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Abstract

Cross-lingual alignment of word embeddings
play an important role in knowledge trans-
fer across languages, for improving machine
translation and other multi-lingual applica-
tions. Current unsupervised approaches rely
on learning structure-preserving linear trans-
formations using adversarial networks and re-
finement strategies. However, such techniques,
tend to suffer from instability and convergence
issues, requiring tedious fine-tuning of param-
eter setting. This paper proposes BioSpere,
a novel multi-stage framework for unsuper-
vised mapping of bi-lingual word embeddings
onto a shared vector space, by combining ad-
versarial initialization, refinement procedure
and point set registration algorithm. We show
that our framework alleviates the above short-
comings, and is robust against variable ad-
versarial learning performance and parameter
choices. Experiments for parallel dictionary
induction, sentence translation and word sim-
ilarity demonstrate state-of-the-art results for
BioSpere on diverse language pairs.

1 Introduction and Background

With the success of distributed word representation,
like Word2Vec (Mikolov et al., 2013), GloVe (Pen-
nington et al., 2014) and FastText (Bojanowski
et al., 2017), in capturing rich semantic meaning,
the use of such embeddings has permeated a range
of Natural Language Processing (NLP) tasks such
as text classification, document clustering, summa-
rization and question answering (Klementiev et al.,
2012). Unsupervised learning of such continuous
high dimensional vector representation for words
rely on distributional hypothesis (Harris, 1954).
Motivation. As a natural generalization, learn-
ing cross-lingual word embeddings (CLWE) en-
tails mapping vocabularies of different languages
onto a single vector space for capturing syntactic
and semantic similarity of words across languages
boundaries (Upadhyay et al., 2016). Thus, CLWE

provides an effective approach for knowledge trans-
fer across languages for several downstream lin-
guistics tasks such as machine translation (Artetxe
et al., 2018a; Lample et al., 2018a,b), POS tag-
ging (Zhang et al., 2016), dependency parsing (Ah-
mad et al., 2019), named entity recognition (Tsai
and Roth, 2016; Xie et al., 2018; Chen et al., 2019),
and low-resource language understanding (Xiao
and Guo, 2014; Conneau et al., 2018b). Word align-
ment across languages also finds applications in
the study of cultural connotations (Kozlowski et al.,
2019) and spatio-linguistic commonalities (Zwarts,
2017; Yun and Choi, 2018; Pederson et al., 1998).
Linguistic Correlation. Monolingual represen-
tation spaces learnt independently for different
languages tend to exhibit similarity in terms of
geometric properties and orientations (Mikolov
and Sutskever, 2013) !. The frequency of words
across languages have also been shown to follow
the Zipf’s distribution %, with an overlap of nearly
70% for the most frequent words (Aldarmaki et al.,
2018) and 60% for synonyms (Dinu et al., 2015)
across language pairs. Existing techniques for ex-
tracting cross-lingual word correspondences rely
on above inter-dependencies to learn transforma-
tions across monolingual embedding spaces.
State-of-the-art & Challenges. Early ap-
proaches for directly obtaining multi-lingual word
embeddings relied on the availability of large par-
allel corpora (Gouws et al., 2015) or document-
aligned comparable corpora (Mogadala and Ret-
tinger, 2016; Vuli¢ and Moens, 2016). However,
such methods are not scalable as annotations are
expensive and large parallel datasets, especially
for low-resource languages, are scarce. To address
the above challenges, linear transformations be-
tween two monolingual embedding space using

"For example, the embedding vector distribution of num-
bers and animals in English show a similar geometric struc-
tural formation as their Spanish counterparts.

%observed on 10 million words from Wikipages on 30
languages (en.wikipedia.org/wiki/Zipf’ s_law)
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small manually created bi-lingual dictionaries were
proposed (Mikolov and Sutskever, 2013; Artetxe
et al., 2016). These approaches tend to learn a
transformation 7" : X — Y between the language
embeddings of X and Y. This can mathematically
be represented as an optimization problem solving
minr|| X — T(Y)||%, where || - || is the Frobe-
nius norm. This formulation when constrained to
orthonormal matrices solutions only, results in the
closed-form orthogonal Procrustes (Schonemann,
1966) refinement strategy. Words having similar
surface forms across languages were used to in-
duce seed dictionaries and other augmented refine-
ment strategies were explored in semi-supervised
approaches (Artetxe et al., 2017; Zhou et al., 2019;
Doval et al., 2018). Rigid transformation based
point set registration was also studied in Cao and
Zhao (2018). Subsequently, improvements in or-
thogonality and optimization constraints were ex-
plored for generalization beyond bi-lingual settings
for supervised cross-lingual alignment and joint
training methods (Joulin et al., 2018; Jawanpuria
etal., 2019; Alaux et al., 2019; Wang et al., 2020),
with feedback-based learning (Yuan et al., 2020).

