Explicit projection of (ŵt, ŷt) through projection map Πt

W as in Definition 20
6: Compute Projection (wt, yt) = Πt

W ((ŵt, ŷt))
7: Play wt, receive g̃ct , ht+1 from FILTER; Send wt to TRACKER and receive zt+1

8: Compute αt, βt as defined in Equations (11, 12)
9: Compute quadratic regularizer weights at = αt + βt

10: # Get regularizer rt as defined Equation (9)
11: Compute gradient for optimism: ∇rt(wt)
12: # Compute gradient correction direction (δwt , δ

y
t ) with ∥ · ∥∗,t and∇St as in Definition 20

13: (δwt , δ
y
t ) = ∥(g̃ct +∇rt(wt), at)∥∗,t∇St((ŵt, ŷt)) # used to correct for projection (line 6)

14: # Send corrected gradients / gradient for optimism:
15: Send ( 12 g̃

c
t , 1

2ht+1) and ( 12 (∇rt(ŵt) + δwt ) ,
3
2 (ht+1 + c lnT )) to Aw # optimism learner

16: Send 1
2 (at + δyt ), and 3

2γ to Ay

17: end for

Theorem 5. Suppose gt, g̃t satisfies assumptions in Equation (3) and (4). Algorithm 2 in response
to g̃t with parameters: α = ϵ/c, γα = γβ = γ

2 , for some ϵ, c, γ, τG, τD > 0. Then Algorithm 2
guarantees a regret bound RT (u):

RT (u) ≤ Õ
[
ϵ+ |u|c+ |u|max(τG, G)

√
T + |u|2γ

]
+

4k2G2

γ
ln

8k2G2

cγτD
+ cτD + kGτD

+
4(k + 1)2(G+ hT )

2

γ

(
1 + ln

hT+1

τG

)
max

(⌈
log2

8G

τG

⌉
, 1

)
Corollary 6. With c = 2k/τD, γ = k + 1 and rest of parameters same as Theorem 5, Algorithm 2
guarantees a regret bound RT (u):

Õ

[
ϵ+ k

(
1 +
|u|
τD

+GτD

)
+ |u|max (τG, G)

(√
T + k

)
+
(
|u|2 +max

(
τ2G, G

2
))

(k + 1)

]

Just as in the known-G case, the parameter settings in Corollary 6 yield Õ(
√
T ) regret so long

as k ≤
√
T so that we can experience a significant amount of corruption without damaging the

asymptotics of the regret bound. We can also achieve the desirable “safety” property of Theorem 1
in which the regret with respect to the baseline point u = 0 is constant no matter what k is via a
different setting of the regularization parameters provided in Corollary 24 in the appendix. However,
in this case we now pay a larger penalty for u ̸= 0 that scales with k2 rather than k.

6 CONCLUSION

In this paper, we considered unconstrained online convex optimization that only have access to
potentially corrupted gradients g̃t instead of the true gradient gt, in which the corruption level is
measured by k. In the case that G ≥ maxt ∥gt∥ is known, we provide an algorithm that achieves the
optimal regret guarantee ∥u∥G(

√
T + k). When G is unknown it incur an extra additive penalty of

(∥u∥2 +G2)k. While the ∥u∥2 +G2 is optimal without corruption (Cutkosky & Mhammedi, 2024),
it is unclear whether the multiplicative dependence on k is optimal in the presence of corruption.
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A UNCONSTRAINED ONLINE CONVEX OPTIMIZATION WITH HINTS

In the unconstrained setting, there are algorithms requires a uniform bound G ≥ maxt ∥gt∥ upfront
which guarantees Õ(∥u∥G

√
T ) McMahan & Orabona (2014); Orabona & Pál (2016); Cutkosky &

Orabona (2018); Zhang et al. (2022). In the case where G is unknown, algorithms are usually devised
through an intermediate step with a slightly ideal scenario, that is the algorithm receives a gradient gt
with a “hints” ht+1 = maxi≤t+1 ∥gi∥ at each iteration t. It turns out by having access to ht to guide
the algorithm, same regret Õ(∥u∥hT

√
T ) can be achieved Cutkosky (2019a); Mhammedi & Koolen

(2020); Jacobsen & Cutkosky (2022); Zhang et al. (2024).

In this paper, we also follows the same strategy of assuming a good hints ht = maxi≤t ∥gt∥ is
supplied to the algorithm, and eventually investigate the scenario of only the current best estimate
ht ≈ maxi≤t−1 ∥gt∥ is available. Hence most of the proofs in the appendix are displayed in the way
of relying on a time varying “hints”: 0 < h1 ≤ · · ·hT ≤ hT+1 to accommodate the design of both
known G and unknown G case.

B OPTIMISTIC ONLINE CONVEX OPTIMIZATION

This section follows optimistic reduction in unconstrained setting from Cutkosky (2019b) in learning
from a composite loss ℓt(w) = ⟨gt + rt, w⟩ where |gt| ≤ Gt is adversarially generated and |rt| ≤
Ht is predictable or even chosen by the user. By a straightforward application of the standard
unconstrained OCO algorithm out-of-the-box in responding to gt+rt,RT (u) depends on the gradient
norm Õ

(
(maxtGt +Ht)

√
T
)

. However, given the optimistic nature of rt being predictable, one
should hope for algorithm should not suffer HT growing with respect to T . Cutkosky (2019b)
achieved the desired dependence Õ(maxtGt

√
T +maxtHt) by lunching two algorithms A1 learns

xt and A2 learning yt and produces iterates wt as:
wt = xt − ytrt

This update is similar to the structure of online subgradient descent, whereA1 learns an pseudo iterate
xt ∼ wt, and A2 learns a step size yt to make finer adjustment to xt by rt. In the following Theorem,
we make no effort in improving the result, but follow the same analysis strategy as Cutkosky (2019b)
with the adaptation of base learners A1,A2 must be unconstrained and Lipschitz adaptive: that is
receives gt, ht+1 such that |gt| ≤ ht while maintain low regret, the optimal rate (Mhammedi &
Koolen, 2020; Jacobsen & Cutkosky, 2022; Zhang et al., 2024) is usually same as the assumption in
Theorem 7. This procedure is fomalized as Algorithm 3:

Algorithm 3 Optimistic Online Learning in Unconstrained Domain with ht
Require: Time horizon T , Sequence 0 < G1 ≤ G2 ≤ · · · ≤ GT+1 such that |gt| < Gt; 0 <

H1 ≤ H2 ≤ · · · ≤ HT+1 such that |rt| ≤ Ht, Two independent online learning algorithms
A1,A2 with optimal rate in parameter-free literature (e.g.: Mhammedi & Koolen (2020)) where
a concrete example is the assumption in Theorem 7 (they can be the same algorithm).

1: Initialize:
Initialize A1,A2 with ϵ.

2: for t = 1 to T do
3: Receive xt from A1

4: Receive yt from A2

5: Compute: wt = xt − ytrt
6: Play wt, receive (gt, Gt+1) and (rt, Ht+1)
7: Send gt + rt, and Gt+1 +HT+1 to A1

8: Send −⟨gt + rt, rt⟩, and (Gt+1 +Ht+1)
2 to A2

9: end for

Theorem 7. SupposeA produces wt in response to gt such that |gt| ≤ Gt and 0 ≤ G1 ≤ · · · ≤ GT

ensures the following guarantee for a given ϵ > 0:

RA
T (u,GT ) =

T∑
t=1

⟨gt, wt − u⟩ ≤ ϵ+A|u|

√√√√ T∑
t=1

|gt|2 ln
(
1 +
|u|TCGT

ϵG1

)
+BGT |u| ln

(
1 +
|u|TCGT

ϵG1

)
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for all u ∈ W and for some positive constants A,B,C. Initiate two independent copy A denote as
A1 and A2, and suppose there is another sequence rt such that |rt| ≤ Ht and 0 ≤ H1 ≤ · · · ≤ HT .
A1 produces xt in response to gt + rt and A1 produces yt in response to −⟨gt + rt, rt⟩. Then with
wt = xt − ytrt. Then

T∑
t=1

⟨gt + rt, wt − u⟩ ≤ Õ

ϵ+ |u|
√√√√ T∑

t=1

g2t + |u|(GT +HT )


Proof.

T∑
t=1

⟨gt + rt, wt − u⟩ =
T∑

t=1

⟨gt + rt, xt − u⟩+ yt(−⟨gt + rt, rt⟩)

= R1
T (u) +R2

T (y∗)− y∗
T∑

t=1

⟨gt + rt, rt⟩

≤ inf
y∗≥0

R1
T (u) +R2

T (y∗)− y∗
T∑

t=1

⟨gt + rt, rt⟩

First, we substitute R1
T (u), R

2
T (y∗). For R1

T (u), since A1 runs on gt + rt and |gt + rt| ≤ GT +HT

for all t. Hence we should set gt ← gt + rt, GT ← GT +HT . Similarly for R2
T (u), where we run

A2 on −⟨gt + rt, rt⟩ and is uniformly bounded by (GT +HT )HT .

