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Abstract

Cross-lingual alignment of word embeddings001
play an important role in knowledge trans-002
fer across languages, for improving machine003
translation and other multi-lingual applica-004
tions. Current unsupervised approaches rely005
on learning structure-preserving linear trans-006
formations using adversarial networks and re-007
finement strategies. However, such techniques,008
tend to suffer from instability and convergence009
issues, requiring tedious fine-tuning of param-010
eter setting. This paper proposes BioSpere,011
a novel multi-stage framework for unsuper-012
vised mapping of bi-lingual word embeddings013
onto a shared vector space, by combining ad-014
versarial initialization, refinement procedure015
and point set registration algorithm. We show016
that our framework alleviates the above short-017
comings, and is robust against variable ad-018
versarial learning performance and parameter019
choices. Experiments for parallel dictionary020
induction, sentence translation and word sim-021
ilarity demonstrate state-of-the-art results for022
BioSpere on diverse language pairs.023

1 Introduction and Background024

With the success of distributed word representation,025

like Word2Vec (Mikolov et al., 2013), GloVe (Pen-026

nington et al., 2014) and FastText (Bojanowski027

et al., 2017), in capturing rich semantic meaning,028

the use of such embeddings has permeated a range029

of Natural Language Processing (NLP) tasks such030

as text classification, document clustering, summa-031

rization and question answering (Klementiev et al.,032

2012). Unsupervised learning of such continuous033

high dimensional vector representation for words034

rely on distributional hypothesis (Harris, 1954).035

Motivation. As a natural generalization, learn-036

ing cross-lingual word embeddings (CLWE) en-037

tails mapping vocabularies of different languages038

onto a single vector space for capturing syntactic039

and semantic similarity of words across languages040

boundaries (Upadhyay et al., 2016). Thus, CLWE041

provides an effective approach for knowledge trans- 042

fer across languages for several downstream lin- 043

guistics tasks such as machine translation (Artetxe 044

et al., 2018a; Lample et al., 2018a,b), POS tag- 045

ging (Zhang et al., 2016), dependency parsing (Ah- 046

mad et al., 2019), named entity recognition (Tsai 047

and Roth, 2016; Xie et al., 2018; Chen et al., 2019), 048

and low-resource language understanding (Xiao 049

and Guo, 2014; Conneau et al., 2018b). Word align- 050

ment across languages also finds applications in 051

the study of cultural connotations (Kozlowski et al., 052

2019) and spatio-linguistic commonalities (Zwarts, 053

2017; Yun and Choi, 2018; Pederson et al., 1998). 054

Linguistic Correlation. Monolingual represen- 055

tation spaces learnt independently for different 056

languages tend to exhibit similarity in terms of 057

geometric properties and orientations (Mikolov 058

and Sutskever, 2013) 1. The frequency of words 059

across languages have also been shown to follow 060

the Zipf’s distribution 2, with an overlap of nearly 061

70% for the most frequent words (Aldarmaki et al., 062

2018) and 60% for synonyms (Dinu et al., 2015) 063

across language pairs. Existing techniques for ex- 064

tracting cross-lingual word correspondences rely 065

on above inter-dependencies to learn transforma- 066

tions across monolingual embedding spaces. 067

State-of-the-art & Challenges. Early ap- 068

proaches for directly obtaining multi-lingual word 069

embeddings relied on the availability of large par- 070

allel corpora (Gouws et al., 2015) or document- 071

aligned comparable corpora (Mogadala and Ret- 072

tinger, 2016; Vulić and Moens, 2016). However, 073

such methods are not scalable as annotations are 074

expensive and large parallel datasets, especially 075

for low-resource languages, are scarce. To address 076

the above challenges, linear transformations be- 077

tween two monolingual embedding space using 078

1For example, the embedding vector distribution of num-
bers and animals in English show a similar geometric struc-
tural formation as their Spanish counterparts.

2observed on 10 million words from Wikipages on 30
languages (en.wikipedia.org/wiki/Zipf’s_law)
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small manually created bi-lingual dictionaries were079