Unsupervised framework for bi-lingual word
alignment was first proposed using adversarial
training (Barone, 2016; Zhang et al., 2017a,b) .
The use of post-mapping refinements were shown
to produce high quality results in the MUSE frame-
work (Conneau et al., 2018a) across diverse lan-
guages, and was used for machine translation sys-
tems (Lample et al., 2018a,b). Parallel dictionary
construction using CSLS (Conneau et al., 2018a)
(adopted in this paper) or inverted softmax (Smith
et al., 2017) was shown to tackle the “hubness
problem” (Radovanovi¢ et al., 2010) caused due
to highly dense vector space regions (called hubs),
which adversely affects bi-lingual word translation.
However, the performance of adversarial learning
techniques have been shown to suffer from instabil-
ity, convergence issues, and dependence of precise
parameter settings. Further, Sggaard et al. (2018)
found the above unsupervised approaches to fail
for morphologically rich languages. Hence, opti-
mization formulations using Gromov-Wasserstein,
Sinkhorn distance, and Iterative Closest Point were
explored (Grave et al., 2019; Alvarez-Melis and
Jaakkola, 2018; Xu et al., 2018; Hoshen and Wolf,
2018). A survey of different methods can be
found in Hartmann et al. (2019). Adversarial auto-
encoders using cyclic loss optimization in latent

space with stacked refinements (Mohiuddin and
Joty, 2019, 2020) achieved improved results for bi-
lingual embedding alignment on diverse languages.
Contributions. This paper proposes BioSpere
(Bi-Lingual Word Translation via Point Set
Registration and Refinement), a novel approach
for unsupervised bi-lingual word correspondence
induction. Given two independently learnt mono-
lingual word embedding space, BioSpere uses a
combination of adversarial training, refinement pro-
cedure, and point set registration to align the vo-
cabularies to a common vector representation. Our
key contributions are as follows:
e BioSpere, an unsupervised multi-stage frame-
work for learning bi-lingual word translations from
independent monolingual embedding spaces, cap-
turing cross-lingual word semantic similarities;
e A novel multi-stage framework coupling cycle-
consistence loss and Gaussian Mixture Model for
improved cross-lingual embedding alignment;
e Unsupervised criterion using cycle-loss consis-
tency for adversarial training parameter choice;
e Experiments on diverse language pairs for en-
hanced state-of-the-art accuracy (comparable to
supervised methods), for parallel dictionary cre-
ation, translation retrieval and word similarity;
e Robustness study of BioSpere framework in effi-
ciently handling hubness problem, and adversarial
learning convergence issues.
We next describe the detailed working of the
different modules in the BioSpere framework.

2 BioSpere Framework

Consider, two monolingual word embedding
spaces X = {z,}_; and Y = {y,;, }}_,, trained
independently on monolingual data, to be provided
as the source and target language representations,
respectively. BioSpere aims to map each word in
the source language to its translation in the target
language, without the need for any cross-lingual
supervision or pre-processing (Zhang et al., 2019).
Equivalently, it aligns the language embeddings,
such that semantically similar words are close to
each other in the common vector space.

To achieve this, the working of BioSpere hinges
on 4 modules, namely Align, Correspond, Trans-
form and Generate. Fig. 1 provides an overview of
the different modules, which we discuss next.

2.1 Align Module

The Align module uses an adversarial training ap-
proach (Ganin et al., 2016) to estimate an ini-
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Figure 1: Toy illustration (on en-ro language pair) of the different modules of BioSpere — (a) Align, (b) Correspond,
(c) Transform, and (d) Generate — for unsupervised parallel dictionary construction.

tial mapping between the words across the lan-
guages, by learning an rotational transformation
between the input embeddings spaces. Assum-
ing T~ pdata(x) and y ~ pdata(y) to be the
input data distributions, we learn two linear map-
pings FF : X - Yand G : Y — X, referred
to as forward and backward generators, respec-
tively. A generative adversarial network is then
used to train a model Dy (discriminator) to dis-
criminate between generated synthetic target em-
beddings Yy, = FX = {F(z,)}Y_,, and the
original embeddings Y. Similarly, we train another
discriminator, Dx, in the opposite direction to dis-
criminate between synthetic source embeddings
Xgyn = GY = {G(ym)}*_, and the original X.
The discriminators aim to distinguish between the
real and synthetic embeddings, while the genera-
tors attempt to produce outputs that prevent the
discriminators from making accurate predictions.
We resemble this in our training objective as two
factors. First, the adversarial loss 1s formulated for
matching the distribution of the synthetic embed-
dings to the real distribution. Thus, for the forward
generator [’ : X — Y, and its corresponding dis-
criminator model Dy, the adversarial loss is:

