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ABSTRACT

This paper addresses online learning with “corrupted” feedback. Our learner is
provided with potentially corrupted gradients g; instead of the “true” gradients
g+. We make no assumptions about how the corruptions arise: they could be the
result of outliers, mislabeled data, or even malicious interference. We focus on
the difficult “unconstrained” setting in which our algorithm must maintain low
regret with respect to any comparison point ||u|| € RY. The unconstrained setting
is significantly more challenging as existing algorithms suffer extremely high
regret even with very tiny amounts of corruption (which is not true in the case
of a bounded domain). Our algorithms guarantee regret ||u|G(v/T + k) when
G > max; ||g¢|| is known, where k is a measure of the total amount of corruption.
When G is unknown we incur an extra additive penalty of (||u||? + G2)k.

1 INTRODUCTION

In this paper, we consider unconstrained online convex optimization (OCO) under the presence of
adversarial corruptions. In general, OCO is a framework in which a learner iteratively outputs a
prediction w; € W, then observes a vector g; = V¥;(w;) for some convex loss function £; : W — R,
and then incurs a loss of £;(w;). The learner’s performance over a time horizon 7 is evaluated by the
regret relative to a fixed competitor v € W, denoted as Ry (u)
T T
Rp(u) = (g wy —u) > > Li(wy) — L (u)

t=1 t=1

The inequality above follows by convexity of ¢;. Classical results in this field consider a bounded
domain W with known diameter D and a Lipschitz bound G > max; ||g¢||. In this setting, the

standard minimax-optimal result is Ry (u) < O(GD\/T) (Zinkevich, 2003} |Abernethy et al., 2008).

Our work focuses on the unconstrained case YW = RY, where it is typical to aim for a regret
guarantee that scales not with a uniform diameter bound D, but with the norm of the comparator ||u||.
Such bounds are often called “comparator adaptive” (because they adapt to the comparator u), or
“parameter-free” (because this adaptivity suggests that the algorithms require less hyperparameter
tuning). In this unconstrained setting, the classical algorithms achieve Ry (u) = O(||ul|GV/T)
(Mcmahan & Streeter, |2012; IMcMahan & Orabona), 2014} Orabona & Pal, |2016; |Orabona, 2014}
(which is also optimal).

We are interested in a harder variant of the OCO framework with “corrupted” gradients. Specifically,
instead of any direct information about the function ¢;, after each round the learner is provided with a
vector g, that should be interpreted as an estimate of g; = V{;(w;). Our aim is to obtain a regret that
scales as ||u||G(V/T + k) for all u € W, where k is some measure of the degree to which §; # g;
that will be formally defined in Section 2] Roughly speaking, & can be interpreted as the number of
rounds in which §; # g;. Notably, the desired rate is robust to adversarial corruptions in the sense that
it allows & = O(/T) before the bound becomes worse than the optimal result without corruptions.

Our dual challenges of corrupted g, and unconstrained W are naturally motivated by problems in
practice. The unconstrained setting is ubiquitous in machine learning - consider the classical logistic
regression setting, for which it is unusual to impose constraints. The corrupted g, in contrast is less
commonly studied, but represents a common practical issue: the computed gradients may not be good
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estimates of a “true” gradient, either due to the presence of statistical outliers, numerical precision
issues in the gradient computation, or mislabeled or otherwise damaged data.

We distinguish two different settings in our results: one in which the algorithm is provided with
prior knowledge of a number G > max;, ||g||, and one in which it is not. This is a common
dichotomy in unconstrained OCO, even without corruptions. In the former case, the classical result
of O(||u||GV/T) is obtainable, while in the latter case it is not: instead the optimal results are
Rr(u) < O(||ul| max ||g¢||v/T + ||u||® max; ||g||) (Cutkosky} 2019a; Mhammedi & Koolen, [2020),

or O(||ul| max; ||g¢||v/T + |lul|? + max; ||g¢||?) by Cutkosky & Mhammedi| (2024). The later excels
particularly whenever G is not excessively large: G' < ||u|[v/T.

To the best of our knowledge, the setting of unconstrained OCO with corruptions has not been
studied before. Perhaps the closest works to ours are |[Zhang & Cutkosky| (2022); Jun & Orabona
(2019); van der Hoeven| (2019) and [van Erven et al.|(2021). Zhang & Cutkosky| (2022)); Jun &
Orabona| (2019); [van der Hoeven| (2019) study the unconstrained setting, but assume that g; is a
random value with E[g;] = g¢;. In contrast, we assume no such stochastic structure on g;. On
the other hand, [van Erven et al| (2021) does not make any assumptions about the nature of the
corruptions, but assumes tha W has finite diameter D. They considers an outlier corruption model:
S={te[T]: g # g} and its complement S = [T] \ S. Thus S represents rounds with outliers
occurred. The online learner receives §; with only the knowledge of |S| < k, algorithm developed
achieves Rs(u) := >, (g, wr — u) < O(DG(VT + k)) by skipping evaluations on outlier
rounds. Our development will borrow some ideas from |van Erven et al.|(2021]) with the aim to bound
Ry (u) without skipping evaluations, but it turns out that the unconstrained domain provides unique
challenges that we must overcome, as detailed in Section E}

The notion of adversarial corruption is common in the field of robust statistics, with early efforts
focusing primarily on the presence of outliers in linear regression (Huber} 2004} (Cookl 2000; Thodel
2002). These insprired broader application in machine learning, asuch as Robust PCA (Candes et al.|
2011), anomaly detection (Raginsky et al., 2012} |Delibalta et al.,[2016; | Zhou & Paftenroth} 2017}
Sankararaman et al., 2022}, robust regression (Klivans et al., 2018}; [Cherapanamjeri et al., 2020; Chen
et al., |2022), and mean estimation (Lugosi & Mendelson, [2021)). For a comprehensive review of
recent advances in this area, see |Diakonikolas & Kane| (2019).

Adversarial corruption also significantly impacts iterative algorithms other than OCO, prompting
considerable theoretical research within the framework of stochastic bandits (Lykouris et al.,[2018};
Gupta et al., [2019; [Ito, [2021; |Agarwal et al.,|2021)) and stochastic optimization (Chang et al., 2022;
Sankararaman & Narayanaswamy), [2024).

Contributions and Organization In the case that the algorithm is given prior knowledge of G, we
provide an algorithm that achieves Ry (u) = O(||u||G(V/T + k)) in Section @ with a matching
lower bound (see Section[4.2)). Alternatively, when G is unknown, a regret bound with an additional
penalty of (||ul|? + G?)k is attained (see Section|[5.2).

Meanwhile, we provide two specific applications of our results in Sections[4.3] First, we show that
our method can be used to solve stochastic convex optimization problems in some of the gradient
computations are altered in an arbitrary way. Second, we solve a natural “online” version of a
distributionally robust optimization problem. Before providing our main results, we introduce
notation and define our corruption model in Section 2}

2 NOTATION AND PROBLEM SETUP

Notation We consider ¢; : VW — R as a convex function, where we consider W = R, Let w; € W
be iterates from some online learning algorithm and denote g, = V/;(w;) as the “true” (sub)gradient.
Let §; be the the possibly corrupted that is observable to the learner. Define 1{-} as the indicator
function, where 1{TRUE} = 0, 1{FALSE} = 0. Use | - | to denote the cardinality of a set, which
counts the number of elements in the set, and occasionally we use it as the absolute value of real
numbers. Let || - || denote the Euclidean norm. Denote R = {z € R : > 0}. We define shorthand
notation for sets [T] = {1,2,...,T} and [a,T] = {a,a+ 1,...,T} for some a € [T]. We use
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B C [T to denote an index set, and B = [T'] \ B for its complement. We use O(-) to hide constant
factors and O(-) to additionally conceal any polylogarithmic factors.

Problem Setup Instead of the true gradients g;, we our algorithms only receive po-

tentially corrupted gradients g;. Two natural measures to quantify corruptions are:
T
Kcount 1= Z l{gt 7é gt} €)) Kdeviation = — Il Z Hgt gt” 2)

=1
where G is a scalar that satisfies G > max; ||g: || and is often referred to as the "Lipschitz constant".

The metric kcoune counts the rounds in which g; # ¢, but allowing for arbitrarily large deviations
g+ — g+l in those rounds. This is suitable for detecting outlier effects and highlighted in studies such
as|van Erven et al.| (2021)); Sankararaman & Narayanaswamy| (2024)). Conversely, Kgeviation Measures
the cumulative deviation, accommodating corruption in every round, making it optimal for identifying
subtle yet widespread errors or malicious activities, akin to the issues addressed in|Lykouris et al.
(2018)); |Gupta et al.|(2019); [Ito (2021); |/Agarwal et al.[(2021); |(Chang et al.| (2022).

In order to provide a unified way to study those two distinct corruption measures in Equation (I)) and
({2), we assume that our algorithm is provided with a number % that satisfies:

_ 1<
1Bl :={te[T]:|lge—all>G}H <k 3 EZmin(Hgt—gtH,G)gk )

where B particular denotes rounds of corruption with a big deviation. Notice that

|B| < min (kcounn kdevialion)

C) \

T
Z ||gt gt Ha G) < min (kcounn kdevialion)

Hence, it suffices to design algorithms remain robust with a given & satisfies Equation and
where k can be set either as Kcount OF Kdeviation fOr appropriate type of corruptions that is encountering.

3 CHALLENGES IN UNCONSTRAINED DOMAIN

Dealing with corruptions with an unconstrained domain is significantly more challenging than one
with a bounded domain - even if the corruptions are so “small” that ||g; — g¢|| < G. In a bounded W
with a diameter D, an algorithm that completely ignores the possibility of corruptions and directly
runs on §; may have low regret. This can be seen as follows: since ||u — w¢|| < D for every
u, w; € W, we have:

T T T T
D {gewe—u) <D (Gwe—uw) + Y llge — Gellllwe — ul| < Z ge,wp — u) + kGD
t=1 t=1 t=1

t=1
In this case, ||u — wy|| < D prevents the algorithm from straying too far from the comparator .

The situation is much more difficult in the unconstrained setting. Algorithm for this setting typically
produce outputs w; that potentially grow exponentially fast in order to quickly compete with com-
parators that are very far from the starting point. However, this also means the algorithm is especially
fragile to corruption since the growth of w; can be highly sensitive to deviations in ||g; — g;||. Even a
small deviation could cause w; to move extremely far away and therefore incur a very high regret.
This phenomenon is illustrated in Figurewith the KT-bettor algorithm|Orabona & Pal|(2016), which
is a standard example of an unconstrained learner.