proposed (Mikolov and Sutskever, 2013; Artetxe080

et al., 2016). These approaches tend to learn a081

transformation T : X → Y between the language082

embeddings of X and Y . This can mathematically083

be represented as an optimization problem solving084

minT ||X − T (Y )||2F , where || · ||F is the Frobe-085

nius norm. This formulation when constrained to086

orthonormal matrices solutions only, results in the087

closed-form orthogonal Procrustes (Schönemann,088

1966) refinement strategy. Words having similar089

surface forms across languages were used to in-090

duce seed dictionaries and other augmented refine-091

ment strategies were explored in semi-supervised092

approaches (Artetxe et al., 2017; Zhou et al., 2019;093

Doval et al., 2018). Rigid transformation based094

point set registration was also studied in Cao and095

Zhao (2018). Subsequently, improvements in or-096

thogonality and optimization constraints were ex-097

plored for generalization beyond bi-lingual settings098

for supervised cross-lingual alignment and joint099

training methods (Joulin et al., 2018; Jawanpuria100

et al., 2019; Alaux et al., 2019; Wang et al., 2020),101

with feedback-based learning (Yuan et al., 2020).102

Unsupervised framework for bi-lingual word103

alignment was first proposed using adversarial104

training (Barone, 2016; Zhang et al., 2017a,b) .105

The use of post-mapping refinements were shown106

to produce high quality results in the MUSE frame-107

work (Conneau et al., 2018a) across diverse lan-108

guages, and was used for machine translation sys-109

tems (Lample et al., 2018a,b). Parallel dictionary110

construction using CSLS (Conneau et al., 2018a)111

(adopted in this paper) or inverted softmax (Smith112

et al., 2017) was shown to tackle the “hubness113

problem” (Radovanović et al., 2010) caused due114

to highly dense vector space regions (called hubs),115

which adversely affects bi-lingual word translation.116

However, the performance of adversarial learning117

techniques have been shown to suffer from instabil-118

ity, convergence issues, and dependence of precise119

parameter settings. Further, Søgaard et al. (2018)120

found the above unsupervised approaches to fail121

for morphologically rich languages. Hence, opti-122

mization formulations using Gromov-Wasserstein,123

Sinkhorn distance, and Iterative Closest Point were124

explored (Grave et al., 2019; Alvarez-Melis and125

Jaakkola, 2018; Xu et al., 2018; Hoshen and Wolf,126

2018). A survey of different methods can be127

found in Hartmann et al. (2019). Adversarial auto-128

encoders using cyclic loss optimization in latent129

space with stacked refinements (Mohiuddin and 130

Joty, 2019, 2020) achieved improved results for bi- 131

lingual embedding alignment on diverse languages. 132

Contributions. This paper proposes BioSpere 133

(Bi-Lingual Word Translation via Point Set 134

Registration and Refinement), a novel approach 135

for unsupervised bi-lingual word correspondence 136

induction. Given two independently learnt mono- 137

lingual word embedding space, BioSpere uses a 138

combination of adversarial training, refinement pro- 139

cedure, and point set registration to align the vo- 140

cabularies to a common vector representation. Our 141

key contributions are as follows: 142

• BioSpere, an unsupervised multi-stage frame- 143

work for learning bi-lingual word translations from 144

independent monolingual embedding spaces, cap- 145

turing cross-lingual word semantic similarities; 146

• A novel multi-stage framework coupling cycle- 147

consistence loss and Gaussian Mixture Model for 148

improved cross-lingual embedding alignment; 149

• Unsupervised criterion using cycle-loss consis- 150

tency for adversarial training parameter choice; 151

• Experiments on diverse language pairs for en- 152

hanced state-of-the-art accuracy (comparable to 153

supervised methods), for parallel dictionary cre- 154

ation, translation retrieval and word similarity; 155

• Robustness study of BioSpere framework in effi- 156

ciently handling hubness problem, and adversarial 157

learning convergence issues. 158

We next describe the detailed working of the 159

different modules in the BioSpere framework. 160

2 BioSpere Framework 161

Consider, two monolingual word embedding 162

spaces X = {xn}Nn=1 and Y = {ym}Mm=1, trained 163

independently on monolingual data, to be provided 164

as the source and target language representations, 165

respectively. BioSpere aims to map each word in 166

the source language to its translation in the target 167

language, without the need for any cross-lingual 168

supervision or pre-processing (Zhang et al., 2019). 169

Equivalently, it aligns the language embeddings, 170

such that semantically similar words are close to 171

each other in the common vector space. 172

To achieve this, the working of BioSpere hinges 173

on 4 modules, namely Align, Correspond, Trans- 174

form and Generate. Fig. 1 provides an overview of 175

the different modules, which we discuss next. 176

2.1 Align Module 177

The Align module uses an adversarial training ap- 178

proach (Ganin et al., 2016) to estimate an ini- 179
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Figure 1: Toy illustration (on en-ro language pair) of the different modules of BioSpere – (a) Align, (b) Correspond,
(c) Transform, and (d) Generate – for unsupervised parallel dictionary construction.