≤ inf
y∗≥0

2ϵ+A|u|

√√√√ T∑
t=1

|gt + rt|2 ln
(
1 +
|u|TC(GT +HT )

ϵ(G1 +H1)

)

+B(GT +HT )|u| ln
(
1 +
|u|TC(GT +HT )

ϵ(G1 +H1)

)

+Ay∗

√√√√ T∑
t=1

⟨gt + rt, rt⟩2 ln
(
1 +

y∗TC(GT +HT )HT

ϵ(G1 +H1)H1

)

+B(GT +HT )HT y∗ ln

(
1 +

y∗T
C(GT +HT )HT

ϵ(G1 +H1)H1

)
− y∗

T∑
t=1

⟨gt + rt, rt⟩

For the last term, use −2⟨a, b⟩ = |a− b|2 − |a|2 − |b|2

= inf
y∗≥0

2ϵ+A|u|

√√√√ T∑
t=1

|gt + rt|2 ln
(
1 +
|u|TC(GT +HT )

ϵ(G1 +H1)

)

+B(GT +HT )|u| ln
(
1 +
|u|TC(GT +HT )

ϵ(G1 +H1)

)

+Ay∗

√√√√ T∑
t=1

⟨gt + rt, rt⟩2 ln
(
1 +

y∗TC(GT +HT )HT

ϵ(G1 +H1)H1

)

+B(GT +HT )HT y∗ ln

(
1 +

y∗T
C(GT +HT )HT

ϵ(G1 +H1)H1

)
+
y∗
2

T∑
t=1

|gt|2 − |gt + rt|2 − |rt|2
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To get a clearer view of the expression, we denote

∆1 = ln

(
1 +
|u|TC(GT +HT )

ϵ(G1 +H1)

)
, ∆2 = ln

(
1 +
|u|TC(GT +HT )HT

ϵ(G1 +H1)H1

)
and X =

∑T
t=1 |gt + rt|2. Further,

∑T
t=1⟨gt + rt, rt⟩2 ≤

∑T
t=1 |gt + rt|2|rt|2 ≤ H2

TX where the
last step we applied a uniform bound |rt| ≤ HT . Thus
T∑

t=1

⟨gt + rt, wt − u⟩ ≤ 2ϵ+A|u|
√
X∆1 +B|u|(GT +HT )∆1

+ inf
y∗≥0

Ay∗HT

√
X∆2 +By∗(GT +HT )HT∆2 +

y∗
2

T∑
t=1

|gt|2 − |rt|2 −
y∗
2
X

(15)

It remains to select the correct y∗ ∈ R+ so the expression on the right hand side of Equation (15)
balances to the desired result. It turns out the optimal selection of y∗ depends on whether ∆1 < ∆2

is true or not. Fortunately, y∗ will eventually vanish from the right hand side, so we can select y∗ by
cases and then combing the results.

1. First, we assume ∆2 < ∆1. In this case, select

y∗ = min

 |u|HT
,

2A|u|
√
∆1√

max
(
0,
∑T

t=1 |gt|2 − |rt|2
)


Substitute the choice of y∗ to Equation (15). In particular, explicitly using the first argument
for the third to last summand, and take the second argument to balance the second to the last
term. We keep y∗ at other places for convenience.

T∑
t=1

⟨gt + rt, wt − u⟩ ≤ 2ϵ+A|u|
√
X∆1 +B|u|(GT +HT )∆1

+Ay∗HT

√
X∆2 +B|u|(GT +HT )∆2

+A|u|

√√√√∆1 max

(
0,

T∑
t=1

|gt|2 − |rt|2
)
− y∗

2
X

≤ 2ϵ+B|u|(GT +HT )(∆1 +∆2) +A|u|

√√√√∆1

T∑
t=1

|gt|2

+ sup
X≥0

A|u|
√
X∆1 −

y∗
4
X + sup

Z≥0
Ay∗HT

√
Z∆2 −

y∗
4
Z

For the last two terms x 7→ K
√
x+ y∗

4 x for K, y∗ > 0 attains its maximum at
√
x = 2K

y∗

yields to K2

y∗

≤ 2ϵ+B|u|(GT +HT )(∆1 +∆2) +A|u|

√√√√∆1

T∑
t=1

|gt|2

+
A2|u|2∆1

y∗
+A2y∗H

2
T∆2

It remains to determine the correct upper bound with the selected y∗. For the term contains
y∗ at the denominator, use x

min(a,b) ≤
x
a +

x
b for x, a, b ≥ 0. For the remaining term involves

y∗, use y∗ ≤ |u|
HT

. Hence

T∑
t=1

⟨gt + rt, wt − u⟩ ≤ 2ϵ+B|u|(GT +HT )(∆1 +∆2) +A|u|

√√√√∆1

T∑
t=1

|gt|2
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+A2|u|HT∆1 +
A

2
|u|

√√√√∆1 max

(
0,

T∑
t=1

|gt|2 − |rt|2
)

+A2|u|HT∆2

≤ 2ϵ+B|u|(GT +HT )(∆1 +∆2)

+
3A

2
|u|

√√√√∆1

T∑
t=1

|gt|2 +A2|u|HT (∆1 +∆2) (16)

2. Now consider ∆2 ≥ ∆1 and set

y∗ = min

 |u|HT
,

2A|u|
√
∆2√

max
(
0,
∑T

t=1 |gt|2 − |rt|2
)


and follows the identical algebra as the first case, we have
T∑

t=1

⟨gt + rt, wt − u⟩ ≤ 2ϵ+B|u|(GT +HT )(∆1 +∆2)

+
3A

2
|u|

√√√√∆2

T∑
t=1

|gt|2 +A2|u|HT (∆1 +∆2) (17)

Combining both cases of Equation (16) and ( 17), we have :
T∑

t=1

⟨gt + rt, wt − u⟩ ≤ 2ϵ+B|u|(GT +HT )(∆1 +∆2)

+
3A

2
|u|

√√√√max (∆1,∆2)

T∑
t=1

|gt|2 +A2|u|HT (∆1 +∆2)

substitute ∆1,∆2 and use Õ(·) to hide log factors then we have the desired result.

C BOUNDS ON REGULARIZER AND THEOREM 1

The development of Algorithm 1 and Theorem 1 was based on appropriate choice of regularizer rt
which was firstly studied by Zhang & Cutkosky (2022). We include Lemma 8 by gathering relevant
bounds from Zhang & Cutkosky (2022) for completeness followed by the proof of Theorem 1.
Lemma 8 (Lemma 11 and Lemma 13 of Zhang & Cutkosky (2022)). Let rt :W → R+ be defined
as follows for some c ≥ 0, α > 0 and p ≥ 1,

rt(w; c, p, α) =

{
c(p|w| − (p− 1)|wt|) |wt|p−1

(
∑t

i=1 |wi|p+αp)1−1/p , |w| > |wt|
c|w|p 1

(
∑t

i=1 |wi|p+αp)1−1/p , |w| ≤ |wt|

Then
T∑

t=1

rt(wt) ≥ c

( T∑
t=1

|wt|p + αp

)1/p

− α


T∑

t=1

rt(u) ≤ cp|u|T 1/p

[
ln

(
1 +

(
|u|
α

)p)(p−1)/p

+ 1

]
In particular, when p = lnT for T ≥ 3:

T∑
t=1

rt(wt) ≥ c
(
max

t
|wt| − α

)

17
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T∑
t=1

rt(u) ≤ 3 lnTc|u|
[
ln

(
1 +

(
|u|
α

)p)
+ 2

]

Proof. The first set of bounds are the same as Zhang & Cutkosky (2022) Lemma 13. For the second

set of bounds: the lower bound is due to
(∑T

t=1 |wt|p + αp
)1/p

≥
(∑T

t=1 |wt|p
)1/p

followed by
an application of of Lemma 11 in Zhang & Cutkosky (2022); the upper bound is due to xq ≤ x+ 1

for x > 0 and 0 < q < 1, where we set x = ln
(
1 +

(
|u|
α

)p)
and q = (p − 1)/p folowed by

T 1/ lnT = e ≤ 3.