Lago(F, Dy, X,Y) = Eypy,,0 (0 [log Dy (y)]+
Einpgara (@) l0g(l = Dy (F(z))] (1)

A similar loss £,4, (G, Dx, Y, X) is used for back-
ward generator GG : Y — X and discriminator D x.

The second objective used is reported by Mo-
hiuddin and Joty (2020) — the learned generators
should not contradict each other, but should be
cycle-consistent. That is, given a source embed-
ding x, the forward translation cycle should attempt
to produce an output that coincides with z, i.e.,
G(F(zx)) ~ z. Analogously, the backward transla-
tion cycle should ensure F'(G(y)) ~ y. Since word
translations are symmetric in general, this criterion

is captured by a cyclic-loss consistency measure in:
Leye(F,G) =Eqny,,. ) |G(F ()], +
Bymgaraw [F(G@®))l @

Following Conneau et al. (2018a), we make sure
F' and G remain roughly orthogonal during train-
ing by alternating parameter update with F' <
(1 + B)F — B(FFT)F (and analogously for G).
Intuitively, this preserves the monolingual quality
(dot product and L5 distances) of embeddings.
Specifically, the above formulation corresponds
to CycleGAN (Zhu et al., 2017), a generative ad-
versarial network architecture, which we adopt in
the Align module of BioSpere. This provides an
initial aligned embedding space, obtained as two
word vector sets, X4 = F'(X) and Y4 = G(Y),
as embeddings from the learned transformations.

2.2 Correspond Module

The above word alignments obtained based on
cyclic loss, despite being better than other adversar-
ial network based approaches, are not at par with
state-of-the-art results and might suffer from con-
vergence instability. To address this issue, the Cor-
respond module performs a refinement step based
on symmetric re-weighting, shown to be effective in
word embedding alignment (Artetxe et al., 2018a,
2016, 2017; Mohiuddin and Joty, 2020).

To this end, a synthetic seed parallel dictionary,
D, is induced by considering the mutual nearest
neighbour relation (in both directions) across the
aligned embeddings (X 4 and Y,) obtained from
the Align module. That is, given mappings F' :
X —-Yand G:Y — X, the similarity between
words x,, and y,, is computed as:

Onm = 0(F(n),ym) + 6(zn, G(ym)) ©)

where § is a distance measure in both X 4 and Y4.
As in Conneau et al. (2018a), we adopt the cross-
domain similarity local scaling (CSLS) measure,



which addresses the “hubness” problem faced es-
pecially when working in high-dimensional spaces.
Similar to the our adversarial network, o,,,, uses
bi-directional similarity computation. In our exper-
iments, the dictionary induction was performed on
the 25K most frequent words (out of 200K words)
from source and target languages. Symmetric re-
weighting refinement is next done using 3 steps:
(i) Whitening: This makes the embedding dimen-
sions uncorrelated with unit variance by applying
spherical transformation. We use Mahalanobis or
ZCA whitening, where original embeddings X and
Y are length-normalized and mean-centered, fol-
lowed by a linear transformation via whitening ma-
trices W, = (X7 X)"2 and W, = (YTY)71/2,
to obtain X, = XW, and Y,, = YW,,.

(ii) Orthogonal Transformation: This provides an
intermediate transformation of the whitened vec-
tor embeddings onto a common space. Initially,
U, 3, and VT are obtained via singular value de-
composition of (X2)TV.P, where X2 and Y, are
whitened embeddings of words of above seed dic-
tionary D. The orthogonal transformation is com-
puted as X, = X,UX'/2 and Y, = Y,,VE1/2.
(iii) De-Whitening: The final de-whitening step
restores the original variance in the embedding di-
mensions in the above orthogonally transformed
vector space. That is, the Correspond module out-
puts a refined vector embedding space as X¢ =
X, UT(XTX)2U and Yo = Y, VT (YTY)/2V.