In Figure[I] we considered ¢,(w) = |z — 1| for all ¢. Figure[la|and[Ib|demonstrate k& = 20 gradients
being cormpted by setting g: = —g: during rounds ¢ € [300, 300 + k& — 1] = [300, 319] over a time
span of T' = k2 = 400. This results in an exponential deviation away from the comparator v = 1
and so incurs a high regret. Finally, we show that this problem becomes exacerbated as k increases
by simulating k € [20, 30, 40, 50, 60, 70] for T = k? in ﬁgure.
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Figure 1: KT-bettor with ¢(w) = |w — 1| and comparator u = 1 (a)-(b): 7' = 400 and corruption
happens during ¢ € [300, 319]. (c): Ratio between Regret with corruptions and without corruptions
with various total corrupted rounds k € [20, 30, 40,50, 60, 70] and T' = k2.

In receiving possibly corrupted gradients g, our general approach is to first employ a gradient
clipping step with some threshold h; that outputs a “clipped” version g;, defined as follows:

gtc ||~ || min (ht7 ||gt||) (5)

This preprocessing step “corrects” some corruption effect when h; is appropriately chosen. For
example, in the case of hy = G > max, ||g:||, then gf is always “less corrupted” than g, as
1G5 = gtll < |lgt — g¢||- Then gf is used as a feedback to an online learner, yielding the following
expression for Ry (u):

T

T T
=D Agowe —u) = (G5, we —u) + Y {9 — G5y we —u) ©)
t=1 t=1

t=1

After this preprocessing, we design an algorithm that controls both of the above summations, even
without ever seeing the true gradients g;. Depends on whether G > max; ||g¢|| is known or not,
the treatment to both steps differs. We introduce our developments for known and unknown G in
Sectiond.T]and [5] respectively. Although our analysis only focused on W = R in those sections, a
dimension-free black box reduction from [Cutkosky & Orabona (2018) facilitates the adaptation of
our approach to YW = R? as discussed in Appendix

4 ROBUST LEARNING WITH KNOWLEDGE OF LIPSCHITZ CONSTANT

In this section, we proceed under the assumption that G > max; ||g;|| is known a priori. We therefore
will set hy = G for all iterations in the definition g§ (see Equation 3)).

4.1 THE ALGORITHM AND REGRET GUARANTEE

As motivated in Section 3] Equation (3) is a preprocessing step on g; with h; = G, thus outputs g, as
a feedback to online learner. The regret in Equation (6] can be further upper bounded as:

T
w) < 3G e — u)+ (max ] + [ul) (D lge — 561+ lge — 35|
t=1

teB teB
T —
<Gt we = w)+ (max | + ful ) (Z lge = el + G|B|>
t=1 teB
T
< Z@f, wy —u) + kG (mfax |we| + |u\) )
t=1 )

where B is defined in Equation (3), B = [T \ B. The second line is due to |g: — g < [g: — G¢| <
G, Vt € B. The last inequality is due to the corruption model presented in Equation (4)

The main challenge arises from the term kG max; |w;| in Equation (7)), which could be extremely
large (potentially exponential in ¢ as shown in Lemma 8 Zhang & Cutkosky|(2022)). Even if max; |w;]|
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is bounded by O(+/T), a worst-case scenario with k = O(+/T)) could still yield linear regret. This
issue is reminiscent of challenges identified by [Zhang & Cutkosky| (2022)), who studied stochastic
corruptions with E[g;] = ¢;. Taking inspiration from their solution, we consider a composite loss

function 4 (w) = (¢, w) + r¢(w), where r, : W — R is convex. By feeding V¢, (w) to an online

learner, the following relation reveals through rearrangement and the convexity of ¢;:

T T

T
Z@f»wt —u) = th(wt) = li(w) = ro(wy) + ro(u) < Z(Vgt(wt)th —u) — ri(wy) + 7 (u)

t=1

Thus the true regret Ry (u) can be decomposed as:

T T T
Rr(u) < Z<§§ + Vri(we), w — u) + katax |w| — ZTt(wt) +  kGlu| + Zﬁ(u) (8)
=1

t=1 t=1

goal 1: R (u)<O(|u|GVT) goal 2: OFFSET<O(1) goal 3: MAINTAINS O (|u| Gk)

Equation (8)) suggests that if we could choose .A and ; such that R4 (u) < O(|u|G+/T), OFFSET
is O(1) and MAINTAIN is O(|u|Gk), this would imply Rz (u) < O(|u|G(V/T + k)). We choose r;
from a family of Huber losses first proposed by |Zhang & Cutkosky| (2022)) and displayed in Equation
©) with ¢ = kG, o = €/kG:

©))

C|’LU‘1HT

InT—1
. o c(lnT|w| - (IHT - 1)|wt|) (Zf_l ‘wi“;ﬁt’ll'_;'_alnT)l—l/lnT’ ‘w| > |wt‘
Tt('UJ,C, ) 1 - ‘w| < |wt‘

(22:1 Iw’illn T+aln T)l—l/lnT bl

This r¢(w) has two important properties: polynomial growth when |w| < |w;| and linear growth
otherwise. The polynomial growth ensures > -, r(w;) is large enough to ensure OFFSET = O(1). The
linear growth is slow enough to prevent 3", 7(u) from blowing, ensuring MAINTAIN < O(|u|Gk).
Both bounds are provided in Lemma[8] Appendix [C|

With the specified 7, the final step is to design an algorithm A that ensures R (u) < O(|u|GVT).
On the surface, this may seem straightforward as R# involves the observed value g¢ + Vr(w;)
rather than the unobserved values g;. One might therefore hope to simply apply a standard OCO
algorithm out-of-the-box. Unfortunately, g + Vr:(w;) may be as a large as G + k, and so such an
approach would yield only R#(u) < O(|u|(G + k)v/T). Fortunately, we known how the choice of
w, will influence Vr;(w;). This suggests applying tools from optimistic online learning (Rakhlin &
Sridharan, 2013)), whose regret depends only on the “unpredictable” component of the loss sequence
(i.e. g;). We employ the optimism framework of |Cutkosky| (2019b)). This requires two algorithms,
Ai1, Az, which must both be online learners obtaining the optimal rate in parameter-free literature
(e.g.:  Mhammedi & Koolen|(2020); Jacobsen & Cutkosky|(2022); Zhang et al.|(2024))). At a high
level, A; is run “as normal”, while A5 is responsible for “correcting” the output of A; to exploit
with the known form of Vr;(w;). See Appendix for details. Note that standard optimistic methods
require V7 (w;) to not depend on w; and so do not immediately apply; we employ a modification
inspired by |[Zhang & Cutkosky|(2022) to account for this.

Our algorithm and analysis for W = R is specified in Algorithm|l|and Theorem|l} The straightfor-
ward extension to W = R? is provided in Theorem which essentially replaces the |u| in Theorem
with ||u|| for W = R¢ with no dependence on d.

Algorithm 1 Robust Online Learning in Unconstrained Domain with G

Require: Time horizon 7, Lipschitz consntant G. Two independent online learnering algorithms
Ai, Ao with optimal rate in parameter-free literature (e.g.: [Mhammedi & Koolen| (2020)) where
a concrete example is the assumption in Theorem [7](they can be the same algorithm). Corruption
parameter k. Base algorithm parameters €. Regularization relevant parameters: c, c.

1: Initialize:
Initialize A, A5 with €.

:fort=1toT do

Receive x; from A,

# The next steps “correct” x; via our modified optimistic update.

hwn
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5: Recieve y; from A,

6: Solve for wy: wy = x¢ — Yy Vre(wy)

7: # End optimism correction.

8: Play w;, suffer loss (g:, w;), receive g;

9: Compute g; through Equation (§) with h; = G.

10: Compute regularizer r¢(w; ¢, ) as defined in Equation (9))
11: Send g§ + Vri(wy), and (1 + kInT)G to A4

12: Send —(g§ + Vri(wy), Vry(wy)), and (1 + kInT)?G? to A
13: end for

Theorem 1. Suppose g, g: satisfies assumptions in Equation (3) and (E]) Set c = kG, a = 17 for
some € > 0. ForT' > 3, Algorithm[Z]runs on g; guarantees

Rr(u) <O [e e (\/T+ k)]

Theorem |1|shows that the penalty for corrupted gradients is at most O(|u|Gk). This result has a
few intriguing properties. First, so long as k < /T, the penalty is subasymptotic to the standard
uncorrupted regret bound O(|u|Gv/T). That is, we can tolerate k up to /T essentially “for free”.
Next, observe that for u = 0, the regret is e no matter what & is. Constant regret at the origin is
typical for unconstrained algorithms, but is especially remarkable for our corrupted setting. Imagine
a scenario in which we define 0 to represent some “default” action. Our bound then suggests that no
matter how much corruption is present, we never do significantly worse than this default.

4.2 LOWER BOUNDS

We present a lower bound in Theorem [2] with proofs deferred in Appendix [E] This result shows that
the upper bound of Theorem [I]is tight. In addition, we provide a second lower bound as Theorem [16]
in Appendix [E] which has the matching log factor.

Theorem 2. For every D > 0, there exists a comparator u* € R® such that ||u*|| = D, §1,--- , g
and g, 91 such that ||gt||7 ||gt|| <1 Z;'le ]l{gt 7& gt} = k:
T
Z(gt,wt —u*) >0 {Hu*” (\/T—i- k)}
t=1

4.3 EXAMPLES

Here, we provide implication of Algorithm I]to stochastic convex optimization and distributionally
robust optimization. Example illustrated also applies to YW = R<.

Stochastic convex optimization with corruptions OCO and convex stochastic optimization are
connected through the classical Online-to-Batch Conversion (Orabonal (2019)). Below, we present the
implications of Theorem [I|stochastic convex optimization in a setting where k gradient evaluations
are arbitrarily corrupted.

Corollary 3 (Stochastic Convex Optimization via Online to Batch). Suppose L : VW — R is convex
and E[ly(w)] = L(w),g: = Vl(wy) and B[] < G. Algorithm|[I| have access to G, such that

Zle 1{g: # g+} <k, then Algorithm guarantees

ZtT=1 Wy
e () e

Proof. The proof leverages the standard online to batch conversion (Theorem 3.1 in|Orabonal (2019)
by setting o = 1), then combining with the regret bounds from Theorem I [

e+ |ulG (VT + k)
T

<0
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Distributionally robust optimization Distributionally robust optimization is a form of robust
stochastic optimization on training data sampled from distribution P that is not the same as the
population distribution () (Ben-Tal et al.,[2009; 2015)). Typically, @ is considered as uniform, but the
actual training data collection process might be biased, meaning P is different to (). In this situation,
stochastic optimization which treats each training example with equal weight is no longer appropriate.

Namkoong & Duchil (2016) formalized this framework as the following model with respect to a set of
losses 01, ... 7, and an uncertainty set P, = {P € AT : D;(P||Q) < C(k,T)}, where D¢(P||Q)
is the f-Divergence, for a convex function f : R* — R with f(1) = 0.

T

argmin sup Zptﬁt
w PePr i1
the decision variable from above formulation takes account into the worst case distributional un-
certainty, hence is intuitively associated with improving generalization error given an appropriate
uncertainty set Py, (Sagawa et al.,|2019).