Theorem 1. Suppose gt, g̃t satisfies assumptions in Equation (3) and (4). Set c = kG, α = ϵ
kG for

some ϵ > 0. For T ≥ 3, Algorithm 1 runs on g̃ct guarantees

RT (u) ≤ Õ
[
ϵ+ |u|G

(√
T + k

)]
Proof. The proof begins with the regret decomposition in Equation (8) and is displayed below for
convenience. We aim to show each component satisfy the desired bound as follows:

R̃T (u) ≤
T∑

t=1

⟨g̃ct +∇rt(wt), wt − u⟩︸ ︷︷ ︸
goal1: RA

T (u)≤Õ(|u|G
√
T )

+ kGmax
t
|wt| −

T∑
t=1

rt(wt)︸ ︷︷ ︸
goal2: OFFSET≤Õ(1)

+ kG|u|+
T∑

t=1

rt(u)︸ ︷︷ ︸
goal3: MAINTAIN≤Õ(|u|Gk)

goal1: since |g̃ct | ≤ ht = G, |∇rt(wt)| ≤ c lnT = 2kG lnT . Thus RA
T (u) is guaranteed by

Theorem 7 by setting Gt = ht = G,Ht = 2k lnT , yields to

RA
T (u) ≤ Õ

ϵ+ |u|
√√√√ T∑

t=1

|g̃ct |2 + |u|(hT + kG)

 = Õ
[
ϵ+ |u|G

(√
T + k

)]
goal2 & goal3: both are guaranteed by Lemma 8. Specifically by substitute c, α:

OFFSET ≤ kGmax
t
|wt| − kG(max

t
|wt| − ϵ/kG) = ϵ

MAINTAIN ≤ kG|u|+ 3kG lnT |u|

[
ln

(
1 +

(
|u|kG
ϵ

)lnT
)

+ 2

]
= Õ(kG|u|)

D DIMENSION-FREE ROBUST LEARNING WITH KNOWN G

In this section, we aim to extend Algorithm 1 operates on R to Rd through a dimension-free reduction
introduced by Cutkosky & Orabona (2018) followed by its regret guarantee. Since there are mixture
of scalar and vectors, to maintain clarity we use a to denote scalar and a to denote vector in this
section.

Cutkosky & Orabona (2018) proposed the task of learning wt ∈ Rd can be distributed into two
algorithms: AR to produce xt ∈ R and ABd

to produce vt ∈ Bd, where Bd = {v ∈ Rd : ∥v∥ ≤ 1}.
Then play wt by

wt = xtvt

The interpretation of such strategy is AR as a magnitude learner and ABd
as a direction learner.

Consequently, the regret of playing wt is the related to regrets suffered by both learners as presented
in Theorem 9. Hence allowing the extension of any algorithm operates on R to Rd without sacrificing
regret guarantee by choosing appropriate direction learner ABd

.
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Theorem 9. (Theorem 2 of Cutkosky & Orabona (2018)) Suppose ABd
obtains regret RBd

T (u) for
any u ∈ Bd, AR obtains regret RR

T (u) for any u ∈ R. Let ABd
produce vt in response to gt and AR

produce xt in response to ⟨gt,vt⟩. Then

RT (u) =

T∑
t=1

⟨gt,wt − u⟩ ≤ RR
T (∥u∥) + ∥u∥R

Bd

T (
u

∥u∥
)

We formally display Algorithm 4 as the dimension-free extension in the context of adversarial
corruption in responding to g̃c

t as a clipped version of g̃t through gradient clipping in Equation (5)
for some clipping threshold 0 < h1 ≤ · · · ≤ hT . Algorithm 4 is compatible with any algorithm
AR operates on R and is referred as the magnitude learner. The direction learner ABd

is shown in
Algorithm 5. We then present its AR dependent bound in Theorem 10.

Algorithm 4 Dimension-free Robust Online Learning in Unconstrained Domain

Require: Time horizon T , g̃c
t : ∥g̃c

t∥ ≤ ht. AR operates on R, ABd
operates on Bd. Corruption

parameter k, AR initialization parameter ϵ.
1: Initialize:

AR and Algorithm 5 as ABd
.

2: for t = 1 to T do
3: Receive xt ∈ R from AR, vt from ABd

4: Play output wt = xtvt, suffer loss ⟨gt,wt⟩
5: Receive g̃c

t , ht+1

6: Send zt = ⟨g̃c
t ,vt⟩, ht+1 to AR, send g̃c

t to ABd

7: end for

Algorithm 5 Direction Learner: Online Subgradient Descent

Require: g̃c
t ,v1 = 0

1: for t = 1 to T do
2: Output vt, receive g̃c

t

3: Set learning rate ηt = (
∑t

i=1 ∥g̃c
i∥2)−1/2

4: Compute vt+1 ∈ argminv:∥v∥≤1 ∥vt − ηtg̃c
t∥

5: end for

Theorem 10. Suppose algorithm having access to g̃c
t in receiving g̃t as defined in Equation (5) with

0 < h1 ≤ h2 · · · ≤ hT+1. Let AR be any algorithm operate on R. Then Algorithm 4 runs on g̃c
t

guarantees:

RT (u) ≤
T∑

t=1

⟨zt, xt − ∥u∥⟩+
T∑

t=1

∥gt − g̃c
t∥ (|xt|+ ∥u∥) +

3∥u∥
2

hT
√
T

where |zt| ≤ ht

Proof. We begin with a convenience form of true regret in responding to g̃c
t :

RT (u) :=

T∑
t=1

⟨g̃c
t ,wt − u⟩+

T∑
t=1

⟨gt − g̃c
t ,wt − u⟩

In the view of Theorem 9 for the first term:

RT (u) ≤
T∑

t=1

⟨zt, xt − ∥u∥⟩+ ∥u∥RBd

T (
u

∥u∥
) +

T∑
t=1

⟨gt − g̃c
t ,wt − u⟩

≤
T∑

t=1

⟨zt, xt − ∥u∥⟩+
T∑

t=1

∥gt − g̃c
t∥ (∥xtvt∥+ ∥u∥) + ∥u∥RBd

T (
u

∥u∥
)
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≤
T∑

t=1

⟨zt, xt − ∥u∥⟩+
T∑

t=1

∥gt − g̃c
t∥ (|xt|+ ∥u∥) + ∥u∥R

Bd

T (
u

∥u∥
)

where the last line is due to ∥vt∥ ≤ 1. Moreover, |zt| = |⟨g̃c
t ,vt⟩| ≤ ∥g̃c

t∥ ≤ ht. And RBd

T (u) ≤
3∥u∥
2

√∑T
t=1 ∥g̃c

t∥2 is by following standard subgradient descent with Lipschitz adaptive learning
rates for the second term (Theorem 4.14 of Orabona (2019)). Since ∥g̃ct∥ ≤ ht ≤ hT we have
∥u∥RBd

T ( u
∥u∥ ) ≤

3∥u∥
2 hT

√
T

Theorem 11. Suppose gt, g̃t satisfies assumptions in Equation (3) and (4). Algorithm 4 in response
to g̃c

t as defined in Equation (5) with h1 = · · · , hT = G, by setting AR as Algorithm 1 with all
parameters the same as that of Theorem 1. Then Algorithm 4 guarantees:

RT (u) ≤ Õ
[
ϵ+ ∥u∥G

(√
T + k

)]
Proof. By Theorem 10 and hT = G

RT (u) ≤
T∑

t=1

⟨zt, xt − ∥u∥⟩+
T∑

t=1

∥gt − g̃c
t∥ (|xt|+ ∥u∥) +

3∥u∥
2

G
√
T

≤
T∑

t=1

⟨zt, xt − ∥u∥⟩+
T∑

t=1

∥gt − g̃t∥ (|xt|+ ∥u∥) +
3∥u∥
2

G
√
T

due to gt, g̃t satisfies assumptions in Equation (4)

≤
T∑

t=1

⟨zt, xt − ∥u∥⟩+ kG
(
max

t
|xt|+ ∥u∥

)
+

3∥u∥
2

G
√
T

In addition, |zt| ≤ ht = G is guaranteed by Theorem 10, hence apply Theorem 1 to the first two term

≤ Õ
(
ϵ+ ∥u∥G

(√
T + k

))
+

3∥u∥
2

G
√
T

= Õ
(
ϵ+ ∥u∥G

(√
T + k

))

E LOWER BOUNDS

In this section, we present two type of matching lower bounds to Theorem 1: Theorem 2 provides a
lower bound for any comparator u∗ ∈ Rd with arbitrary magnitude D > 0. Theorem 16 is a lower
bound with log factors, which appears in unconstrained OCO upper bounds.

We begin by presenting a helper lemma that aids in the analysis of Theorem 2, followed by Lemmas
required to proof to Theorem 2.
Lemma 12. Suppose z1, z2, · · · , zT ∈ {−1,+1} with equal probability. Then for every t ∈ [T ] for
some T ≥ 1.

E

[
T∑

t=1

sign

(
T∑

i=1

zi

)
zt

]
≥
√
T

16

Proof. Define St =
∑

i∈[T ]:i ̸=t zi, by conditioning on gT ∈ {−1,+1}:

2E

[
sign

(
T∑

i=1

zT

)
zt

]
= E [sign (ST + 1)]− [sign (ST − 1)]

=
∑

k∈{−T,−T+2,··· ,T}

(sign(k + 1)− sign(k − 1))P (ST = k)
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We consider T by cases: suppose T is even, sign(k + 1) − sign(k − 1) = 2 when k = 0, and
sign(k + 1)− sign(k − 1) = 0 otherwise. Thus applying

(
T

T/2

)
≥ 2T−1(T/2)−1/2

E

[
sign

(
T∑

i=1

zi

)
zT

]
= P (ST = 0) =

(
T

T/2

)
2−T ≥ 2−1(T/2)−1/2 =

√
1

2T

Similarly if T is odd, by symmetry to ST = ±1:

E

[
sign

(
T∑

i=1

zi

)
zT

]
=

1

2
(P (ST = −1) + P (ST = 1))

=

(
T

(T + 1)/2

)
2−T

Define T ′ = T − 1 thus T ′ is even

=
T ′!(

T ′

2

)
!
(
T ′

2

)
!
·

(
T ′

2

)
!
(

T ′

2

)
!(

T ′+2
2

)
!
(
T ′

2

)
!
· (T

′ + 1)!