2.3 Transform Module

The Transform module performs a further refine-
ment on the transformed embeddings X and Yo
(using the concept of point set registration). Specif-
ically, we uses the Coherent Point Drift (CPD) al-
gorithm (Myronenko and Song, 2010), an unsuper-
vised probabilistic framework which assigns point-
to-point correspondence between two sets of points,
akin to finding word translation pairs in our setting.
The idea here is to consider the task of aligning the
two embedding spaces as a density estimation prob-
lem based on the Gaussian Mixture Model (GMM).
This considers word embeddings of one language
as GMM centroids, and the other embedding space
to represent data points. The centroids are then
fitted to data points by maximizing the likelihood,
and at optimum point correspondences are obtained
using GMM posterior probabilities.

Thus, we consider the target embeddings Y as
the centroids and the source embedding space X
as data points, to have been generated by the GMM

probability density function. The centroid loca-
tions are estimated by Expectation Maximization
(EM) algorithm (Dempster et al., 1977). We direct
interested readers to the details of CPD algorithm
provided by Myronenko and Song (2010).

The use of CPD provides the following advan-
tages. The inherent use of GMM by CPD enables
BioSpere to efficiently tackle the “hubness” prob-
lem (shown in Zhou et al. (2019)) and improve ro-
bustness. Further, CPD imposes the Motion Coher-
ence Theory (MCT) (Yuille and Grzywacz, 1988)
to force the GMM centroids to move coherently as
a group, which preserves the underlying topologi-
cal structure of the data. This would maintain the
local geometric structures within the languages af-
ter alignment, benefiting downstream applications.

In BioSpere we use affine transformation for
CPD, providing a higher degree of transformational
freedom compared to rigid procedures of (Cao and
Zhao, 2018) and Procrustes. The Transform mod-
ule computes the tuple (R, t, s), where R is a ro-
tation matrix, ¢ is a translation vector, and s is a
scaling constant. The transformed source embed-
ding space is computed as X7 = (RXg xs+1)T.
Similar to the re-weighting process, mutual nearest
neighbours among the 25K most frequent words in
the source and target languages (X and Y¢) were
provided to CPD for computing correspondences.
We run CPD twice for each language pair, once in
each directions, generating the transformed source
and target language embeddings X7 and Y7.

2.4 Generate Module

The Generate module iterates between the above
correspond and transform steps until convergence
is reached. Equipped with the final aligned X7 and
Y1 embedding spaces, the resultant parallel dictio-
nary is computed using the bi-directional CSLS
measure, similar to the construction of the interme-
diate dictionary in the Correspond module (using
Eq. 3 of Sec. 2.2). For convergence of the iterative
symmetric re-weighting refinement and CPD, we
adopt the criteria as in Artetxe et al. (2018b); Mo-
hiuddin and Joty (2020). The generated word pairs
are compared with ground-truth parallel dictionar-
ies to compute the accuracy of BioSpere.

In the next section, we show that the proposed
multi-stage framework, BioSpere outperforms ex-
isting approaches in parallel dictionary creation,
sentence translation retrieval, and word similarity
tasks — robustly handling adversarial convergences
issues and sub-optimal parameter settings.



3 Empirical Evaluation

In this section, we evaluate the performance of the
proposed BioSpere framework in mapping the in-
put word embeddings onto a shared vector space,
such that semantically similar words across lan-
guages are close to each other (in terms of dis-
tance) in the common space. We benchmark the
accuracy of BioSpere against several existing ap-
proaches on the tasks of bi-lingual dictionary in-
duction, sentence translation retrieval, and word
similarity across a diverse set of languages.

3.1 Experimental Setup

Dataset. Our experimental setup closely follows
that of Conneau et al. (2018a). FastText monolin-
gual vector embeddings (with dimensionality of
300) (Bojanowski et al., 2017) for the top 200K
most frequent words of each language is used as
input vocabulary. We consider eight different lan-
guage pairs including morphologically rich and
low-resourced languages. Specifically, we consider
English (en), German (de), French (fr), Spanish
(es), Italian (it), Russian (ru), Hebrew (he), Finnish
(fi), and Romanian (ro) — a mix of isolating, fu-
sional and agglutinative language with dependent
and mixed marking (Segaard et al., 2018).

Evaluation. We report the Precision@] (P@1)
accuracy scores based on CSLS criteria (Conneau
et al., 2018a) for our empirical evaluations. In the
word translation task, we use the gold dictionary
with 1,500 source test words (and full 200K tar-
get vocabulary) for different language pairs (from
github.com/facebookresearch/MUSE). While
for sentence translation retrieval, we consider the
Europarl corpus with 2,000 source sentence queries
and 200K target sentences for each of the language
pairs. For the cosine based word similarity task, we
use SemEval 2017 data (Camacho-Collados et al.,
2017) and report the Pearson’s correlation.