Distributionally robust optimization is increasingly relevant in the training of large language models,
where training data are sourced from different domains (Xie et al.,|2023)). This is due to data from
some domain are relatively atypical in comparison to others in representing the overall population
distribution (Oren et al.l [2019). Although empirical gain has been observed by incorporating
distributionally robust optimization, the scalability has always been a primary concern for model
training (Levy et al.| [2020; |Qi et al., 2021). Therefore, we consider a natural “online” version of
distributionally robust optimization model proposed by Namkoong & Duchi|(2016)), with its online
analogous metric formulated as:

T

sSup Zpt Kt wt) _et( ))

PePy, —1
We present the implication of Algorithm [I]to this problem with respect to total variation Dpy and
Kullback-Leibler divergence D . In particular, we assume ¢ is convex and () is uniform.

Corollary 4 (Online Distributionally Robust Optimization). Suppose §; € Vi (w;) and |§:| < G.
Algorithm[I|runs on g, guarantees

N e+|u\G(\/T+k)
sup pe(ly(wy) — £ <0
PGPR; (Eu(w) — £u(w) >

for Dry < #. In addition, in the case where Dy, < < 2k the same guarantee is achieved.

Proof. We begin with the case of Dy (P||Q) = 1 32/, q:| B — 1| < 4, where g; = . First, we
link the regret incurred by Algorithm I]that runs on g;, and we denote the unobservable gradient as

— Dt
gt = L

T T T
Zpt ét wt —5 Z gmwt—u ZQt<gt7wt_u>+ZQt (?—1> <gt7wt_u>
t=1 t=1 t
1 T T
T (Z Gt, Wt — +Z — gt, Wy —U>>
t=1 t=1

since & Zt lge — gl < Et 1 11— Bt < 2Kk, gi, g satisfies Equation , hence Theorem
provides the guarantee:

T [e+tue (VT +k)
;pt(&(wt) —{(u)) <O T

In terms of Dy 1, we exploit the Pinsker’s inequality Dy < /2D, Hence D, < 2k y1elds to
the same results. O
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5 ROBUST LEARNING WITH UNKNOWN LIPSCHITZ CONSTANT

In this section, we consider G > max; ||g¢|| is unknown. Since we do not know G, we cannot set
ht = G for all t as in Section[d] So, we first develop an alternative approach to learn h; on-the-fly
in order to supply Equation (5) as a pre-processing step. Then we show an compatible algorithm in
maintaining small true regret Ry (u) as defined in Equation (6).

5.1 ADAPTIVE THRESHOLDING

In this section, we introduce the two “tracking mechanisms” FILTER (Algorithm[6) and TRACKER
(Algorithm[7) and the parameters v, (3, as defined in Equation (T) and (T2). These mechanisms and
quantities form the foundation for algorithm design to achieve desired regret bound in Section[5.2}

The corruption model in Equation (3)) naturally restricts the number of “big” g, since it implies that
at most k values of ¢ can have [|g;[| > 2G (See Lemma [17). Based on this observation, we draw
inspiration from van Erven et al.[(2021) and propose a simple way to learn a “threshold” &, on-the-fly
which provides an estimate of G. This mechanism is named as FILTER and is displayed as Algorithm

[lin Appendix [F}

FILTER maintains a “checkpoint” h which serves as a rough estimate of the future clipping threshold
h¢y1. Both the threshold h; and check point h start with some initial value 7¢ > 0. The checkpoint
h remains the same until £ 4+ 1 instances where ||g:]| > h are observed, at which point A is
doubled. At iterations in which a single ||g;|| > h is observed, the threshold is finely adjusted as
hiy1 = hy + h/(k 4+ 1). The thresholds hq, - - - , hr are supplied to (3 to truncate g; to g¢ such that
IGE1] < B

Notice that & only doubles if it is guaranteed that some g, satisfies h < ||g¢||, so that at most
O(klog, G/7¢) rounds have h < ||g¢||. Denote rounds where gradients are clipped as P = {t €
[T] : §; # §¢}, the doubling criterion in & allows FILTER to guarantee |P| < O(k) (See Lemma
This means only a small fraction of g, are truncated when h; has not yet became a good lower bound

estimate in G. This FILTER strategy improves upon a method with a similar purpose in|van Erven
et al. (2021); it uses only constant space rather than O(k) space.

Using FILTER, we can decompose the regret in Equation (6)) by using g, = gy fort € P:
T
Rr(w) =Y (g5, we—u)+ D lge = gl ([wel + ul) + Y g0 — 5| (fwe| + |ul)  (10)

t=1 tepP teP

corruption error truncation error

In addition to the expected “corruption error”, the price to pay for not knowing G is to pick up an
additional “truncation error”’. Thus for all ¢ € P, the learner needs to be informed that its decision w;
should be decreased to guarantee the overall “truncation error” is under control. To this end, we use
ht41 from FILTER to compute a triggering signal ai; € [0, 7,,] for a to-be-specified 7,, as shown in
equation (TT)). This oy quantity (which first appeared appeared in [Cutkosky & Mhammedi| (2024)) is
used to specify a new regularization term that causes w; to decrease. Since h;y1 > h; only when
t € P, we have a; > 0 and an active regularization only at those rounds. Overall, the FILTER outputs

hi+1 in such a way as to allow ) , a; = O(1) which is crucial for later algorithm design.

Taking a similar approach in managing the “truncation error”’, we also employed a doubling strategy
to keep a rarely-changing estimate of max; |w;| as z;, which we call TRACKER as shown in Algorithm
Appendix[G] B; € [0,73] is then computed with 24 as shown in Equation with the property
of B; > 0 only when w; has noticeably big magnitude. Thus the interpretation of 3; is an “alert” to an
online learner that the w, value may need to decrease to prevent “corruption error” from accumulating.
Similarly, the TRACKER outputs z;,; which allows for ", 8; = O(1).

(ht+1 — ht)/ht-l-l

(Zt+1 - Zt)/2t+1
. (11) =g - (12)
1+ 30 (hig1 — hy) /i Pe =

14+ 30 (2ig1 — 2) [ 2i41

At = Yo
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5.2 THE ALGORITHM AND REGRET ANALYSIS

In this section, we design an online learner .4 operating on YV = R and relying on feedback g, hs41
from FILTER, such that |§¢,,| < hyq1. We will eventually achieve Ry (u) < O(|u|(VT + k) +

(|u|> + G?)k) by integrating ingredients from the preceding sections. We begin with a simplification
of Equation (T0) that combinates the “corruption error” and “truncation error”:

) < Z gc, wy — u) + (kG + |P|(G + hr)) (max |we| + u|) (13)
=1 A<O(kG)

Equation reveals the same problematic dependence on O (kG max; |w;|) encountered in Section
E1] This shared challenge motivated us to take similar approach: use a regularization function
¢¢ : W — RT to “cancel” excess terms. The chosen ¢; is a combination of 74 (w) is the same form
as Equation (8)) and a quadric regularizer with and a; = «; + f; which were independently defined
as Equation and (T2), respectively.

dr(w) = re(w) + apw
This yields a regret decomposition directly through adding and subtracting in Equation (T3):

2

T T T
Re(u) < (35w —u) + Z é1(we) = d1(w) + Amax | - > ou(we) + Alul + > ¢i(u)
t=1 t=1 t=1
goal S:R#(u) small goal 4:0FFSET small goal 6:MAINTAIN
(14)

The chosen regularization ¢; allows us to achieve simultaneously: (1) MAINTAIN < O(|ulk + |u|?)
and (2) OFFSET < ()(G2k'). The former (1) is due to ay, 5; = 0 on most rounds because of the
structure of FILTER and TRACKER, hence Y, a; = >, ou + >, B¢ = O(1). In addition >, r¢(u)
grows sublinearly with respect to 7T as discussed in Section .1} For the latter (2), in Appendix [[} we

show:
OFFSET $ A% ) i Z —
ticy >0 Ot t/3t>0 ¢

Intuitively, both FILTER and TRACKER identify rounds requiring control of “truncation error” and
“corruption error”, and a; > 0 and 3; > 0 for those rounds only. The design of FILTER and TRACKER
then makes the number of such rounds small.

It remains to choose a learner A such that R (u) < O(|u|G(VT + k) + |u|?k). Unfortunately,
this ¢, is not Lipschitz, which makes applying standard tools for constructing unconstrained online
learners difficult. We combat this by employing the “epigraph-based regularization” technique
recently developed by [Cutkosky & Mhammedi| li in combination with our optimistic online
learning method (further explanations see Appendix [H)). Briefly, for any pair (w;, y;) with y; > w?,
we have:

T

T
<Y (G + Vr(we), we —u) + Y an(ye — )
= =1

Ry (u) Ry (u)

This is a sum of two regrets for the pair w; and y; with Lipschitz linear losses, subject to y; > w?. We

solve this problem using a pair of unconstrained learners (A,,, A, ) that produce (i, §:) € R? and

guarantee regret R (u), R;} Y (u). Then, we employ a black-box conversion from unconstrained-to-

constrained learning due to |Cutkosky & Orabona) (2018]) to enforce the constraint: this involves a
projection Ty : R? — W := {(w,y) : y > w?} and a certain technical correction to the gradient
feedback as highlighted in Green. Finally, selecting .4,, using a similar optimistic algorithm as in
Section E| (highlighted in Pink) and .A, as a standard unconstrained OCO algorithm with optimal rate
allowed us to achieve the desired overall regret.

Our algorithm is specified in Algorithm 2] followed by its regret guarantee in Theorem 3] (proved in
Appendix T). The extension of Algorithm [2to W = R is provided in Theorem
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Algorithm 2 Regularization by Epigraph and Optimism

Require: Time horizon 7', FILTER as Algorithm@ TRACKER as Algorithm An algorithm A,
with optimal rate in parameter-free literature (e.g.: [Mhammedi & Koolen|(2020)). Corruption
parameter k. Base algorithm parameters e. Regularization relevant parameters: c, o (used to
define r;(w) via Equation @) in Line 10) and v, 74, ys (used in Lines 8, 9 to define a;)

1: Initialize:
Initialize Algorithm [B]as A, with'e. Initialize A, with ¢
Initialize FILTER with 7 (outputs h; as a conservative lower-bound guess for G )
Initialize TRACKER with 7p (outputs z; as a conservative lower-bound guess for max; |wy|).
2: fort =1toT do
3: Receive W, from A,,; Receive ¢, from A,
4: Compute Operators in Definition 20| with h; <— hy +cInT,y <~y
5: # Explicit projection of (Wy, i) through projection map LY, as in Deﬁnition@
6:  Compute Projection (wy, y:) = IT%, (W, §t))
7 Play wy, receive g5, h¢4+1 from FILTER; Send w; to TRACKER and receive ;1
8 Compute o, 3; as defined in Equations (1] [12)

9: Compute quadratic regularizer weights a; = oy + S
10: # Get regularizer r, as defined Equation (9)
11: Compute gradient for optimism: Vr;(w;)

12: # Compute gradient correction direction (61", 6}) with || - ||..: and VS as in Definition 20)
13: (0;°,67) = 1(G5 + Vre(we), ap) |« e V.Se (W, §¢)) # used to correct for projection (line 6)
14: # Send corrected gradients / gradient for optimism:

15: Send (335, $hit1) and (3 (Vre(y) +6°) , 2 (lugr + ¢InT)) to Ay, # optimism learner
16:  Send % (a; +67), and 37 t0 A,

17: end for

Theorem 5. Suppose gy, G: satisfies assumptions in Equation (3)) and (). Algorithm[2]in response
to g; with parameters: o = €/c,va = Vg = 3, for some ¢,¢,v,7G,7p > 0. Then Algorithm
guarantees a regret bound Ry (u):

4k2G? . 8k2G?