tial mapping between the words across the lan-180

guages, by learning an rotational transformation181

between the input embeddings spaces. Assum-182

ing x ∼ pdata(x) and y ∼ pdata(y) to be the183

input data distributions, we learn two linear map-184

pings F : X → Y and G : Y → X , referred185

to as forward and backward generators, respec-186

tively. A generative adversarial network is then187

used to train a model DY (discriminator) to dis-188

criminate between generated synthetic target em-189

beddings Ysyn = FX = {F (xn)}Nn=1, and the190

original embeddings Y . Similarly, we train another191

discriminator, DX , in the opposite direction to dis-192

criminate between synthetic source embeddings193

Xsyn = GY = {G(ym)}Mm=1 and the original X .194

The discriminators aim to distinguish between the195

real and synthetic embeddings, while the genera-196

tors attempt to produce outputs that prevent the197

discriminators from making accurate predictions.198

We resemble this in our training objective as two199

factors. First, the adversarial loss is formulated for200

matching the distribution of the synthetic embed-201

dings to the real distribution. Thus, for the forward202

generator F : X → Y , and its corresponding dis-203

criminator model DY , the adversarial loss is:204

Ladv(F,DY ,X, Y ) = Ey∼pdata(y)[logDY (y)]+205

Ex∼pdata(x)[log(1−DY (F (x))] (1)206

A similar lossLadv(G,DX , Y,X) is used for back-207

ward generator G : Y → X and discriminator DX .208

The second objective used is reported by Mo-209

hiuddin and Joty (2020) – the learned generators210

should not contradict each other, but should be211

cycle-consistent. That is, given a source embed-212

ding x, the forward translation cycle should attempt213

to produce an output that coincides with x, i.e.,214

G(F (x)) ≈ x. Analogously, the backward transla-215

tion cycle should ensure F (G(y)) ≈ y. Since word216

translations are symmetric in general, this criterion217

is captured by a cyclic-loss consistency measure in: 218

Lcyc(F,G) =Ex∼data(x) ‖G(F (x))‖2 + 219

Ey∼data(y) ‖F (G(y))‖2 (2) 220

Following Conneau et al. (2018a), we make sure 221

F and G remain roughly orthogonal during train- 222

ing by alternating parameter update with F ← 223

(1 + β)F − β(FF T )F (and analogously for G). 224

Intuitively, this preserves the monolingual quality 225

(dot product and L2 distances) of embeddings. 226

Specifically, the above formulation corresponds 227

to CycleGAN (Zhu et al., 2017), a generative ad- 228

versarial network architecture, which we adopt in 229

the Align module of BioSpere. This provides an 230

initial aligned embedding space, obtained as two 231

word vector sets, XA = F (X) and YA = G(Y ), 232

as embeddings from the learned transformations. 233

2.2 Correspond Module 234

The above word alignments obtained based on 235

cyclic loss, despite being better than other adversar- 236

ial network based approaches, are not at par with 237

state-of-the-art results and might suffer from con- 238

vergence instability. To address this issue, the Cor- 239

respond module performs a refinement step based 240

on symmetric re-weighting, shown to be effective in 241

word embedding alignment (Artetxe et al., 2018a, 242

2016, 2017; Mohiuddin and Joty, 2020). 243

To this end, a synthetic seed parallel dictionary, 244

D, is induced by considering the mutual nearest 245

neighbour relation (in both directions) across the 246

aligned embeddings (XA and YA) obtained from 247

the Align module. That is, given mappings F : 248

X → Y and G : Y → X , the similarity between 249

words xn and ym is computed as: 250

σnm = δ(F (xn), ym) + δ(xn, G(ym)) (3) 251

where δ is a distance measure in both XA and YA. 252

As in Conneau et al. (2018a), we adopt the cross- 253

domain similarity local scaling (CSLS) measure, 254
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which addresses the “hubness” problem faced es-255