Baselines. The performance of BioSpere is com-
pared against the following unsupervised methods:

(1) MUSE (Conneau et al., 2018a) — Uses
GAN (Goodfellow et al., 2014) to learn transfor-
mations with Procrustes (Schonemann, 1966) 3;

(2) Adv-Auto (Mohiuddin and Joty, 2020) — State-
of-the-art using adversarial auto-encoder to cre-
ate synthetic dictionary, refined by symmetric re-
weighting & Procrustes strategies #;
(3) VecMap (Artetxe et al., 2018a) — Self-learning

3Code from github.com/facebookresearch/MUSE

néunlpsg. github.io/project/unsup-word-translation

iterative algorithms exploiting structural similari-
ties between embedding spaces for alignment >;

(4) SinkHorn (Xu et al., 2018): GAN trained on
cyclic loss and Sinkhorn distance (Cuturi, 2013);

(5) Non-Adv (Hoshen and Wolf, 2018) — Uses
dimensionality reduction with Iterative Closest
Point (Besl and McKay, 1992) algorithm;

(6) Was-Proc (Grave et al., 2019) — Computes bi-
stochastic matrix for assignment by jointly optimiz-
ing Wasserstein dist. (Mémoli, 2011) & Procrustes;

(7) GW-Proc (Alvarez-Melis and Jaakkola, 2018)
— Formulates optimal flow across domains using
Gromov-Wasserstein distance (Mémoli, 2011); and

(8) UMH (Alaux et al., 2019) — Uses language
correlation for learning via constraint optimization.

We also report the supervised approaches:

(1) RCSLS (Joulin et al., 2018): Optimizes CSLS
criteria for learning (Conneau et al., 2018a);

(2) GeoMM (Jawanpuria et al., 2019): Language
specific geometric rotations are learnt to align; and

(3) DeMa-BME (Zhou et al., 2019): Weakly-
supervised approach for learning Gaussian Mixture
Model between embeddings spaces.

3.1.1 Unsupervised Model Selection

Choosing the best performing model setting for
adversarial training and convergence for iterative
refinement (in Sec. 2.4) poses a challenge in an
unsupervised setting, as we cannot use a validation
set to direct our choices. To address this issue, we
follow Conneau et al. (2018a) and use CSLS mea-
sure (denoted as DMC) to quantify the closeness
of source and target mapped embedding spaces.
However, in line with our forward-backward or
cyclic-consistency theme, we extend CSLS to mea-
sure the similarity in both the source and target
spaces, as in Sec. 2.2. Specifically, we consider
the 25K most frequent source words to generate
a translation for them, and compute the average
bi-directional cosine similarity between the pairs,
to decide on model convergence. This revised crite-
rion (termed as DualDMC) was found to be better
correlated with word translation accuracy, than the
unidirectional setting (DMC) used previously (Con-
neau et al., 2018a; Mohiuddin and Joty, 2020) — and
closely correlated with CSLS@1 (on a validation
set containing ground-truth word translations).
Parameter Setting. Despite obtaining state-of-
the-art results, we emphasize that achieving the
best possible accuracy (by extensive parameter

5Code obtained from github.com/artetxem/vecmap
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search) is not the focus of this work. Rather, we aim
to build a framework robust to adversarial instabil-
ity and parameter settings. Most parameters were
set to fixed values, or selected via two successive
degradation of the unsupervised DualDMC criteria
of the previous section. Following Conneau et al.
(2018a), we fed the adversarial discriminator with
the SO0K most frequent words, and the discriminator
had an input dropout layer with a rate of 0.1. In our
experiments, we only tuned the weight assigned
to the cyclic loss between 5 and 10, and ran the
framework under different random seeds, picking
the best model using unsupervised DualDMC.

3.2 Experimental Results

Word Translation. This task involves the retrieval
of the translation of a given source word for a tar-
get language (from the target vocabulary). Ob-
serve, polysemy of words and hubness in embed-
ding space provide a significant challenge in this
setting. Parallel dictionary construction forms a ma-
jor application of word embedding alignment, and
we compare all baselines using the ground-truth
dictionaries of Conneau et al. (2018a).

From Table 1, we observe that BioSpere pro-
vides state-of-the-art translation results in nearly
all of the four language pairs (for both directions).
It should be noted that we achieve better results
across the languages even when compared to super-
vised methods like Non-Adv and DeMa-BME. In
fact, for certain language pairs like en — es, en —
Jr and fr — en, the performance of BioSpere is al-
most at par with state-of-the-art supervised method
of RCSLS. Since, unsupervised MUSE, VecMap,
and Adv-Auto were seen to consistently perform
well across the languages, they are selected as com-
peting baselines for the remaining experiments.