Ry (u) < O [e + Jule + u max(ra, G)VT + ufy] + "t emp + KGrp
D
2 2
+ Ak + G+ hr) <1 +In hTH) max ([log2 8G—‘ , 1>
Y TG TG

Corollary 6. With c = 2k/7p,v = k + 1 and rest of parameters same as Theorem Algorithm
guarantees a regret bound Rp(u):

0, |:€ +k <1 + @ + G’TD) + |u| max (rg, G) (\/T—i— h) + (Jul* + max (1&,G?)) (k + 1)

D

Just as in the known-G case, the parameter settings in Corollary EI yield O(\/T ) regret so long
as k < /T so that we can experience a significant amount of corruption without damaging the
asymptotics of the regret bound. We can also achieve the desirable “safety” property of Theorem |I]
in which the regret with respect to the baseline point © = 0 is constant no matter what k is via a
different setting of the regularization parameters provided in Corollary [24|in the appendix. However,
in this case we now pay a larger penalty for u # 0 that scales with & rather than k.

6 CONCLUSION

In this paper, we considered unconstrained online convex optimization that only have access to
potentially corrupted gradients g; instead of the true gradient g;, in which the corruption level is
measured by k. In the case that G > max; ||¢;|| is known, we provide an algorithm that achieves the
optimal regret guarantee ||u||G(v/T + k). When G is unknown it incur an extra additive penalty of
(lul* + G*)k. While the ||u|? + G? is optimal without corruption (Cutkosky & Mhammedi, [2024),
it is unclear whether the multiplicative dependence on k is optimal in the presence of corruption.

10
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A UNCONSTRAINED ONLINE CONVEX OPTIMIZATION WITH HINTS

In the unconstrained setting, there are algorithms requires a uniform bound G > max; ||g;|| upfront
which guarantees O(||u||G+/T) McMahan & Orabonal (2014); (Orabona & Pl (2016); (Cutkosky &
Orabonal (2018); Zhang et al.|(2022). In the case where G is unknown, algorithms are usually devised
through an intermediate step with a slightly ideal scenario, that is the algorithm receives a gradient g,
with a “hints” hy11 = max;<,41 ||g;|| at each iteration ¢. It turns out by having access to h; to guide

the algorithm, same regret O(|u||h7+v/T') can be achieved [Cutkosky|(2019a); Mhammedi & Koolen
(2020); Jacobsen & Cutkosky|(2022)); Zhang et al.[ (2024)).

In this paper, we also follows the same strategy of assuming a good hints h; = max;<; ||g:|| is
supplied to the algorithm, and eventually investigate the scenario of only the current best estimate
hy &~ max;<;—1 ||g:|| is available. Hence most of the proofs in the appendix are displayed in the way
of relying on a time varying “hints”: 0 < h; < --- hp < hpyq to accommodate the design of both
known G and unknown G case.

B OPTIMISTIC ONLINE CONVEX OPTIMIZATION

This section follows optimistic reduction in unconstrained setting from |Cutkosky| (2019b) in learning
from a composite loss ¢ (w) = (g + r+, w) where |g| < G} is adversarially generated and |r;| <
H, is predictable or even chosen by the user. By a straightforward application of the standard
unconstrained OCO algorithm out-of-the-box in responding to g; 4+ 7+, Rr(u) depends on the gradient

norm O ((maxt Gy + H, t)\/T ) However, given the optimistic nature of r; being predictable, one

should hope for algorithm should not suffer Hy growing with respect to 7T'. |Cutkosky| (2019b)
achieved the desired dependence O(maxt GVT + max; H +) by lunching two algorithms A, learns
x; and A, learning y; and produces iterates w; as:
Wt = Tt — YTt

This update is similar to the structure of online subgradient descent, where A; learns an pseudo iterate
x; ~ wy, and As learns a step size y; to make finer adjustment to x4 by r;. In the following Theorem,
we make no effort in improving the result, but follow the same analysis strategy as|Cutkosky|(2019b)
with the adaptation of base learners A1, .A> must be unconstrained and Lipschitz adaptive: that is
receives g, hy1 such that |g;] < h; while maintain low regret, the optimal rate (Mhammedi &
Koolenl, 2020; Jacobsen & Cutkoskyl, 2022} |[Zhang et al.l 2024) is usually same as the assumption in
Theorem [7] This procedure is fomalized as Algorithm 3}

Algorithm 3 Optimistic Online Learning in Unconstrained Domain with h;

Require: Time horizon T, Sequence 0 < G; < Gy < -+ < Gryg such that |g¢| < Gy 0 <
Hy < Hy < --- < Hpyq such that |r| < Hy, Two independent online learning algorithms
Ai, Ay with optimal rate in parameter-free literature (e.g.: [Mhammedi & Koolen| (2020)) where
a concrete example is the assumption in Theorem 7] (they can be the same algorithm).
Initialize:

Initialize A;, Ao with €.

Ju—

2: fort =1toT do

3: Receive z; from A;

4: Receive y; from A,

5: Compute: wy = Xy — Yi1e

6: Play wy, receive (g¢, Git1) and (1, Hyy1)

7: Send g; + ¢, and G441 + Hpyq to Ag

8: Send _<gt + T, ’I“t>, and (Gt-i-l + Ht+1)2 to As
9: end for

Theorem 7. Suppose A produces wy in response to g; such that |g:| < Gy and 0 < Gy < --- < Gr
ensures the following guarantee for a given € > 0:

T

T
u|TCG u|TCG
R0, Gr) = Yl =) < e+ Al | Sl (14 ET) o p6rup (14 MECE

6G1

t=1 t=1

14

)



Under review as a conference paper at ICLR 2025

Sfor all u € W and for some positive constants A, B, C. Initiate two independent copy A denote as
Ay and As, and suppose there is another sequence vy such that |ry| < Hyand 0 < H; < --- < Hr.

A produces x; in response to g; + r, and Ay produces y; in response to —(g + r¢,1¢). Then with
wy = xy — Y7y Then

T T
S e+ reywy —u) < O |e+ uly | S g2 + [ul(Gr + Hr)
t=1 t=1
Proof.
T T
Z(gt +rewe —u) = Z(gt 1, — u) + ye(—(ge +7,7))
t=1 t=1

T

< i 1 2 _

< mzfo Ry (u) + R7(ys) — s tz_;@t + 7,7

First, we substitute R}(u), R%(y*) For R}(u), since A; runs on g; + r; and |g¢ + r¢| < Gr + Hr

for all t. Hence we should set g; < g; + ¢, G < G + Hr. Similarly for RQT(u), where we run
Ay on —{g; + ry, ;) and is uniformly bounded by (G + Hr)Hr.

T
TC¢(Gr + Hr)
< inf 2¢+ A 2 (14 14
= 4220 e+ Alul ;\gri—?‘t\ n( " €(G1 + Hy)

|u|T(Gr + Hr)
B H In(1
+ B(Gr + Hrluln (14 M

T
1T (G Hr)H
+ Ay, Z<gt+7"t,7"t>21n <1+y (Gr + Hr) T)

=1 E(G1+H1)H1

v.TC (Gr + HT)HT>
+ B(Gr+ Hr)Hry.In [ 1+
( T T) TY n( e(G1+H1)H1
T

—y Y g+ o)

t=1

For the last term, use —2(a, b) = |a — b|? — |a|? — |b|?

T

. [u|TC(Gr + HT))
= inf 2¢+ A E +7e?In {1+
nf, 26+ Alul p l9e + 7] “< e(G1 + Hy)

|u|TC (G + Hr)
+B(GT+HT)|U|IH <1+ €(G1+H1)

T

yTC(Gr + HT)HT)
+ Ay, +re,re)2In |1+
y ;<gt Tt Tt> n < €(G1 + Hl)Hl

v. T (Gr + HT)HT>
+ B(G Hr)Hry,In (1
(Gr + Hr)Hry n( + Gy + O

T
Ys
Ty Z lge|* = lge + 74> — |ref?
=1
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To get a clearer view of the expression, we denote
TC(G H (G Hp)H
TGy + Hr)\ gy (o [T (Gt o) He
E(Gl —|—H1) 6(G1—|—H1)H1
and X = 31 |g: + |2 Further, Y7 (g + 7o, 70)2 < 1 |ge + 7|2|re|> < H2X where the
last step we applied a uniform bound |r;| < Hr. Thus
T

> gt + 1w —u) < 2e+ Alul\/ XAy + Blul(Gr + Hr) A

t=1

A1:IH(1+

T
+ nf Ay.Hr/X A + By.(Gr + Hr) Hr 2 + EN lal —Ine? - L x
e t=1

15)
It remains to select the correct y* € RT so the expression on the right hand side of Equation
balances to the desired result. It turns out the optimal selection of y* depends on whether Ay < Ao

is true or not. Fortunately, y, will eventually vanish from the right hand side, so we can select y, by
cases and then combing the results.