(T ′)!
2−(T ′+1)

=

(
T ′

T ′/2

)
T ′ + 1

T ′+2
2 + T ′

2

2−(T ′+1)

≥ 2T
′−1

(
T ′

2

)−1/2
T ′ + 1

T ′ + 2
2−(T ′+1)

≥ 1

8T ′ =
1

8(T − 1)
≥ 1

16T

Thus combining two cases:

E

[
sign

(
T∑

i=1

zi

)
zT

]
≥ 1

16T

Due to symmetry, St has the same distribution ∀t ∈ [T ]:

E

[
sign

(
T∑

i=1

zT

)
zt

]
= E

[
sign

(
T∑

i=1

zi

)
zT

]
, ∀t ∈ [T ]

Thus

E

[
T∑

t=1

sign

(
T∑

i=1

zi

)
zt

]
= TE

[
sign

(
T∑

i=1

zi

)
zT

]
≥
√
T

16

Theorem 2. For every D > 0, there exists a comparator u∗ ∈ Rd such that ∥u∗∥ = D, g̃1, · · · , g̃T
and g1, · · · , gT such that ∥gt∥, ∥g̃t∥ ≤ 1,

∑T
t=1 1{g̃t ̸= gt} = k:

T∑
t=1

⟨gt, wt − u∗⟩ ≥ Ω
[
∥u∗∥

(√
T + k

)]
Proof. Consider the following random sequence: zk+1, zk+2, · · · , zT ∈ {−1,+1} with equal
probability and z1 = · · · , zk = sign(

∑T
t=k+1 zt). And z̃1 = · · · = z̃k = 0 and z̃at =

zt,∀t ≥ k + 1. Let q ∈ Rn be any unity vector. Suppose gt = ztq, g̃t = z̃tq,∀t ∈ T . Select
u∗ = −D sign(

∑T
t=k+1 gt)q. Thus:

E[RT (u
∗)] = E

[
T∑

t=1

⟨gt, wt − u⟩

]
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=

T∑
t=1

E [⟨gt, wt⟩]− E

[
k∑

t=1

⟨gt, u⟩

]
−

T∑
t=k+1

E [⟨gt, u⟩]

=

T∑
t=1

E [⟨Et[zt]q, wt⟩] +Dk +D

T∑
t=k+1

E

[
zt sign

(
T∑

t=k+1

zt

)]

= Dk +D

T∑
t=k+1

E

[
zt sign

(
T∑

t=k+1

zt

)]
by Lemme 12

≥ D

(
k +

√
T − k
16

)
= Ω(∥u∗∥(k +

√
T ))

The second lower bound in Theorem 16 has a matching log factors by uses the definition of “regret at
the origin” of an online learning algorithm, formalized as:

RT (0) =

T∑
t=1

⟨gt, wt − 0⟩ ≤ ϵ (18)

This condition implies that an algorithm maintaining small ϵ is inherently conservative: it will perform
well if the comparator is close to the origin, but this behavior may come at the cost of performing
poorly if the comparator is far from the origin. Before presenting the analysis to Theorem 16, we first
list previously established result on properties of iterates wt produced by any algorithm has constant
regret guarantee at the origin as defined in Equation (18). Lemma 13 was originally appeared in
Cutkosky (2018) then being re-interpreted by Orabona (2019). Lemma 14 from Zhang & Cutkosky
(2022).
Lemma 13 (Theorem 5.11 of Orabona (2019)). For any OLO algorithm suffers constant regret at the
origin (Equation (18)) and |gt| ≤ 1, there exist βt ∈ Rd such that ∥βt∥ ≤ 1 and

wt = βt

(
ϵ−

t−1∑
i=1

⟨gi, wi⟩

)
for all t ∈ [T ].
Lemma 14 (Lemma 8 of Zhang & Cutkosky (2022): Unconstrained OLO Iterate Growth). Suppose
assumptions in Lemma 13 is satisfied. Then for every t ∈ [T ], ∥wt∥ ≤ ϵ2t−1.

We first derive an lower bound for algorithms satisfies assumption in Lemma 13. The construction
was originally appeared in Theorem 5.12 from Orabona (2019). Finally, the lower bound in the
context of adversarial corruptions is presented in Theorem 2.
Lemma 15 (Unconstrained OLO Lower Bound). Suppose assumptions in Lemma 13 is satisfied,
then set gt = [gt,1, 0, · · · , 0], gt,1 = g = 1 for all t ∈ [T ]. Then there exists an u∗ ∈ Rd such that
∥u∗∥ = 2ϵeT , and

T∑
t=1

⟨gt, wt − u∗⟩ ≥ ϵ+ ∥u∗∥

√
T

30
ln

(
1 +
∥u∗∥2T
2ϵ2

)

Proof. Let rt = −
∑t

i=1⟨gi, wi⟩. Then

ϵ−
T∑

t=1

⟨gt, wt⟩ = ϵ+ rT−1 − ⟨gT , wT ⟩

by Lemma 13, there exists some βT : ∥βT ∥ ≤ 1

= ϵ+ rT−1 − ⟨gT , βT ⟩(ϵ+ rT−1)
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= (1− ⟨gt, βt⟩) (ϵ+ rT−1)

Then recursively expand rT−1, rT−2, · · · , r1 with Lemma 13, then for some βt : ∥βt∥ ≤ 1

ϵ−
T∑

t=1

⟨gt, wt⟩ = ϵ

T∏
t=1

(1− ⟨gt, βt⟩)

Hence

ϵ−
T∑

t=1

⟨gt, wt⟩ ≤ ϵ
T∏

t=1

max
∥βt∥≤1

(1− ⟨gt, βt⟩) = ϵ

T∏
t=1

(1 + |g|) = ϵ

(
1 +
|g|2T
T

)T

≤ ϵ exp
(
|g|2T

)
where we used inequality (1 + x

n )
n ≤ ex by setting n = T, x = |g|2T for the last step. Rearrange

above equation, we have

T∑
t=1

⟨gt, wt⟩ − ϵ ≥ −ϵ exp
(
|g|2T

)
= −ϵ exp

(
|
∑T

t=1 gt,1|2

T

)
= −f(−

T∑
t=1

gt,1)

where f(x) = ϵ exp(x
2

T ), by Theorem 27 part 1, we have f(x) = f∗∗(x). Then by the definition of
double conjugate f∗∗,

T∑
t=1

⟨gt, wt⟩ − ϵ ≥ −f∗∗(−
T∑

t=1

gt,1) = −

(
sup
u1∈R
⟨−

T∑
t=1

gt,1, u1⟩ − f∗(u1)

)
(19)

By Theorem 27 part 2, the supreme is achieve at

u∗1 = ∇f(−
T∑

t=1

gt,1) =
2ϵ

T

(
T∑

t=1

gt,1

)
exp


(∑T

t=1 gt,1

)2
T

 = 2ϵeT

Substitute u∗1 and set u∗ = [u∗1, 0, · · · , 0], then Equation (19) becomes:

T∑
t=1

⟨gt, wt⟩ − ϵ ≥
T∑

t=1

⟨gt,1, u∗1⟩+ f∗(u∗1) =

T∑
t=1

⟨gt, u∗⟩+ f∗(u∗1)

Rearrange we have

T∑
t=1

⟨gt, wt − u∗⟩ ≥ ϵ+ f∗(u∗1) (20)

It remains to obtain a lower bound to f∗(u∗1). By Lemma 29 and Lemma 28, we have

f∗(u∗1) =

√
T

2
|u∗1|


√
W

(
T |u∗1|2
2ϵ2

)
− 1√

W
(

T |u∗
1 |2

2ϵ2

)


≥
√
T

2
|u∗1|


√
0.6 ln

(
1 +

T |u∗1|2
2ϵ2

)
− 1√

0.6 ln
(
1 +

T |u∗
1 |2

2ϵ2

)


Notice that 0.6 ln
(
1 +

T |u∗
1 |

2

2ϵ2

)
= 0.6 ln(1 + 2 exp(T )2T ) > 1.5, hence by Lemma 30

≥
√
T

2
|u∗1|

√
0.2

3
ln

(
1 +

T |u∗1|2
2ϵ2

)