The challenges in word translation are com-
pounded for morphologically rich languages due to
high vocabulary variation. To this end, we explore
the performance of the competing algorithms on
Finnish, Hebrew and Romanian, considered as “dif-
ficult” languages (S¢gaard et al., 2018). From Ta-
ble 2, we see that BioSpere is efficient even in such
settings — outperforming existing approaches with
an accuracy improvement across the languages.

Semantic Word Similarity. This task evaluates
the quality of alignment of cross-lingual word em-
bedding space by evaluating how the cosine simi-
larity between words in different languages corre-
lates with human-annotated word similarity scores

en-es en-de en-fr en-ru

Algorithm ‘
[ = « = « o5« o5«

Supervised Approaches

Non-Adv 814 829 735 724 81.1 824 517 637
DeMa-BME | 82.8 854 772 75.1 832 835 492 63.6
GeoMM 814 855 747 767 821 841 513 67.6
RCSLS 84.1 86.3 79.1 763 833 841 579 672

Unsupervised Approaches
SinkHorn™* | 79.5 778 693 67.0 779 755

Non-Adv 82.1 841 747 730 823 829 475 618
Was-Proc 82.8 841 754 733 826 829 437 59.1

MUSE 81.7 833 740 722 823 821 440 59.1
VecMap't 823 847 751 743 823 836 492 656
UMH 825 849 748 737 829 833 453 628

Adv-Auto 83.0 852 762 747 823 835 484 645
BioSpere 833 854 758 758 834 841 495 640

“-” denotes failure of the training network to converge reasonably

** Uses cosine similarity instead of CSLS, and results as reported in Zhou et al. (2019)
Tt Results taken from Zhou et al. (2019)

Table 1: CSLS@1 word translation results on the
dataset of Conneau et al. (2018a).

en-fi en-he en-ro

Algorithm ‘
| = — — — — —
MUSE 437 537 380 - 58.0 66.0
VecMap 499 635 446 577 642 718
Adv-Auto 498 655 461 586 626 719
BioSpere 499 655 46.6 59.1 654 743

Table 2: CSLS @1 word translation results on morpho-
logically rich “difficult” languages.

(based on a well-defined similarity scale).

Table 3(a) shows that BioSpere achieves a bet-
ter Pearson’s correlation to human-annotated word
similarity scores across the languages (except Ital-
ian). This depicts that our framework generates
better alignment of different language embedding
spaces — providing better understanding of seman-
tic similarity between words across languages.

Sentence Translation Retrieval. We explore
a higher level abstraction of multi-lingual word
embedding space alignment, and study sentence
translation retrieval on Europarl corpus. Similar
to Conneau et al. (2018a), a sentence is represented
as a bag-of-words, and the idf-weighted average of
word embeddings are considered as sentence en-
coding. For each source sentence, the closest sen-
tence (based on embedding space distance) from
the target language is considered as its translation.

Table 3(b) depicts that BioSpere provides better
sentence translation retrieval accuracy, outperform-
ing the competing algorithms across language pairs
with upto 1.5% P@1 score improvements — provid-
ing better cross-lingual alignment.

Language Models. Multi-lingual contextualized
language models (CLM) like mBERT (Devlin et al.,
2019) and XLLM (Lample and Conneau, 2019) cap-
ture semantic meaning of words and provide “dy-
namic” token embeddings based on the context.
Although, CLMs generate aligned multi-lingual



Algorithm [ en-de en-es en-it Algorithm ] en-es en-fr en-fi

| — — — — — — | — «— — — — —
MUSE 0.708 0.713 0.712 0.711 0.710 0.712 MUSE 75.1 739 69.1 69.9 64.2 64.0
VecMap 0.719 0.719 0.721 0.721 0.746 0.746 VecMap 74.7 74.4 69.6 69.3 64.4 64.1
Adv-Auto - 0.720 0.724 0.718 0.722 0.721 Adv-Auto 75.0 75.7 68.0 71.0 64.1 64.5
BioSpere 0.726 0.725 0.730 0.728 0.722 0.723 BioSpere 76.7 76.3 70.2 70.9 65.1 65.9

(a)

(b)

Table 3: Performance of competing approaches on (a) Pearson’s Correlation score for word similarity task on
SemEval 2017 dataset, and (b) Precision@ 1 results for sentence translation retrieval on Europarl data.