pecially when working in high-dimensional spaces.256

Similar to the our adversarial network, σnm uses257

bi-directional similarity computation. In our exper-258

iments, the dictionary induction was performed on259

the 25K most frequent words (out of 200K words)260

from source and target languages. Symmetric re-261

weighting refinement is next done using 3 steps:262

(i) Whitening: This makes the embedding dimen-263

sions uncorrelated with unit variance by applying264

spherical transformation. We use Mahalanobis or265

ZCA whitening, where original embeddings X and266

Y are length-normalized and mean-centered, fol-267

lowed by a linear transformation via whitening ma-268

trices Wx = (XTX)−1/2 and Wy = (Y TY )−1/2,269

to obtain Xw = XWx and Yw = YWy.270

(ii) Orthogonal Transformation: This provides an271

intermediate transformation of the whitened vec-272

tor embeddings onto a common space. Initially,273

U , Σ, and V T are obtained via singular value de-274

composition of (XDw )TY Dw , where XDw and Y Dw are275

whitened embeddings of words of above seed dic-276

tionary D. The orthogonal transformation is com-277

puted as Xo = XwUΣ1/2 and Yo = YwV Σ1/2.278

(iii) De-Whitening: The final de-whitening step279

restores the original variance in the embedding di-280

mensions in the above orthogonally transformed281

vector space. That is, the Correspond module out-282

puts a refined vector embedding space as XC =283

XoU
T (XTX)1/2U and YC = YoV

T (Y TY )1/2V .284

2.3 Transform Module285

The Transform module performs a further refine-286

ment on the transformed embeddings XC and YC287

(using the concept of point set registration). Specif-288

ically, we uses the Coherent Point Drift (CPD) al-289

gorithm (Myronenko and Song, 2010), an unsuper-290

vised probabilistic framework which assigns point-291

to-point correspondence between two sets of points,292

akin to finding word translation pairs in our setting.293

The idea here is to consider the task of aligning the294

two embedding spaces as a density estimation prob-295

lem based on the Gaussian Mixture Model (GMM).296

This considers word embeddings of one language297

as GMM centroids, and the other embedding space298

to represent data points. The centroids are then299

fitted to data points by maximizing the likelihood,300

and at optimum point correspondences are obtained301

using GMM posterior probabilities.302

Thus, we consider the target embeddings YC as303

the centroids and the source embedding space XC304

as data points, to have been generated by the GMM305

probability density function. The centroid loca- 306

tions are estimated by Expectation Maximization 307

(EM) algorithm (Dempster et al., 1977). We direct 308

interested readers to the details of CPD algorithm 309

provided by Myronenko and Song (2010). 310

The use of CPD provides the following advan- 311

tages. The inherent use of GMM by CPD enables 312

BioSpere to efficiently tackle the “hubness” prob- 313

lem (shown in Zhou et al. (2019)) and improve ro- 314

bustness. Further, CPD imposes the Motion Coher- 315

ence Theory (MCT) (Yuille and Grzywacz, 1988) 316

to force the GMM centroids to move coherently as 317

a group, which preserves the underlying topologi- 318

cal structure of the data. This would maintain the 319

local geometric structures within the languages af- 320

ter alignment, benefiting downstream applications. 321

In BioSpere we use affine transformation for 322

CPD, providing a higher degree of transformational 323

freedom compared to rigid procedures of (Cao and 324

Zhao, 2018) and Procrustes. The Transform mod- 325

ule computes the tuple (R, t, s), where R is a ro- 326

tation matrix, t is a translation vector, and s is a 327

scaling constant. The transformed source embed- 328

ding space is computed as XT = (RXT
C ∗ s+ t)T . 329

Similar to the re-weighting process, mutual nearest 330

neighbours among the 25K most frequent words in 331

the source and target languages (XC and YC) were 332

provided to CPD for computing correspondences. 333

We run CPD twice for each language pair, once in 334

each directions, generating the transformed source 335

and target language embeddings XT and YT . 336

2.4 Generate Module 337

The Generate module iterates between the above 338

correspond and transform steps until convergence 339

is reached. Equipped with the final aligned XT and 340

YT embedding spaces, the resultant parallel dictio- 341

nary is computed using the bi-directional CSLS 342

measure, similar to the construction of the interme- 343

diate dictionary in the Correspond module (using 344

Eq. 3 of Sec. 2.2). For convergence of the iterative 345

symmetric re-weighting refinement and CPD, we 346

adopt the criteria as in Artetxe et al. (2018b); Mo- 347

hiuddin and Joty (2020). The generated word pairs 348

are compared with ground-truth parallel dictionar- 349

ies to compute the accuracy of BioSpere. 350

In the next section, we show that the proposed 351

multi-stage framework, BioSpere outperforms ex- 352

isting approaches in parallel dictionary creation, 353

sentence translation retrieval, and word similarity 354

tasks – robustly handling adversarial convergences 355

issues and sub-optimal parameter settings. 356
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3 Empirical Evaluation357