= |u∗1|

√
T

30
ln

(
1 +

T |u∗1|2
2ϵ2

)
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Substitute the lower bound to f∗(u∗1) to Equation (20)

T∑
t=1

⟨gt, wt − u∗⟩ ≥ ϵ+ |u∗1|

√
T

30
ln

(
1 +
|u∗1|2T
2ϵ2

)
= ϵ+ ∥u∗∥

√
T

30
ln

(
1 +
∥u∗∥2T
2ϵ2

)

Theorem 16. For any algorithm that maintains Equation (18) for some ϵ > 0, there exists a sequence
of g̃1, · · · , g̃T and g1, · · · , gT such that ∥gt∥, ∥g̃t∥ ≤ 1,

∑T
t=1 1{g̃t ̸= gt} = k, and a u∗ ∈ Rd such

that

T∑
t=1

⟨gt, wt − u∗⟩ ≥ Ω̃
[
ϵ+ ∥u∗∥

(√
T + k

)]

Proof. the proof strategy is that algorithm with regret guarantee as shown in Equation (18) attains a
matching lower bound Ω̃(ϵ+ ∥u∥

√
T ) in responding to gt as shown in Lemma 15. The by reversing

the direction of exactly k gradients by taking account into the growth behavior of wt (Lemma 14) and
a particular hard comparator u∗ constructed in Lemma 15, we can show regrets during those rounds
builds up linearly. Let g̃1, · · · , g̃T , where ∥g̃t∥ ≤ 1 as defined in Lemma 15 and suppose algorithm
operates on those gradients. Let S be the index set S = {t ∈ [T ] : gt ̸= g̃t}. Then by the lower
bound presented in Lemma 15

T∑
t=1

⟨gt, wt − u∗⟩ =
T∑

t=1

⟨g̃t, wt − u∗⟩+
T∑

t=1

⟨gt − g̃t, wt − u∗⟩

≥ Ω̃(ϵ+ ∥u∗∥
√
T ) +

∑
t∈S

⟨gt − g̃t, wt − u∗⟩

for some u∗ ∈ Rd and ∥u∗∥ = 2ϵeT . For t ∈ S, define gt as follows

gt = g̃t −
u∗

∥u∗∥

Then
T∑

t=1

⟨gt, wt − u∗⟩ ≥ Ω̃(ϵ+ ∥u∗∥
√
T ) +

∑
t∈S

⟨− u∗

∥u∗∥
, wt⟩+

∑
t∈S

⟨ u
∗

∥u∗∥
, u∗⟩

≥ Ω̃(ϵ+ ∥u∗∥
√
T )−

∑
t∈S

∥wt∥+ k∥u∗∥

Finally, By Lemma 14 ∥wt∥ ≤ ϵ2t−1. Hence ∥wt∥ ≤ 1
2∥u

∗∥

T∑
t=1

⟨gt, wt − u∗⟩ ≥ Ω̃(ϵ+ ∥u∗∥
√
T )− k

2
∥u∗∥+ k∥u∗∥ = Ω̃

(
ϵ+ ∥u∗∥

(√
T + k

))

F ADAPTIVE THRESHOLDING

In this section, we formalize the adaptive thresholding and clipping mechanism, namely FILTER,
summarized in Section 5.1. This mechanism relies on prior knowledge of big corrupted gradients
numbers which is naturally restricted by corruption model in Equation (3). We present this result as
Lemma 17, followed FILTER as Algorithm 6 and its property in Lemma 18.

Lemma 17. For g1, · · · , gT and g̃1, · · · , g̃T that satisfies Equation (3), then there are at most k
number of g̃t such that ∥g̃t∥ ≥ 2G.
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Proof. By definition of B = {t ∈ [T ] : ∥gt − g̃t∥ > G}:

B := {t ∈ [T ] : ∥gt − g̃t∥ > G}
= {t ∈ [T ] : ∥gt − g̃t∥ > G, ∥gt∥ < G} ∪ {t ∈ [T ] : ∥gt − g̃t∥ > G, ∥gt∥ = G}
⊇ {t ∈ [T ] : ∥gt − g̃t∥ > G, gt = G · sign(g̃t)}
= {t ∈ [T ] : ∥G− ∥g̃t∥∥ > G}
= {t ∈ [T ] : ∥g̃t∥ > 2G}

Finally, due to Equation (3), k := |B| ≥ |{t ∈ [T ] : ∥g̃t∥ > 2G}|.

Algorithm 6 FILTER: k-lag Thresholding and Gradient Clipping

Require: Corruption parameter k, Initial Lipschitz guess: τ = τG > 0.
1: Initialize:

Filter threshold h1 = τ , Check point h = h1, Counter: n = 0, P = {}
2: for t = 1 to T do
3: Receive g̃t
4: if ∥g̃t∥ > h then
5: Set g̃ct = g̃t

∥g̃t∥ht, update counter: n = n+ 1

6: Update threshold ht+1 = ht +
1

k+1h
7: if n = k then
8: Update Check point h = ht+1, reset counter: n = 0
9: end if

10: else
11: Set g̃ct = g̃t, register rounds P = P ∪ t
12: Maintain threshold ht+1 = ht
13: end if
14: Output g̃ct , ht+1

15: end for

We display some convenience property of Algorithm FILTER, notice all quantities apart from ht are
for assisting analysis only
Lemma 18. (Algorithm 6 property) Suppose gt, g̃t satisfies Equation (3), and Algorithm 6 receives
g̃t, then its per iteration outputs g̃ct , ht+1 satisfies:

(1) ht+1 = ht,∀t ∈ P = {t ∈ [T ] : g̃ct = g̃t}

(2) ∥g̃ct∥ ≤ ht,∀t ∈ [T ]

(3) τ = h1 ≤ h2 ≤ · · · ≤ hT+1 ≤ max(τ, 8G)

(4) |P| ≥ T − (k + 1)max
(
⌈log2 8G

τ ⌉, 1
)

(5) ht+1/(ht+1 − ht) ≤ 2(k + 1),∀t /∈ P

Proof. We show each property in turns.

(1) guaranteed by algorithm line 11-12.

(2) either line 4 or line 11 is evoked to compute g̃ct .

(3) ht being non-decreasing sequence and ht = τ is by construction. Hence it remains to show
an upperbound to ht,∀t ∈ [T + 1]. The key to this proof is there are at most k number of g̃t
such that ∥g̃t∥ ≥ 2G gaurateed by Equation (3) (See Lemma 17).

In the case where initial value of τ ≥ 2G, then the check point h never doubled since each
time of doubling requires k + 1 number of ∥g̃t∥ exceeds current one. (by line 4-9)

Now, we consider τ < 2G, where doubling of check point h was evoked at least once (by
evoking line 8) with initial value τ , then h ∈ {τ, 2τ, 22τ, · · · , 2Nτ} for some N ∈ [T ],
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whereN is the number of time line 8 was evoked. Then 2Nτ ≤ ht ≤ 2N+1τ,∀t ∈ [t∗, T+1]
where t∗ ≤ T is the last time step where h was doubled.

On the other hand, h ∈ {2N−1τ, 2Nτ} at some period of time. This means during this
time interval at least k + 1 number of g̃t such that ∥g̃t∥ ≥ 2N−1τ were observed thus have
triggered line 8. Thus 2N−1τ ≤ 2G, N + 1 ≤ log2

8G
τ .

Combining both conclusions from above ht ≤ 2N+1τ ≤ 8G,∀t ∈ [t∗, T + 1]. Moreover,
ht is non-decreasing, and we complete the proof.

(4) |P| is associated with the number of time in which check point h doubled. By the proof to
property (3) that 2N−1τ ≤ 2G, thus N ≤ max

(
⌈log2 4G

τ ⌉, 0
)

as an upper bound that the
number of h being doubled.

For t ≤ t∗, each doubling requires exactly k + 1 number of g̃t being clipped. Thus there
were (k + 1)max

(
⌈log2 4G

τ ⌉, 0
)

number of rounds not being register to P . For t > t∗,
there were less than (k + 1) number of g̃t not being registered into P , otherwise threshold
would have been doubled. Thus

|P| ≤ (k + 1)max

(⌈
log2

4G

τ

⌉
, 0

)
+ (k + 1) = (k + 1)max

(⌈
log2

8G

τ

⌉
, 1

)
(5) For t /∈ P , ht+1 = (1 + n+1

k+1 )h, ht = (1 + n
k+1 )h, for some n ∈ [k] and for some

h ∈ {τ, 2τ, 22τ, · · · , 2t′τ}. Hence

ht+1

ht+1 − ht
=

1 + n+1
k+1

n+1
k+1 −

n
k+1

= 2 + k + n ≤ 2(k + 1)

G ADAPTIVE TRACKING

We introduce TRACKER, an adaptive mechanism for estimating maxt |wt|. as shown in Algorithm
7. TRACKER maintains thresholds zt in which doubles whenever ∥wt∥ > zt. The properties of
TRACKER is displayed in Lemma 19.