Algorithm | en-de en-es en-fi en-ro
mBERT-CLS 70.0 80.2 40.8 650
BioSpere-WMD | 90.2 932 79.1 949

Table 4: Sentence translation retrieval P@]1 result of
BioSpere & multi-lingual language model on Europarl.

| en-de en-fi en-ro

Algorithm

| = — — — — —
MUSE GAN 59.8  60.5 223 241 345 49.6
CycleGAN 69.8 69.6 277 483 444 525
CycleGAN + Procrustes 738 733 462 620 595 672
CycleGAN + SR 75.5 747 469 649 635 71.6

CycleGAN + rigid CPD 745 742
CycleGAN + affine CPD 752 747

459 623 605 673
50.2 657 655 725

BioSpere 758 758 499 655 654 743
Bad-GAN 70.5 62.9 25.1 36.3 42.1 514
Bad-GAN + Procrustes 745 733 467 617 595 689
Bad-GAN + SR 759 7338 45.7 61.7 63.1 723
Bad-GAN + affine CPD 753 747 517 657 63.1 726
BioSpere with Bad-GAN | 759 759 517 654 640 731

Table 5: Ablation and Robustness study of BioSpere on
word translation with (Conneau et al., 2018a) dataset.

contextual word embeddings (Pires et al., 2019; Wu
and Dredze, 2019), parallel dictionary construction
in this context becomes challenging. However, to
evaluate the effect of cross-lingual word embed-
ding alignment quality on downstream tasks, we
perform sentence translation retrieval on Europarl
with 2K sentence pairs. In this setting, for a source
sentence, the closest target sentence is considered
as translation using Word Mover’s Distance (Kus-
ner et al., 2015) on word embeddings obtained
from BioSpere, while for mBERT we use sentence
embedding similarity based on the CLS token.

Table 4 depicts that BioSpere achieves a large
margin of improvement in translation retrieval com-
pared to the multi-lingual language models — thus
providing enhanced accuracy in capturing word
semantic similarity across languages.

3.2.1 Ablation Study

To understand the impact of different modules on
the performance of BioSpere, we perform ablation
by incrementally evaluating the components.
Varying Components. Table 5 tabulates the
results for different variants of our proposed frame-
work on different language pairs. We observe,
that the adversarial network, CycleGAN, using
the cycle-loss consistency criteria, performs bet-
ter than MUSE GAN, the framework of Conneau
et al. (2018a). In terms of refinement performed

in the Correspond module of BioSpere, we com-
pared the performance of symmetric re-weighting
(SR) with Procrustes. Both of them are seen to
perform nearly similar, however, SR is seen to
perform slightly better for morphologically rich
languages, and is thus adopted in BioSpere. As dis-
cussed previously, we empirically observe that the
higher degrees of translational freedom provided
by affine CPD performances better than rigid CPD
(used in Cao and Zhao (2018)). Note that Cycle-
GAN + affine CPD achieves the best accuracy (with
BioSpere performing nearly the same) for certain
language pairs. We next discuss the advantages of
symmetric re-weighting within our framework.

Adversarial Convergence. One important criti-
cism for adversarial based alignment techniques is
training convergence instability. Hence, we study
the robustness of BioSpere to such issues, by inten-
tionally selecting a sub-optimal CycleGAN model
from the Align module, denoted as Bad-GAN in
Table 5. We observe that symmetric re-weighting
(SR) refinement is able to recover from such con-
vergence issues (better than Procrustes) — providing
an accuracy score comparable to that achieved by a
properly trained adversarial model (selected using
DualDMC). Specifically, for fi — en language pair,
the performance of Bad-GAN is around 12% worse
than the best CycleGAN model. However, the final
accuracy of BioSpere for word translation differs
by only 1% (in Table 5) even with the Bad-GAN
initialization. Note, extensive parameter search for
the best trained model was not performed.

Intuitively, the interactions across the different
components in BioSpere are as follows: The adver-
sarial module provides an initial embedding space
alignment, but might be prone to convergence is-
sues. The refinement stage then provides robust-
ness against such training losses. However, the
refinement process being a supervised approach by
definition, errors in intermediate synthetic dictio-
nary construction might propagate, degrading the
efficacy. The final point correspondence CPD step,
being unsupervised, is agnostic to such errors and
provides enhanced cross-lingual embedding space



Algorithm \ en-es en-fr en-fi en-ro

| — — — «— — «— — —
MUSE 80.9 82.3 83.3 82.0 - 583 68.0 77.0
VecMap 82.2 85.7 84.7 854 62.4 76.7 77.2 79.9
Adv-Auto 82.9 85.7 84.5 85.4 - 78.3 - 79.9

BioSpere 828 862 852 858 635 850 791 80.1

Table 6: CSLS@1 results for limited vocabulary word
translation on Conneau et al. (2018a) data.

alignment. The overall BioSpere framework (Cy-
cleGAN + SR + affine CPD) thus performs the best
and robustly across all the different languages.