1. First, we assume Ay < Aj. In this case, select

Ju| 2A|u|lv/Ay
H )
r \/max (O,Zle |g¢|* — \7‘,5|2>

Substitute the choice of y* to Equation (T3). In particular, explicitly using the first argument
for the third to last summand, and take the second argument to balance the second to the last
term. We keep y* at other places for convenience.
T
D gt + 7o, we —w) < 26+ Alul\/X A1 + Blu|(Gr + Hr)Ay

t=1

Y = min

+ Ay*HT\/ XAQ + B|’U,‘(GT + HT)AQ

< 2¢+ Blu|(Gr + Hr)(A1 + Ag) + Alul

T
A loef?
t=1

+ sup A\uh/)TAl _ ¥ x + sup Ay Hr\/ ZAg — Yoz
X>0 4 Z>0

4

For the last two terms z — K/z + %z for K, y. > 0 attains its maximum at /z = 25

Y
. 2
yields to Iy(—

< 26+ Blu|(Gr + Hr) (A1 + As) + Alul

A2|’U,‘2A1
+

+ Azy*H%AQ

It remains to determine the correct upper bound with the selected y... For the term contains
y* at the denominator, use m < %—1—% for x, a,b > 0. For the remaining term involves
Ysr USE Yy < 1‘% Hence

T
D gt + 7w —w) < 26+ Blul(Gr + Hr) (A1 + As) + Alu|

t=1
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A T
+ A2|u|Hp A, + o luly| Avmax (o,z lg]2 — rt|2> + A2|u|Hp A,
t=1
< 2¢ + Blu|(Gr + Hy)(Ar + Ay)

34 d
+ o luly | A D lgel? + A%Jul Hr (A1 + Ao) (16)

t=1

2. Now consider Ay > A; and set

] 2A|ulv/Aq

Y = min i
T T
s (0.5 ik — )

and follows the identical algebra as the first case, we have

T
S (gi + resw, — u) < 2 + Blul(Gr + Hr)(Aq + As)

t=1

T
A2Z|gt\2+A2|u\HT(A1 + Az) a7
t=1

Combining both cases of Equation and ([I7), we have :

T
Z<9t +re,wp —u) < 26+ Blu|(Gr + Hr) (A1 + Ag)
t=1
34 d
- uly | max (Ar, D) Y [gnf? + A%ful Hr (A + As)
=1
substitute A, Ag and use 0() to hide log factors then we have the desired result. O

C BOUNDS ON REGULARIZER AND THEOREM ]

The development of Algorithm[I]and Theorem[I] was based on appropriate choice of regularizer
which was firstly studied by [Zhang & Cutkosky| (2022). We include Lemma §]by gathering relevant
bounds from[Zhang & Cutkosky| (2022) for completeness followed by the proof of Theorem [I}
Lemma 8 (Lemma 11 and Lemma 13 of Zhang & Cutkosky|(2022)). Let r; : W — R be defined
as follows for some ¢ > 0, > Qand p > 1,

lwe [P~

c(plw] = (p — 1)[wyl) (f_, [w|[Par)i—1/p> lw| > |w

|w| < fwyl

Irt(w; ¢ D, Oé) = {

P 1
C|’U)| i, [wi|Par)i=1/p>
Then

T 1/17
> riw) > ¢ (letua”) ~a
t= t=1
‘u| p\ (P—1)/p
In (1 + () ) +1
«
T

Zrt(wt) >c (mtax|wt| — a)

t=1

—

> rilu) < eplulTH?
t=1

In particular, when p = In'T for T > 3:
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> ri(u) < 3InTelul {m (1 + (T)p> + 2}

t=1

Proof. The first set of bounds are the same as Zhang & Cutkosky| (2022)) Lemma 13. For the second
set of bounds: the lower bound is due to (23:1 |we|P + P v > ZtT:1 |w; \p) v followed by
an application of of Lemma 11 in|Zhang & Cutkosky|(2022); the upper bound is due to 29 < x + 1
forz > 0and 0 < ¢ < 1, where we set x = In (1 + (l%‘)p) and ¢ = (p — 1)/p folowed by
TV = e <3 O

Theorem 1. Suppose g, g; satisfies assumptions in Equation (E]) and . Set ¢ = kG, a = 1= for
some € > 0. For T > 3, Algorithm[I|runs on gi guarantees

Rr(u) <O [e + ulG (\/T + k:)]

Proof. The proof begins with the regret decomposition in Equation (8)) and is displayed below for
convenience. We aim to show each component satisfy the desired bound as follows:

T T T
Rr(u) < Z@f + Vr(wy), we — u) + kataX we| — Zrt(wt) + kGlu| + Zrt(u)
t=1 t=1 t=1
goall: Ré(u)géﬂu\Gﬁ) goal2: OFFSET<O(1) goal3: MAINTAINS O (|u|Gk)

goall: since |§§| < hy = G,|Vri(wy)| < elnT = 2kGInT. Thus R7(u) is guaranteed by
Theorem[7]by setting G; = hy = G, H; = 2kInT, yields to

T
Rit(u) < O | e+ [uly| S 1312 + [ul(he + kG) :O[e+|u\G<\/T+kﬂ

t=1

goal2 & goal3: both are guaranteed by Lemma@ Specifically by substitute ¢, o

OFFSET < ka?x |we| — kG(mtax |we| — €/kG) =€
InT
In (1 + (|ukG> ) +2
€

D DIMENSION-FREE ROBUST LEARNING WITH KNOWN

MAINTAIN < kGlu| 4+ 3kG In T'|u| = O(kG|ul)

In this section, we aim to extend Algorithmoperates on R to R? through a dimension-free reduction
introduced by [Cutkosky & Orabonal (2018) followed by its regret guarantee. Since there are mixture
of scalar and vectors, to maintain clarity we use a to denote scalar and a to denote vector in this
section.

Cutkosky & Orabonal (2018) proposed the task of learning w; € R? can be distributed into two
algorithms: Ag to produce z; € R and A, to produce v, € By, where By = {v € R?: ||v|| < 1}.
Then play w; by

Wi = XTtVy

The interpretation of such strategy is Ag as a magnitude learner and A, as a direction learner.
Consequently, the regret of playing w, is the related to regrets suffered by both learners as presented
in Theorem 9} Hence allowing the extension of any algorithm operates on R to R¢ without sacrificing
regret guarantee by choosing appropriate direction learner A, .
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Theorem 9. (Theorem 2 of|Cutkosky & Orabonal(2018)) Suppose Ap, obtains regret R?d (u) for
any u € By, Ag obtains regret R (u) for any u € R. Let Ag, produce v, in response to g; and Ag
produce x in response to (g, vy). Then

T

Rr(w) = 3 (g we — w) < R () + B3 ()
t=1

We formally display Algorithm [4] as the dimension-free extension in the context of adversarial
corruption in responding to gf as a clipped version of g, through gradient clipping in Equation (3]
for some clipping threshold 0 < hy < --- < hp. Algorithm [d]is compatible with any algorithm
Apr operates on R and is referred as the magnitude learner. The direction learner Az, is shown in
Algorithm[5] We then present its .Ag dependent bound in Theorem 10}

Algorithm 4 Dimension-free Robust Online Learning in Unconstrained Domain

Require: Time horizon T, g¢ : ||g¢]| < h:. Ag operates on R, Ap, operates on By. Corruption
parameter k, Ag initialization parameter e.
1: Initialize:
Agr and Algorithm [5as Ag, .
2: fort =1to T do
3 Receive x; € R from Ag, v; from Ap,
4: Play output w; = x;vy, suffer loss (g;, w;)
5 Receive g7, hyt1
6 Send z; = (8¢, V¢), hy1 to Ag, send g5 to Ap,
7: end for

Algorithm 5 Direction Learner: Online Subgradient Descent

Require: gf,v; =0
1: fort =1to 7T do

2 Output vy, receive gg

3 Set learning rate 7; = (Zle llgs(1?)~1/2 i
4: Compute v;1 € argming, |y <1 v — mgs||
5: end for

Theorem 10. Suppose algorithm having access to g in receiving g; as defined in Equation ({5) with
0 < hy < hg - < hpyy. Let Ag be any algorithm operate on R. Then Algorithm 4| l runs on g
guarantees:

T

3|ull
<> Az — |ul) +legf &l (jae] + lul)) + = he VT

t=1

where |z¢| < hy

Proof. We begin with a convenience form of true regret in responding to gy:

T T
RT(u> = Z<gg7wt - ll> + Z<gt - gf,Wt - u>
t=1 t=1

In the view of Theorem Ol for the first term:

S

T
u ~C
R () < 3 (e — )+ R (o) + 3 e — &5, we — w)
t=1

~
Il
-

u
@wrww+2mt & (levell + ul) + R

M=

o~
Il
-

19



Under review as a conference paper at ICLR 2025

<

T
t=

[[ull

T
~ B u
(zeowe = |[ul) + Y g — &1 (] + [[ul) + [u| RE ()
1 t=1

zi = [gF, ve)| < |IgfIl < he. And RP* (u) <
w \/ Z;T:l lgs||? is by following standard subgradient descent with Lipschitz adaptive learning

rates for the second term (Theorem 4.14 of |Orabonal (2019)). Since ||gf|| < h: < hr we have
| RE (72p) < 2lhrvT O

f[ull

where the last line is due to ||v;|| < 1. Moreover,

Theorem 11. Suppose g, &, satisfies assumptions in Equation (3) and ({@). Algorithm[d|in response
10 g5 as defined in Equation () with hy = --- ,hp = G, by setting A as Algorithm[I|with all
parameters the same as that of Theorem[l| Then Algorithm[d] guarantees:

Ry(u) <O [e + |[ullG (\/T + k:)]

Proof. By Theorem[I0land hr = G

T T
. 3lju
Re(w) < Y (eunze— all + 3 s~ &1 (il + ul) + 2 Gy
t=1 t=1
v 4 3]u]
< Geteme = |ful) + 3 llg — &l (el + Jul) + =22 GVT

~+
[

t=1

due to g, g; satisfies assumptions in Equation (4)
< 3][u]
<> Gt~ ully + kG (max|a] + |jul) + =R GVT
t=1 ¢ 2
In addition, |z¢| < hy = G is guaranteed by Theorem hence apply Theoremto the first two term

<0 (e + |ullG (\/T+ k)) + @Gﬁ
0 (e—i— u|lG (ﬁ+k))

E LOWER BOUNDS

In this section, we present two type of matching lower bounds to Theorem [T} Theorem 2] provides a
lower bound for any comparator u* € R¢ with arbitrary magnitude D > 0. Theorem 16[is a lower
bound with log factors, which appears in unconstrained OCO upper bounds.

We begin by presenting a helper lemma that aids in the analysis of Theorem [2] followed by Lemmas
required to proof to Theorem 2]

Lemma 12. Suppose z1,z2,- -+ ,zy € {—1, +1} with equal probability. Then for every t € [T for
some T’ > 1.