Algorithm 7 TRACKER: track the magnitude of wt

Require: Initial magnitude guess: τ = τD > 0.
1: Initialize:

Filter threshold z1 = τ , (Counter, Set): (n = 0, Tn = {}), Check point t0 = 1
2: for t = 1 to T do
3: Receive wt

4: if ∥wt∥ > zt then
5: Double: zt+1 = 2zt
6: Update counter n = n+ 1
7: Add a new checkpoint: tn = t, add a new set Tn = {})
8: else
9: Maintain: zt+1 = zt

10: end if
11: Register round Tn ← Tn ∪ t
12: end for

Lemma 19. (Algorithm 7 property) Algorithm 7 guarantees

(1) [T ] is partitioned by T0, T1, T2, · · · , TN , for some N ≤ T

(2) τ = zt = zt+1, |wt| ≤ τ,∀t ∈ T0

(3) zt+1 = 2zt iff t = tn, n ∈ [N ], zt+1 = zt otherwise
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(4) ∥wt∥ ≤ 2∥wtn∥,∀t ∈ Tn, n ∈ [N ]

(5) τ = z1 ≤ z2 ≤ · · · ≤ zT+1 ≤ max(τ, 2maxt |wt|)

Proof. We show each property in turns.

(1) partition property can be seen by in the initialization of n = 0 with increment of 1 (line 6)
and whenever counter n updates a new set Tn is created (line 7). And ∀t ∈ [T ] is assigned
to Tn for some n ≥ 0 (line 11).

(2) For the time period of n = 0, line 4 was never executed.

(3) As n ≥ 1: ztn+1 = 2ztn and ∥wtn∥ > ztn when line 5 was evoked. otherwise zt+1 = zt as
in line 9 where tn ̸= t.

(4) By construction Tn = {tn, tn + 1, · · · , tn+1 − 1},∀n ∈ [N − 1], TN = {tN , · · · , T}.
When t = tn, the inequality holds. Thus we consider ∀t ∈ Tn \ {tn}, line 9 was triggered,
hence zt+1 = zt = ztn+1 and ∥wt∥ ≤ zt. On the other hand, by property (2) ztn+1 = 2ztn
and ∥wtn∥ > ztn . Thus

2∥wtn∥ > 2ztn = ztn+1 = zt ≥ ∥wt∥, ∀t ∈ Tn \ {tn}

(5) since z1 = τ and zt+1 is either through line 5 (double) or line 9 (maintain). Thus non-
decreasing property holds.

Suppose line 5 was never executed, then zT+1 = z1 = τ . Now we consider line 5 was
executed at least once. Let t∗ ∈ [T ] be the last time step in which line 5 was executed. Thus

zT+1 = zT = · · · = zt∗+1 = 2zt∗ < 2∥wt∗∥

a further upper bound is zt ≤ 2maxt ∥wt∥ for t ∈ [t∗ + 1, T + 1], combing with zt being
non-decreasing, we complete the proof.

H EPIGRAPH-BASED REGULARIZATION AND OPTIMISM

In this section, we present bound RA
T (u) as defined in Equation (14) as Theorem 23. This bound

is achieved by a combination of a recently developed Epigraph-based regularization Cutkosky &
Mhammedi (2024) and optimistic online learning as derived in Theorem 7, Appendix B. In this
section, all quantities are from Algorithm 2.

We begin with introducing the necessity of such combination by the decomposition of RA
T (u) by

taking advantage of rt being convex:

RA
T (u) :=

T∑
t=1

⟨g̃ct , wt − u⟩+ atψ(wt)− atψ(u) + rt(wt)− rt(u)

≤
T∑

t=1

⟨g̃ct +∇rt(wt), wt − u⟩+ atψ(wt)− atψ(u) (21)

we abstain from treating αtψ(w) the same way as rt(w), since the linearization αt∇ψ(w) is equiv-
alent of learning a composite loss w 7→ g̃t + ∇rt(wt) + at∇ψ(wt) as introduced in Appendix
B. Thus, even through the optimistic reduction, Theorem 7 indicates the result will have linear
dependence on maxt αt|∇ψ(wt)| = O(maxt |wt|). Thus an alternative treatment needed to control∑

t atψ(wt)− atψ(u).
Epigraph-based Regularization is the appropriate tool to keep

∑
t atψ(wt) − atψ(u) being under

control through a geometric reparameterization. If an algorithm outputs (wt, yt) ∈ W = {(w, y) :
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y ≥ w2} ⊆ R2. Then Equation (21) can be further bounded by sum of two regrets:

RA
T (u) ≤

T∑
t=1

⟨g̃ct +∇rt(wt), wt − u⟩︸ ︷︷ ︸
RAw

T (u)

+

T∑
t=1

at(yt − u2)︸ ︷︷ ︸
R

Ay
T (u)

(22)

Due to W is an epigraph of w2, this method was referred as "epigraph-based" regularization. We
consider two unconstrained learner: Aw in producing ŵt ∈ R and Ay in producing ŷ. Before we can
see how this is linked with RAw

T (u), R
Ay

T (u), we first present a useful definition.

Definition 20. For the set W = {(w, y) : y ≥ w2} ⊆ R2, and arbitrary (w, y) ∈ W and
(ŵ, ŷ) ∈ R2 and some ht, γ > 0:

(1) norm: ∥(w, y)∥t = h2tw
2 + γ2y2

(2) dual norm: ∥(w, y)∥∗,t = w2

h2
t
+ y2

γ2

(3) distance function of (ŵ, ŷ) to W : St((ŵ, ŷ)) = infy≥w2 ∥(w, y)− (ŵ, ŷ)∥t

(4) subgradient at (ŵ, ŷ): ∇St((ŵ, ŷ)) =
(

h2
t (ŵ−w)

h2
t (ŵ−w)2+γ2(ŷ−y)2

, γ2(ŷ−y)
h2
t (ŵ−w)2+γ2(ŷ−y)2

)
(5) projection map Πt

W ((ŵ, ŷ)) = argmin(w,y)∈W ∥(w, y)− (ŵ, ŷ)∥t

Roughly speaking, the black-box reduction in converting any unconstrained algorithm to operates
on W and enjoy the same regret guarantee of the unconstrained one (Cutkosky & Orabona, 2018)
by projection (wt, yt) = Πt

W (ŵt, ŷt) and a gradient correction direction to avoid out of W allows
RAw

T (u) ≤ Õ(|u|(hT + |∇rt|)
√
T ) andRAy

T (u) ≤ Õ(|u|2
√∑

t a
2
t ) (also see Theorem 10 Cutkosky

& Mhammedi (2024)). Those match the optimal unconstrained OCO rates.

However, RAw

T (u) might still not be satisfactory for our purpose since |∇rt| can be as large as O(k)
similarly as introduced in Section 4.1. Thus we choose Aw as a optimistic online learning algorithm
that yields to RAw

T (u) ≤ Õ(|u|hT
√
T + |∇rt|), and Ay being a standard unconstrained OCO with

optimal rates will satisfy our need. Before presenting the analysis of RA
T (u), we first introduce helper

Lemmas:
Lemma 21. In the same notation as Definition 20, if |gt| ≤ ht and αt ∈ [0, γ], and (δwt , δ

y
t ) =

∥(gt, at)∥∗,t∇St((ŵt, ŷt)) then

|δwt | ≤
√
2ht, |δyt | ≤

√
2γ

Proof. Since |gt| ≤ ht and αt ∈ [0, γ], ∥(gt, at)∥∗,t ≤ 2. On the other hand ∥∇St((ŵ, ŷ))∥∗,t = 1,
and

∥(δwt , δ
y
t )∥∗,t =

|δwt |2

h2t
+
|δyt |2

γ2

Thus
|δwt |2

h2t
+
|δyt |2

γ2
≤ 2

This implies both |δwt |2
h2
t
≤ 2 and |δyt |

2

γ2 ≤ 2.