In this section, we evaluate the performance of the358

proposed BioSpere framework in mapping the in-359

put word embeddings onto a shared vector space,360

such that semantically similar words across lan-361

guages are close to each other (in terms of dis-362

tance) in the common space. We benchmark the363

accuracy of BioSpere against several existing ap-364

proaches on the tasks of bi-lingual dictionary in-365

duction, sentence translation retrieval, and word366

similarity across a diverse set of languages.367

3.1 Experimental Setup368

Dataset. Our experimental setup closely follows369

that of Conneau et al. (2018a). FastText monolin-370

gual vector embeddings (with dimensionality of371

300) (Bojanowski et al., 2017) for the top 200K372

most frequent words of each language is used as373

input vocabulary. We consider eight different lan-374

guage pairs including morphologically rich and375

low-resourced languages. Specifically, we consider376

English (en), German (de), French (fr), Spanish377

(es), Italian (it), Russian (ru), Hebrew (he), Finnish378

(fi), and Romanian (ro) – a mix of isolating, fu-379

sional and agglutinative language with dependent380

and mixed marking (Søgaard et al., 2018).381

Evaluation. We report the Precision@1 (P@1)382

accuracy scores based on CSLS criteria (Conneau383

et al., 2018a) for our empirical evaluations. In the384

word translation task, we use the gold dictionary385

with 1,500 source test words (and full 200K tar-386

get vocabulary) for different language pairs (from387

github.com/facebookresearch/MUSE). While388

for sentence translation retrieval, we consider the389

Europarl corpus with 2,000 source sentence queries390

and 200K target sentences for each of the language391

pairs. For the cosine based word similarity task, we392

use SemEval 2017 data (Camacho-Collados et al.,393

2017) and report the Pearson’s correlation.394

Baselines. The performance of BioSpere is com-395

pared against the following unsupervised methods:396

(1) MUSE (Conneau et al., 2018a) – Uses397

GAN (Goodfellow et al., 2014) to learn transfor-398

mations with Procrustes (Schönemann, 1966) 3;399

(2) Adv-Auto (Mohiuddin and Joty, 2020) – State-400

of-the-art using adversarial auto-encoder to cre-401

ate synthetic dictionary, refined by symmetric re-402

weighting & Procrustes strategies 4;403

(3) VecMap (Artetxe et al., 2018a) – Self-learning404

3Code from github.com/facebookresearch/MUSE
4

ntunlpsg.github.io/project/unsup-word-translation

iterative algorithms exploiting structural similari- 405

ties between embedding spaces for alignment 5; 406

(4) SinkHorn (Xu et al., 2018): GAN trained on 407

cyclic loss and Sinkhorn distance (Cuturi, 2013); 408

(5) Non-Adv (Hoshen and Wolf, 2018) – Uses 409

dimensionality reduction with Iterative Closest 410

Point (Besl and McKay, 1992) algorithm; 411

(6) Was-Proc (Grave et al., 2019) – Computes bi- 412

stochastic matrix for assignment by jointly optimiz- 413

ing Wasserstein dist. (Mémoli, 2011) & Procrustes; 414

(7) GW-Proc (Alvarez-Melis and Jaakkola, 2018) 415

– Formulates optimal flow across domains using 416

Gromov-Wasserstein distance (Mémoli, 2011); and 417

(8) UMH (Alaux et al., 2019) – Uses language 418

correlation for learning via constraint optimization. 419

We also report the supervised approaches: 420

(1) RCSLS (Joulin et al., 2018): Optimizes CSLS 421

criteria for learning (Conneau et al., 2018a); 422

(2) GeoMM (Jawanpuria et al., 2019): Language 423

specific geometric rotations are learnt to align; and 424

(3) DeMa-BME (Zhou et al., 2019): Weakly- 425

supervised approach for learning Gaussian Mixture 426

Model between embeddings spaces. 427

3.1.1 Unsupervised Model Selection 428

Choosing the best performing model setting for 429

adversarial training and convergence for iterative 430

refinement (in Sec. 2.4) poses a challenge in an 431

unsupervised setting, as we cannot use a validation 432

set to direct our choices. To address this issue, we 433

follow Conneau et al. (2018a) and use CSLS mea- 434

sure (denoted as DMC) to quantify the closeness 435

of source and target mapped embedding spaces. 436

However, in line with our forward-backward or 437

cyclic-consistency theme, we extend CSLS to mea- 438

sure the similarity in both the source and target 439

spaces, as in Sec. 2.2. Specifically, we consider 440

the 25K most frequent source words to generate 441

a translation for them, and compute the average 442

bi-directional cosine similarity between the pairs, 443

to decide on model convergence. This revised crite- 444

rion (termed as DualDMC) was found to be better 445

correlated with word translation accuracy, than the 446

unidirectional setting (DMC) used previously (Con- 447

neau et al., 2018a; Mohiuddin and Joty, 2020) – and 448

closely correlated with CSLS@1 (on a validation 449

set containing ground-truth word translations). 450

Parameter Setting. Despite obtaining state-of- 451

the-art results, we emphasize that achieving the 452

best possible accuracy (by extensive parameter 453

5Code obtained from github.com/artetxem/vecmap

5
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search) is not the focus of this work. Rather, we aim454