T T T
[Z sign (Z zl> zt] >\ 76
t=1 i=1

Proof. Define Sy = 3, c7).;4; %i» by conditioning on g7 € {-1,+1}:

2E

T
sign (Z zT> Zt} = E [sign (ST + 1)] — [sign (S — 1)]
i=1

= > (sign(k + 1) — sign(k — 1)) P(Sp = k)
ke{-T,-T+2,---,T}
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We consider T' by cases: suppose 1" is even, sign(k + 1) — sign(k — 1) = 2 when k& = 0, and
sign(k + 1) — sign(k — 1) = 0 otherwise. Thus applying (,.,,) > 27~1(T/2)~1/2

T
sign <Z zi> 27
i=1

Similarly if 7" is odd, by symmetry to Sp = +1:
T

sign (Z zz> zT] =
i=1

Define 7/ = T — 1 thus 7" is even

T
T/2
1

E —
2T

=P(Sr=0) = (T%) 27T > 27 1(T/2)" /2 =

E

" ) %’ |(T7/>' . (TI+1)!2_(T/+1)
EIE) G @

Thus combining two cases:

E

a 1
sign (Z Zi> ZT} 2 6T

=1

Due to symmetry, .S has the same distribution V¢ € [T7:

T T
E [Sign (Z zT> 2t sign (Z zi> ZT] , Vtel[T)
i=1

i=1
T T T T
E lz sign (Z zi> Zt sign (Z zi> ZT] > 6
t=1 i=1

=1

=E

Thus

=TE

O]
Theorem 2. For every D > 0, there exists a comparator u* € R? such that |u*|| = D, g1, - ,
and gy, -+ , gr such that ||gi |, |1ge < 1 3,2 1{Ge # g1} = k:
T

> g we =) 2 Q [l (VT + k)]

t=1
Proof. Consider the following random sequence: 241, 2k+2, - ,2r € {—1,+1} with equal

probability and 2y = --- 2z, = sign(th:kJrl zt). And 27 = - = Z; = 0 and Za; =
zt,¥t > k + 1. Let ¢ € R™ be any unity vector. Suppose g;: = z:q,g: = 2:q,Vt € T. Select

u*=-D sign(zf:k_H 9¢)q. Thus:

E[Rr(u)] =E lZ(gt, wy — U>]
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T

k
Z(%U)] - Z E [(g¢, w)]

t=k+1

E[{g¢, w:)] - E

I
[M]=

~
I

1

T T T
=> E[(Ei[z]q )]+ Dk+D > E |zsign ( > zt>]
t=1 t=k+1 t=k+1
T T
=Dk+ D Z E lzwign( Z zt>
t=k+1 t=k+1

by Lemme 2]

>D <k+ wT) = Q([|u*||(k + VT))

The second lower bound in Theorem [T6]has a matching log factors by uses the definition of “regret at
the origin” of an online learning algorithm, formalized as:

O

T

R7(0) = Z<gtawt —0)<e (18)

t=1

This condition implies that an algorithm maintaining small e is inherently conservative: it will perform
well if the comparator is close to the origin, but this behavior may come at the cost of performing
poorly if the comparator is far from the origin. Before presenting the analysis to Theorem [I6] we first
list previously established result on properties of iterates w; produced by any algorithm has constant
regret guarantee at the origin as defined in Equation (I8). Lemma [I3] was originally appeared in
Cutkosky| (2018)) then being re-interpreted by |[Orabonal (2019). Lemma [T4]from Zhang & Cutkosky
(2022).

Lemma 13 (Theorem 5.11 of (Orabona|(2019)). For any OLO algorithm suffers constant regret at the
origin (Equation @)) and |g¢| < 1, there exist ; € R such that ||3;|| < 1 and

t—1
wy = B (6 - Z<giawi>>

i=1
forallt € [T

Lemma 14 (Lemma 8 of Zhang & Cutkosky| (2022): Unconstrained OLO Iterate Growth). Suppose
assumptions in Lemma is satisfied. Then for every t € [T], |w,|| < e2t~1.

We first derive an lower bound for algorithms satisfies assumption in Lemma[I3] The construction
was originally appeared in Theorem 5.12 from |Orabona (2019). Finally, the lower bound in the
context of adversarial corruptions is presented in Theorem 2]

Lemma 15 (Unconstrained OLO Lower Bound). Suppose assumptions in Lemma |l 3|is satisfied,
then set g; = [g1,1,0,-++ ,0], ge.1 = g = 1 forall t € [T). Then there exists an u* € R? such that
|lu*|| = 2¢eT, and

T
T [[w*|[*T
—u*) > “Iy/=1n (1
Z<gtawt u') = e+ lu ||\/30 n( T oo
t=1
Proof. Letr, = — E;l(gi, w;). Then

T

€— Z(gt7wt> =€+ rr—1— (97, wr)
t=1

by Lemma [13] there exists some Sr : || 87| < 1
=e+rr_1— (97, Br)(e+r7-1)
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= (1—(g¢,Bt)) (e +7r7-1)

Then recursively expand r1_1,77_9, -+ ,r1 With Lemma then for some S, : || 5] <1
T T
€=y (gw) = e[ (1— (g0 8))
t=1 t=1
Hence
T T T 92T
6—Z<gt,wt> SEHHrﬁI}ﬁuél(l (g¢, Bt)) H (1+|g]) = <1+ gT ) < eexp (|g|°T)
t=1 t=1 = =1

where we used inequality (1 + £)" < e® by settingn = T,z = | g|?T for the last step. Rearrange
above equation, we have

S DIETRL S
Z(gt,wﬁ —e> —eexp (|g]*T) = —cexp (t_jlﬂg“> = _f(_zgt,l)
t=1

t=1

where f(r) = eexp(%F ) by Theorem.part 1, we have f(x) = f**(z). Then by the definition of
double conjugate f**,

T T T
D (g w) —e=—f(=Y gia) = - (Sup (= gea,m) — f*(m)> (19)
t=1 t=1 weR o
By Theorem [27) part 2, the supreme is achieve at
L % [ & (Z?:l 9t,1)2 9eeT
tzzlgm) =7 (; 9t,1> exp T = €€
Substitute v} and set u* = [u},0,- - , 0], then Equation becomes:
T T T
> larvwn) = €2 3 anavud) + £ () = Do) + )
t=1 t=1 t=1
Rearrange we have
T
> g we —u*) > e+ fr(u}) (20)

t=1

It remains to obtain a lower bound to f*(u}). By Lemma[29)and Lemma[28] we have

Np_— /T, T|ui|? 1
fr(ui) =/ 5 luil w ; -
2 26 T\u’l‘|2
(55
T THE 1
>/ =il | 4 Jo.6mm {1+ il _
2 262 T‘u*‘Q
0.61n (1+T; )

Notice that 0.6 In (1 + T‘;‘—') — 0.6In(1 + 2exp(T)2T) > 1.5, hence by Lemma
IT . [o02 T|ut|?
Z 2|u1\/31n <1+ 262
o [T Tui|?
u1|\/301n <1+ 262
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Substitute the lower bound to f*(u}) to Equation

T

|U1|2T ||U*||2T
E gt, wy — u”) > €+ |uj] = u®| 92
=1

O

Theorem 16. For any algorithm that maintains Equation for some € > 0, there exists a sequence

of g1, ,grand g1,-- -, gr such that || g:||, ||g¢]| < 1, ZtT:1 1{g: # g} = k, and a u* € R such
that

i (gt, we — >Q [e—&- [l | (\/T—|— k)}

t=1

Proof. the proof strategy is that algorithm with regret guarantee as shown in Equation attains a
matching lower bound Q(e + ||u||v/T) in responding to g; as shown in Lemma The by reversing
the direction of exactly k gradients by taking account into the growth behavior of w; (Lemma[I4) and
a particular hard comparator u* constructed in Lemma[T5] we can show regrets during those rounds
builds up linearly. Let g1, - - -, g7, where ||g;|| < 1 as defined in Lemmal[15]and suppose algorithm
operates on those gradients. Let S be the index set S = {t € [T] : g+ # g:}. Then by the lower
bound presented in Lemma 3]

T T T
Z<gt7wt —u') = Z<§tawt —u*) + Z gt — e, we — u*)

t=1 t=1 t=1
> Qe + |u*||VT) +Z (9t — Ge,we — u™)

tes

for some u* € R? and ||u*|| = 2¢e”. Fort € S, define g; as follows
u*
gt =gt — m

Then

T *

~ % U
D g —ut) 2 Qe+ ut IVT) + 3w + 3 (e
t=1

tes tesS

> Qe+ W IVT) = Y Jwell + kllu”|

tes

Finally, By Lemmal[14][|w;|| < €2~". Hence [[w;| < &|u*||

ET: (g, we — ") > e+ u*||VT) — IIu |+ Kl | = & (e + llu || (VT + ¥))

F ADAPTIVE THRESHOLDING

In this section, we formalize the adaptive thresholding and clipping mechanism, namely FILTER,
summarized in Section[5.1] This mechanism relies on prior knowledge of big corrupted gradients
numbers which is naturally restricted by corruption model in Equation (3). We present this result as
Lemma|[T7] followed FILTER as Algorithm[6]and its property in Lemma|L8§]

Lemma 17. For g1, -+ ,gr and g1, - , gr that satisfies Equation (3)), then there are at most k
number of g; such that ||g;|| > 2G.
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Proof. By definition of B = {t € [T] : ||lgt — g:|| > G}:

B:={tel[l]: g — gl >G}

={telT]:llg: =gl > G llgell < GyUft € [T]:[lge — gell > G, llge|l = G}
D {te[T]: o~ il > C.gu = G- sign(3)}
={te[T]: G —llglll > G}
={te[T]: [l > 2G}
Finally, due to Equation (3), k := |B| > |{t € [T] : ||¢:]| > 2G}|. O
Algorithm 6 FILTER: k-lag Thresholding and Gradient Clipping
Require: Corruption parameter %, Initial Lipschitz guess: 7 = 7¢ > 0.
1: Initialize:
Filter threshold h; = 7, Check point h = hy, Counter: n = 0, P = {}
2: fort =1to T do
3: Receive g;
4: if |g¢|| > h then
5: Set g5 = Hg—zuht, update counter: n =n + 1
6: Update threshold hs11 = hy + k%rlh
7: if n = k then
8: Update Check point h = hsy 1, reset counter: n = 0
9: end if
10: else
11: Set g¢ = gy, register rounds P = P U ¢
12: Maintain threshold hy1 = hy
13: end if
14: Output gtc, ht+1
15: end for

We display some convenience property of Algorithm FILTER, notice all quantities apart from h; are
for assisting analysis only

Lemma 18. (Algorithm|[6|property) Suppose g., §: satisfies Equation (3), and Algorithm|[6] receives
G, then its per iteration outputs g, hey1 satisfies:

(1) hiyr=h,Vt e P={t€[T]:3{ =g}
(2) g1l < he,Vt € [T]

(3) T=h1 < hy <+ < hpyr < max(r,8G)
(4) |P| > T — (k + 1) max ([log, 297, 1)

(5) hey1/(heyr — he) <2(k+1),Vt ¢ P

Proof. We show each property in turns.

(1) guaranteed by algorithm line 11-12.
(2) either line 4 or line 11 is evoked to compute g; .

(3) h; being non-decreasing sequence and h; = 7 is by construction. Hence it remains to show
an upperbound to hy, Vt € [T + 1]. The key to this proof is there are at most k number of g;
such that ||g;|| > 2G gaurateed by Equation (3) (See Lemma|17).

In the case where initial value of 7 > 2@, then the check point h never doubled since each
time of doubling requires k& + 1 number of ||§;|| exceeds current one. (by line 4-9)

Now, we consider 7 < 2@G, where doubling of check point h was evoked at least once (by
evoking line 8) with initial value 7, then h € {7,27,2%7,--- ,2N7} for some N € [T],
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“

&)

where N is the number of time line 8 was evoked. Then 2V 7 < hy < 2N*+17 vt € [t*, T+1]
where t* < T is the last time step where h was doubled.

On the other hand, h € {2V~17 2N 7} at some period of time. This means during this
time interval at least k + 1 number of §; such that ||g;| > 2" ~17 were observed thus have
triggered line 8. Thus 2V ~17 < 2G, N + 1 < log, %.