Lemma 22 (from Cutkosky & Mhammedi (2024)). For 0 < γ1 ≤ γ2 ≤ · · · ≤ γT+1 and γ0 ≥ 0,
define

αt = γ0 ·
(γt+1 − γt)/γt+1

1 +
∑t

i=1(γi+1 − γi)/γi+1

Then
T∑

t=1

αt ≤ γ0 ln
(
ln

(
1 +

γT+1

γ1

))
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Theorem 23. Suppose gt, g̃t satisfies assumptions in Equation (3) and (4), and having access to g̃ct
as defined in Equation (5) with ht provided by FILTER (Algorithm 6). with α = ϵ/c, γα = γβ = γ/2,
for some ϵ, c, γ, τG, τD > 0

RA
T (u) ≤ Õ

(
ϵ+ |u|max(τG, G)

√
T + |u|c+ |u|2γ

)
In addition, the produced iterate satisfies maxt |wt| ≤ ϵ

2G2T

Proof. Algorithm 2 denote ŵt, ŷt as outputs from some unconstrained learner and wt, yt being their
projection on W . We begin our analysis from Equation (22):

RA
T (u) ≤

T∑
t=1

⟨g̃ct +∇rt(wt), wt − u⟩+
T∑

t=1

at(yt − ψ(u))

By Cutkosky & Orabona (2018) Theorem 3

≤
T∑

t=1

⟨g̃ct +∇rt(wt) + δwt , ŵt − u⟩︸ ︷︷ ︸
RAw

T (u)

+

T∑
t=1

(at + δyt )(ŷt − ψ(u))︸ ︷︷ ︸
R

Ay
T (u)

(23)

Since γα = γ
2 , γβ = γ

2 , at = αt+βt ≤ γ. Thus, by Lemma 21, |g̃ct +δwt | ≤ ht+
√
2(ht+c lnT ) ≤

3(ht + c lnT ) and |at + δyt | ≤ γ +
√
2γ ≤ 3γ. If both Aw,Ay are standard unconstrained OCO

algorithm, Theorem 10 of Cutkosky & Mhammedi (2024) implies

RAw

T (u) ≤ Õ
(
ϵ+ |u|(hT + c)

√
T
)
, R

Ay

T (u) ≤ Õ

ϵ+ |u|2
√√√√γ2 + γ

T∑
t=1

at


However, Aw is indeed an optimistic online learning algorithm by leveraging the known structure of
∇rt(wt) and δwt , a better bound in RAw

T (u) can be obtained by Theorem 7, which implies Algorithm
2 guarantees the following by setting gt ← 1

2 g̃
c
t , rt ← 1

2 (∇rt(wt) + δwt ) and Gt = 1
2ht, Ht =

3
2 (ht+1 + c lnT ):

RAw

T (u) ≤ Õ
(
ϵ+ |u|hT

√
T + |u| (hT + c)

)
= Õ

(
ϵ+ |u|hT

√
T + |u|c

)
Thus, combing with RAy

T (u), we can bound Equation (23):

RA
T (u) ≤

T∑
t=1

⟨g̃ct + δwt +∇rt(wt), wt − u⟩+
T∑

t=1

(at + δyt )(yt − ψ(u))

= Õ

ϵ+ |u|hT√T + |u|c+ |u|2

√√√√γ2 + γ

T∑
t=1

at


since

∑
t at =

∑
t αt +

∑
t βt, where αt, βt are defined in Algorithm 2 line 8. Thus, we apply

Lemma 22 for each summand with appropriate substitutions

≤ Õ

(
ϵ+ |u|hT

√
T + |u|c+ |u|2

√
γ2 + γ

(
γ

2
ln

(
ln

(
1 +

hT+1

h1

))
+
γ

2
ln

(
ln

(
1 +

zT+1

z1

))))
by Lemma 18 (3): h1 = τG, hT , hT+1 ≤ max(τG, 8G), similarly by Lemma 19 (5): z1 =
τD, zT+1 ≤ max(τD, 2maxt |wt|)

≤ Õ
(
ϵ+ |u|max(τG, G)

√
T + |u|c

)
+ Õ

(
|u|2γ

√
1 + ln

(
ln

(
1 + max(1,

G

τG
)

))
+ ln

(
ln

(
1 + max(1,

maxt |wt|
τD

)

)))
By Lemma 8 of Zhang & Cutkosky (2022), maxt |wt| ≤ ϵ

2G2T , thus the double logarithm in
maxt |wt| is at worst O(lnT )

= Õ
(
ϵ+ |u|max(τG, G)

√
T + |u|c+ |u|2γ

)
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I ROBUST LEARNING WITH UNKNOWN G

In this section, we present the regret bound to Algorithm 2 in Theorem 5. We assume all quantities
are from Algorithm 2.

The proof in this section refers to a regret decomposition by substituting ϕt(w) = rt(w) + atψ(w)
to Equation (10), where ψ(w) = w2. This will allow us to identify four components that needed to
be bounded, RA

T (u),MAINTAIN, OFFSET1 and OFFSET2, in order to bound the true regret RT (u).

RT (u) ≤
T∑

t=1

⟨g̃ct , wt − u⟩+ atψ(wt)− atψ(u) + rt(wt)− rt(u)

+

T∑
t=1

−atψ(wt) + atψ(u)− rt(wt) + rt(u) +
∑
t∈P
|gt − g̃t||wt − u|+

∑
t/∈P

|gt − g̃ct ||wt − u|

≤
T∑

t=1

⟨g̃ct +∇rt(wt), wt − u⟩+ atψ(wt)− atψ(u)︸ ︷︷ ︸
RA

T (u)

+ ψ(u)

T∑
t=1

at +
∑
t

rt(u) + |u|
∑
t∈P
|gt − gct |+ |u|

∑
t/∈P

|gt − gct |︸ ︷︷ ︸
MAINTAIN

+
∑
t/∈P

|gt − g̃ct ||wt| −
T∑

t=1

αtψ(wt)︸ ︷︷ ︸
OFFSET1: due to adaptive clipping

+
∑
t∈P
|gt − g̃t||wt| −

T∑
t=1

βtψ(wt)−
T∑

t=1

rt(wt)︸ ︷︷ ︸
OFFSET2: due to corruption

(24)
Theorem 5. Suppose gt, g̃t satisfies assumptions in Equation (3) and (4). Algorithm 2 in response
to g̃t with parameters: α = ϵ/c, γα = γβ = γ

2 , for some ϵ, c, γ, τG, τD > 0. Then Algorithm 2
guarantees a regret bound RT (u):

RT (u) ≤ Õ
[
ϵ+ |u|c+ |u|max(τG, G)

√
T + |u|2γ

]
+

4k2G2

γ
ln

8k2G2

cγτD
+ cτD + kGτD

+
4(k + 1)2(G+ hT )

2

γ

(
1 + ln

hT+1

τG

)
max

(⌈
log2

8G

τG

⌉
, 1

)
Before providing the proof, we note a particular Corollary that yields “constant regret at the origin”:
Corollary 24. With c = 2/τD, γ = (k + 1)2 and rest of parameters same as Theorem 5, Algorithm
2 guarantees a regret bound RT (u):

Õ

[
ϵ+
|u|
τD

+ kGτD + |u|max (τG, G)
√
T + |u|2(k + 1)2 +G2

]
Now, we proceed with the proof of Theorem 5.

Proof. The proof is by bounding each component in Equation (24).

OFFSET1: due to adaptive clipping:

OFFSET1 :=
∑
t/∈P

|gt − g̃ct ||wt| − αt|wt|2 ≤
∑
t/∈P

(G+ ht)|wt| − αt|wt|2 (25)

For each fixed t ∈ P̄ , we have At|wt| − αt|wt|2 ≤ supX≥0AtX − αtX
2 ≤ A2

t

4αt
, where At =

G+ ht > 0. Hence an upper bound to Equation (25) can be derived by substitute αt:

OFFSET1 ≤
∑
t/∈P

(G+ ht)
2

4αt
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=
1

4γα

∑
t/∈P

(G+ ht)
2ht+1

ht+1 − ht

(
1 +

t∑
i=1

hi+1 − hi
hi+1

)

≤ (G+ hT )
2

γα

(
1 +

T∑
i=1

hi+1 − hi
hi+1

)∑
t/∈P

ht+1

ht+1 − ht

≤ (G+ hT )
2

γα

(
1 + ln

hT+1

τ

)∑
t/∈P

ht+1

ht+1 − ht

≤ (G+ hT )
2

γα

(
1 + ln

hT+1

τ

)
|P̄|2(k + 1)

≤ (G+ hT )
2

γ

(
1 + ln

hT+1

τ

)
4(k + 1)2 max

(⌈
log2

8G

τG

⌉
, 1

)
where the third line is due to ht being positive and non-decreasing by Lemma 18 (3). For the second
to last line, a uniform bound on ht+1/(ht+1 − ht) ≤ 2(k + 1),∀t /∈ P was applied by Lemma 18
(5). Finally, an upperbound to |P̄| by Lemma 18 (4) and the substitution of γα = γ/2 was applied.