to build a framework robust to adversarial instabil-455

ity and parameter settings. Most parameters were456

set to fixed values, or selected via two successive457

degradation of the unsupervised DualDMC criteria458

of the previous section. Following Conneau et al.459

(2018a), we fed the adversarial discriminator with460

the 50K most frequent words, and the discriminator461

had an input dropout layer with a rate of 0.1. In our462

experiments, we only tuned the weight assigned463

to the cyclic loss between 5 and 10, and ran the464

framework under different random seeds, picking465

the best model using unsupervised DualDMC.466

3.2 Experimental Results467

Word Translation. This task involves the retrieval468

of the translation of a given source word for a tar-469

get language (from the target vocabulary). Ob-470

serve, polysemy of words and hubness in embed-471

ding space provide a significant challenge in this472

setting. Parallel dictionary construction forms a ma-473

jor application of word embedding alignment, and474

we compare all baselines using the ground-truth475

dictionaries of Conneau et al. (2018a).476

From Table 1, we observe that BioSpere pro-477

vides state-of-the-art translation results in nearly478

all of the four language pairs (for both directions).479

It should be noted that we achieve better results480

across the languages even when compared to super-481

vised methods like Non-Adv and DeMa-BME. In482

fact, for certain language pairs like en→ es, en→483

fr, and fr→ en, the performance of BioSpere is al-484

most at par with state-of-the-art supervised method485

of RCSLS. Since, unsupervised MUSE, VecMap,486

and Adv-Auto were seen to consistently perform487

well across the languages, they are selected as com-488

peting baselines for the remaining experiments.489

The challenges in word translation are com-490

pounded for morphologically rich languages due to491

high vocabulary variation. To this end, we explore492

the performance of the competing algorithms on493

Finnish, Hebrew and Romanian, considered as “dif-494

ficult” languages (Søgaard et al., 2018). From Ta-495

ble 2, we see that BioSpere is efficient even in such496

settings – outperforming existing approaches with497

an accuracy improvement across the languages.498

Semantic Word Similarity. This task evaluates499

the quality of alignment of cross-lingual word em-500

bedding space by evaluating how the cosine simi-501

larity between words in different languages corre-502

lates with human-annotated word similarity scores503

Algorithm en-es en-de en-fr en-ru

→ ← → ← → ← → ←

Supervised Approaches

Non-Adv 81.4 82.9 73.5 72.4 81.1 82.4 51.7 63.7
DeMa-BME 82.8 85.4 77.2 75.1 83.2 83.5 49.2 63.6
GeoMM 81.4 85.5 74.7 76.7 82.1 84.1 51.3 67.6
RCSLS 84.1 86.3 79.1 76.3 83.3 84.1 57.9 67.2

Unsupervised Approaches

SinkHorn∗∗ 79.5 77.8 69.3 67.0 77.9 75.5 - -
Non-Adv 82.1 84.1 74.7 73.0 82.3 82.9 47.5 61.8
Was-Proc 82.8 84.1 75.4 73.3 82.6 82.9 43.7 59.1
GW-Proc 81.7 80.4 71.9 72.8 81.3 78.9 45.1 43.7
MUSE 81.7 83.3 74.0 72.2 82.3 82.1 44.0 59.1
VecMap†† 82.3 84.7 75.1 74.3 82.3 83.6 49.2 65.6
UMH 82.5 84.9 74.8 73.7 82.9 83.3 45.3 62.8
Adv-Auto 83.0 85.2 76.2 74.7 82.3 83.5 48.4 64.5

BioSpere 83.3 85.4 75.8 75.8 83.4 84.1 49.5 64.0
‘-’ denotes failure of the training network to converge reasonably
∗∗ Uses cosine similarity instead of CSLS, and results as reported in Zhou et al. (2019)
†† Results taken from Zhou et al. (2019)

Table 1: CSLS@1 word translation results on the
dataset of Conneau et al. (2018a).

Algorithm en-fi en-he en-ro

→ ← → ← → ←
MUSE 43.7 53.7 38.0 - 58.0 66.0
VecMap 49.9 63.5 44.6 57.7 64.2 71.8
Adv-Auto 49.8 65.5 46.1 58.6 62.6 71.9
BioSpere 49.9 65.5 46.6 59.1 65.4 74.3

Table 2: CSLS@1 word translation results on morpho-
logically rich “difficult” languages.

(based on a well-defined similarity scale). 504

Table 3(a) shows that BioSpere achieves a bet- 505

ter Pearson’s correlation to human-annotated word 506

similarity scores across the languages (except Ital- 507

ian). This depicts that our framework generates 508

better alignment of different language embedding 509

spaces – providing better understanding of seman- 510

tic similarity between words across languages. 511

Sentence Translation Retrieval. We explore 512

a higher level abstraction of multi-lingual word 513

embedding space alignment, and study sentence 514

translation retrieval on Europarl corpus. Similar 515

to Conneau et al. (2018a), a sentence is represented 516

as a bag-of-words, and the idf-weighted average of 517

word embeddings are considered as sentence en- 518

coding. For each source sentence, the closest sen- 519

tence (based on embedding space distance) from 520

the target language is considered as its translation. 521

Table 3(b) depicts that BioSpere provides better 522

sentence translation retrieval accuracy, outperform- 523

ing the competing algorithms across language pairs 524

with upto 1.5% P@1 score improvements – provid- 525

ing better cross-lingual alignment. 526

Language Models. Multi-lingual contextualized 527

language models (CLM) like mBERT (Devlin et al., 528

2019) and XLM (Lample and Conneau, 2019) cap- 529

ture semantic meaning of words and provide “dy- 530

namic” token embeddings based on the context. 531

Although, CLMs generate aligned multi-lingual 532
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Algorithm en-de en-es en-it Algorithm en-es en-fr en-fi

→ ← → ← → ← → ← → ← → ←

MUSE 0.708 0.713 0.712 0.711 0.710 0.712 MUSE 75.1 73.9 69.1 69.9 64.2 64.0
VecMap 0.719 0.719 0.721 0.721 0.746 0.746 VecMap 74.7 74.4 69.6 69.3 64.4 64.1
Adv-Auto - 0.720 0.724 0.718 0.722 0.721 Adv-Auto 75.0 75.7 68.0 71.0 64.1 64.5
BioSpere 0.726 0.725 0.730 0.728 0.722 0.723 BioSpere 76.7 76.3 70.2 70.9 65.1 65.9

(a) (b)
Table 3: Performance of competing approaches on (a) Pearson’s Correlation score for word similarity task on
SemEval 2017 dataset, and (b) Precision@1 results for sentence translation retrieval on Europarl data.