Combining both conclusions from above h; < 2N+ < 8G,Vt € [t*,T + 1]. Moreover,
h; is non-decreasing, and we complete the proof.

|P| is associated with the number of time in which check point i doubled. By the proof to
property (3) that 2V=17 < 2G, thus N' < max ([log, 2¢7,0) as an upper bound that the
number of h being doubled.

For t < t*, each doubling requires exactly k£ + 1 number of g, being clipped. Thus there
were (k + 1) max ([log, 227, 0) number of rounds not being register to P. For t > t*,
there were less than (k 4+ 1) number of §; not being registered into P, otherwise threshold
would have been doubled. Thus

|P| < (k+ 1) max ([logQ Zlﬂ ,0) + (k+1) = (k + 1) max Gbg? Sﬂ ,1)

Fort ¢ P, hyyr = (1 + Z—I})h,ht = (1 + z47)h, for some n € [k] and for some
h e {r,2r,2%7,-.- 2!'7}. Hence
h 1+ 2L
t+1 = — k+}’b :2+k+n§2(k‘+l)
ht+1 - ht m - m

G ADAPTIVE TRACKING

We introduce TRACKER, an adaptive mechanism for estimating max; |w;|. as shown in Algorithm
TRACKER maintains thresholds z; in which doubles whenever ||w;| > z;. The properties of
TRACKER is displayed in Lemma

Algorithm 7 TRACKER: track the magnitude of w;

Require: Initial magnitude guess: 7 = 7p > 0.
1: Initialize:

Filter threshold z; = 7, (Counter, Set): (n = 0, 7,, = {}), Check point ¢, = 1

2: fort =1to 7T do

3: Receive w;

4: if ||wt|| > 2z then

5: Double: Zt4+1 = 22’1/

6: Update countern = n + 1
7: Add a new checkpoint: ¢,, = t, add a new set 7,, = {})
8: else

9: Maintain: 2y = 24
10: end if
11: Register round 7, + T, Ut
12: end for

Lemma 19. (Algorithm[]|\property) Algorithm|[7| guarantees

(1)
(2)
(3)

[T] is partitioned by To, T1, T2, - -+ , Tn, for some N < T
T =z = zi1, |wi| < T,VEE T

Ze41 = 22¢ iff t = tn,n € [N], 2¢41 = 2t otherwise
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(4) ||well < 2||w,, ||, Vt € Tnyn € [N]

(5) T=21 <29 <+ < zpyg < max(7, 2 maxy |wy|)
Proof. We show each property in turns.

(1) partition property can be seen by in the initialization of n = 0 with increment of 1 (line 6)
and whenever counter n updates a new set 7, is created (line 7). And Vt € [T is assigned
to 7, for some n > 0 (line 11).

(2) For the time period of n = 0, line 4 was never executed.

3) Asn>1: 2,41 =22, and |Jw;
in line 9 where ¢,, # t.

| > z;, when line 5 was evoked. otherwise z; 11 = z; as

n |

(4) By construction T, = {t,,tn + 1, ,tpp1 — 1}, Vn € [N = 1), Ty = {tw, -, T}
When ¢ = t,,, the inequality holds. Thus we consider V¢t € T, \ {¢,}, line 9 was triggered,
hence z;41 = 2t = 2, +1 and |Jwe|| < z;. On the other hand, by property (2) z¢,+1 = 22¢,
and |lwy, || > z,. Thus

20 we, | > 221, = 2t,41 = 2 2 Jwell, Vi€ T\ {tn}

(5) since z; = 7 and 24 is either through line 5 (double) or line 9 (maintain). Thus non-
decreasing property holds.

Suppose line 5 was never executed, then zpr4; = 23 = 7. Now we consider line 5 was
executed at least once. Let t* € [T'] be the last time step in which line 5 was executed. Thus

Zr1 =21 = = Zpeg1 = 2200 < 2w |

a further upper bound is z; < 2max; ||w;|| for ¢t € [t* + 1, T + 1], combing with z; being
non-decreasing, we complete the proof.

H EPIGRAPH-BASED REGULARIZATION AND OPTIMISM

In this section, we present bound R4 (u) as defined in Equation as Theorem This bound
is achieved by a combination of a recently developed Epigraph-based regularization |(Cutkosky &
Mhammedi| (2024)) and optimistic online learning as derived in Theorem [/, Appendix [B| In this
section, all quantities are from Algorithm 2]

We begin with introducing the necessity of such combination by the decomposition of R?(u) by
taking advantage of r; being convex:

T

T
<D {GF + Vra(we), we — u) + arp(wy) — agih(u) 2D

we abstain from treating a;)(w) the same way as r:(w), since the linearization oy Vip(w) is equiv-
alent of learning a composite loss w — §; + Vry(w;) + a; Vip(wy) as introduced in Appendix
Thus, even through the optimistic reduction, Theorem [/| indicates the result will have linear
dependence on max; a;|Vip(w)| = O(maxy |we|). Thus an alternative treatment needed to control

> ap(wy) — agp(u).

Epigraph-based Regularization is the appropriate tool to keep >, a;1)(w;) — a¢)(u) being under
control through a geometric reparameterization. If an algorithm outputs (wy, y:) € W = {(w,y) :
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y > w?} C R2, Then Equation (21)) can be further bounded by sum of two regrets:

RT ) < Z (g; + Vre(we),w +Zat (yr — u? (22)

t=1

R7™ (u) Ry (u)

Due to W is an epigraph of w?, this method was referred as "epigraph-based" regularization. We
consider two unconstrained learner: \A,, in producing @, € R and A, in producing §. Before we can
see how this is linked with Rﬁw (w), R?y (u), we first present a useful definition.

Definition 20. For the set W = {(w,y) : y > w?} C R? and arbitrary (w,y) € W and
(0, 9) € R? and some hy,~v > 0:

(1) norm: |[(w,y)|le = hiw? +~+y?
2
(2) dual norm: || (w,y)||«: = % + 4

(3) distance function of (,9) to W: S;((w,9)) = inf > 2 [[(w,y) — (0, 7)]]:

W
(4) subgradient at (10, §): V.Sy((,§) hi (h—w) Y (9—v)
g 9): VS((,9)) (@—w)?+72([G—)? B (G—w)*+72([G—y)?

(5) projection map Iy, ((w,9)) = arg min(w,y)ew l(w,y) — (0, 9)]:

Roughly speaking, the black-box reduction in converting any unconstrained algorithm to operates
on W and enjoy the same regret guarantee of the unconstrained one (Cutkosky & Orabonal [2018)
by projection (w¢, y¢) = ITk, (14, §:) and a gradient correction direction to avoid out of W allows
R (u) < O(|u|(hy + |Vre)V/T) and R (u) < O(|u|?\/3, a?) (also see Theorem 10|Cutkosky
& Mhammedi| (2024)). Those match the optimal unconstrained OCO rates.

However, R (u) might still not be satisfactory for our purpose since | V7| can be as large as O(k)
similarly as introduced in Section[d.1] Thus we choose A" as a optimistic online learning algorithm
that yields to R+ (u) < O(|ulhrV/T + |Vr]), and AY being a standard unconstrained OCO with
optimal rates will satisfy our need. Before presenting the analysis of R+ (u), we first introduce helper
Lemmas:

Lemma 21. In the same notation as Definition 20} if |g:| < ht and oy € [0,7], and (6},6]) =
[[(ge; ae)ll«,e V.Se( (e, §¢)) then

61| < V/2hy, |67 < V2y
Prgof Since |g¢| < hy and oy € [0, 7], ||(g¢, at)||«,¢ < 2. On the other hand ||VS;((w, §))||«¢ = 1,
an
52,50 = BEE -+ B
Thus
AL
This implies both ‘ < 2 and |6 | <2. O

Lemma 22 (from Cutkosky & Mhammedi| (2024)). For 0 < v; < v9 < -+ < vypy1and vy > 0,
define

(%+1 — %)/%ﬂ
L+ 300 (isr — %) [Yi

ar =90 -

Then

T
Zat <7vln (hl (1+'Y7"—H>)
it

t=1
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Theorem 23. Suppose g, §; satisfies assumptions in Equation (3) and (), and having access to g§
as defined in Equation (5) with hy provided by FILTER (Algorithm|6). with o = €/c, 7o = 75 = 7/2,
for some €,¢c,v, 7, Tp > 0

Ri(u) <O (6 + |u| max(rq, G)VT + |ulc + \u|27)

In addition, the produced iterate satisfies max; |wy| < 5527

Proof. Algorithm [2denote w0y, ; as outputs from some unconstrained learner and wy, y; being their
projection on TW. We begin our analysis from Equation (22):

T T

Rt (u) < (35 + Vri(we),we —u) + > ay(ye — ¢ (w)

By |Cutkosky & Orabonztl:éOlS) Theorem 3 =

T T

<N G+ Vr(wy) + 6 e —uh+ D (ar + 7)) (e — (w) (23)
t=1 t=1

R (u) R (u)

Since Vo = 3,78 = 3. ar = o+ f; < 7. Thus, by Lemma 13§ +0] < hi++v2(ht+cInT) <
3(ht + cInT) and |a; + 67| < v + /27 < 37. If both A,,, A, are standard unconstrained OCO
algorithm, Theorem 10 of |Cutkosky & Mhammedi| (2024) implies

R (u) < O (e + ul(hr + VT, R*(uw) <O [ e+ ul?

However, A,, is indeed an optimistic online learning algorithm by leveraging the known structure of
Vri(we) and d;, a better bound in R?“’ (u) can be obtained by Theorem , which implies Algorithm
2| guarantees the following by setting g; < 35,7 < 3(Vri(wy) + 6¢) and Gy = Shy, Hy =
§(ht+1 + ClIlT)Z

R (u) < O (e + |ulheVT + Ju| (hr + c)) -0 (e + |ulhrVT + \u|c)

Thus, combing with Rﬁy (u), we can bound Equation :
T

T
Rt (u) < (35 + 6 + Vre(wy), we —u) + Y _(ar + 67) (e — ¥(u))

t=1

= O | e+ |ulhpVT + |ulc + |ul?

since Zt a;r = Zt oy + Zt B¢, where oy, B; are defined in Algorithm [2|line 8. Thus, we apply
Lemma [22]for each summand with appropriate substitutions

~ h
<0 <e+ lulhp VT + |ulc + |u|2\/’y2 +7 (gln <1n <1+ Zjl)> + %ln (ln (1+ ZTZ;H>>>>

by Lemma 3): h1 = 16, hr,hry1 < max(7g,8G), similarly by Lemma 5): z =
D, 2r+1 < max(7p, 2 maxy |w;|)

<0 (e + Ju| max(rg, G)VT + |u|c)

0 (o s ) 11+t 25050

By Lemma 8 of [Zhang & Cutkosky| (2022), max; |w:| < %2T, thus the double logarithm in
max; |wy| is at worst O(InT")

=0 (e + |u| max(rq, G)VT + |ulc + |u\2’y>
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I ROBUST LEARNING WITH UNKNOWN G

In this section, we present the regret bound to Algorithm [2]in Theorem 5] We assume all quantities
are from Algorithm 2]

The proof in this section refers to a regret decomposition by substituting ¢;(w) = r+(w) + az(w)
to Equation , where 1)(w) = w?. This will allow us to identify four components that needed to
be bounded, R (u), MAINTAIN, OFFSET; and OFFSET, in order to bound the true regret Ry (u).