OFFSET2: due to corruption:

The upper bound is obtained through two steps. In each step we aim to show:

OFFSET2 :=
∑
t∈P
|gt − g̃t||wt| −

T∑
t=1

βtψ(wt)︸ ︷︷ ︸
step 1: ≤O(G2k log(maxt |wt|))

−
T∑

t=1

rt(wt) ≤ O(G2k ln(max
t
|wt|))−

T∑
t=1

rt(wt)︸ ︷︷ ︸
step 2: ≤O(G2k)

By Lemma 19 property (2)(3), we have

βt =

 γβ · 1/2

1+
∑t

i=1

zi+1−zi
zi+1

, t = tn, n ∈ [N ]

0, otherwise

Proceed with analysis to step 1, where second line is by Lemma 19 property (1) and value of βt
displayed above:

step 1 : =
∑
t∈P
|gt − g̃t||wt| −

T∑
t=1

βtψ(wt)

=

N∑
n=0

∑
t∈P∩Tn

|gt − g̃t||wt| −
N∑

n=1

βtn |wtn |2

≤
∑

t∈P∩T0

|gt − g̃t||wt|+
N∑

n=1

2|wtn |
∑

t∈P∩Tn

|gt − g̃t| −
N∑

n=1

βtn |wtn |2

≤ τD
∑

t∈P∩T0

|gt − g̃t|+
N∑

n=1

2|wtn |
∑

t∈P∩Tn

|gt − g̃t| −
N∑

n=1

βtn |wtn |2

≤ τD
T∑

t=1

|gt − g̃t|+
N∑

n=1

2|wtn |
∑

t∈P∩Tn

|gt − g̃t| −
N∑

n=1

βtn |wtn |2

≤ kGτD +

N∑
n=1

2|wtn |
∑

t∈P∩Tn

|gt − g̃t| −
N∑

n=1

βtn |wtn |2 (26)

where the third line is due to Lemma 19 property (4), the forth line is due to Lemma 19 property (2).
Now we analyze each summands over n in Equation (26). Considering a fixed n ∈ [N ]:

2|wtn |
∑

t∈P∩Tn

|gt − g̃t| − βtn |wtn |2 ≤ sup
X≥0

X
∑

t∈P∩Tn

2|gt − g̃t| − βtnX2
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=

(∑
t∈P∩Tn

|gt − g̃t|
)2

βtn

=
2

γβ

( ∑
t∈P∩Tn

|gt − g̃t|

)2(
1 +

t∑
i=1

(zi+1 − zi)/zi+1

)

≤ 2

γβ

( ∑
t∈P∩Tn

|gt − g̃t|

)2(
1 +

T∑
i=1

(zi+1 − zi)/zi+1

)

≤ 2

γβ

( ∑
t∈P∩Tn

|gt − g̃t|

)2

ln

(
1 +

zT+1

z1

)
Substitute to equation (26)

step 1 ≤ kGτD +
2

γβ
ln

(
1 +

zT+1

z1

) N∑
n=1

( ∑
t∈P∩Tn

|gt − g̃t|

)2

≤ kGτD +
2

γβ
ln

(
1 +

zT+1

z1

)( N∑
n=1

∑
t∈P∩Tn

|gt − g̃t|

)2

≤ kGτD +
2

γβ
ln

(
1 +

zT+1

z1

)(∑
t∈P
|gt − g̃t|

)2

≤ kGτD +
2

γβ
ln

(
1 +

zT+1

z1

)
(kG)

2

where the last step is due to P ⊂ [T ] and the corruption model in Equation (4). By substituting
γβ = γ/2, z1 = τD, zT+1 ≤ max(τD, 2maxt |wt|), we obtained an upper bound to step 1:

step 1 :=
∑
t∈P
|gt − g̃t||wt| −

T∑
t=1

βtψ(wt) ≤ kGτD +
4k2G2 ln

(
1 + max

(
1, 2maxt |wt|

τD

))
γ

≤ kGτD +
4k2G2 ln

(
2 + 2maxt |wt|

τD

)
γ

Thus, an upper bound to OFFSET2 is though obtaining an upper bound to step 2 defined as follows:

step 2 :=
4k2G2 ln

(
2 + 2maxt |wt|

τD

)
γ

−
T∑

t=1

ϕt(wt)

evoke Lemma 8 with α = ϵ/c

≤
4k2G2 ln

(
2 + 2maxt |wt|

τD

)
ϵ

− cmax
t
|wt|+ ϵ

≤ sup
X>−2

4k2G2

γ
ln(2 +X)− cτD

2
X + ϵ

for A,B > 0, A ln(2 + X) − BX obtains its supremum at X = A/B − 2 > −2. Hence
supX>−2A ln(2 +X)−BX = A ln(A/B)−A+ 2B. By substituting A = 4k2G2

γ , B = cτD
2 we

have

=
4k2G2

γ
ln

8k2G2

cγτD
− 4k2G2

γ
+ cτD + ϵ

Thus step 1 and step 2 implies

OFFSET2 ≤ ϵ+
4k2G2

γ
ln

8k2G2

cγτD
− 4k2G2

γ
+ cτD + kGτD
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MAINTAIN: comparator related term

This is first through Lemma 18 property (4) on |P̄| is small

MAINTAIN := ψ(u)

T∑
t=1

at +
∑
t

rt(u) + |u|
∑
t∈P
|gt − gct |+ |u|

∑
t/∈P

|gt − gct |

≤ ψ(u)
T∑

t=1

at +
∑
t

rt(u) + |u|Gk + |u|(G+ hT )(k + 1)max

(⌈
log2

8G

τG

⌉
, 1

)
(27)

It remains to show the first two terms in Equation (27) can be bounded by desired orders. For the first
summand,

∑
t at =

∑
t αt +

∑
t βt. Thus by Lemma 22∑

t

at ≤ γα
(
ln

(
ln

(
1 +

hT+1

h1

))
+ γβ ln

(
ln

(
1 +

zT+1

z1

)))
by Lemma 18 (3): h1 = τG, hT+1 ≤ max(τG, 8G), similarly by Lemma 19 (4): z1 = τD, zT+1 ≤
max(τD, 2maxt |wt|)

≤ γα
(
ln

(
ln

(
1 + max(1,

8G

τG
)

))
+ γβ ln

(
ln

(
1 + max(1,

2maxt |wt|
τD

)

)))
= Õ(γ)

where the last step is by substituting of γα = γβ = γ/2, and the fact that maxt |wt| ≤ ϵ
2G2T

guaranteed by Theorem 23.

The second term in Equation (27) can be upper bounded by Lemma 8 by substituting α = ϵ/c:

T∑
t=1

rt(u) ≤ 3c lnT |u|

[
ln

(
1 +

(
|u|
α

)lnT
)

+ 2

]
= Õ (c|u|)

Thus,

MAINTAIN ≤ Õ (γ + c|u|+ |u|(k + 1)max(τG, G))

Combine results from Theorem 23 for R̃1
T (u), we complete the proof.

We also provide an dimension-free analogue to Theorem 5.
Theorem 25. Suppose gt, g̃t satisfies assumptions in Equation (3) and (4). Algorithm 4 has access to
g̃c
t , ht+1 in receiving g̃t as provided by FILTER. By settingAR as Algorithm 2 with all parameters the

same as that of Theorem 5. Then Algorithm 4 gaurantee the same regret as Theorem 5 with respect to
∥u∥.

Proof. By Theorem 10

RT (u) ≤
T∑

t=1

⟨zt, xt − ∥u∥⟩+
T∑

t=1

∥gt − g̃c
t∥ (|xt|+ ∥u∥) +

3∥u∥
2

hT
√
T

=

T∑
t=1

⟨zt, xt − ∥u∥⟩+
∑
t∈P
∥gt − g̃c

t∥ (|xt|+ ∥u∥) +
∑
t∈P̄

∥gt − g̃c
t∥ (|xt|+ ∥u∥) +

3∥u∥
2

G
√
T

Since |zt| < ht is guaranteed by Theorem 10, thus Theorem 5 can be used to bound the first three
terms and we complete the proof.

J FENCHEL CONJUGATE

Here we collects basic properties of Fenchel conjugate, see reference such as Bertsekas (2009);
Orabona (2019), and previously established Lemma used in Appendix E for completeness.
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Definition 26. Let f : Rd → [−∞,∞], the Fenchel conjugate f∗ is defined as

f∗(θ) = sup
x∈Rd

⟨θ, x⟩ − f(x)

the double conjugate f∗∗ is defined as

f∗∗(θ) = sup
x∈Rd

⟨θ, x⟩ − f∗(x)

Theorem 27. Let f : Rd → (−∞,∞]

1. f(x) = f∗∗(x),∀x ∈ Rd iff f is convex and lower semicontinuous

2. ⟨θ, x⟩ − f(x) achieves its supremum in x at x = x∗ iff x∗ ∈ ∇f∗(θ)
Lemma 28. (Theorem A.32 of Orabona (2019)) The Lambert function W : R+ → R+ is defined as

x =W (x) exp (W (x)) , for x > 0

and W (x) > 0.6 ln(1 + x) for x > 0.

Lemma 29. (Theorem A.3 of Orabona (2019)) Let a, b > 0, f(x) = b exp(x2/2a). Then the Fenchel
conjugate is

f∗(θ) =
√
a|θ|

√W (
aθ2

b2

)
− 1√

W
(
aθ2

b2

)


where W (·) is the Lambert function.

Lemma 30.
√
x− 1√

x
≥
√
x

9
, ∀x ≥ 3

2

Proof. The proof is based on rearrange x ≥ 3
2 , the condition is equivalent to(

1− 1

3

)
x ≥ 1

Given x > 0, divide both side by
√
x (

1− 1

3

)√
x ≥ 1√

x

Rearrange and we complete the proof.
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