Algorithm en-de en-es en-fi en-ro

mBERT-CLS 70.0 80.2 40.8 65.0
BioSpere-WMD 90.2 93.2 79.1 94.9

Table 4: Sentence translation retrieval P@1 result of
BioSpere & multi-lingual language model on Europarl.

Algorithm en-de en-fi en-ro

→ ← → ← → ←
MUSE GAN 59.8 60.5 22.3 24.1 34.5 49.6
CycleGAN 69.8 69.6 27.7 48.3 44.4 52.5
CycleGAN + Procrustes 73.8 73.3 46.2 62.0 59.5 67.2
CycleGAN + SR 75.5 74.7 46.9 64.9 63.5 71.6
CycleGAN + rigid CPD 74.5 74.2 45.9 62.3 60.5 67.3
CycleGAN + affine CPD 75.2 74.7 50.2 65.7 65.5 72.5
BioSpere 75.8 75.8 49.9 65.5 65.4 74.3

Bad-GAN 70.5 62.9 25.1 36.3 42.1 51.4
Bad-GAN + Procrustes 74.5 73.3 46.7 61.7 59.5 68.9
Bad-GAN + SR 75.9 73.8 45.7 61.7 63.1 72.3
Bad-GAN + affine CPD 75.3 74.7 51.7 65.7 63.1 72.6
BioSpere with Bad-GAN 75.9 75.9 51.7 65.4 64.0 73.1

Table 5: Ablation and Robustness study of BioSpere on
word translation with (Conneau et al., 2018a) dataset.

contextual word embeddings (Pires et al., 2019; Wu533

and Dredze, 2019), parallel dictionary construction534

in this context becomes challenging. However, to535

evaluate the effect of cross-lingual word embed-536

ding alignment quality on downstream tasks, we537

perform sentence translation retrieval on Europarl538

with 2K sentence pairs. In this setting, for a source539

sentence, the closest target sentence is considered540

as translation using Word Mover’s Distance (Kus-541

ner et al., 2015) on word embeddings obtained542

from BioSpere, while for mBERT we use sentence543

embedding similarity based on the CLS token.544

Table 4 depicts that BioSpere achieves a large545

margin of improvement in translation retrieval com-546

pared to the multi-lingual language models – thus547

providing enhanced accuracy in capturing word548

semantic similarity across languages.549

3.2.1 Ablation Study550

To understand the impact of different modules on551

the performance of BioSpere, we perform ablation552

by incrementally evaluating the components.553

Varying Components. Table 5 tabulates the554

results for different variants of our proposed frame-555

work on different language pairs. We observe,556

that the adversarial network, CycleGAN, using557

the cycle-loss consistency criteria, performs bet-558

ter than MUSE GAN, the framework of Conneau559

et al. (2018a). In terms of refinement performed560

in the Correspond module of BioSpere, we com- 561

pared the performance of symmetric re-weighting 562

(SR) with Procrustes. Both of them are seen to 563

perform nearly similar, however, SR is seen to 564

perform slightly better for morphologically rich 565

languages, and is thus adopted in BioSpere. As dis- 566

cussed previously, we empirically observe that the 567

higher degrees of translational freedom provided 568

by affine CPD performances better than rigid CPD 569

(used in Cao and Zhao (2018)). Note that Cycle- 570

GAN + affine CPD achieves the best accuracy (with 571

BioSpere performing nearly the same) for certain 572

language pairs. We next discuss the advantages of 573

symmetric re-weighting within our framework. 574

Adversarial Convergence. One important criti- 575

cism for adversarial based alignment techniques is 576

training convergence instability. Hence, we study 577

the robustness of BioSpere to such issues, by inten- 578

tionally selecting a sub-optimal CycleGAN model 579

from the Align module, denoted as Bad-GAN in 580

Table 5. We observe that symmetric re-weighting 581

(SR) refinement is able to recover from such con- 582

vergence issues (better than Procrustes) – providing 583

an accuracy score comparable to that achieved by a 584

properly trained adversarial model (selected using 585

DualDMC). Specifically, for fi→ en language pair, 586

the performance of Bad-GAN is around 12% worse 587

than the best CycleGAN model. However, the final 588

accuracy of BioSpere for word translation differs 589

by only 1% (in Table 5) even with the Bad-GAN 590

initialization. Note, extensive parameter search for 591

the best trained model was not performed. 592

Intuitively, the interactions across the different 593

components in BioSpere are as follows: The adver- 594

sarial module provides an initial embedding space 595

alignment, but might be prone to convergence is- 596

sues. The refinement stage then provides robust- 597

ness against such training losses. However, the 598

refinement process being a supervised approach by 599

definition, errors in intermediate synthetic dictio- 600

nary construction might propagate, degrading the 601

efficacy. The final point correspondence CPD step, 602

being unsupervised, is agnostic to such errors and 603

provides enhanced cross-lingual embedding space 604
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Algorithm en-es en-fr en-fi en-ro