Limited Vocabulary. We now study the effect
of smaller vocabulary size on the alignment ac-
curacy of BioSpere. Observe, in scenarios with
domain-specificity and for low-resource languages,
the vocabulary space might be relatively small,
which can potentially impact the training perfor-
mance of existing learning techniques. Here, we
limit the input monolingual word embeddings to
only 10K most frequent words (instead of 200K).

From Table 6, we see that BioSpere outperforms
the competing methods across the different lan-
guage pairs. In fact, competing algorithms fail
to converge (marked as ’-’) in certain scenarios
— which can be attributed to limited training data
for learning. Thus, we see that BioSpere provides
stability and scalability in computing efficient em-
bedding alignment across various input sizes.

In summary, the above empirical evaluations
showcase that the proposed BioSpere framework
provides better cross-lingual alignment of embed-
ding spaces, by not only outperforming existing
techniques (even supervised methods in certain
cases) in translation accuracy even on morphologi-
cally rich languages, but also demonstrating robust-
ness in handling potential training losses.

4 Related Background

Generative Adversarial Networks (GANSs) cou-
ples the training of machine learning architecture
between a generative and a discriminative net-
work that work in tandem for “indirect” training
in an unsupervised manner (Goodfellow et al.,
2014). GANs have been shown to achieve impres-
sive results in the domain image processing (Zhu
etal., 2017), representation learning (Radford et al.,
2016) and reinforcement learning (Ho and Ermon,
2016). The task of supervised image-to-image
translation involves learning the transformation
from an input image to an output image (Long
et al., 2015). Unsupervised image-to-image trans-
lation approach, Co-GAN (Liu and Tuzel, 2016)

was proposed based on weight sharing scheme. Re-
moval of dependencies on task-specific similarity
functions and low-dimensionality in this aspect was
proposed by Zhu et al. (2017), and was shown in
visual tracking by enforcing forward-backward con-
sistency (Kalal et al., 2010). Improving translations
via “back translation and reconciliation” is used by
human translators (Brislin, 1970). We thus adopt
the unsupervised CycleGAN (Zhu et al., 2017) ad-
versarial training based on cycle-consistency loss.

Point Set Registration algorithms aim to com-
pute the transformation for aligning two input point
sets. Rigid transformation involving rotation, trans-
lation and reflection, were used in Iterative Closest
Point (ICP) algorithm (Besl and McKay, 1992) and
other variants (Rusinkiewicz and Levoy, 2001) for
probabilistic alignment. Spectral methods (Scott
and Longuet-Higgins, 1991) and closed-form so-
lution for rigid probabilistic registration in multi-
dimensional cases was presented in Myronenko
and Song (2010). In addition to the rotation, trans-
lation and reflection, affine transformation also con-
siders scaling, homothety, similarity and shear —
providing more degrees of freedom for better point
set registration (Ho et al., 2007). Non-rigid trans-
formations are based on Gaussian Mixture model
and filters (Hinton et al., 1992; Gao and Tedrake,
2019), Bayesian modelling (Hirose, 2020) or Thin
Plate Spline (TPS) parameterization (Bookstein,
1989). Recent developments use convolutional neu-
ral networks (Huang et al., 2017) and other learn-
ing frameworks (Yew and Lee, 2018). An exten-
sive literature survey can be found in Tam et al.
(2013). We adopt Coherent Point Drift (CPD) (My-
ronenko and Song, 2010) combining Gaussian Mix-
ture Model and Motion Coherence Theory.

5 Conclusion

This paper proposed BioSpere, a multi-stage unsu-
pervised cross-lingual word embedding alignment
framework — based on the novel coupling of gen-
erative adversarial training, refinement procedure
and point set registration. We show that the bi-
directional cycle-loss based training and conver-
gence criteria with the inherent GMM formulation
provides enhanced input vector spaces alignment.
Extensive experiments on multiple languages for
parallel dictionary creation, sentence translation
retrieval, and word similarity not only demonstrate
improved results, but also depict robustness to hub-
ness and inconsistent adversarial performance.
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