]~

Rr(u) <) (g5, we — u) + agp(ws) — agp(u) + re(we) —7¢(u)

~
Il
-

+ > —ap(wr) + ap(u) = ri(we) +ro(w) + > g — Gellwe —ul + > g0 = Gfllwe —u
t=1

= teP t¢P
T
< Z@f + Vr(wy), we — w) + arp(we) — arp(u)
t=1
Ry (u)
T
(W) ar+ Y re(w)+lul > lge — g5l + lul D g — 65|
t=1 t teP tgP
MAINTAIN
T
+Z\gt g¢ |wt|—zat¢ wy +Z|9t gt |wt|—25t Y(w) Zrt(wt)
tgP teP t=1
OFFSET1 : due to adaptive clipping OFFSET3: due to corruption

(24)

Theorem 5. Suppose g, g, satisfies assumptions in Equation (B) and ({)). Algorithm[2]in response
to gy with parameters: o = €/c,vo = Vg = 3, for some €,c,7v,7g,7p > 0. Then Algorlthml
guarantees a regret bound Rp(u):

4k2G? . 8k*G?
In

Rr(u) < 0) [e + |ule + |u] max(7q, G)\FTJr |u\2’y} + o +crp + kGTp
D
2 2
Ak + )G + hr) <1 +In hT+1> max ([log2 8G—‘ , 1>
Y TG e

Before providing the proof, we note a particular Corollary that yields “constant regret at the origin”:

Corollary 24. With c = 2/7p,~ = (k + 1)? and rest of parameters same as Theoreml Algorithm
22| guarantees a regret bound Ry (u):

e+ u + kG7p + |u|max (7¢, G) VT + |ul*(k + 1)% + GQ}

Now, we proceed with the proof of Theorem 3]

Proof. The proof is by bounding each component in Equation (24).

OFFSET;: due to adaptive clipping:

OFFSETy := Y _|gr — g5 |Jwe| — ofwe]> < (G + he)|wy| — agfwy|? (25)
tgP t¢pP
For each fixed t € P, we have A;|w| — ay|wy|? < supysg A X — o X? < , where 4, =

G + hy > 0. Hence an upper bound to Equation can be derived by subst1tute ozt

(G + hy)?
OFFS < -
FFSET; < E 1o
t¢P
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t

_ 1 (G’ + ht)2ht+1 hiv1—h;
- 4, Z — hy 1+ Z )

Py b1 ~  hin
T
(G + hr)? < z+1 ) ht+1
<1+ D
Ve et hit1 iap hit1

(G + hrp)? ( hT+1> ht+1
P iy B
- Y Z ht

2
< G Hhe) (1 +In hTf) P2k + 1)

Ve
2
< 7(G + ) <1 +In hT'H) 4(k + 1)2 max <{log2 8G—‘ ,1>
0 T TG

where the third line is due to h; being positive and non-decreasing by Lemma|[I8](3). For the second
to last line, a uniform bound on A1/ (hiy1 — ht) < 2(k +1),Vt ¢ P was applied by Lemma|18§|
(5). Finally, an upperbound to |P| by Lemma 8|(4) and the substitution of ~y, = /2 was applied.

OFFSETs: due to corruption:

The upper bound is obtained through two steps. In each step we aim to show:

T T
OFFSETg 1= Z lge — G¢||we| — Zﬁtw wy) Zrt wy) < O(G%kIn( max|wt| Zrt
t=1

teP t=1 t=1

step 1: <O(G?k log(max |w|)) step 2: <O(G2k)

By Lemma [19]property (2)(3), we have

1/2
B VB 113 /ziJrl—zi 5 t= t",’fl € [N]
t — i=1 i

Zi+1
0, otherwise

Proceed with analysis to step 1, where second line is by Lemma [T9] property (1) and value of ;
displayed above:

step 1 : Z|9t gt|‘wt|_Zﬁt Y(wy)

teP
= Z Z 9t — Gellwe| — Zﬁtn‘wtn
n=0tcPNT,
N N
< Z lge — gellwe| + Z 2|wy, | Z lg¢ — Ge| — Zﬁtn\wtnF
tePNTo n=1 tePNT, n=1
N
<tp Y loe—al+ 22|wtn D 19 =3l =D Bunlwe,|?
tePﬂTo tePNT, n=1
<7p Z lge — Ge| + Z2|wtn Z 9t — Ge| — Zﬁtn tn
t=1 n=1 tePNTy
N
<kGrp+ Y 2w, > g — Gl — Z Bt lw,, |2 (26)
n=1 tePNTy, n=1

where the third line is due to Lemma.property (4), the forth line is due to Lemma|[19|property (2).
Now we analyze each summands over n in Equation - Considering a fixed n € [N]:

2|wy,,| Z gt = Gtl — BeJwe,, |> < sup X Z 2lg: — il — Br, X*

tePNTs X20 yepaT;,
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(ZterTn lge — §t|)2
Bt
t

_ 2 ( Z |9t—§t|> <1+Z(zi+l_zi)/zi+1>

VB

tePOT, i=1
2 ’ a
< — ( Z gt — §t|> (1 + Z(Zi+l - Zi)/zi+1>
V8 \tepnT,, i=1
<

2
2 N z

= ( Z |gt —gt|> In <1+ 7;+1>
B tePNT, !

)

Substitute to equation (26))

N 2
2
step 1l <kGtp+ —1n (1+ZT+1>Z ( Z |9t—9t|>
B 103 \eepoT
2 al :
z
<kGtp+ —1In (1+ T+1> (Z Z |gtgt|>
B 1 n=1tePnT,
) 2
2 _
<kGrp+ —In (1+ T“) g — G|
8 “1 teP

2
<kGrp+ —In (1 + ZT“) (kG)?
VB 21
where the last step is due to P C [T] and the corruption model in Equation . By substituting
V8 =7/2, 721 = Tp, zr4+1 < max(7p, 2 max, |w;|), we obtained an upper bound to step 1:
T 4k*G?%In (1 + max (1,42ma7";|wt\))
step 1:= > [ge — Gellwel = > Bir(wy) < kGrp +

teP t=1

Y
1RGP In (2 + 2msel)
2

< kGtp +

Thus, an upper bound to OFFSETs is though obtaining an upper bound to step 2 defined as follows:

4k2GP In (2 2mexclwel ) 7
( = ) - Z o (we)
t=1

step 2 :=
2

evoke Lemma 8| with o = €/c

4]4)2G2 In (2 + 2 max; \wt\)

™D

<

— cmax |w| + €
€ t

2G2 CTpD

< sup

X>-2 7
for A,B > 0,AIn(2 + X) — BX obtains its supremum at X = A/B —2 > —2. Hence
supy~_, Aln(2+ X) — BX = Aln(A/B) — A + 2B. By substituting A = 426~ B = <72 we
have

4k*G? ! 8k*G?  4k*G?

= n j—
vy YD

+ctp + €

Thus step 1 and step 2 implies

4Kk2G? In 8k2G? _ 42 G?
Y CYTD

OFFSETy < € + +ctp + kGTp
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MAINTAIN: comparator related term

This is first through Lemmamproperty (4) on |P| is small

MAINTAIN := 1) Zat + Zn )+ |u] Z lge — gi| + |u| Z lgt — g7
tep t¢P
8G
U)Zat+2rt )+ |u|GE + |ul(G + hr)(k + 1) max | |logy — ~ 1
G
t=1
(27)

It remains to show the first two terms in Equation can be bounded by desired orders. For the first
summand, Y, a; = Y, oy + >, . Thus by Lemma22]

Zat < Ya (ln (ln (1 + hTH)) + 75 In <ln <1 + ZTH)))
- hy 21

by Lemmal[18|(3): hy = 7¢, hry1 < max(7¢,8G), similarly by Lemma[19](4): 21 = 7p, 2741 <
max(7p, 2 max; |wy|)

< Y (m (ln (1 + max(1, f))) + 5 1n <ln <1 + max(1, W)))) = 0(y)

where the last step is by substituting of 7, = 73 = 7/2, and the fact that max; |w| < 5527
guaranteed by Theorem [23]

The second term in Equation can be upper bounded by Lemma 8| by substituting o = ¢/c:

InT
Z u) < 3clnT|ul |In < <u|) ) +2| = O(clu])
t=1 @
Thus,
MAINTAIN < O (7 + clu| + |u|(k + 1) max(7¢, G))
Combine results from Theoremfor RlT (u), we complete the proof. O

We also provide an dimension-free analogue to Theorem 3}

Theorem 25. Suppose g, & satisfies assumptions in Equation (3) and ({). Algorithm{d]has access to
&7, hiy1 in receiving g, as provided by FILTER. By setting A as Algorithm2|with all parameters the
same as that of Theorem[3] Then Algorithm{d| gaurantee the same regret as Theorem D with respect to
[l

Proof. By Theorem|[I0]

T
suun
Rr(u) <3 (a2 — |[ul) +Zugt &1l (Je| + [lul]) + VT
t=1
_ 3ul|
= > Czeowe = lall) + D llge = &1 (el + ul) + Y llge = &1l (] + [Jul) + =57 GVT
t=1 teP tEP

Since |z¢| < h¢ is guaranteed by Theorem thus Theoremcan be used to bound the first three
terms and we complete the proof. O

J FENCHEL CONJUGATE

Here we collects basic properties of Fenchel conjugate, see reference such as |Bertsekas| (2009);
Orabonal (2019), and previously established Lemma used in Appendix [E{for completeness.
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Definition 26. Let f : R? — [—o0, 00|, the Fenchel conjugate f* is defined as

fr(0) = sup (0, ) — f(x)

zeRd

the double conjugate f** is defined as

f7(0) = sup (0,z) — f*(x)

z€RY
Theorem 27. Let f : RY — (—00, o0
1. f(z) = f**(z),Vo € RYiff f is convex and lower semicontinuous
2. (0,x) — f(z) achieves its supremum in x at v = z* iff £* € V f*(0)
Lemma 28. (Theorem A.32 of Orabona|(2019)) The Lambert function W : RT — RY is defined as
x=W(z)exp(W(x)), forz>0

and W(z) > 0.6In(1 + z) for x > 0.

Lemma 29. (Theorem A.3 of Orabona|(2019)) Let a,b > 0, f(z) = bexp(x?/2a). Then the Fenchel
conjugate is

rro =vaol (v (%) - ==
W (57)
where W () is the Lambert function.
Lemma 30.

Vr——=>4/=, V>

1 T §
vV V9’ 2

Proof. The proof is based on rearrange x > %, the condition is equivalent to

(11)x21
3
1

(1-3)ve= 2

Rearrange and we complete the proof. O

Given z > 0, divide both side by v/z
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