→ ← → ← → ← → ←
MUSE 80.9 82.3 83.3 82.0 - 58.3 68.0 77.0
VecMap 82.2 85.7 84.7 85.4 62.4 76.7 77.2 79.9
Adv-Auto 82.9 85.7 84.5 85.4 - 78.3 - 79.9
BioSpere 82.8 86.2 85.2 85.8 63.5 85.0 79.1 80.1

Table 6: CSLS@1 results for limited vocabulary word
translation on Conneau et al. (2018a) data.

alignment. The overall BioSpere framework (Cy-605

cleGAN + SR + affine CPD) thus performs the best606

and robustly across all the different languages.607

Limited Vocabulary. We now study the effect608

of smaller vocabulary size on the alignment ac-609

curacy of BioSpere. Observe, in scenarios with610

domain-specificity and for low-resource languages,611

the vocabulary space might be relatively small,612

which can potentially impact the training perfor-613

mance of existing learning techniques. Here, we614

limit the input monolingual word embeddings to615

only 10K most frequent words (instead of 200K).616

From Table 6, we see that BioSpere outperforms617

the competing methods across the different lan-618

guage pairs. In fact, competing algorithms fail619

to converge (marked as ’-’) in certain scenarios620

– which can be attributed to limited training data621

for learning. Thus, we see that BioSpere provides622

stability and scalability in computing efficient em-623

bedding alignment across various input sizes.624

In summary, the above empirical evaluations625

showcase that the proposed BioSpere framework626

provides better cross-lingual alignment of embed-627

ding spaces, by not only outperforming existing628

techniques (even supervised methods in certain629

cases) in translation accuracy even on morphologi-630

cally rich languages, but also demonstrating robust-631

ness in handling potential training losses.632

4 Related Background633

Generative Adversarial Networks (GANs) cou-634

ples the training of machine learning architecture635

between a generative and a discriminative net-636

work that work in tandem for “indirect” training637

in an unsupervised manner (Goodfellow et al.,638

2014). GANs have been shown to achieve impres-639

sive results in the domain image processing (Zhu640

et al., 2017), representation learning (Radford et al.,641

2016) and reinforcement learning (Ho and Ermon,642

2016). The task of supervised image-to-image643

translation involves learning the transformation644

from an input image to an output image (Long645

et al., 2015). Unsupervised image-to-image trans-646

lation approach, Co-GAN (Liu and Tuzel, 2016)647

was proposed based on weight sharing scheme. Re- 648

moval of dependencies on task-specific similarity 649

functions and low-dimensionality in this aspect was 650

proposed by Zhu et al. (2017), and was shown in 651

visual tracking by enforcing forward-backward con- 652

sistency (Kalal et al., 2010). Improving translations 653

via “back translation and reconciliation” is used by 654

human translators (Brislin, 1970). We thus adopt 655

the unsupervised CycleGAN (Zhu et al., 2017) ad- 656

versarial training based on cycle-consistency loss. 657

Point Set Registration algorithms aim to com- 658

pute the transformation for aligning two input point 659

sets. Rigid transformation involving rotation, trans- 660

lation and reflection, were used in Iterative Closest 661

Point (ICP) algorithm (Besl and McKay, 1992) and 662

other variants (Rusinkiewicz and Levoy, 2001) for 663

probabilistic alignment. Spectral methods (Scott 664

and Longuet-Higgins, 1991) and closed-form so- 665

lution for rigid probabilistic registration in multi- 666

dimensional cases was presented in Myronenko 667

and Song (2010). In addition to the rotation, trans- 668

lation and reflection, affine transformation also con- 669

siders scaling, homothety, similarity and shear – 670

providing more degrees of freedom for better point 671

set registration (Ho et al., 2007). Non-rigid trans- 672

formations are based on Gaussian Mixture model 673

and filters (Hinton et al., 1992; Gao and Tedrake, 674

2019), Bayesian modelling (Hirose, 2020) or Thin 675

Plate Spline (TPS) parameterization (Bookstein, 676

1989). Recent developments use convolutional neu- 677

ral networks (Huang et al., 2017) and other learn- 678

ing frameworks (Yew and Lee, 2018). An exten- 679

sive literature survey can be found in Tam et al. 680

(2013). We adopt Coherent Point Drift (CPD) (My- 681

ronenko and Song, 2010) combining Gaussian Mix- 682

ture Model and Motion Coherence Theory. 683

5 Conclusion 684

This paper proposed BioSpere, a multi-stage unsu- 685

pervised cross-lingual word embedding alignment 686

framework – based on the novel coupling of gen- 687

erative adversarial training, refinement procedure 688

and point set registration. We show that the bi- 689

directional cycle-loss based training and conver- 690

gence criteria with the inherent GMM formulation 691

provides enhanced input vector spaces alignment. 692

Extensive experiments on multiple languages for 693

parallel dictionary creation, sentence translation 694

retrieval, and word similarity not only demonstrate 695

improved results, but also depict robustness to hub- 696

ness and inconsistent adversarial performance. 697
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